51
|
Casas-Arozamena C, Díaz E, Moiola CP, Alonso-Alconada L, Ferreiros A, Abalo A, López Gil C, Oltra SS, de Santiago J, Cabrera S, Sampayo V, Bouso M, Arias E, Cueva J, Colas E, Vilar A, Gil-Moreno A, Abal M, Moreno-Bueno G, Muinelo-Romay L. Genomic Profiling of Uterine Aspirates and cfDNA as an Integrative Liquid Biopsy Strategy in Endometrial Cancer. J Clin Med 2020; 9:E585. [PMID: 32098121 PMCID: PMC7073542 DOI: 10.3390/jcm9020585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence and mortality of endometrial cancer (EC) have risen in recent years, hence more precise management is needed. Therefore, we combined different types of liquid biopsies to better characterize the genetic landscape of EC in a non-invasive and dynamic manner. Uterine aspirates (UAs) from 60 patients with EC were obtained during surgery and analyzed by next-generation sequencing (NGS). Blood samples, collected at surgery, were used for cell-free DNA (cfDNA) and circulating tumor cell (CTC) analyses. Finally, personalized therapies were tested in patient-derived xenografts (PDXs) generated from the UAs. NGS analyses revealed the presence of genetic alterations in 93% of the tumors. Circulating tumor DNA (ctDNA) was present in 41.2% of cases, mainly in patients with high-risk tumors, thus indicating a clear association with a more aggressive disease. Accordingly, the results obtained during the post-surgery follow-up indicated the presence of ctDNA in three patients with progressive disease. Moreover, 38.9% of patients were positive for CTCs at surgery. Finally, the efficacy of targeted therapies based on the UA-specific mutational landscape was demonstrated in PDX models. Our study indicates the potential clinical applicability of a personalized strategy based on a combination of different liquid biopsies to characterize and monitor tumor evolution, and to identify targeted therapies.
Collapse
Affiliation(s)
- Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.-A.); (A.A.); (J.C.); (M.A.)
| | - Eva Díaz
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (E.D.); (S.S.O.); (G.M.-B.)
| | - Cristian Pablo Moiola
- Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, 119-129 Pg. Vall d’Hebron, 08035 Barcelona, Spain; (C.P.M.); (S.C.); (E.C.); (A.G.-M.)
| | | | - Alba Ferreiros
- Nasasbiotech, S.L., Canton Grande 3, 15003 A Coruña, Spain; (L.A.-A.); (A.F.)
| | - Alicia Abalo
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.-A.); (A.A.); (J.C.); (M.A.)
| | - Carlos López Gil
- Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, 119-129 Pg. Vall d’Hebron, 08035 Barcelona, Spain; (C.P.M.); (S.C.); (E.C.); (A.G.-M.)
| | - Sara S. Oltra
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (E.D.); (S.S.O.); (G.M.-B.)
| | - Javier de Santiago
- Department of Gynecology, MD Anderson Cancer Center, 28029 Madrid, Spain;
| | - Silvia Cabrera
- Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, 119-129 Pg. Vall d’Hebron, 08035 Barcelona, Spain; (C.P.M.); (S.C.); (E.C.); (A.G.-M.)
| | - Victoria Sampayo
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (V.S.); (E.A.); (A.V.)
| | - Marta Bouso
- Department of Pathology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Efigenia Arias
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (V.S.); (E.A.); (A.V.)
| | - Juan Cueva
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.-A.); (A.A.); (J.C.); (M.A.)
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, 119-129 Pg. Vall d’Hebron, 08035 Barcelona, Spain; (C.P.M.); (S.C.); (E.C.); (A.G.-M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ana Vilar
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (V.S.); (E.A.); (A.V.)
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, 119-129 Pg. Vall d’Hebron, 08035 Barcelona, Spain; (C.P.M.); (S.C.); (E.C.); (A.G.-M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.-A.); (A.A.); (J.C.); (M.A.)
