51
|
Wang Y, Mu L, Huang M. MicroRNA‑195 suppresses rectal cancer growth and metastasis via regulation of the PI3K/AKT signaling pathway. Mol Med Rep 2019; 20:4449-4458. [PMID: 31702045 PMCID: PMC6797947 DOI: 10.3892/mmr.2019.10717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in the progression of cancer, however, only limited data on miRNAs in rectal cancer are available. The aim of the present study was to investigate whether miR‑195 could inhibit the progression of rectal cancer. The miR‑195 mimic was transfected into 2 types of human rectal cancer cells (SW837 and SW1463). Cell viability and apoptosis were analyzed by Cell Counting Kit‑8 (CCK‑8) assay and flow cytometry, and cell migration and invasion were assessed by scratch test and Transwell assay. The results revealed that insulin‑like growth factor 1 (IGF1) was predicted as a potential target of miR‑195 by Targetscan7.2, and the result was verified by dual‑luciferase reporter assay. The co‑transfection of IGF1 was performed to confirm the underlying mechanism of tumor suppressor of miR‑195 in rectal cancer. The activation of PI3K/AKT signaling was determined by western blotting. The levels of miR‑195 in SW837 and SW1463 cells were revealed to be lower than in human rectal mucosa epithelial cells. After the transfection with miR‑195, the cell viability was decreased, while the apoptosis was significantly increased (SW837: 5.21% vs. 20.96%; SW1463: 4.19% vs. 25.22%). Moreover, cell migration and invasion were significantly inhibited in the mimic group. miR‑195 specifically targeted IGF1, however, the co‑transfection of IGF1 could partially reverse the inhibitory effects of miR‑195 on rectal cancer cells. It was also determined that the phosphorylation of PI3K and AKT were significantly inhibited in the mimic group. The tumor suppressive ability of miR‑195 in rectal cancer cell proliferation and metastasis was mediated by blocking IGF1 expression and inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Linsong Mu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Miaoling Huang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
52
|
Gong D, Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q, Wu JB. Silencing Long Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Progression via MicroRNA-330-5p-Induced Inhibition of CHEK1. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:482-497. [PMID: 31902747 PMCID: PMC6948252 DOI: 10.1016/j.omtn.2019.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85%–90% of primary liver cancers. Based on in silico analysis, differentially expressed long non-coding RNA (lncRNA) LINC01224 in HCC, the downstream microRNA (miRNA) miR-330-5p, and its target gene checkpoint kinase 1 (CHEK1) were selected as research subjects. Herein, this study was designed to evaluate their interaction effects on the malignant phenotypes of HCC cells. LINC01224 and CHEK1 were upregulated and miR-330-5p was downregulated in HCC cells. miR-330-5p shared negative correlations with LINC01224 and CHEK1, and LINC01224 shared a positive correlation with CHEK1. Notably, LINC01224 could specifically bind to miR-330-5p, and CHEK1 was identified as a target gene of miR-330-5p. When LINC01224 was silenced or miR-330-5p was elevated, the sphere and colony formation abilities and proliferative, migrative, and invasive potentials of HCC cells were diminished, while cell cycle arrest and apoptosis were enhanced. Moreover, LINC01224 induced HCC progression in vitro and accelerated tumor formation in nude mice by increasing CHEK1 expression. The key findings of the present study demonstrated that silencing LINC01224 could downregulate the expression of CHEK1 by competitively binding to miR-330-5p, thus inhibiting HCC progression. This result highlights the LINC01224/miR-330-5p/CHEK1 axis as a novel molecular mechanism involved in the pathology of HCC.
Collapse
Affiliation(s)
- Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Peng-Cheng Feng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Xing-Fei Ke
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Hui-Lan Kuang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Li-Li Pan
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Qiang Ye
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Jian-Bing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China.
