51
|
Beach T, Authier S, Javitz HS, Wong K, Bakke J, Gahagen J, Bunin DI, Chang PY. Total body irradiation models in NHPs - consideration of animal sex and provision of supportive care to advance model development. Int J Radiat Biol 2020; 97:126-130. [PMID: 33259246 DOI: 10.1080/09553002.2021.1844335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Harmonized animal models are an indispensable tool for the development of safe and effective medical countermeasures (MCMs) against radiation injury, and rhesus macaques (referred herein as NHPs) play a critical role in FDA approval of radiation medical countermeasures for acute and delayed radiation syndromes. Reliance on such models requires that they be well characterized, which consists, in part, of a reproducible dose to mortality response relationship (DRR). However, data describing the DRR for both male and female NHPs from the same study are scarce. Furthermore, the level of supportive care and the use of blood transfusions may shift the DRR, yet such information can be difficult to compare across publications. To address these knowledge gaps, the DRRs of two different NHP total body irradiation (TBI) models are compared in this paper, one which is reliant on the use of male animals provided blood transfusions, and the other which incorporates both sexes wherein animals are not provided transfusions. MATERIALS AND METHODS Studies were conducted using NHPs (Macacca mulatta) receiving TBI, with survival reported over a 60 days. Two primary studies, incorporating both male and female animals not receiving blood transfusions as a provision of supportive care, were compared to two previously published studies, which incorporated only male animals provided blood transfusions as a part of the supportive care regimen. Criterion for euthanasia, and all other provisions of supportive care were comparable. Linear probit plots estimating the lethal dose (LD) and upper and lower limits of the 95% confidence interval (CI) for 10, 30, 50, 70 and 90% mortality, were compared between individual studies and the two models presented. RESULTS Comparison of probit estimates reveals two important findings. (1) Females have higher mortality than males at identical radiation doses, and (2) blood transfusions increased survival of male animals at lower doses but not at high doses of radiation exposure. CONCLUSIONS The use of single sex animal models may lead to an incomplete understanding of potential sex differences in the dose to mortality response of the TBI model. Consistent use of both sexes and type of supportive care will improve the transferability and reliability of NHP-TBI models currently in use, assist in the selection of radiation doses for single dose lethality studies, and allow investigators to determine the effectiveness of a particular MCM.
Collapse
Affiliation(s)
| | | | | | - Karen Wong
- Charles River Laboratories, Laval, Canada
| | | | | | | | | |
Collapse
|
52
|
Wu T, Plett PA, Chua HL, Jacobsen M, Sandusky GE, MacVittie TJ, Orschell CM. Immune Reconstitution and Thymic Involution in the Acute and Delayed Hematopoietic Radiation Syndromes. HEALTH PHYSICS 2020; 119:647-658. [PMID: 32947490 PMCID: PMC7541734 DOI: 10.1097/hp.0000000000001352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
53
|
MacVittie TJ, Farese AM, Jackson W. A Systematic Review of the Hematopoietic Acute Radiation Syndrome (H-ARS) in Canines and Non-human Primates: Acute Mixed Neutron/Gamma vs. Reference Quality Radiations. HEALTH PHYSICS 2020; 119:527-558. [PMID: 32947486 PMCID: PMC9438931 DOI: 10.1097/hp.0000000000001319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A systematic review of relevant studies that determined the dose response relationship (DRR) for the hematopoietic (H) acute radiation syndrome (ARS) in the canine relative to radiation quality of mixed neutron:gamma radiations, dose rate, and exposure uniformity relative to selected reference radiation exposure has not been performed. The datasets for rhesus macaques exposure to mixed neutron:gamma radiation are used herein as a species comparative reference to the canine database. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and US HHS RePORT (2002-present). The total number of hits across all search sites was 3,077. Several referenced, unpublished, non-peer reviewed government reports were unavailable for review. Primary published studies using canines, beagles, and mongrels were evaluated to provide an informative and consistent review of mixed neutron:gamma radiation effects to establish the DRRs for the H-ARS. Secondary and tertiary studies provided additional information on the hematologic response or the effects on hematopoietic progenitor cells, radiation dosimetry, absorbed dose, and organ dose. The LD50/30 values varied with neutron quality, exposure aspect, and mixed neutron:gamma ratio. The reference radiation quality varied from 250 kVp or 1-2 MeV x radiation and Co gamma radiation. A summary of a published review of a data set describing the DRR in rhesus macaques for mixed neutron:gamma radiation exposure in the H-ARS is included for a comparative reference to the canine dataset. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in canines and young rhesus macaques exposed to mixed neutron:gamma radiations of variable energy relative to 250 kVp, 1-2 MeV x radiation and Co gamma, and uniform and non-uniform total-body irradiation without the benefit of medical management. The mixed neutron:gamma radiation showed an energy-dependent RBE of ~ 1.0 to 2.0 relative to reference radiation exposure within both species. A marginal database described the DRR for the gastrointestinal (GI)-ARS. Medical management showed benefit in both species relative to the mixed neutron:gamma as well as exposure to reference radiation. The DRR for the H-ARS was characterized by steep slopes and relative LD50/30 values that reflected the radiation quality, exposure aspect, and dose rate over a range in time from 1956-2012.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
54
|
Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today 2020; 26:17-30. [PMID: 33065293 DOI: 10.1016/j.drudis.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues. The drug has been evaluated clinically for its pharmacokinetics (PK), toxicity, and biomarkers. The US Food and Drug Administration (FDA) has granted investigational new drug, fast-track, and orphan drug statuses to entolimod. Its safety, efficacy, and animal-to-human dose conversion data allowed its progression with a pre-emergency use authorization application submission.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
55
|
Zhong Y, Pouliot M, Downey AM, Mockbee C, Roychowdhury D, Wierzbicki W, Authier S. Efficacy of delayed administration of sargramostim up to 120 hours post exposure in a nonhuman primate total body radiation model. Int J Radiat Biol 2020; 97:S100-S116. [PMID: 32960660 DOI: 10.1080/09553002.2019.1673499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND High dose ionizing radiation exposure is associated with myelo-depression leading to pancytopenia and the expected clinical manifestations of acute radiation syndrome (ARS). Herein, we evaluated the efficacy of sargramostim (Leukine®, yeast-derived rhu GM-CSF), with regimens delivered at 48, 72, 96, or 120 h after radiation exposure. METHODS A randomized and blinded nonhuman primate (NHP) study was conducted to assess the effects of sargramostim treatment on ARS. NHPs were exposed to total body radiation (LD83/60 or lethal dose 83% by Day 60) and were randomized to groups receiving daily subcutaneous dosing of sargramostim starting from either 48, 72, 96, or 120 h post-irradiation. Additionally, separate groups receiving sargramostim treatment at 48 h post-irradiation also received prophylactic treatment with azithromycin. Sargramostim treatment of each animal continued until the preliminary absolute neutrophil count (ANC) returned to ≥1000/μL post-nadir for three consecutive days or the preliminary ANC exceeded 10,000/μL, which amounted to be an average of 15.95 days for all treatment groups. Prophylactic administration of enrofloxacin was included in the supportive care given to all animals in all groups. All animals were monitored for 60 days post-irradiation for mortality, hematological parameters, and sepsis. RESULTS Delayed sargramostim treatment at 48 h post-irradiation significantly reduced mortality (p = .0032) and improved hematological parameters including neutrophil but also lymphocyte and platelet counts. Additional delays in sargramostim administration at 72, 96, and 120 h post-irradiation were also similarly effective at enhancing the recovery of lymphocyte, neutrophil, and platelet counts compared to control. Sargramostim treatment also improved the survival of the animals when administered at up to 96 h post-irradiation. While sargramostim treatment at 48 h significantly reduced mortality associated with sepsis (p ≤ .01), the additional prophylactic treatment with azithromycin did not have clinically significant effects. CONCLUSION In a NHP ARS model, sargramostim administered starting at 48 h post-radiation was effective to improve survival, while beneficial hematological effects were observed with sargramostim initiated up to 120 h post exposure.