- Nasasbiotech, S.L., Canton Grande 3, 15003 A Coruña, Spain; (L.A.-A.); (A.F.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Foundation MD Anderson International, C/Gómez Hemans 2, 28033 Madrid, Spain; (E.D.); (S.S.O.); (G.M.-B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Department of Biochemistry, Autonomic University of Madrid (UAM), Biomedical research Institute ‘Alberto Sols’ (CSIC-UAM), IdiPaz, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (C.C.-A.); (A.A.); (J.C.); (M.A.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
52
|
Lowes H, Pyle A, Santibanez-Koref M, Hudson G. Circulating cell-free mitochondrial DNA levels in Parkinson's disease are influenced by treatment. Mol Neurodegener 2020; 15:10. [PMID: 32070373 PMCID: PMC7029508 DOI: 10.1186/s13024-020-00362-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Several studies have linked circulating cell-free mitochondrial DNA (ccf-mtDNA) to human disease. In particular, reduced ccf-mtDNA levels in the cerebrospinal fluid (CSF) of both Alzheimer's and Parkinson's disease (PD) patients have raised the hypothesis that ccf-mtDNA could be used as a biomarker for neurodegenerative disease onset and progression. However, how a reduction of CSF ccf-mtDNA levels relates to neurodegeneration remains unclear. Many factors are likely to influence ccf-mtDNA levels, such as concomitant therapeutic treatment and comorbidities. In this study we aimed to investigate these factors, quantifying CSF ccf-mtDNA from the Parkinson's Progression Markers Initiative in 372 PD patients and 159 matched controls at two time points. We found that ccf-mtDNA levels appear significantly reduced in PD cases when compared to matched controls and are associated with cognitive impairment. However, our data indicate that this reduction in ccf-mtDNA is also associated with the commencement, type and duration of treatment. Additionally, we found that ccf-mtDNA levels are associated with comorbidities such as depression and insomnia, however this was only significant if measured in the absence of treatment. We conclude that in PD, similar to reports in HIV and sepsis, comorbidities and treatment can both influence ccf-mtDNA homeostasis, raising the possibility that ccf-mtDNA may be useful as a biomarker for treatment response or the development of secondary phenotypes. Given that, clinically, PD manifests often decades after neurodegeneration begins, predicting who will develop disease is important. Also, identifying patients who will respond to existing treatments or develop secondary phenotypes will have increased clinical importance as PD incidence rises.
Collapse
Affiliation(s)
- Hannah Lowes
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | | | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| |
Collapse
|
53
|
Mayo-de-Las-Casas C, Velasco A, Sanchez D, Martínez-Bueno A, Garzón-Ibáñez M, Gatius S, Ruiz-Miró M, Gonzalez-Tallada X, Llordella I, Tresserra F, Rodríguez S, Aldeguer E, Roman-Canal B, Bertran-Alamillo J, García-Peláez B, Rosell R, Molina-Vila MA, Matias-Guiu X. Detection of somatic mutations in peritoneal lavages and plasma of endometrial cancer patients: A proof-of-concept study. Int J Cancer 2020; 147:277-284. [PMID: 31953839 DOI: 10.1002/ijc.32872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries. Although most patients are diagnosed at early stages, 15-20% will relapse despite local treatment. Presently, there are no reliable markers to identify patients with worse outcomes who may benefit from adjuvant treatments, such as chemotherapy, and liquid biopsies may be of use in this setting. Peritoneal lavages are systematically performed during endometrial surgery but little data are available about their potential as liquid biopsies. We analyzed KRAS and PIK3CA mutations in paired surgical biopsies, blood and cytology-negative peritoneal lavages in a cohort of 50 EC patients. Surgical biopsies were submitted to next-generation sequencing (NGS) while circulating-free DNA (cfDNA) purified from plasma and peritoneal lavages was analyzed for KRAS and PIK3CA hotspot mutations using a sensitive quantitative polymerase chain reaction (PCR) assay. NGS of biopsies revealed KRAS, PIK3CA or concomitant KRAS + PIK3CA mutations in 33/50 (66%) EC patients. Of those, 19 cases carried hotspot mutations. Quantitative PCR revealed KRAS and/or PIK3CA mutations in the lavages of 9/19 (47.4%) hotspot EC patients. In contrast, only 2/19 (10.5%) blood samples from hotspot EC patients were positive. Mutations found in cfDNA consistently matched those in paired biopsies. One of the two patients positive in plasma and lavage died in less than 6 months. In conclusion, mutational analysis in peritoneal lavages and blood from early stage EC is feasible. Further studies are warranted to determine if it might help to identify patients with worse prognosis. Human genes discussed: KRAS, KRAS proto-oncogene, GTPase; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha.