| |
Collapse
|
53
|
Long non-coding RNA LINC00485 acts as a microRNA-195 sponge to regulate the chemotherapy sensitivity of lung adenocarcinoma cells to cisplatin by regulating CHEK1. Cancer Cell Int 2019; 19:240. [PMID: 31528122 PMCID: PMC6739919 DOI: 10.1186/s12935-019-0934-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/18/2019] [Indexed: 11/17/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a family of non-protein-coding RNAs, which have the ability to influence the chemo-resistance of lung adenocarcinoma (LAC). In this study, we explored the mechanism by which LINC00485 competitively binds to microRNA-195 (miR-195) in the regulation of the chemotherapy sensitivity in LAC by regulating checkpoint kinase 1 (CHEK1). Methods Microarray analysis was used to screen out LAC related genes, and interaction between CHEK1 and miR-195, as well as that between miR-195 and LINC00485, was further confirmed by RNA-pull down and RIP. LINC00485 expression in LAC cells (A549 and H1299) was determined. The cells were then introduced with miR-195, anta-miR-195, LINC00485 or si-LINC00485 to identify the role of miR-195 and LINC00485 in LAC through evaluating the expression of CHEK1, CHEK1, Bax, Bcl-2, VEGF and HIF-1α in LAC cells by either RT-qPCR or Western blot analysis. After being treated with different concentration of cisplatin, cell proliferation, colony formation and apoptosis were assessed. Results LINC00485 acted as a competitive endogenous RNA against miR-195, and miR-195 directly targeted CHEK1. The expression of LINC00485 was higher in LAC cells. The down-regulation of LINC00485 or the up-regulation of miR-195 decreased the expression of CHEK1, Bcl-2, VEGF and HIF-1α, while also increasing the expression of Bax. Moreover, the over-expression of miR-195, or the silencing of LINC00485 enhanced the sensitivity of LAC cells to cisplatin, thereby promoting the apoptosis of LAC cells while suppressing the proliferation. Conclusion LINC00485 competitively binds to miR-195 to elevate CHEK1 expression in LAC cells, suggesting that LINC00485 is a novel direction for therapeutic strategies of LAC.
Collapse
|
54
|
Li Z, Sang M, Tian Z, Liu Z, Lv J, Zhang F, Shan B. Identification of key biomarkers and potential molecular mechanisms in lung cancer by bioinformatics analysis. Oncol Lett 2019; 18:4429-4440. [PMID: 31611952 PMCID: PMC6781723 DOI: 10.3892/ol.2019.10796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most widespread neoplasms worldwide. To identify the key biomarkers in its carcinogenesis and development, the mRNA microarray datasets GSE102287, GSE89047, GSE67061 and GSE74706 were obtained from the Gene Expression Omnibus database. GEO2R was used to identify the differentially expressed genes (DEGs) in lung cancer. The Database for Annotation, Visualization and Integrated Discovery was used to analyze the functions and pathways of the DEGs, while the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape were used to obtain the protein-protein interaction (PPI) network. Kaplan Meier curves were used to analyze the effect of the hub genes on overall survival (OS). Module analysis was completed using Molecular Complex Detection in Cytoscape, and one co-expression network of these significant genes was obtained with cBioPortal. A total of 552 DEGs were identified among the four microarray datasets, which were mainly enriched in 'cell proliferation', 'cell growth', 'cell division', 'angiogenesis' and 'mitotic nuclear division'. A PPI network, composed of 44 nodes and 886 edges, was constructed, and its significant module had 16 hub genes in the whole network: Opa interacting protein 5, exonuclease 1, PCNA clamp-associated factor, checkpoint kinase 1, hyaluronan-mediated motility receptor, maternal embryonic leucine zipper kinase, non-SMC condensin I complex subunit G, centromere protein F, BUB1 mitotic checkpoint serine/threonine kinase, cyclin A2, thyroid hormone receptor interactor 13, TPX2 microtubule nucleation factor, nucleolar and spindle associated protein 1, kinesin family member 20A, aurora kinase A and centrosomal protein 55. Survival analysis of these hub genes revealed that they were markedly associated with poor OS in patients with lung cancer. In summary, the hub genes and DEGs delineated in the research may aid the identification of potential targets for diagnostic and therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meixiang Sang
