51
|
Leonard BE. Thresholds and transitions for activation of cellular radioprotective mechanisms – correlations between HRS/IRR and the ‘inverse’ dose-rate effect. Int J Radiat Biol 2009; 83:479-89. [PMID: 17538798 DOI: 10.1080/09553000701370902] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE In biophysical modeling for several instances of radiation-induced radioprotection, i.e., adaptive response (AR), hyper-radiosensitivity and induced radioresistance (HRS/IRR), and the inverse dose-rate effect (IDRE), empirical fits are premised for the thresholds and transitions of the radioprotection. We provide realistic model formulations for the observed behaviors, which we apply to both HRS/IRR and IDRE. MATERIALS AND METHODS We use homeostatic balance equations, including cell biophysical endogenic adjustments (originating from within the cell), providing a radiation-induced 'trigger' or continuous thresholds and transitions. RESULTS A 'trigger' threshold requires an instantaneous, step function. Current HRS/IRR transition model does not provide 'triggered' threshold but continuous progression from high sensitivity to reduced radiosensitivity, although the investigators premise 'trigger' behavior. IDRE data suggest 'triggered' thresholds at discrete dose rates. It appears that HRS/IRR and IDRE at low dose and dose rate intentionally provide protection against potentially carcinogenic mutations. CONCLUSIONS The homeostatic formulation shows, when applied to the IRR using a dose and dose rate dependent Linear-Quadratic model (LQ2), that the IRR protection is 'triggered' at a discrete low dose and induced by a transitory increase in the damage repair rate constant in the LQ2 model of the single event, linear response, radiation damage. Since both IDRE and IRR have 'triggered' thresholds and as a result of increased endogenic damage recognition, increased mobilization of repair resources, activation of cell cycle arrest and/or increased repair rate, we premise that both may be from the same endogenic radioprotection biochemical mechanisms.
Collapse
Affiliation(s)
- Bobby E Leonard
- International Academy of Hi-Tech Services, Inc., Severna Park, Maryland 21146, USA.
| |
Collapse
|
52
|
Marková E, Schultz N, Belyaev IY. Kinetics and dose-response of residual 53BP1/γ-H2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. Int J Radiat Biol 2009; 83:319-29. [PMID: 17457757 DOI: 10.1080/09553000601170469] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Recent studies revealed that some foci produced by phosphorylated histone 2A family member X (gamma-H2AX) and tumor suppressor p53 binding protein 1 (53BP1) that co-localize with radiation-induced DNA double-strand breaks (DSB) remain in cells at relatively long times after irradiation and indicated a possible correlation between cellular radiosensitivity and residual foci. In this study, we investigated dose-responses and kinetics for radiation-induced 53BP1/gamma-H2AX foci formation in relation to their co-localization, DSB repair and cell survival. MATERIALS AND METHODS Cell survival, DSB and foci were analyzed by clonogenic assay, pulsed field gel electrophoresis (PFGE), and confocal laser microscopy, respectively, in normal human fibroblasts (VH-10) and in a cancer cell line (HeLa). Computer analysis was used to determine both the number and the area of foci. RESULTS We show that even at doses down to 1 cGy a statistically significant induction of 53BP1 foci is observed. While the number of foci was found to constantly decrease with post-irradiation time, the per-cell normalized area of foci does not change within a time window of approximately 4 h post-irradiation. Co-localization of gamma-H2AX and 53BP1 foci is shown to depend on dose and post-irradiation time. No clear correlations were established between radiosensitivity and foci formation because the dose response for 53BP1/gamma-H2AX foci may depend on time after irradiation and duration of the cell cycle. We show that the kinetics of foci disappearance within 24 h post-irradiation do not coincide with those of DSB repair. CONCLUSIONS The data suggest that the post-irradiation time used for estimation of radiosensitivity at therapeutically relevant low doses (e.g., <3 Gy) in proliferating cells by scoring residual foci should be limited by the duration of the cell cycle, and that direct comparison of the kinetics of DSB repair and disappearance of DSB-co-localizing foci is not possible. Therefore, results obtained from the counting of foci should be interpreted with caution in terms of DSB repair.