Collapse
Affiliation(s)
- Clara Mayo-de-Las-Casas
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Ana Velasco
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Douglas Sanchez
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | | | - Mónica Garzón-Ibáñez
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Sònia Gatius
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | | | | | - Ivana Llordella
- Department of Gynecology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Francesc Tresserra
- Department of Pathology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Sonia Rodríguez
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Erika Aldeguer
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | | | - Jordi Bertran-Alamillo
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Beatriz García-Peláez
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Rafael Rosell
- Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain
| | - Miguel A Molina-Vila
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
- Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
- University of Lleida, CIBERONC, Lleida, Spain
| |
Collapse
|
54
|
De Bruyn C, Baert T, Van den Bosch T, Coosemans A. Circulating Transcripts and Biomarkers in Uterine Tumors: Is There a Predictive Role? Curr Oncol Rep 2020; 22:12. [PMID: 31997106 DOI: 10.1007/s11912-020-0864-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Uterine cancer comprises endometrial carcinoma and the uterine sarcoma. Endometrial carcinomas are the most frequent variant and have early symptoms and a solid diagnostic work up, resulting in a rather fair prognosis. However, in case of advanced stage disease and relapse, treatment options are limited and prognosis is impaired. Uterine sarcomas are rare, often lacking symptoms and no diagnostic tool for correct pre-operative diagnosis are available. Prognosis is poor. RECENT FINDINGS Circulating biomarkers as a liquid biopsy could be beneficial as a diagnostic tool in uterine sarcomas. For both carcinomas and sarcomas, circulating biomarkers could be of use in predicting early disease recurrence. This review in endometrial carcinoma and uterine sarcoma focus on circulating biomarkers; such as proteins; circulating tumor cells; circulating tumor DNA; microRNA; and immune cells.
Collapse
Affiliation(s)
- Christine De Bruyn
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospital Antwerp, Edegem, Belgium
| | - Thaïs Baert
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen Mitte (KEM), Essen, Germany
| | - Thierry Van den Bosch
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
55
|
Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clin Chim Acta 2020; 503:145-150. [PMID: 31978408 DOI: 10.1016/j.cca.2020.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Release of cell free DNA (cfDNA) from damaged or dead cells routinely occurs in normal physiology. Recently, cfDNA has emerged as an essential biomarker in cardiovascular disease (CVD) of potential prognostic and diagnostic significance. Within the last decade, significant research efforts have been devoted to uncovering the mechanisms mediating cfDNA release and its outcome-predicting ability. The current review focuses on the pathways for cfDNA release in myocardial infarction, heart failure and hypertension, and discusses implementation of cfDNA monitoring to assess the overall development of these disease states and predict future complications.
Collapse
|
56
|
Chen Q, Zhang ZH, Wang S, Lang JH. Circulating Cell-Free DNA or Circulating Tumor DNA in the Management of Ovarian and Endometrial Cancer. Onco Targets Ther 2019; 12:11517-11530. [PMID: 31920340 PMCID: PMC6938177 DOI: 10.2147/ott.s227156] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal cancer of all gynecological malignancies, while endometrial cancer (EC) is the most common one. Current strategies for OC/EC diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a tissue biopsy is expensive and requires a highly skilled gynecological surgery to pinpoint accurately which cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating free DNA (cfDNA). These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Liquid biopsy is an emerging non-invasive, safe and effective method with considerable potential for clinical diagnosis and treatment management in patients with OC and EC. Analysis of cfDNA and ctDNA will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of OC/EC, the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers, and therapeutic response monitoring.
Collapse
Affiliation(s)
- Qian Chen
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zi-Han Zhang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shu Wang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing-He Lang
- Department of Gynecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
57
|
Abstract
Since its discovery in human blood plasma about 70 years ago, circulating cell-free DNA (cfDNA) has become an attractive subject of research as noninvasive disease biomarker. The interest in clinical applications has gained an exponential increase, making it a popular and potential target in a wide range of research areas.cfDNA can be found in different body fluids, both in healthy and not healthy subjects. The recent and rapid development of new molecular techniques is promoting the study and the identification of cfDNA, holding the key to minimally invasive diagnostics, improving disease monitoring, clinical decision, and patients' outcome.cfDNA has already given a huge impact on prenatal medicine, and it could become, in the next future, the standard of care also in other fields, from oncology to transplant medicine and cardiovascular diseases.