- Hebei Cancer Research Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhao Liu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing 100142, P.R. China
| | - Jian Lv
- Second Department of Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Baoen Shan
- Hebei Cancer Research Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
55
|
Mao G, Wang SL, Zhang W. Prediction of Potential Associations Between MicroRNA and Disease Based on Bayesian Probabilistic Matrix Factorization Model. J Comput Biol 2019; 26:1030-1039. [DOI: 10.1089/cmb.2019.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Guo Mao
- College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
| | - Shu-Lin Wang
- College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
| | - Wei Zhang
- College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
| |
Collapse
|
56
|
Wang N, Cao Y, Ge X, Nie J, Yu Y, Li Q, Wang F, Miao L. MicroRNA-195 as a prognostic factor for cancer survival outcome in China: a meta-analysis. Cancer Manag Res 2019; 11:7967-7979. [PMID: 31686911 PMCID: PMC6709821 DOI: 10.2147/cmar.s205841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/13/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose MicroRNA-195 is dysregulated in different kinds of cancers and plays a pivotal role in tumorigenesis. It may function as a prognostic biomarker for cancers. However, the results from articles were not consistent. This study was designed to validate the prognostic value of microRNA-195 in human tumors. Methods We conducted a detailed search on PubMed until December 31, 2018. The quality of these publications was assessed on the basis of a list of key reviews presented by PRISMA statement. The pooled hazard ratios (HR) and pooled odds ratios (OR) of each 95% confidence interval (95% CI) were calculated to assess the effect. Results This meta-analysis included 12 studies involving 940 cancer patients to assess the prognostic value of miR-195 in different solid tumors. The results showed that patients with high expression of miR-195 had favorable tumor-node-metastasis (late vs early: pooled OR =0.16, 95% CI: 0.11–0.22, P<0.001), lymph node metastasis (pooled OR =0.25, 95% CI: 0.18–0.35, P<0.001) and distant metastasis (pooled OR =0.26, 95% CI: 0.13–0.52, P<0.001). At the same time, high levels of miR-195 expression were closely correlated with better overall survival (pooled HR =0.46, 95% CI: 0.36–0.58, P<0.001). Conclusion Elevated microRNA-195 may serve as a potential biomarker to predict a favorable prognosis for various cancer types in China.
Collapse
Affiliation(s)
- Ni Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yang Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xianxiu Ge
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Junjie Nie
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yang Yu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Fei Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
57
|
Ding H, Luo Y, Hu K, Liu P, Xiong M. Linc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression. Onco Targets Ther 2019; 12:6733-6743. [PMID: 31686834 PMCID: PMC6709798 DOI: 10.2147/ott.s207748] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Recently, numerous studies have demonstrated the emerging role of long non-coding RNAs (lncRNAs) in human cancers. Linc00467 is a newly defined lncRNA and was reported to promote cell survival in neuroblastoma. However, the function of linc00467 in lung cancer is still unclear. Material and methods We analyzed linc00467 expression and survival data derived from The Cancer Genome Altas lung adenocarcinoma (LUAD) dataset as well as in collected LUAD tissues. Then, we silenced linc00467 expression in two lung cancer cell lines using small interfering RNAs and explored the effect of linc00467 knockdown on cell growth in vitro and in vivo. Moreover, we revealed a novel target gene of linc00467 and elucidated the underlying competitive endogenous RNA regulatory mechanism in lung cancer cells. Results Our data suggested that linc00467 expression was elevated in LUAD tissues and correlated with overall survival of LUAD patients. Linc00467 knockdown resulted in reduced proliferation rate in lung cancer cells. Furthermore, we elucidated that linc00467 promoted CCND1 expression in lung cancer cells via functioning as a molecular sponge for miR-20b-5p. Conclusion Linc00467/miR-20b-5p/CCND1 signaling pathway may provide new insights into lung cancer treatment.