Collapse
|
56
|
Wathen LK, Eder PS, Horwith G, Wallace RL. Using biodosimetry to enhance the public health response to a nuclear incident. Int J Radiat Biol 2020; 97:S6-S9. [DOI: 10.1080/09553002.2020.1820605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L. K. Wathen
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - P. S. Eder
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - G. Horwith
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - R. L. Wallace
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| |
Collapse
|
57
|
Xing S, Shen X, Yang JK, Wang XR, Ou HL, Zhang XW, Xiong GL, Shan YJ, Cong YW, Luo QL, Yu ZY. Single-Dose Administration of Recombinant Human Thrombopoietin Mitigates Total Body Irradiation-Induced Hematopoietic System Injury in Mice and Nonhuman Primates. Int J Radiat Oncol Biol Phys 2020; 108:1357-1367. [PMID: 32758640 DOI: 10.1016/j.ijrobp.2020.07.2325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Recombinant human thrombopoietin (rhTPO) has been evaluated as a therapeutic intervention for radiation-induced myelosuppression. However, the immunogenicity induced by a repeated-dosing strategy raises concerns about the therapeutic use of rhTPO. In this study, single-dose administration of rhTPO was evaluated for efficacy in the hematopoietic response and survival effect on mice and nonhuman primates exposed to total body irradiation (TBI). METHODS AND MATERIALS Survival of lethally (9.0 Gy) irradiated C57BL/6J male mice was observed for 30 days after irradiation. Hematologic evaluations were performed on C57BL/6J male mice given a sublethal dose of radiation (6.5 Gy). Furthermore, in sublethally irradiated mice, we performed bone marrow (BM) histologic evaluation and evaluated BM-derived clonogenic activity. Next, the proportion and number of hematopoietic stem cells (HSCs) were analyzed. Competitive repopulation experiments were conducted to assess the multilineage engraftment of irradiated HSCs after BM transplantation. Flow cytometry was used to evaluate DNA damage, cell apoptosis, and cell cycle stage in HSCs after irradiation. Finally, we evaluated the efficacy of a single dose of rhTPO administered after 7 Gy TBI in male and female rhesus monkeys. RESULTS A single administration of rhTPO 2 hours after irradiation significantly mitigated TBI-induced death in mice. rhTPO promoted multilineage hematopoietic recovery, increasing peripheral blood cell counts, BM cellularity, and BM colony-forming ability. rhTPO administration led to an accelerated recovery of BM HSC frequency and multilineage engraftment after transplantation. rhTPO treatment reduced radiation-induced DNA damage and apoptosis and promoted HSC proliferation after TBI. Notably, a single administration of rhTPO significantly promoted multilineage hematopoietic recovery and improved survival in nonhuman primates after TBI. CONCLUSIONS These findings indicate that early intervention with a single administration of rhTPO may represent a promising and effective radiomitigative strategy for victims of radiation disasters.
Collapse
Affiliation(s)
- Shuang Xing
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xing Shen
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin-Kun Yang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, PLA Rocket Characteristic Medical Center, Beijing, China
| | - Hong-Ling Ou
- Department of Clinical Laboratory, PLA Rocket Characteristic Medical Center, Beijing, China
| | - Xue-Wen Zhang
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo-Lin Xiong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Wen Cong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Liang Luo
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zu-Yin Yu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China; Guangdong Pharmaceutical University, Guangzhou, China; School of Life Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
58
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
59
|
Rosen E, Fatanmi OO, Wise SY, Rao VA, Singh VK. Tocol Prophylaxis for Total-body Irradiation: A Proteomic Analysis in Murine Model. HEALTH PHYSICS 2020; 119:12-20. [PMID: 32205715 DOI: 10.1097/hp.0000000000001221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this study was to analyze the changes in mouse jejunum protein expression in response to prophylactic administration of two promising tocols, γ-tocotrienol (GT3) and α-tocopherol succinate (TS), as radiation countermeasures before irradiation to elucidate the molecular mechanism(s) of their radioprotective efficacy. Mice were administered GT3 or TS (200 mg kg) subcutaneously 24 h prior to exposure to 11 Gy Co γ-radiation, a supralethal dose for mice. Jejunum was harvested 24 h post-irradiation. Results of the two-dimensional differential in-gel electrophoresis (2D-DIGE), coupled with mass spectrometry, and advanced bioinformatics tools suggest that the tocols have a corresponding impact on expression of 13 proteins as identified by mass spectrometry. Ingenuity Pathway Analysis (IPA) reveals a network of associated proteins involved in inflammatory response, organismal injury and abnormalities, and cellular development. Relevant signaling pathways including actin cytoskeleton signaling, RhoA signaling, and Rho family GTPase were identified. This study reveals the major proteins, pathways, and networks involved in preventing the radiation-induced injury in gut that may be contributing to enhanced survival.
Collapse
Affiliation(s)
- Elliot Rosen
- Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | - V Ashutosh Rao
- Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | |
Collapse
|
60
|
Harrold J, Gisleskog PO, Delor I, Jacqmin P, Perez-Ruixo JJ, Narayanan A, Doshi S, Chow A, Yang BB, Melhem M. Quantification of Radiation Injury on Neutropenia and the Link between Absolute Neutrophil Count Time Course and Overall Survival in Nonhuman Primates Treated with G-CSF. Pharm Res 2020; 37:102. [PMID: 32440783 PMCID: PMC7242243 DOI: 10.1007/s11095-020-02839-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/02/2020] [Indexed: 01/09/2023]
Abstract
Purpose To model absolute neutrophil count (ANC) suppression in response to acute radiation (AR) exposure and evaluate ANC time course as a predictor of overall survival (OS) in response to AR exposure with or without treatment with granulocyte colony-stimulating factor in nonhuman primates. Methods Source data were obtained from two pivotal studies conducted in rhesus macaques exposed to 750 cGy of whole body irradiation on day 0 that received either placebo, daily filgrastim, or pegfilgrastim (days 1 and 8 after irradiation). Animals were observed for 60 days with ANC measured every 1 to 2 days. The population model of ANC response to AR and the link between observed ANC time course and OS consisted of three submodels characterizing injury due to radiation, granulopoiesis, and a time-to-event model of OS. Results The ANC response model accurately described the effects of AR exposure on the duration of neutropenia. ANC was a valid surrogate for survival because it explained 76% (95% CI, 41%–97%) and 73.2% (95% CI, 38.7%–99.9%) of the treatment effect for filgrastim and pegfilgrastim, respectively. Conclusion The current model linking radiation injury to neutropenia and ANC time course to OS can be used as a basis for translating these effects to humans. Electronic supplementary material The online version of this article (10.1007/s11095-020-02839-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John Harrold
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA.,Seattle Genetics, Bothell Washington, Massachusetts, USA
| | | | | | | | - Juan Jose Perez-Ruixo
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA.,Janssen Research & Development, Valencia, Spain
| | - Adimoolam Narayanan
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Sameer Doshi
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Andrew Chow
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA.,Rigel Pharmaceuticals Inc., South San Francisco, California, USA
| | - Bing-Bing Yang
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Murad Melhem
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA. .,Vertex Pharmaceuticals, Boston, Massachusetts, USA.
| |
Collapse
|
61
|
Harrold J, Gisleskog PO, Perez-Ruixo JJ, Delor I, Chow A, Jacqmin P, Melhem M. Prediction of Survival Benefit of Filgrastim in Adult and Pediatric Patients With Acute Radiation Syndrome. Clin Transl Sci 2020; 13:807-817. [PMID: 32112517 PMCID: PMC7359936 DOI: 10.1111/cts.12777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Acute exposure to high doses of radiation leads to severe myelosuppression, but few treatments are currently available to treat hematopoietic syndrome of acute radiation syndrome. Granulocyte colony stimulating factors (e.g., filgrastim) stimulate proliferation of neutrophil precursors and enhance mature neutrophil function. Owing to ethical constraints on conducting clinical research in lethally irradiated humans, we developed a model‐based strategy to integrate preclinical experience in irradiated nonhuman primates (NHPs) and other clinical myelosuppressive conditions to inform filgrastim dosing to treat hematopoietic syndrome of acute radiation syndrome. Models predicting neutrophil counts and overall survival based on drug exposures were calibrated and scaled from NHPs to adult and pediatric human subjects. Several scenarios were examined investigating variations in filgrastim doses, dose frequency, treatment initiation, and duration, as well as the effect of age and radiation dose rate. Model‐based simulations and established safety profiles supported that a subcutaneous filgrastim dose of 10 µg/kg once daily provides a significant survival benefit (50%) over placebo in both adults and children, provided that the treatment is initiated within 1–14 days after radiation exposure and lasts 2–3 weeks. For treatment durations of longer than 3 weeks, filgrastim treatment is not expected to provide significantly greater benefit. This survival benefit is expected to hold for the wide range of radiation doses and dose rates (0.01–1,000 Gy/hours) examined.