Collapse
Affiliation(s)
- E Marková
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
53
|
LEONARD BE, LUCAS AC. LDR brachytherapy — can low dose rate hypersensitivity from the “inverse” dose rate effect cause excessive cell killing to peripherial connective tissues and organs? Br J Radiol 2009; 82:131-9. [DOI: 10.1259/bjr/66381835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
54
|
Peddi P, Francisco DC, Cecil AM, Hair JM, Panayiotidis MI, Georgakilas AG. Processing of clustered DNA damage in human breast cancer cells MCF-7 with partial DNA-PKcs deficiency. Cancer Lett 2008; 269:174-83. [PMID: 18550272 DOI: 10.1016/j.canlet.2008.04.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 12/25/2022]
Abstract
Complex DNA damage such as double strand breaks (DSBs) and non-DSB bistranded oxidative clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10bp on opposing DNA strands) are considered the hallmark of ionizing radiation. Clustered DNA lesions are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays an important role during the processing of DSBs. To evaluate the role of DNA-PKcs in the processing of complex DNA damage in human MCF-7 breast cancer cells we used small interfering RNAs (siRNAs) to target the silencing of the gene Prkdc coding for DNA-PKcs. MCF-7 cells with knockdown DNA-PKcs expression showed a marked decrease in their efficiency to process DSBs and OCDL after exposure to radiotherapy-relevant gamma ray doses. For the detection and measurement of complex DSBs and OCDL, we used the gamma-H2AX assay and an adaptation of pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. An accumulation of all types of DNA damage was detected for the siRNA-treated MCF-7 cells compared to controls. These findings point to the important role of DNA-PKcs in the processing of complex DNA damage and its potential association with breast cancer development.
Collapse
Affiliation(s)
- Prakash Peddi
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Howell Science Complex, Greenville, NC 27858, USA
| | | | | | | | | | | |
Collapse
|
55
|
Simonsson M, Qvarnström F, Nyman J, Johansson KA, Garmo H, Turesson I. Low-dose hypersensitive gammaH2AX response and infrequent apoptosis in epidermis from radiotherapy patients. Radiother Oncol 2008; 88:388-97. [PMID: 18524402 DOI: 10.1016/j.radonc.2008.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE A low-dose hypersensitivity to radiation can be observed in vitro for many human cell types in terms of increased cell kill per dose unit for doses below 0.5Gy. Quantification of the double-strand break marker gammaH2AX in samples taken in clinical radiotherapy practice has the potential to provide important information about how induction and repair of severe DNA damage and apoptosis are linked to low-dose hypersensitivity. MATERIAL AND METHODS The effects of exposure to low doses (0.05-1.1Gy) were investigated in skin biopsies taken from prostate cancer patients undergoing the first week of radiotherapy. gammaH2AX foci and apoptotic cells were visualised by immunohistochemistry and quantified by image analysis. RESULTS The gammaH2AX foci pattern in biopsies taken 30min after a single fraction revealed a low-dose hypersensitivity below 0.3Gy (p=0.0009). The result was consistent for repeated fractions (p=0.00001). No decrease in foci numbers could be detected when comparing biopsies taken 30min and 2h after single fractions of 0.4 and 1.2Gy. The result was consistent for repeated fractions. Only 43 of 168,000 cells in total were identified as apoptotic, yet a dose dependency could be detected after 1week of radiotherapy (p=0.003). CONCLUSIONS We describe a method based on gammaH2AX to study DNA damage response and apoptosis in a clinical setting. A gammaH2AX hypersensitive response to low doses can be observed in epidermal skin, already 30min following delivered fraction. A very low frequency of apoptosis in normal epithelium suggests that this effect is not an important part of the in vivo response to low doses.
Collapse
Affiliation(s)
- Martin Simonsson
- Department of Oncology, Radiology and Clinical Immunology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
56
|
Ryan LA, Seymour CB, O'Neill-Mehlenbacher A, Mothersill CE. Radiation-induced adaptive response in fish cell lines. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2008; 99:739-747. [PMID: 18054128 DOI: 10.1016/j.jenvrad.2007.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 05/25/2023]
Abstract
There is considerable interest at present in low-dose radiation effects in non-human species. In this study gamma radiation-induced adaptive response, a low-dose radiation effect, was examined in three fish cell lines, (CHSE-214 (Chinook salmon), RTG-2 (rainbow trout) and ZEB-2J (zebrafish)). Cell survival after exposure to direct radiation with or without a 0.1 Gy priming dose, was determined using the colony forming assay for each cell line. Additionally, the occurrence of a bystander effect was examined by measuring the effect of irradiated cell culture medium from the fish cell lines on unexposed reporter cells. A non-linear dose response was observed for all cell lines. ZEB-2J cells were very sensitive to low doses and a hyper-radiosensitive (HRS) response was observed for doses <0.5 Gy. A typical protective adaptive response was not detected in any of the three fish cell lines tested. Rather, it was found that pre-exposure of these cells to 0.1 Gy radiation sensitized the cells to subsequent high doses. In CHSE-214 cells, increased sensitivity to subsequent high doses of radiation was observed when the priming and challenge doses were separated by 4 h; however, this sensitizing effect was no longer present when the interval between doses was greater than 8 h. Additionally, a "protective" bystander response was observed in these cell lines; exposure to irradiated medium from fish cells caused increased cloning efficiency in unirradiated reporter cells. The data confirm previous conclusions for mammalian cells that the adaptive response and bystander effect are inversely correlated and contrary to expectations probably have different underlying mechanisms.