Collapse
Affiliation(s)
- Hao Ding
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuchuan Luo
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Pei Liu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Mengqing Xiong
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
58
|
Yu X, Zhang Y, Wu B, Kurie JM, Pertsemlidis A. The miR-195 Axis Regulates Chemoresistance through TUBB and Lung Cancer Progression through BIRC5. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:288-298. [PMID: 31508486 PMCID: PMC6727248 DOI: 10.1016/j.omto.2019.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Chemoresistance and metastasis are the major reasons for non-small cell lung cancer (NSCLC) treatment failure and patient deaths. We and others have shown that miR-195 regulates the sensitivity of NSCLC to microtubule-targeting agents (MTAs) in vitro and in vivo and that miR-195 represses the migration and invasion of NSCLC cells in vitro. However, the relationship between miR-195 and microtubule structure and function and whether miR-195 represses NSCLC metastasis in vivo remain unknown. We assessed the correlation between tumor levels of TUBB and patient survival, the effect of TUBB on drug response, and the effect of miR-195 on migration, invasion, and metastasis in vitro and in vivo. We found that miR-195 directly targets TUBB; knockdown of TUBB sensitizes cells to MTAs, while overexpression confers resistance; high expression of TUBB is correlated with worse survival of lung adenocarcinoma; TUBB is also regulated by CHEK1, which has been shown to regulate chemoresistance; and miR-195 targets BIRC5 to repress migration and invasion in vitro and metastasis in vivo. Our findings highlight the relevance of the miR-195/TUBB axis in regulating the response of NSCLC to MTAs and the importance of the miR-195/BIRC5 axis in regulating NSCLC metastasis.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Binggen Wu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410000, China
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
59
|
Liu M, Yu J, Wang D, Niu Y, Chen S, Gao P, Yang Z, Wang H, Zhang J, Zhang C, Zhao Y, Hu W, Sun G. Epigenetically Upregulated MicroRNA-602 Is Involved in a Negative Feedback Loop with FOXK2 in Esophageal Squamous Cell Carcinoma. Mol Ther 2019; 27:1796-1809. [PMID: 31401147 DOI: 10.1016/j.ymthe.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA is an endogenous, small RNA controlling multiple target genes and playing roles in various tumorigenesis processes. In this study, our results revealed that miR-602 expression levels in tumor tissues and preoperative serum from esophageal squamous cell carcinoma (ESCC) patients were higher than those in non-tumorous tissues and healthy volunteers. miR-602 overexpression was closely related to lymph node metastasis and TNM stages and correlated short overall, and it acted as an independent prognostic marker of ESCC. The methylation status of the miR-602 gene indicated more frequent hypomethylation of the CpG sites located upstream of the miR-602 gene in the ESCC tissues than in the adjacent normal tissues, and the methylation status of miR-602 correlated inversely with its expression levels. Subsequently, miR-602 overexpression promoted ESCC proliferation and metastasis and regulated cell cycles in vitro and in vivo. Mechanistically, a dual-luciferase experiment validated that Fork head box (FOX)K2 (FOXK2) was a direct target of miR-602. More importantly, systemic delivery of formulated miR-602 antagomir could reduce tumor growth and increased FOXK2 protein expression in nude mice. This work provides novel insight into the molecular pathogenesis of ESCC.
Collapse
Affiliation(s)
- Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Dan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Siyuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Chao Zhang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China
| | - Yue Zhao
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Wanning Hu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China.
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan 063000, China.
| |
Collapse
|
60
|
Ren M, Xu W, Xu T. Salidroside represses proliferation, migration and invasion of human lung cancer cells through AKT and MEK/ERK signal pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1014-1021. [PMID: 30880481 DOI: 10.1080/21691401.2019.1584566] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Salidroside, a glycoside of tyrosol, is isolated from Rhodiola rosea and shows anti-cancer functions in several cancers. However, the potentials of salidroside in the migration and invasion of lung cancer cells and its underlying mechanisms remain unknown. We aimed to investigate the functions and mechanisms of salidroside in non-small cell lung cancer (NSCLC). Human NSCLC cell line A549 was treated with different doses of salidroside. Cell viability, colony formation, apoptosis, migration and invasion were detected by CCK-8, crystal violet-staining assay, flow cytometry and transwell assay, respectively. qRT-PCR and western blot analysis were performed to assess the regulatory effects of salidroside on miR-195 expression and the activation of AKT and the MEK/ERK signal pathway. We found that, salidroside remarkably reduced cell viability, colony formation and Cyclin D1 expression, but increased p21 expression and apoptosis in A549 cells. Additionally, salidroside inhibited the migration and invasion of A549 cells by regulating expressions of migration- and invasion-related proteins. Finally, salidroside inhibited phosphorylation of AKT, MEK and ERK by upregulating miR-195 expression in A549 cells. In conclusion, salidroside inhibited the survival, migration and invasion of NSCLC cells. Salidroside blocked AKT and the MEK/ERK signal pathway by upregulating miR-195 expression in A549 cells.