Collapse
Affiliation(s)
- John Harrold
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | | | - Juan Jose Perez-Ruixo
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | | | - Andrew Chow
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | | | - Murad Melhem
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
62
|
Use of molecularly-cloned haematopoietic growth factors in persons exposed to acute high-dose, high-dose rate whole-body ionizing radiations. Blood Rev 2020; 45:100690. [PMID: 32273121 DOI: 10.1016/j.blre.2020.100690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Exposure to acute, high-dose, high dose-rate whole-body ionizing radiations damages the bone marrow resulting in rapid decreases in concentrations of blood cells, especially lymphocytes, granulocytes and platelets with associated risks of infection and bleeding. In several experimental models including non-human primate radiation exposure models giving molecularly cloned haematopoietic growth factor including granulocyte/macrophage colony-stimulating factor (G/M-CSF; sargramostim) and granulocyte colony-stimulating factor (G-CSF; filgrastim and pegylated G-CSF [peg-filgrastim]) accelerates bone marrow recovery and increases survival. Based on these data these molecules are US FDA approved for treating victims of radiation and nuclear incidents, accident and events such as nuclear terrorism and are included in the US National Strategic Stockpile. We discuss the immediate medical response to these events including how to estimate radiation dose and uniformity and which interventions are appropriate in different radiation exposures settings. We also discuss similarities and differences between molecularly cloned haematopoietic growth factors.
Collapse
|
63
|
|
64
|
Adiga R, Andar A, Borhani S, Burgenson D, Deldari S, Frey D, Ge X, Gopalakrishnan M, Gurramkonda C, Gutierrez E, Jackson IL, Kostov Y, Liu Y, Moreira A, Newman D, Piegols J, Punshon-Smith B, Rao G, Tolosa L, Tolosa M, Vujaskovic Z, Wagner C, Wong L, Zodda A. Manufacturing biological medicines on demand: Safety and efficacy of granulocyte colony-stimulating factor in a mouse model of total body irradiation. Biotechnol Prog 2020; 36:e2970. [PMID: 31989790 DOI: 10.1002/btpr.2970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/06/2022]
Abstract
Protein therapeutics, also known as biologics, are currently manufactured at centralized facilities according to rigorous protocols. The manufacturing process takes months and the delivery of the biological products needs a cold chain. This makes it less responsive to rapid changes in demand. Here, we report on technology application for on-demand biologics manufacturing (Bio-MOD) that can produce safe and effective biologics from cell-free systems at the point of care without the current challenges of long-term storage and cold-chain delivery. The objective of the current study is to establish proof-of-concept safety and efficacy of Bio-MOD-manufactured granulocyte colony-stimulating factor (G-CSF) in a mouse model of total body irradiation at a dose estimated to induce 30% lethality within the first 30 days postexposure. To illustrate on-demand Bio-MOD production feasibility, histidine-tagged G-CSF was manufactured daily under good manufacturing practice-like conditions prior to administration over a 16-day period. Bio-MOD-manufactured G-CSF improved 30-day survival when compared with saline alone (p = .073). In addition to accelerating recovery from neutropenia, the platelet and hemoglobin nadirs were significantly higher in G-CSF-treated animals compared with saline-treated animals (p < .05). The results of this study demonstrate the feasibility of consistently manufacturing safe and effective on-demand biologics suitable for real-time release.
Collapse
Affiliation(s)
- Rajani Adiga
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Abhay Andar
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Shayan Borhani
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - David Burgenson
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Sevda Deldari
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Douglas Frey
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Chandrasekhar Gurramkonda
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Erick Gutierrez
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yordan Kostov
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Yang Liu
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Antonio Moreira
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Diana Newman
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph Piegols
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Benjamin Punshon-Smith
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Mike Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chelsea Wagner
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lynn Wong
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland
| | - Andrew Zodda
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
65
|
Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother 2020; 21:317-337. [PMID: 31928256 PMCID: PMC6982586 DOI: 10.1080/14656566.2019.1702968] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Introduction: There is a limited array of currently available medicinals that are useful for either the prevention, mitigation or treatment of bodily injuries arising from ionizing radiation exposure.Area covered: In this brief article, the authors review those pharmacologic agents that either are currently being used to counter the injurious effects of radiation exposure, or those that show promise and are currently under development.Expert opinion: Although significant, but limited progress has been made in the development and fielding of safe and effective pharmacotherapeutics for select types of acute radiation-associated injuries, additional effort is needed to broaden the scope of drug development so that overall health risks associated with both short- and long-term injuries in various organ systems can be reduced and effectively managed. There are several promising radiation countermeasures that may gain regulatory approval from the government in the near future for use in clinical settings and in the aftermath of nuclear/radiological exposure contingencies.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
66
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
67
|
Authier S, Cassatt D, Chang P. Non-clinical radiation biology and pharmacology models: appraisal of state-of-the-art and innovation. Int J Radiat Biol 2019; 96:1-3. [DOI: 10.1080/09553002.2019.1640043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
68
|
Gheita HA, El-Sabbagh WA, Abdelsalam RM, Attia AS, El-Ghazaly MA. Promising role of filgrastim and α-tocopherol succinate in amelioration of gastrointestinal acute radiation syndrome (GI-ARS) in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1537-1550. [PMID: 31350581 DOI: 10.1007/s00210-019-01702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
The protective role of α-tocopherol succinate (α-TCS) and the therapeutic efficacy of filgrastim were investigated in gastrointestinal acute radiation syndrome (GI-ARS) induced following 10 Gy whole-body γ-irradiation. Mice were randomly allocated into 5 groups: [1] normal-control, [2] irradiated-control, [3] subcutaneous (s.c.) injection of filgrastim (5 μg/kg/day) for 4 consecutive days given 1 h post-irradiation, [4] s.c. injection with α-TCS (400 mg/kg) 1 day prior to irradiation, [5] s.c. injection with α-TCS (400 mg/kg) 1 day prior to irradiation and filgrastim (5 μg/kg/day) for 4 consecutive days 1 h post-irradiation. Histopathological analysis, serum citrulline level, intestinal interleukin-1β (IL-1β), reduced glutathione (GSH), and malondialdehyde (MDA) contents as well as myeloperoxidase (MPO) activity were measured. Intestinal caspase-3, p53, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) immunopositivity were examined. In irradiated-control, MDA increased (249%) and GSH decreased (25%) compared to normal and were unaffected by filgrastim. α-TCS alone significantly reduced MDA (84.5%) and normalized GSH. The combination significantly reduced MDA (59%) and dramatically increased GSH (1573%), pointing to a possible synergistic action. In irradiated-control, MPO and IL-1β significantly increased (111% and 613%, respectively) compared to normal-control and both were significantly decreased in all treated groups. Compared to normal-control, citrulline significantly declined (68%) in irradiated-control; a significant elevation was achieved by treatments with α-TCS alone or combined with filgrastim (88% and 94%, respectively). The combination therapy significantly decreased the degree of irradiation-induced injury of the epithelium and cellular infiltration and showed the lowest histopathological scoring compared to the other groups (p ≤ 0.05). In irradiated-control, immune-reactive expressions of iNOS, COX-2, caspase-3, and p53 were remarkable (18.62%, 34.27%, 31.19%, and 27.44%, respectively) and after combination therapy were reduced (1.04%, 22.39%, 8.76%, and 4.91%, respectively). The current findings represent a first-hand strategy in dealing with GI-ARS with a potential preference to using a combined therapy of filgrastim and α-TCS.