Collapse
Affiliation(s)
- Rossella Ranucci
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
58
|
Arko-Boham B, Aryee NA, Blay RM, Owusu EDA, Tagoe EA, Doris Shackie ES, Debrah AB, Adu-Aryee NA. Circulating cell-free DNA integrity as a diagnostic and prognostic marker for breast and prostate cancers. Cancer Genet 2019; 235-236:65-71. [PMID: 31105051 DOI: 10.1016/j.cancergen.2019.04.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer incidence and its related mortality is rising and is currently the second leading cause of death globally. In Africa, breast and prostate cancer in females and males, respectively, are the worst globally. However, biomarkers for their early detection and prognosis are not well developed. This study sought to investigate circulating cell-free DNA (ccfDNA) integrity and its potential utility as diagnostic and/or prognostic biomarker. Circulating cell-free DNA (ccfDNA) is degraded DNA fragments released into the blood plasma. In healthy individuals, the source of ccfDNA is solely apoptosis, producing evenly sized shorter DNA fragments. In cancer patients, however, necrosis produces uneven longer cell-free DNA fragments in addition to the shorter fragments originating from apoptosis. DNA integrity, expressed as the ratio of longer fragments to total DNA, may be clinically useful for the detection of breast and prostate cancer progression. METHODS Sixty-four (64) females, consisting of 32 breast cancer patients and 32 controls, and 61 males (31 prostate cancer patients and 30 controls) were included in the study. Each participant donated 5 ml peripheral blood from which sera were separated. Real-time qPCR was performed on the sera to quantify ALU 115 and 247 levels, and DNA integrity (ALU247/ALU115) determined. RESULTS & CONCLUSION ALU species 115 and 247 levels in serum were elevated in breast and prostate cancer patients compared to their counterpart healthy controls. DNA integrity was higher in prostate cancer patients than in the control, but in breast cancer patients was lower compared to their controls. In prostate but not in breast cancers, DNA integrity increased with disease severity and higher staging.
Collapse
Affiliation(s)
- Benjamin Arko-Boham
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana; Department of Anatomy, School of Biomedical and Allied Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana.
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Richard Michael Blay
- Department of Anatomy, School of Biomedical and Allied Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Ewurama Dedea Ampadu Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Centre, University of Amsterdam, Postbus 226601100 DD Amsterdam, the Netherlands; Foundation for Innovative and New Diagnostics (FIND), 9 Chemin des Mines, 1202, Geneva, Switzerland
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana
| | - Eshirow-Sam Doris Shackie
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Ama Boatemaa Debrah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Nii Armah Adu-Aryee
- Department of Surgery, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, P.O. Box KB 143, Korle-Bu, Accra, Ghana; Department of Surgery, Korle-Bu Teaching Hospital, P.O. Box, 77 Accra, Ghana
| |
Collapse
|
59
|
Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: identification of plasma-based, tumor-associated mutations in early stage patients. Mod Pathol 2019; 32:405-414. [PMID: 30315273 PMCID: PMC6395490 DOI: 10.1038/s41379-018-0158-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/01/2018] [Accepted: 09/01/2018] [Indexed: 01/03/2023]
Abstract
There is currently no blood-based marker in routine use for endometrial cancer patients. Such a marker could potentially be used for early detection, but it could also help to track tumor recurrence following hysterectomy. This is important, as extra-vaginal recurrence of endometrial endometrioid adenocarcinoma is usually incurable. This proof-of-principle study was designed to determine if tumor-associated mutations could be detected in cell-free DNA from the peripheral blood of early and late stage endometrial endometrioid carcinoma patients. Approximately 90% of endometrioid carcinomas have at least one mutation in the genes CTNNB1, KRAS, PTEN, or PIK3CA. Using a custom panel targeting 30 hotspot amplicons in these four genes, next-generation sequencing was performed on cell-free DNA extracted from plasma obtained from a peripheral blood draw at the time of hysterectomy and the matching tumor DNA from 48 patients with endometrioid endometrial carcinomas. At least one mutation in the tumor was detected in 45/48 (94%) of patients. Fifteen of 45 patients (33%) had a mutation in the plasma that matched a mutation in the tumor. These same mutations were not detected in the matched negative control buffy coat. Presence of a plasma mutation was significantly associated with advanced stage at hysterectomy, deep myometrial invasion, lymphatic/vascular invasion, and primary tumor size. Detecting a plasma-based mutation was independent of the amount of cell-free DNA isolated from the plasma. Overall, 18% of early stage patients had a mutation detected in the plasma. These results demonstrate that mutations in genes relevant to endometrial cancer can be identified in the peripheral blood of patients at the time of surgery. Future studies can help to determine the post-operative time course of mutation clearance from the peripheral blood and if mutation re-emergence is predictive of recurrence.