Collapse
Affiliation(s)
- Mei Ren
- a Department of Oncology , Jining No.1 People's Hospital , Jining , China
| | - Wenjing Xu
- b Department of Chinese Medicine , Jining No.1 People's Hospital , Jining , China
| | - Tao Xu
- c Department of Respiratory Medicine , The Affiliated Hospital of Qingdao University , Qingdao , China
| |
Collapse
|
61
|
Liu H, Chen Y, Li Y, Li C, Qin T, Bai M, Zhang Z, Jia R, Su Y, Wang C. miR‑195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol Med Rep 2019; 20:2625-2632. [PMID: 31322197 PMCID: PMC6691228 DOI: 10.3892/mmr.2019.10496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that are ~22 nucleotides in length. Accumulating evidence has revealed that miRNAs act as oncogenes or tumor suppressors in various human cancers. In order to investigate the role of miR-195- in squamous cell lung cancer (SQCLC) cells, and to determine the underlying mechanism, the present study utilized RT-qPCR, western blot analysis, luciferase assay, MTT assay, cell migration assay, and in vitro angiogenesis techniques. The results obtained revealed that miR-195-5p acted as a tumor suppressor in SQCLC cells. The expression levels of miR-195 were decreased in two SQCLC cell lines (H520 and SK-Mes-1) compared with a normal lung cell line, and miR-195 directly targeted the 3′-untranslated region of vascular endothelial growth factor (VEGF) in SQCLC cells. Additionally, miR-195 upregulation suppressed the viability and migration of SQCLC cells. Furthermore, miR-195 inhibited the growth and tube formation of endothelial vascular cells. Collectively, the findings indicated that miR-195 downregulated VEGF, and that targeting this miRNA may provide an effective approach to inhibit angiogenesis in tumors.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yulong Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Ming Bai
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Rui Jia
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
62
|
Jia L, Zhu Z, Li H, Li Y. RETRACTED ARTICLE: Shikonin inhibits proliferation, migration, invasion and promotes apoptosis in NCI-N87 cells via inhibition of PI3K/AKT signal pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2662-2669. [PMID: 31257936 DOI: 10.1080/21691401.2019.1632870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liushun Jia
- Department of General Surgery, Jining Traditional Chinese Medicine Hospital, Jining, China
| | - Zhen Zhu
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| | - Hongbo Li
- Department of General Surgery, Traditional Chinese Medicine Hospital of Sishui County, Jining, China
| | - Yaofeng Li
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
63
|
Cao X, Duan Z, Yan Z, Li Y, Li L, Sun J, Han P, Li P, Wei L, Wei X. miR-195 contributes to human osteoarthritis via targeting PTHrP. J Bone Miner Metab 2019; 37:711-721. [PMID: 30465089 DOI: 10.1007/s00774-018-0973-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023]
Abstract
The dysregulated expression of the osteoarthritis (OA)-related genes in cartilage, such as matrix metalloproteinase 13 (MMP-13) and type X collagen (Col X), facilitates the onset and progression of OA. Reduced parathyroid hormone-related protein (PTHrP) may also accelerate this progression. Furthermore, miRNAs, endogenous regulators of mRNAs, are thought to play key roles in the pathogenesis of OA. In this study, we found that miR-195 levels were significantly upregulated in OA tissue, while PTHrP mRNA/protein expression was substantially downregulated, and there was a negative correlation between miR-195 and PTHrP. Upregulated miR-195 strongly inhibited Aggrecan, type II collagen (Col II) mRNA/protein expression, while it enhanced the expression of MMP-13 and Col X at mRNA/protein level; conversely, downregulated miR-195 significantly increased Col II mRNA/protein expression, while it decreased the expression of MMP-13 and Col X mRNA/protein. Moreover, our study demonstrated that PTHrP is a novel target of miR-195 using dual luciferase reporter assay. Finally, miR-195-mediated changes of Col II and OA-related genes were substantially attenuated by siRNAPTHrP treatment. These results suggested that miR-195 is involved in the pathogenesis of OA via PTHrP.
Collapse
Affiliation(s)
- Xiaoming Cao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zhiqing Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, 56 South Xinjian Road, Taiyuan, 030001, Shanxi, China
| | - Zheyi Yan
- Department of Ophthalmology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yongping Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Lu Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jian Sun
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Pengfei Han
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Lei Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
- Department of Orthopedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Xiaochun Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
64
|
Up-regulated circular RNA VANGL1 contributes to progression of non-small cell lung cancer through inhibition of miR-195 and activation of Bcl-2. Biosci Rep 2019; 39:BSR20182433. [PMID: 31076544 PMCID: PMC6549085 DOI: 10.1042/bsr20182433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs), a group of non-coding RNAs, play an important role in cancer biology, and in the present study, we aimed to clarify the expression profiles and biological functions of circRNA circVANGL1 in non-small cell lung cancer (NSCLC). The results showed that circVANGL1 was overexpressed in human NSCLC tissues and cell lines. circVANGL1 expression was closely associated with tumor size, TNM stage and overall survival of NSCLC patients. Further loss-of-function analysis revealed that knockdown of circVANGL1 inhibited proliferation and induced apoptosis in NSCLC cell lines. The migration and invasion of NSCLC cells were also suppressed by circVANGL1 knockdown. In addition, we predicted that circVANGL1 might serve as a competing endogenous RNA (ceRNA), becoming a sink for miR-195, thereby modulating the expression of Bcl-2 in NSCLC cells. Rescue experiments demonstrated that miR-195 inhibitor abrogated the beneficial role of circVANGL1 knockdown in NSCLC cells. Taken together, we conclude that circVANGL1 functions as an oncogene to promote NSCLC progression partly through miR-195/Bcl-2 axis, which might be a novel therapeutic target for NSCLC patients.