Collapse
Affiliation(s)
- Heba A Gheita
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt.
| | - Walaa A El-Sabbagh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amina S Attia
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
69
|
Wong K, Chang PY, Fielden M, Downey AM, Bunin D, Bakke J, Gahagen J, Iyer L, Doshi S, Wierzbicki W, Authier S. Pharmacodynamics of romiplostim alone and in combination with pegfilgrastim on acute radiation-induced thrombocytopenia and neutropenia in non-human primates. Int J Radiat Biol 2019; 96:155-166. [PMID: 31216213 DOI: 10.1080/09553002.2019.1625488] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Evaluation of the pharmacodynamics (PD) and pharmacokinetics (PK) of romiplostim alone and in combination with pegfilgrastim in a non-human primate (NHP) model of acute radiation syndrome (ARS).Materials and methods: Male and female rhesus macaques were subjected to Cobalt-60 γ irradiation, at a dose of 550 cGy 24 h prior to subcutaneous administration of either romiplostim alone as a single (2.5 or 5.0 mg/kg on Day 1) or repeat dose (5.0 mg/kg on Days 1 and 8), pegfilgrastim alone as a repeat dose (0.3 µg/kg on Day 1 and 8), or a combination of both agents (romiplostim 5.0 mg/kg on Day 1; pegfilgrastim 0.3 µg/kg on Days 1 and 8). Clinical outcome, hematological parameters and PK were assessed throughout the 45 d study period post-irradiation.Results: Administration of romiplostim, pegfilgrastim or the combination of both resulted in significant improvements in hematological parameters, notably prevention of severe thrombocytopenia, compared with irradiated, vehicle control-treated NHPs. The largest hematologic benefit was observed when romiplostim and pegfilgrastim were administered as a combination therapy with much greater effects on both platelet and neutrophil recovery following irradiation compared to single agents alone.Conclusions: These results indicate that romiplostim alone or in combination with pegfilgrastim is effective at improving hematological parameters in an NHP model of ARS. This study supports further study of romiplostim as a medical countermeasure to improve primary hemostasis and survival in ARS.
Collapse
Affiliation(s)
- Karen Wong
- Citoxlab North America, Laval, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | - Simon Authier
- Citoxlab North America, Laval, Quebec, Canada.,Faculty of Veterinary Medicine, Université de Montréal, Quebec, Canada
| |
Collapse
|
70
|
DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK, Case CM. Use of Growth Factors and Other Cytokines for Treatment of Injuries During a Radiation Public Health Emergency. Radiat Res 2019; 192:99-120. [PMID: 31081742 DOI: 10.1667/rr15363.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the threat of a radiological or nuclear incident that could impact citizens, the U.S. Department of Health and Human Services tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- to mid-stage medical countermeasure (MCM) development to treat radiation-induced injuries. Given that the body's natural response to radiation exposure includes production of growth factors and cytokines, and that the only drugs approved by the U.S. Food and Drug Administration to treat acute radiation syndrome are growth factors targeting either the granulocyte (Neupogen® or Neulasta®) or granulocyte and macrophage (Leukine®) hematopoietic cell lineages, there is interest in understanding the role that these factors play in responding to and/or ameliorating radiation damage. Furthermore, in an environment where resources are scarce, such as what might be expected during a radiation public health emergency, availability of growth factor or other treatments may be limited. For these reasons, the NIAID partnered with the Radiation Injury Treatment Network (RITN), whose membership includes medical centers with expertise in the management of bone marrow failure, to explore the use of growth factors and other cytokines as MCMs to mitigate/treat radiation injuries. A workshop was convened that included government, industry and academic subject matter experts, with presentations covering the anticipated concept of operations during a mass casualty incident including triage and treatment, growth factors under development for a radiation indication, and how the practice of medicine can inform other potential approaches, as well as considerations for administration of these products to diverse civilian populations. This report reviews the information presented, and provides an overview of the discussions from a guided breakout session.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Zulmarie Perez Horta
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | | | - Ann A Jakubowski
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota.,c Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - William K Skinner
- d Uniformed Services University for Health Sciences (USUHS), Bethesda, Maryland
| | - Cullen M Case
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota
| |
Collapse
|
71
|
Kim MM, Schlussel L, Zhao L, Himburg HA. Dickkopf-1 Treatment Stimulates Hematopoietic Regenerative Function in Infused Endothelial Progenitor Cells. Radiat Res 2019; 192:53-62. [PMID: 31081743 DOI: 10.1667/rr15361.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.
Collapse
Affiliation(s)
- Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
72
|
Horta ZP, Case CM, DiCarlo AL. Use of Growth Factors and Cytokines to Treat Injuries Resulting from a Radiation Public Health Emergency. Radiat Res 2019; 192:92-97. [PMID: 31063041 DOI: 10.1667/rr15383.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In response to concerns over possible radiological or nuclear incidents, the Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases (NIAID) was tasked by the U.S. Department of Health and Human Services to support development of medical countermeasures (MCM) to treat the acute and delayed injuries that can result from radiation exposure. To date, the only three drugs approved by the U.S. Food and Drug Administration for treatment of acute radiation syndrome are growth factors targeting granulocyte (Neupogen® or Neulasta®) or granulocyte and macrophage (Leukine®) hematopoietic cell lineages. Although these are currently stockpiled for deployment in response to a mass casualty scenario, these growth factors will likely be administered in a scarce-resources environment and availability may be limited. Therefore, there is growing interest in understanding the role that these growth factors play in mitigating radiation damage, to optimize their use and maximize the number of people who can be treated. For these reasons, the NIAID and the Radiation Injury Treatment Network organized a workshop to explore the use of growth factors and other cytokines as MCMs in the treatment of radiation-induced injuries. Subject matter experts from government, industry and academia gathered at this workshop to discuss the concept of operations, triage and treatment, administration to diverse civilian populations, growth factors under development for radiation indications, and how the practice of medicine can inform other potential approaches.
Collapse
Affiliation(s)
- Zulmarie Perez Horta
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Cullen M Case
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota
| | - Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
73
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
74
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
75
|
Farese AM, Bennett AW, Gibbs AM, Hankey KG, Prado K, Jackson W, MacVittie TJ. Efficacy of Neulasta or Neupogen on H-ARS and GI-ARS Mortality and Hematopoietic Recovery in Nonhuman Primates After 10-Gy Irradiation With 2.5% Bone Marrow Sparing. HEALTH PHYSICS 2019; 116:339-353. [PMID: 30281533 PMCID: PMC6349470 DOI: 10.1097/hp.0000000000000878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A nonhuman primate model of acute, partial-body, high-dose irradiation with minimal (2.5%) bone marrow sparing was used to assess endogenous gastrointestinal and hematopoietic recovery and the ability of Neulasta (pegylated granulocyte colony-stimulating factor) or Neupogen (granulocyte colony-stimulating factor) to enhance recovery from myelosuppression when administered at an increased interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neulasta or Neupogen on mortality and morbidity due to the hematopoietic acute radiation syndrome and concomitant gastrointestinal acute radiation syndrome. Nonhuman primates were exposed to 10.0 Gy, 6 MV, linear accelerator-derived photons delivered at 0.80 Gy min. All nonhuman primates received subject-based medical management. Nonhuman primates were dosed daily with control article (5% dextrose in water), initiated on day 1 postexposure; Neulasta (300 μg kg), administered on days 1, 8, and 15 or days 3, 10, and 17 postexposure; or Neupogen (10 μg kg), administered daily postexposure following its initiation on day 1 or day 3 until neutrophil recovery (absolute neutrophil count ≥1,000 cells μL for 3 consecutive days). Mortality in the irradiated cohorts suggested that administration of Neulasta or Neupogen on either schedule did not affect mortality due to gastrointestinal acute radiation syndrome or mitigate mortality due to hematopoietic acute radiation syndrome (plus gastrointestinal damage). Following 10.0 Gy partial-body irradiation with 2.5% bone marrow sparing, the mean duration of neutropenia (absolute neutrophil count <500 cells μL) was 22.4 d in the control cohort vs. 13.0 and 15.3 d in the Neulasta day 1, 8, 15 and day 3, 10, 17 cohorts, relative to 16.2 and 17.4 d in the Neupogen cohorts initiated on day 1 and day 3, respectively. The absolute neutrophil count nadirs were 48 cells μL in the controls; 117 cells μL and 40 cells μL in the Neulasta days 1, 8, and 15 or days 3, 10, and 17 cohorts, respectively; and 75 cells μL and 37 cells μL in the Neupogen day 1 and day 3 cohorts, respectively. Therefore, the earlier administration of Neulasta or Neupogen was more effective in this model of marginal 2.5% bone marrow sparing. The approximate 2.5% bone marrow sparing may approach the threshold for efficacy of the lineage-specific medical countermeasure. The partial-body irradiation with 2.5% bone marrow sparing model can be used to assess medical countermeasure efficacy in the context of the concomitant gastrointestinal and hematopoietic acute radiation syndrome sequelae.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Kim G. Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | - Karl Prado