Collapse
|
60
|
Mari R, Lambaudie É, Provansal M, Sabatier R. [Circulating tumor DNA assessment for gynaecological cancers management]. Bull Cancer 2019; 106:237-252. [PMID: 30765097 DOI: 10.1016/j.bulcan.2018.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
Gynaecological cancers are frequent, with more than 16,000 cases per year in France for 6500 deaths. Few improvements in diagnostic methods, prognostic tools, and therapeutic strategies have occurred in the last two decades. Tumour genomic analyses from, at least in part, the Cancer Genome Atlas have identified some of the molecular alterations involved in gynaecological tumours growth and spreading. However, these data remain incomplete and have not led to dramatic changes in the clinical management of our patients. Moreover, they require invasive samples that are not suitable to objectives like screening/early diagnosis, assessment of treatment efficacy, monitoring of residual disease or early diagnosis of relapse. In the last years, the analysis of circulating tumour biomarkers (also called "liquid biopsies") based on tumour cells (circulating tumour cells) or tumour nucleotides (circulating DNA or RNA) has been massively explored through various indications, platforms, objectives; data related to circulating tumour DNA being the most important in terms of number of publications and interest for clinical practice. This review aims to describe the methods of analysis as well as the observations from the analysis of circulating tumour DNA in gynaecological tumours, from screening/early diagnosis to the adaptation of treatment for advanced stages, through choice of treatments and monitoring of subclinical disease.
Collapse
Affiliation(s)
- Roxane Mari
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France
| | - Éric Lambaudie
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département de chirurgie oncologique, CRCM, Marseille cedex 9, France; Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, CRCM, laboratoire d'oncologie prédictive, Marseille cedex 9, France
| | - Magali Provansal
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France
| | - Renaud Sabatier
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France; Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, CRCM, laboratoire d'oncologie prédictive, Marseille cedex 9, France.
| |
Collapse
|
61
|
Lee KH, Shin TJ, Kim WH, Cho JY. Methylation of LINE-1 in cell-free DNA serves as a liquid biopsy biomarker for human breast cancers and dog mammary tumors. Sci Rep 2019; 9:175. [PMID: 30655558 PMCID: PMC6336845 DOI: 10.1038/s41598-018-36470-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in both women and female dogs. Methylation changes of LINE-1 have been reported in human cancers. The aim of this study was to determine the hypomethylation of canine LINE-1 in liquid biopsies for canine mammary tumors (CMT) and to assess its diagnostic performance in human plasma. BC associated LINE-1 methylation was measured by methylation sensitive (HpaII) and insensitive (MspI) restriction enzyme digestion followed by real-time PCR using the cfDNA isolated from 300 µl of plasma. The relative level of methylated canine LINE-1 was less than 0.4 in the benign and malignant CMTs (0.29 ± 0.061 and 0.39 ± 0.066, respectively) when it was 0.92 ± 0.067 in the healthy controls. The area under the ROC curve (AUC) was significantly high in both benign and malignant tumors (0.97 and 0.93). Furthermore, this approach was also successfully implemented in a set of 26 human BCs with 10 healthy controls (AUC = 0.78). Altogether, our data suggest that the comparative approach using a dog model might be helpful to rapidly develop a new diagnostic biomarker and that the methylation of LINE-1 in cfDNA may be a good target as a diagnostic marker of both human BC and CMT.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Tae-Jin Shin
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Wan-Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
62
|
Muinelo-Romay L, Casas-Arozamena C, Abal M. Liquid Biopsy in Endometrial Cancer: New Opportunities for Personalized Oncology. Int J Mol Sci 2018; 19:E2311. [PMID: 30087246 PMCID: PMC6121388 DOI: 10.3390/ijms19082311] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
The identification of new molecular targets and biomarkers associated with high risk of recurrence and response to therapy represents one of the main clinical challenges in the management of advanced disease in endometrial cancer. In this sense, the field of liquid biopsy has emerged as a great revolution in oncology and is considered "the way" to reach personalised medicine. In this review, we discuss the promising but already relatively limited advances of liquid biopsy in endometrial cancer compared to other types of tumours like breast, colorectal or prostate cancer. We present recent data analysing circulating tumour material in minimally-invasive blood samples, but also in alternative forms of liquid biopsy like uterine aspirates. Proteomic and genomic studies focused on liquid-based uterine samples are resulting not only in optimal diagnostic tools but also in reliable approaches to address tumour heterogeneity. Likewise, circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA) represent an opportunity for the correct stratification of patients, for the assessment of early recurrent disease or for the real-time monitoring of therapy responses. Appropriately designed studies and implementation in clinical trials will determine the value of liquid biopsy for precision oncology in endometrial cancer.