Collapse
Affiliation(s)
- Lorna A Ryan
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
57
|
Nuta O, Darroudi F. The impact of the bystander effect on the low-dose hypersensitivity phenomenon. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:265-274. [PMID: 18189143 DOI: 10.1007/s00411-007-0145-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 11/19/2007] [Indexed: 05/25/2023]
Abstract
The aim of this study was to investigate the possible relationship between the bystander effect and the low-dose hypersensitivity/increased radio-resistance phenomenon in BJ fibroblast cells taking as response criteria different end points of radiation damage such as cell survival, chromosomal damage (as detected by using micronucleus assay) and double strand breaks (DSBs) of the DNA. Although gamma-H2AX foci were observed in confluent bystander BJ cells, our data suggest that X-irradiation does not lead to a significant rate of DSBs in bystander cells. Thus, neither bystander effect induced unstable chromosomal aberrations nor bystander effect induced DSBs are sufficiently pronounced to explain the apparent relationship between bystander effect and low-dose hypersensitivity. The experiments described here suggest that the hyper-radiosensitivity phenomenon might be related to bystander factor induced cell inactivation in the low-dose region (lower than 1 Gy).
Collapse
Affiliation(s)
- Otilia Nuta
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
58
|
Low-Dose Hyper-Radiosensitivity: Past, Present, and Future. Int J Radiat Oncol Biol Phys 2008; 70:1310-8. [DOI: 10.1016/j.ijrobp.2007.11.071] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 01/07/2023]
|
59
|
Olive PL, Banáth JP, Keyes M. Residual γH2AX after irradiation of human lymphocytes and monocytes in vitro and its relation to late effects after prostate brachytherapy. Radiother Oncol 2008; 86:336-46. [PMID: 17904670 DOI: 10.1016/j.radonc.2007.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/31/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Retention of gammaH2AX foci in irradiated cells can signify a deficiency in DNA double-strand break repair that may be useful as an indicator of individual radiosensitivity. MATERIALS AND METHODS To examine this possibility, the retention of gammaH2AX after irradiation was compared using white blood cells from 20 prostate brachytherapy patients who developed late normal tissue toxicity and 20 patients with minimal toxicity. Peripheral blood lymphocytes and monocytes were coded for analysis, exposed in vitro to 4 doses of 0.7 Gy X-rays at 3 hourly intervals, and retention of gammaH2AX was measured by flow cytometry 18 hours after the final irradiation. RESULTS Excellent reproducibility in duplicate samples and a range in residual gammaH2AX from 7% above background to 244% above background were observed. Residual gammaH2AX in lymphocytes showed a positive correlation with patient age. However, no relation was observed between the level of residual gammaH2AX in peripheral blood mononuclear cells and late normal tissue damage. CONCLUSIONS We conclude that the method of detection of residual gammaH2AX after in vitro irradiation of lymphocytes and monocytes was simple, reproducible, and sensitive. However, it failed to predict for late normal tissue toxicity after brachytherapy. Possible reasons are discussed.
Collapse
Affiliation(s)
- Peggy L Olive
- Medical Biophysics Department, British Columbia Cancer Research Centre, BC, Canada.
| | | | | |
Collapse
|
60
|
Krueger SA, Collis SJ, Joiner MC, Wilson GD, Marples B. Transition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM Ser1981 activity. Int J Radiat Oncol Biol Phys 2007; 69:1262-71. [PMID: 17967316 DOI: 10.1016/j.ijrobp.2007.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE The molecular basis of low-dose hyper-radiosensitivity (HRS) is only partially understood. The aim of this study was to define the roles of ataxia telangiectasia mutated (ATM) activity and the downstream ATM-dependent G(2)-phase cell cycle checkpoint in overcoming HRS and triggering radiation resistance. METHODS AND MATERIALS Survival was measured using a high-resolution clonogenic assay. ATM Ser1981 activation was measured by Western blotting. The role of ATM was determined in survival experiments after molecular (siRNA) and chemical (0.4 mM caffeine) inhibition and chemical (20 microg/mL chloroquine, 15 microM genistein) activation 4-6 h before irradiation. Checkpoint responsiveness was assessed in eight cell lines of differing HRS status using flow cytometry to quantify the progression of irradiated (0-2 Gy) G(2)-phase cells entering mitosis, using histone H3 phosphorylation analysis. RESULTS The dose-response pattern of ATM activation was concordant with the transition from HRS to radioresistance. However, ATM activation did not play a primary role in initiating increased radioresistance. Rather, a relationship was discovered between the function of the downstream ATM-dependent early G(2)-phase checkpoint and the prevalence and overcoming of HRS. Four cell lines that exhibited HRS failed to show low-dose (<0.3-Gy) checkpoint function. In contrast, four HRS-negative cell lines exhibited immediate cell cycle arrest for the entire 0-2-Gy dose range. CONCLUSION Overcoming HRS is reliant on the function of the early G(2)-phase checkpoint. These data suggest that clinical exploitation of HRS could be achieved by combining radiotherapy with chemotherapeutic agents that modulate this cell cycle checkpoint.