- University of Maryland Medical System, Department of Radiation Oncology, Baltimore, MD
| | | | | |
Collapse
|
76
|
MacVittie TJ, Farese AM, Kane MA. ARS, DEARE, and Multiple-organ Injury: A Strategic and Tactical Approach to Link Radiation Effects, Animal Models, Medical Countermeasures, and Biomarker Development to Predict Clinical Outcome. HEALTH PHYSICS 2019; 116:297-304. [PMID: 30608246 PMCID: PMC8439279 DOI: 10.1097/hp.0000000000001045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A Kane
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
77
|
MacVittie TJ, Farese AM, Parker GA, Jackson W, Booth C, Tudor GL, Hankey KG, Potten CS. The Gastrointestinal Subsyndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose-response Relationship With and Without Medical Management. HEALTH PHYSICS 2019; 116:305-338. [PMID: 30624353 PMCID: PMC9446380 DOI: 10.1097/hp.0000000000000903] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the US Food and Drug Administration's Animal Rule. Development of a model for the gastrointestinal acute radiation syndrome requires knowledge of the radiation dose-response relationship and time course of mortality and morbidity across the acute and prolonged gastrointestinal radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality relative to the hematopoietic acute radiation syndrome, gastrointestinal acute radiation syndrome, and lung injury. It can be used to assess the natural history of gastrointestinal damage, concurrent multiple organ injury, and aspects of the mechanism of action for acute radiation exposure and treatment. A systematic review of relevant studies that determined the dose-response relationship for the gastrointestinal acute and prolonged radiation syndrome in the rhesus macaque relative to radiation dose, quality, dose rate, exposure uniformity, and use of medical management has never been performed.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | | | | | - Kim G Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
78
|
Fish BL, MacVittie TJ, Szabo A, Moulder JE, Medhora M. WAG/RijCmcr rat models for injuries to multiple organs by single high dose ionizing radiation: similarities to nonhuman primates (NHP). Int J Radiat Biol 2019; 96:81-92. [PMID: 30575429 DOI: 10.1080/09553002.2018.1554921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Defined animal models are needed to pursue the FDA Animal Rule for approval of medical countermeasure for radiation injuries. This study compares WAG/RijCmcr rat and nonhuman primate (NHP) models for acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE).Materials and methods: Irradiation models include total body irradiation, partial body irradiation with bone marrow sparing and whole thorax lung irradiations. Organ-specific sequelae of radiation injuries were compared using dose-response relationships.Results and conclusions: Rats and NHP manifest similar organ dysfunctions after radiation, starting with acute gastrointestinal (GI-ARS) and hematopoietic (H-ARS) syndromes followed by lung, heart and kidney toxicities. Humans also manifest these sequelae. Latencies for injury were earlier in rats than in NHP. After whole thorax lung irradiations (WTLI) up to 13 Gy, there was recovery of lung function from pneumonitis in rats. This has not been evaluated in NHP. The latency, incidence, severity and progression of radiation pneumonitis was not influenced by early multi-organ injury from ARS in rats or NHP. Rats developed more severe radiation nephropathy than NHP, and also progressed more rapidly. Dosimetry, anesthesia, environment, supportive care, euthanasia criteria etc., may account for the alterations in radiation sensitivity observed between species.
Collapse
Affiliation(s)
- Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA.,Charles River Laboratories, Durham, NC, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Department of Pulmonary Medicine, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cardiovascular Research Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| |
Collapse
|
79
|
Port M, Abend M. CLINICAL TRIAGE OF RADIATION CASUALTIES-THE HEMATOLOGICAL MODULE OF THE BUNDESWEHR INSTITUTE OF RADIOBIOLOGY. RADIATION PROTECTION DOSIMETRY 2018; 182:90-92. [PMID: 30165461 DOI: 10.1093/rpd/ncy141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Novel treatment regimens for therapy of the acute radiation syndrome (ARS) were developed over the last years. Their application relies on an early and high-throughput diagnosis. Based on the database SEARCH a new scientific triage tool (called H-module) was developed for early prediction of the later developing ARS. Based on peripheral blood cell counts measured within the first three days after a radiation exposure a prediction of the H-ARS severity (as well as therapeutic recommendations) can be performed with this tool. The H-module was tested within two table top exercises. Contributors were either radiation experts or radiobiology students and the required patient data were generated from real case histories. The H-module proved to be an easy to train and easy to use precise and promising new tool to assist and guide the treating physician in a large-scale radiation scenario. An introduction into this new tool and other diagnostic tools will be provided in the context of a NATO-teaching class in October/November 2019 in Paris.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
80
|
Legesse B, Kaur A, Kenchegowda D, Hritzo B, Culp WE, Moroni M. Neulasta Regimen for the Hematopoietic Acute Radiation Syndrome: Effects Beyond Neutrophil Recovery. Int J Radiat Oncol Biol Phys 2018; 103:935-944. [PMID: 30496878 DOI: 10.1016/j.ijrobp.2018.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Understanding the physiopathology underlying the acute radiation syndrome (ARS) and the mechanism of action of drugs known to ameliorate ARS is expected to help identify novel countermeasure candidates and improve the outcome for victims exposed to radiation. Granulocyte colony-stimulating factor (G-CSF) has been approved by the US Food and Drug Administration for treatment of hematopoietic ARS (H-ARS) because of its ability to alleviate myelosuppression. Besides its role in hematopoiesis, G-CSF is known to protect the cardiovascular and neurologic systems, to attenuate vascular injury and cardiac toxicity, to preserve gap junction function, and to modulate inflammation and oxidative stress. Here, we characterized the protective effects of G-CSF beyond neutrophil recovery in minipigs exposed to H-ARS doses. METHODS AND MATERIALS Twenty male Göttingen minipigs were exposed to total body, acute ionizing radiation. Animals received either pegylated G-CSF (Neulasta) or dextrose at days 1 and 8 after irradiation. Survival was monitored over a 45-day period. RESULTS Neulasta decreased mortality compared with the control, reduced nadir and duration of neutropenia, and lowered prevalence of organ hemorrhage and frank bleeding episodes. Neulasta also increased plasma concentration of IGF-1 hormone, activated the cardiovascular protective IGF-1R/PI3K/Akt/eNOS/NO pathway, and enhanced membrane expression of VE-cadherin in the heart, improving vascular tone and barrier function. Expression of the acute phase protein CRP, a mediator of cardiovascular diseases and a negative regulator of the IGF-1 pathway, was also induced but at much lower extent compared with IGF-1. Activity of catalase and superoxide dismutase (SOD-1) was only marginally affected, whereas activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was downregulated. CONCLUSIONS In addition to a neutrophilic effect, amelioration of endothelial homeostasis and barrier function and reduction in NADPH oxidase contribute to the beneficial effects of Neulasta for the treatment of H-ARS.
Collapse
Affiliation(s)
- Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - William E Culp
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland.
| |
Collapse
|
81
|
Yeddanapudi N, Clay MA, Durham DP, Hoffman CM, Homer MJ, Appler JM. Informing CONOPS and medical countermeasure deployment strategies after an improvised nuclear device detonation: the importance of delayed treatment efficacy data. Int J Radiat Biol 2018; 96:4-11. [PMID: 30403905 DOI: 10.1080/09553002.2018.1532618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose: In the wake of a nuclear detonation, individuals with acute radiation syndrome will be a significant source of morbidity and mortality. Mathematical modeling can compare response strategies developed for real-world chaotic conditions after a nuclear blast in order to identify optimal strategies for administering effective treatment to these individuals. To maximize responders' abilities to save lives it is critical to understand how treatment efficacy is impacted by real-world conditions and levels of supportive care. To illustrate the importance of these factors, we developed a mathematical model of cytokine administration 24 h after the blast with varying levels of supportive care described in the primary literature.Conclusion: The results highlight the proportionally higher life-saving benefit of administering cytokines to individuals with a moderate to high dose of radiation exposure, compared to those with a lower dose. However, the fidelity of mathematical models is dependent on the primary data informing them. We describe the data needed to fully explore the impact of timing, dosage, and fractional benefit of cytokines and supportive care treatment in non-optimal situations that could be seen after a nuclear detonation. Studies addressing these types of knowledge gaps are essential to evaluating the relative efficacy of countermeasures to refine existing plans and help develop new strategies and priorities.