Collapse
Affiliation(s)
- Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), CIBERONC, Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain.
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), CIBERONC, Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain.
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), CIBERONC, Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
63
|
Wei L, Wu W, Han L, Yu W, Du Y. A quantitative analysis of the potential biomarkers of non-small cell lung cancer by circulating cell-free DNA. Oncol Lett 2018; 16:4353-4360. [PMID: 30250538 PMCID: PMC6144435 DOI: 10.3892/ol.2018.9198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/10/2018] [Indexed: 01/02/2023] Open
Abstract
The study was conducted to ascertain whether the quantification of circulating cell-free DNA (cfDNA) in serum has value as a diagnostic or for monitoring the progression of non-small cell lung cancer (NSCLC). The serum/plasma cfDNA concentration was quantified by absolute qPCR of long interspersed nuclear element-1 (LINE1) in 60 NSCLC patients and 68 controls in good health. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic utility and cut-off levels of cfDNA, CEA, and CYFRA21-1 in NSCLC patients. Correlations between cfDNA and age, sex, tumour stage and progression-free survival (PFS) were analysed. A follow-up study was conducted on 4 NSCLC patients, and serum cfDNA, CEA, and CYFRA21-1 were quantified throughout disease progression. Serum cfDNA levels were significantly higher in NSCLC patients than those in normal controls. Elevated serum cfDNA concentration was also significantly associated with advanced tumour stage. Serum cfDNA had a ROC area under the curve comparable to that of CEA and CYFRA21-1 for the diagnosis of NSCLC, and the combined cfDNA/CEA/CYFRA21-1 indicator had the highest diagnostic efficiency. Moreover, increased serum cfDNA levels were strongly correlated with tumour progression and poor PFS. This study preliminarily confirmed that cfDNA can monitor disease progression in NSCLC patients, and the lead time was 1–7 months compared with clinical medical imaging. Serum cfDNA may be useful in monitoring NSCLC progression, suggesting that the non-invasive quantification of serum cfDNA by LINE1 qPCR is a viable option for predicting progression and disease severity when repeated invasive tissue biopsy is not possible.
Collapse
Affiliation(s)
- Lirong Wei
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China.,Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Wangxi Wu
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Liming Han
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Weimo Yu
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Yuzhen Du
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China.,Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| |
Collapse
|
64
|
Thurairajah K, Briggs GD, Balogh ZJ. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies. Eur J Trauma Emerg Surg 2018; 44:325-334. [PMID: 29633007 PMCID: PMC6002458 DOI: 10.1007/s00068-018-0954-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Abstract
Mitochondria play a key role in the pathophysiology of post-injury inflammation. Cell-free mitochondrial DNA (cf-mtDNA) is now understood to catalyse sterile inflammation after trauma. Observations in trauma cohorts have identified high cf-mtDNA in patients with systemic inflammatory response syndrome and multiple organ failure as well as following major surgery. The source of cf-mtDNA can be various cells affected by mechanical and hypoxic injury (passive mechanism) or induced by inflammatory mechanisms (active mechanism). Multiple forms of cf-mtDNA exist; mtDNA fragments, mtDNA in microparticles/vesicles and cell-free mitochondria. Trauma to cells that are rich in mitochondria are believed to release more cf-mtDNA. This review describes the current understanding of the mechanisms of cf-mtDNA release, its systemic effects and the potential therapeutic implications related to its modification. Although current understanding is insufficient to change trauma management, focussed research goals have been identified to pave the way for monitoring and manipulation of cf-mtDNA release and effects in trauma.
Collapse
Affiliation(s)
- Kabilan Thurairajah
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia
| | - Gabrielle Daisy Briggs
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia
| | - Zsolt Janos Balogh
- Department of Traumatology, John Hunter Hospital and University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|