Collapse
Affiliation(s)
- Sarah A Krueger
- Department of Radiation Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
DNA damage responses (DDR) encompass DNA repair and signal transduction pathways that effect cell cycle checkpoint arrest and/or apoptosis. How DDR pathways respond to low levels of DNA damage, including low doses of ionizing radiation, is crucial for assessing environmental cancer risk. It has been assumed that damage-induced cell cycle checkpoints respond to a single double strand break (DSB) but the G2/M checkpoint, which prevents entry into mitosis, has recently been shown to have a defined threshold of 10-20 DSBs. Here, we consider the impact of a negligent G2/M checkpoint on genomic stability and cancer risk.
Collapse
Affiliation(s)
- Markus Löbrich
- Darmstadt University of Technology, Radiation Biology and DNA Repair, 64287 Darmstadt, Germany.
| | | |
Collapse
|
62
|
Tapio S, Jacob V. Radioadaptive response revisited. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:1-12. [PMID: 17131131 DOI: 10.1007/s00411-006-0078-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 10/27/2006] [Indexed: 05/12/2023]
Abstract
Radiation-induced adaptive response belongs to the group of non-targeted effects that do not require direct exposure of the cell nucleus by radiation. It is described as the reduced damaging effect of a challenging radiation dose when induced by a previous low priming dose. Adaptive responses have been observed in vitro and in vivo using various indicators of cellular damage, such as cell lethality, chromosomal aberrations, mutation induction, radiosensitivity, and DNA repair. Adaptive response can be divided into three successive biological phenomena, the intracellular response, the extracellular signal, and the maintenance. The intracellular response leading to adaptation of a single cell is a complex biological process including induction or suppression of gene groups. An extracellular signal, the nature of which is unknown, may be sent by the affected cell to neighbouring cells causing them to adapt as well. This occurs either by a release of diffusible signalling molecules or by gap-junction intercellular communication. Adaptive response can be maintained for periods ranging from of a few hours to several months. Constantly increased levels of reactive oxygen species (ROS) or nitric oxide (NO) have been observed in adapted cells and both factors may play a role in the maintenance process. Although adaptive response seems to function by an on/off principle, it is a phenomenon showing a high degree of inter- and intraindividual variability. It remains to be seen to what extent adaptive response is functional in humans at relevant dose and dose-rate exposures. A better understanding of adaptive response and other non-targeted effects is needed before they can be confirmed as risk estimate factors for the human population at low levels of ionising radiation.
Collapse
Affiliation(s)
- Soile Tapio
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| | | |
Collapse
|
63
|
Klokov D, MacPhail SM, Banáth JP, Byrne JP, Olive PL. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol 2006; 80:223-9. [PMID: 16905207 DOI: 10.1016/j.radonc.2006.07.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Human tumor cell lines grown as monolayers or xenograft tumors were exposed to single or multiple fractions of X-rays and the ability to use residual gammaH2AX to identify radiosensitive cells was assessed. MATERIALS AND METHODS Twenty-four hour after exposure to single or daily fractions of X-rays, human tumor cells from monolayers or xenografts were analyzed for clonogenic surviving fraction. Cells were also fixed and labeled with anti-gammaH2AX antibodies for analysis by flow and image cytometry. The relative amount of residual gammaH2AX and the percentage of cells with <3 foci were compared with the clonogenic surviving fraction measured for the same population. RESULTS The fraction of gammaH2AX remaining 24h after X-irradiation relative to peak levels 1h after exposure was correlated with radiosensitivity (SF2) for 18 human tumor cell lines. The fraction of SiHa, C33A and WiDr cells with <3 gammaH2AX foci was predictive of clonogenic surviving fraction for both monolayer cells exposed to either single doses or up to 5 fractions. Similar results were obtained using cells from xenograft tumors of irradiated mice. CONCLUSION The percentage of tumor cells that retain gammaH2AX foci 24h after single or fractionated doses appears to be a useful measure of cellular radiosensitivity that is potentially applicable in the clinic.
Collapse
Affiliation(s)
- Dmitry Klokov
- Medical Biophysics Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|