Collapse
Affiliation(s)
- N Yeddanapudi
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | - M A Clay
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | - D P Durham
- Supporting Department of Health and Human Services (HHS)/Assistant Secretary for Preparedness and Response (ASPR), Leidos Inc., Alexandria, VA, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.
Collapse
|
83
|
Singh VK, Santiago PT, MacVittie TJ. Opportunities and challenges with animal models for acute radiation syndrome drug discovery. Expert Opin Drug Discov 2018; 13:987-992. [DOI: 10.1080/17460441.2018.1526172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vijay K. Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Paola T. Santiago
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
84
|
DiCarlo AL, Cassatt DR, Dowling WE, Esker JL, Hewitt JA, Selivanova O, Williams MS, Price PW. Challenges and Benefits of Repurposing Products for Use during a Radiation Public Health Emergency: Lessons Learned from Biological Threats and other Disease Treatments. Radiat Res 2018; 190:659-676. [PMID: 30160600 DOI: 10.1667/rr15137.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The risk of a radiological or nuclear public health emergency is a major growing concern of the U.S. government. To address a potential incident and ensure that the government is prepared to respond to any subsequent civilian or military casualties, the U.S. Department of Health and Human Services and the Department of Defense have been charged with the development of medical countermeasures (MCMs) to treat the acute and delayed injuries that can result from radiation exposure. Because of the limited budgets in research and development and the high costs associated with bring promising approaches from the bench through advanced product development activities, and ultimately, to regulatory approval, the U.S. government places a priority on repurposing products for which there already exists relevant safety and other important information concerning their use in humans. Generating human data can be a costly and time-consuming process; therefore, the U.S. government has interest in drugs for which such relevant information has been established (e.g., products for another indication), and in determining if they could be repurposed for use as MCMs to treat radiation injuries as well as chemical and biological insults. To explore these possibilities, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop including U.S. government, industry and academic subject matter experts, to discuss the challenges and benefits of repurposing products for a radiation indication. Topics covered included a discussion of U.S. government efforts (e.g. funding, stockpiling and making products available for study), as well unique regulatory and other challenges faced when repurposing patent protected or generic drugs. Other discussions involved lessons learned from industry on repurposing pre-license, pipeline products within drug development portfolios. This report reviews the information presented, as well as an overview of discussions from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R Cassatt
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - William E Dowling
- b Office of Biodefense Research Resources and Translational Research (OBRRTR), Division of Microbiology and Infectious Diseases (DMID), NIAID, NIH, Rockville, Maryland
| | - John L Esker
- c Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Judith A Hewitt
- b Office of Biodefense Research Resources and Translational Research (OBRRTR), Division of Microbiology and Infectious Diseases (DMID), NIAID, NIH, Rockville, Maryland
| | - Oxana Selivanova
- c Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mark S Williams
- b Office of Biodefense Research Resources and Translational Research (OBRRTR), Division of Microbiology and Infectious Diseases (DMID), NIAID, NIH, Rockville, Maryland
| | - Paul W Price
- d Office of Regulatory Affairs (ORA), DAIT, NIAID, NIH, Rockville, Maryland
| |
Collapse
|
85
|
17α-Ethinyl-androst-5-ene-3β, 17β-diol, a Novel Potent Oral Radioprotective Agent, Confers Radioprotection of Hematopoietic Stem and Progenitor Cells in a Granulocyte Colony-Stimulating Factor-Independent Manner. Int J Radiat Oncol Biol Phys 2018; 103:217-228. [PMID: 30103023 DOI: 10.1016/j.ijrobp.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE The risk of radiation exposure is considered to have increased in recent years. For convenience and simple administration, development of an effective orally administered radioprotective agent is highly desirable. The steroid 5-androstene-3β, 17β-diol (5-AED) has been evaluated as both a radioprotector and a radiomitigator in mice and nonhuman primates; however, poor oral bioavailability has limited its development. A variant compound-17α-ethinyl-androst-5-ene-3β, 17β-diol (EAD)-exhibits significant oral bioavailability. We investigated the radioprotective effects of EAD via oral administration in mice. METHODS AND MATERIALS Survival assays were performed in lethally (9.0-10.0 Gy) irradiated mice. Peripheral blood cell counts were monitored in lethally (9.5 Gy) or sublethally (6.5 Gy) irradiated mice. We performed histologic analysis of bone marrow (BM) and frequency and functional analysis of hematopoietic stem and progenitor cells in mice irradiated with 6.5 Gy. To investigate multilineage engraftment of irradiated hematopoietic stem cells after BM transplantation, competitive repopulation assays were conducted. Plasma granulocyte colony-stimulating factor was measured by enzyme-linked immunosorbent assay. RESULTS Oral administration of EAD on 3 consecutive days before irradiation conferred 100% survival in mice, against otherwise 100% death, at a 9.5-Gy lethal dose of total body irradiation. EAD ameliorated radiation-induced pancytopenia at the same dose. EAD augmented BM cellular recovery and colony-forming ability, promoted hematopoietic stem and progenitor cell recovery, and expanded the pool of functionally superior hematopoietic stem cells in the BM of sublethally irradiated mice. Unlike 5-AED, EAD did not increase granulocyte colony-stimulating factor levels in mice and exhibited no therapeutic effects on hematologic recovery after irradiation; nevertheless, its radioprotective efficacy was superior to that of 5-AED. CONCLUSIONS Our findings demonstrate the radioprotective efficacy of EAD and reveal that the 17α-ethinyl group is essential for its oral activity. Given its oral efficacy and low toxicity, EAD has potential as an optimal radioprotector for use by first responders, as well as at-risk civilian populations.
Collapse
|
86
|
Pannkuk EL, Laiakis EC, Fornace AJ, Fatanmi OO, Singh VK. A Metabolomic Serum Signature from Nonhuman Primates Treated with a Radiation Countermeasure, Gamma-tocotrienol, and Exposed to Ionizing Radiation. HEALTH PHYSICS 2018; 115:3-11. [PMID: 29787425 PMCID: PMC5967639 DOI: 10.1097/hp.0000000000000776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for and development of radiation countermeasures to treat acute lethal radiation injury has been underway for the past six decades, resulting in the identification of multiple classes of radiation countermeasures. However, to date only granulocyte colony-stimulating factor (Neupogen) and PEGylated granulocyte colony-stimulating factor (Neulasta) have been approved by the U.S. Food and Drug Administration for the treatment of hematopoietic acute radiation syndrome. Gamma-tocotrienol has demonstrated radioprotective efficacy in murine and nonhuman primate models. Currently, this agent is under advanced development as a radioprotector, and the authors are trying to identify its efficacy biomarkers. In this study, global metabolomic changes were analyzed using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry. The pilot study using 16 nonhuman primates (8 nonhuman primates each in gamma-tocotrienol- and vehicle-treated groups), with samples obtained from gamma-tocotrienol-treated and irradiated nonhuman primates, demonstrates several metabolites that are altered after irradiation, including compounds involved in fatty acid beta-oxidation, purine catabolism, and amino acid metabolism. The machine-learning algorithm, Random Forest, separated control, irradiated gamma-tocotrienol-treated, and irradiated vehicle-treated nonhuman primates at 12 h and 24 h as evident in a multidimensional scaling plot. Primary metabolites validated included carnitine/acylcarnitines, amino acids, creatine, and xanthine. Overall, gamma-tocotrienol administration reduced high fluctuations in serum metabolite levels, suggesting an overall beneficial effect on animals exposed to radiation. This initial assessment also highlights the utility of metabolomics in determining underlying physiological mechanisms responsible for the radioprotective efficacy of gamma-tocotrienol.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Albert J. Fornace
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Oluseyi O. Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Vijay K. Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
87
|
Janec KJ, Yuan H, Norton JE, Kelner RH, Hirt CK, Betensky RA, Guinan EC. rBPI 21 (Opebacan) Promotes Rapid Trilineage Hematopoietic Recovery in a Murine Model of High-Dose Total Body Irradiation. Am J Hematol 2018; 93:10.1002/ajh.25136. [PMID: 29752735 PMCID: PMC6230507 DOI: 10.1002/ajh.25136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022]
Abstract
The complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue. Here, we examined the potential of rBPI21 (opebacan), used without supportive care, to accelerate hematopoietic recovery after radiation where expected survival was substantial (42-75%) at 30 days). rBPI21 administration was associated with accelerated recovery of hematopoietic precursors and normal marrow cellularity, with increases in megakaryocyte numbers particularly marked. This translated into attaining normal trilineage peripheral blood counts 2-3 weeks earlier than controls. Elevations of hematopoietic growth factors observed in plasma and the marrow microenvironment suggest the mechanism is likely multifactorial and not confined to known endotoxin-neutralizing and cytokine down-modulating activities of rBPI21 . These observations deserve further exploration in radiation models and other settings where inadequate hematopoiesis is a prominent feature. These experiments also model the potential of therapeutics to limit the allocation of scarce resources after catastrophic exposures as an endpoint independent of lethality mitigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kenneth J. Janec
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Huaiping Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - James E. Norton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rowan H. Kelner
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Christian K. Hirt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rebecca A. Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA
| | - Eva C. Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Radiation Oncology, Harvard Medical School, Boston MA
| |
Collapse
|
88
|
Accardi MV, Donini O, Rumage A, Ascah A, Haruna J, Pouliot M, Bujold K, Huang H, Wierzbicki W, Stamatopoulos J, Naraghi H, Measey T, Authier S. Characterization of a partial-body irradiation model with oral cavity shielding in nonhuman primates. Int J Radiat Biol 2018; 96:100-111. [DOI: 10.1080/09553002.2018.1440093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | | | | | | | - Kim Bujold
- CiToxLAB North America, Laval, QC, Canada
| | - Hai Huang
- CiToxLAB North America, Laval, QC, Canada
| | | | | | | | | | - Simon Authier
- CiToxLAB North America, Laval, QC, Canada
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
89
|
Dainiak N. Medical management of acute radiation syndrome and associated infections in a high-casualty incident. JOURNAL OF RADIATION RESEARCH 2018; 59:ii54-ii64. [PMID: 29509947 PMCID: PMC5941165 DOI: 10.1093/jrr/rry004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 05/04/2023]
Abstract
A high-casualty incident may result in a significant human toll due to the inability of a community to meet the health care demands of the population. A successful medical response requires health care facilities to not only communicate and integrate medical services, meet surge capacity, protect health care workers and implement triage and treatment protocols, but also to provide the venue for clinical management of acute radiation injuries and their associated infections. Today, clinical management is primarily guided by the recommendations of a Consultancy that were made at the World Health Organization (WHO). This international consensus was reached on evidence-based, clinical management of each of the four sub-syndromes that compose acute radiation syndrome (ARS), including the hematopoietic subsyndrome (HS), gastrointestinal subsyndrome (GIS), neurovascular subsyndrome (NVS) and cutaneous subsyndrome (CS). Major findings in studies meeting inclusion criteria for management strategies for HS were that (i) no randomized controlled studies of medical countermeasures have been (or will likely ever be) performed for ARS cases, (ii) the data for management of HS are restricted by the lack of comparator groups, and (iii) reports of countermeasures for management of injury to non-hematopoietic organs are often incompletely described. Here, (i) recommendations made in Geneva are summarized; (ii) the analysis of countermeasures for HS is updated by review of two additional cases and extended to published reports not meeting inclusion criteria; and (iii) guidelines are provided for management of microbial infections based upon patient risk for prolonged immunosuppression.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Radiation Emergency Assistance Center/Training Site (REAC/TS), 1299 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, LCI 202, 15 York Street, New Haven, CT 06510, USA
- Corresponding author. Tel: +1-865-576-3131; Fax: 865-576-9522;
| |
Collapse
|
90
|
Measey TJ, Pouliot M, Wierzbicki W, Swanson C, Brown D, Authier S, Donini O. Pilot Study of Radiation-induced Gastrointestinal Injury in a Hemi-body Shielded Göttingen Minipig Model. HEALTH PHYSICS 2018; 114:43-57. [PMID: 30085969 DOI: 10.1097/hp.0000000000000751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Development of medical countermeasures (MCMs) for gastrointestinal (GI) injury following acute radiation exposure requires well-characterized models that can assess not only survival but also secondary endpoints, including structural and functional characteristics of GI damage and recovery that ultimately contribute to long-term survival. The authors conducted a pilot study in a hemi-body shielded Göttingen minipig model of radiation-induced GI injury that enables radiation damage to the GI tract to be evaluated and reduces the potential for hemorrhage and/or damage in other more sensitive organ systems. With shielding of the head, chest, and front legs, radiation dose levels of 14 Gy were required to see significant GI-related morbidity, while dose levels of 16 Gy resulted in significant mortality by day 45 post-irradiation. Periodic scheduled necropsies showed significant reduction in and slow recovery of intestinal crypt count at 14 and 16 Gy. Intestinal proliferative activity was initially increased and then gradually decreased over the course of the study. Histological evidence of marked inflammatory infiltrates was noted in the GI tract at day 5, while collagen deposition, indicative of fibrosis, was observed as early as day 15, peaking at day 30. The radiation dose-responsive indicators of GI damage identified in this model (i.e., intestinal crypt count and proliferative activity) may serve as useful endpoints for evaluation of the efficacy of potential MCMs.
Collapse
|
91
|
Measey TJ, Pouliot M, Wierzbicki W, Swanson C, Brown D, Stamatopoulos J, Proulx D, Authier S, Donini O. Expanded Characterization of a Hemi-Body Shielded Göttingen Minipig Model of Radiation-induced Gastrointestinal Injury Incorporating Oral Dosing Procedures. HEALTH PHYSICS 2018; 114:32-42. [PMID: 30085968 DOI: 10.1097/hp.0000000000000750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In collaboration with the Biomedical Advanced Research and Development Authority (BARDA), the authors recently conducted a pilot study in a hemi-body shielded model of radiation-induced gastrointestinal (GI) injury in Göttingen minipigs following exposure to radiation dose levels between 8-16 Gy. Herein, the impact of oral dosing procedures is assessed, as well as the specific causes of death in animals exposed to radiation doses of 14 and 16 Gy (n = 64; 32 male, 32 female, between 6 and 8 mo of age). Oral dosing using a 2-tablet placebo system comprised of both immediate release and enteric-coated tablets starting 24 h post-irradiation resulted in inhibited gastric emptying of the enteric-coated tablets, which were found to be retained in the stomach and/or regurgitated. This finding appears to be species-specific, as similar findings have not been reported for other large animal species (e.g., non-human primates). Mortality was primarily dictated by decreased activity, body weight loss (>35%), and/or respiratory distress, despite shielding of the lung. The cause of respiratory distress in animals that were pre-terminally euthanized varied according to the timing of death, with interstitial inflammation and extensive fibrosis observed >20 days post-irradiation. Kidney damage was also identified in most animals after day 10. Changes in the GI tract were consistent with previous studies and included collagen deposition/fibrosis. Observations of inflammatory infiltrates and interstitial inflammation/fibrosis in both shielded and unshielded organs support a strong secondary inflammatory syndrome post-irradiation.
Collapse
|
92
|
Samet JM, Berrington de González A, Dauer LT, Hatch M, Kosti O, Mettler FA, Satyamitra MM. Gilbert W. Beebe Symposium on 30 Years after the Chernobyl Accident: Current and Future Studies on Radiation Health Effects. Radiat Res 2017; 189:5-18. [PMID: 29136393 DOI: 10.1667/rr14791.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This commentary summarizes the presentations and discussions from the 2016 Gilbert W. Beebe symposium "30 years after the Chernobyl accident: Current and future studies on radiation health effects." The symposium was hosted by the National Academies of Sciences, Engineering, and Medicine (the National Academies). The symposium focused on the health consequences of the Chernobyl accident, looking retrospectively at what has been learned and prospectively at potential future discoveries using emerging 21st Century research methodologies.
Collapse
Affiliation(s)
- Jonathan M Samet
- a Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Ourania Kosti
- d National Academies of Sciences, Engineering, and Medicine, Washington, DC
| | - Fred A Mettler
- e University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | |
Collapse
|
93
|
Kiang JG, Zhai M, Bolduc DL, Smith JT, Anderson MN, Ho C, Lin B, Jiang S. Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma. Radiat Res 2017; 188:476-490. [PMID: 28850300 PMCID: PMC5743055 DOI: 10.1667/rr14647.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice. In the current study we observed that B6D2F1/J female mice exposed to 60Co gamma-photon radiation followed by 15% total-body-surface-area skin wounds experienced an increment of 25% higher mortality over a 30-day observation period compared to those subjected to radiation alone. Radiation exposure delayed wound healing by approximately 14 days. On day 30 post-injury, bone marrow and ileum in animals from both groups (radiation alone or combined injury) still displayed low cellularity and structural damage. White blood cell counts, e.g., neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets, still remained very low in surviving irradiated alone animals, whereas only the lymphocyte count was low in surviving combined injury animals. Likewise, in surviving animals from radiation alone and combined injury groups, the RBCs, hemoglobin, hematocrit and platelets remained low. We observed, that animals treated with both pegylated G-CSF (a cytokine for neutrophil maturation and mobilization) and Alxn4100TPO (a thrombopoietin receptor agonist) at 4 h postirradiation, a 95% survival (vehicle: 60%) over the 30-day period, along with mitigated body-weight loss and significantly reduced acute radiation syndrome. In animals that received combined treatment of radiation and injury that received pegylated G-CSF and Alxn4100TPO, survival was increased from 35% to 55%, but did not accelerate wound healing. Hematopoiesis and ileum showed significant improvement in animals from both groups (irradiation alone and combined injury) when treated with pegylated G-CSF and Alxn4100TPO. Treatment with pegylated G-CSF alone increased survival after irradiation alone and combined injury by 33% and 15%, respectively, and further delayed wound healing, but increased WBC, RBC and platelet counts after irradiation alone, and only RBCs and platelets after combined injury. Treatment with Alxn4100TPO alone increased survival after both irradiation alone and combined injury by 4 and 23%, respectively, and delayed wound healing after combined injury, but increased RBCs, hemoglobin concentrations, hematocrit values and platelets after irradiation alone and only platelets after combined injury. Taken together, the results suggest that combined treatment with pegylated G-CSF and Alxn4100TPO is effective for mitigating effects of both radiation alone and in combination with injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
- Department of Pharmacology and Molecular Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - David L. Bolduc
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Connie Ho
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
- College of Letters and Science, University of California, Berkeley, Berkeley, California, 94720
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
94
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
95
|
Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol 2017. [PMID: 28650707 DOI: 10.1080/09553002.2017.1332438] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The increasing global risk of nuclear and radiological accidents or attacks has driven renewed research interest in developing medical countermeasures to potentially injurious exposures to acute irradiation. Clinical symptoms and signs of a developing acute radiation injury, i.e. the acute radiation syndrome, are grouped into three sub-syndromes named after the dominant organ system affected, namely the hematopoietic, gastrointestinal, and neurovascular systems. The availability of safe and effective countermeasures against the above threats currently represents a significant unmet medical need. This is the first article within a three-part series covering the nature of the radiation sub-syndromes, various animal models for radiation countermeasure development, and the agents currently approved by the United States Food and Drug Administration for countering the medical consequences of several of these prominent radiation exposure-associated syndromes. CONCLUSIONS From the U.S. and global perspectives, biomedical research concerning medical countermeasure development is quite robust, largely due to increased government funding following the 9/11 incidence and subsequent rise of terrorist-associated threats. A wide spectrum of radiation countermeasures for specific types of radiation injuries is currently under investigation. However, only a few radiation countermeasures have been fully approved by regulatory agencies for human use during radiological/nuclear contingencies. Additional research effort, with additional funding, clearly will be needed in order to fill this significant, unmet medical health problem.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
96
|
DiCarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, Macchiarini F, Maidment BW, Jourdain JR. Cellular Therapies for Treatment of Radiation Injury: Report from a NIH/NIAID and IRSN Workshop. Radiat Res 2017; 188:e54-e75. [PMID: 28605260 DOI: 10.1667/rr14810.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases co-sponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Radia Tamarat
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Carmen I Rios
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Marc Benderitter
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Francesca Macchiarini
- e Previously -RNCP, DAIT, NIAID, NIH; now National Institute on Aging (NIA), NIH, Bethesda, Maryland
| | | | - Jean-Rene Jourdain
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
97
|
Singh VK, Olabisi AO. Nonhuman primates as models for the discovery and development of radiation countermeasures. Expert Opin Drug Discov 2017; 12:695-709. [PMID: 28441902 DOI: 10.1080/17460441.2017.1323863] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past six decades toward the development of safe and effective radiation countermeasures for humans using animal models, only two pharmaceutical agents have been approved by United States Food and Drug Administration (US FDA) for hematopoietic acute radiation syndrome (H-ARS). Additional research efforts are needed to further develop large animal models for improving the prediction of clinical safety and effectiveness of radiation countermeasures for ARS and delayed effects of acute radiation exposure (DEARE) in humans. Area covered: The authors review the suitability of animal models for the development of radiation countermeasures for ARS following the FDA Animal Rule with a special focus on nonhuman primate (NHP) models of ARS. There are seven centers in the United States currently conducting studies with irradiated NHPs, with the majority of studies being conducted with rhesus monkeys. Expert opinion: The NHP model is considered the gold standard animal model for drug development and approval by the FDA. The lack of suitable substitutes for NHP models for predicting response in humans serves as a bottleneck for the development of radiation countermeasures. Additional large animal models need to be characterized to support the development and FDA-approval of new radiation countermeasures.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Ayodele O Olabisi
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
98
|
Satyamitra M, Kumar VP, Biswas S, Cary L, Dickson L, Venkataraman S, Ghosh SP. Impact of Abbreviated Filgrastim Schedule on Survival and Hematopoietic Recovery after Irradiation in Four Mouse Strains with Different Radiosensitivity. Radiat Res 2017; 187:659-671. [PMID: 28362168 DOI: 10.1667/rr14555.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Filgrastim (Neupogen®, granulocyte-colony stimulating factor) is among the few countermeasures recommended for management of patients in the event of lethal total-body irradiation. Despite the plethora of studies using filgrastim as a radiation countermeasure, relatively little is known about the optimal dose schedule of filgrastim to mitigate radiation lethality. We evaluated the efficacy of filgrastim in improving 30-day survival of CD2F1 mice irradiated with a lethal dose (LD70/30) in the AFRRI cobalt-60 facility. We tested different schedules of 1, 3, 5, 10 or 16 once-daily injections of filgrastim initiated one day after irradiation. Time optimization studies with filgrastim treatment were also performed, beginning 6-48 h postirradiation. Maximum survival was observed with 3 daily doses of 0.17 mg/kg filgrastim. Survival efficacy of the 3-day treatment was compared against the conventional 16-day filgrastim treatment after irradiation in four mouse strains with varying radiation sensitivities: C3H/HeN, C57BL/6, B6C3F1 and CD2F1. Blood indices, bone marrow histopathology and colony forming unit assays were also evaluated. Filgrastim significantly increased 30-day survival (P < 0.001) with a 3-day treatment compared to 16-day treatment. Filgrastim did not prevent cytopenia nadirs, but facilitated faster recovery of white blood cells, neutrophils, red blood cells, platelets, lymphocytes and hematocrits in all four strains. Accelerated hematopoietic recovery was also reflected in faster bone marrow reconstitution and significant increase in hematopoietic progenitors (P < 0.001) in all four mouse strains. These data indicate that prompt and abbreviated filgrastim treatment has potential benefit for triage in the event of a radiological incident for treating acute hematopoietic syndrome.
Collapse
Affiliation(s)
- Merriline Satyamitra
- a Radiation and Nuclear Countermeasure Program, DAIT, NIAID, NIH, Bethesda, Maryland 20889
| | - Vidya P Kumar
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Shukla Biswas
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Lynnette Cary
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Leonora Dickson
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Srinivasan Venkataraman
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Sanchita P Ghosh
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
99
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|
100
|
Larsen JC, Disbrow GL. Project BioShield and the Biomedical Advanced Research Development Authority: A ten year progress report on meeting U.S. preparedness objectives for threat agents. Clin Infect Dis 2017; 64:1430-1434. [PMID: 28158662 DOI: 10.1093/cid/cix097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/11/2023] Open
Affiliation(s)
- Joseph C Larsen
- Division of Chemical, Biological, Radiological and Nuclear Medical Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington DC
| | - Gary L Disbrow
- Division of Chemical, Biological, Radiological and Nuclear Medical Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington DC
| |
Collapse
|