Collapse
|
65
|
Yuan C, Xiang L, Bai R, Cao K, Gao Y, Jiang X, Zhang N, Gong Y, Xie C. MiR-195 restrains lung adenocarcinoma by regulating CD4+ T cell activation via the CCDC88C/Wnt signaling pathway: a study based on the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and bioinformatic analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:263. [PMID: 31355230 DOI: 10.21037/atm.2019.05.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background To systematically identity microRNA signatures, as well as miRNA-gene axes, for lung adenocarcinoma (LUAD) and to explore the potential biomarkers and mechanisms associated with the LUAD immune responses. Methods LUAD-related data were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), and these data were then used to identify the differentially expressed miRNAs that were downregulated in tumor tissues. Summary receiver operating characteristic curve analysis, survival analysis and meta-analysis were applied to evaluate the clinical significance and diagnostic value of the identified miRNAs. The presumed targets of the integrated-signature miRNAs were identified via 3 different target prediction algorithms: TargetScan, miRDB and DIANA-TarBase. Immunologic signature gene sets were enriched by gene set enrichment analysis (GSEA). Tumor-infiltrating lymphocytes were profiled by the Tumor IMmune Estimation Resource (TIMER). After pathway enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, pathway-gene networks were constructed using Cytoscape software. Results After integrated analysis of 4 GEO data sets (GSE48414, GSE51853, GSE63805 and GSE74190) and TCGA databases, miR-195 was identified as a potential clinical diagnostic marker. A total of 287 miR-195 target genes were screened, and 3 functional gene sets (GSE13485, GSE21379 and GSE29164) were enriched. GSE21379 was associated with the upregulation of CD4+ T cells in tumors, and the core genes were validated via the TIMER database. The CCDC88C expression level was significantly correlated with CD4+ T cell activation (partial.cor =0.437, P<0.001). Enrichment analysis revealed that CCDC88C was significantly enriched in the Wnt signaling pathway. Conclusions MiR-195, as a suppressor of lung adenocarcinoma, regulates CD4+ T cell activation via CCDC88C.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liyang Xiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kuo Cao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
66
|
Jiang F, Qi W, Wang Y, Wang W, Fan L. RETRACTED: lncRNA PEG10 promotes cell survival, invasion and migration by sponging miR-134 in human bladder cancer. Biomed Pharmacother 2019; 114:108814. [DOI: 10.1016/j.biopha.2019.108814] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
|
67
|
Zhou Y, Zhao M, Du Y, Liu Y, Zhao G, Ye L, Li Q, Li H, Wang X, Liu X, Guo Y, Liu J, Huang Y. MicroRNA-195 suppresses the progression of lung adenocarcinoma by directly targeting apelin. Thorac Cancer 2019; 10:1419-1430. [PMID: 31070305 PMCID: PMC6558452 DOI: 10.1111/1759-7714.13087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/13/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background Apelin plays an important role in many types of tumors. We aimed to identify the effects of miR‐195 on inhibiting apelin and clarify the regulating mechanism of miR‐195‐apelin in lung adenocarcinoma cells. Methods We detected the expression levels of apelin and miR‐195 in lung adenocarcinoma tissues and lung cancer cell lines using Western blotting and quantitative reverse transcription PCR assay, respectively. Luciferase reporter assay was used to confirm the target gene of miR‐195. The effects of miR‐195 and apelin on the proliferation and cell cycle of lung adenocarcinoma cells were assessed by methyl thiazolyl tetrazolium and colony formation assays, and flow cytometry. Wound‐healing and transwell invasion experiments were employed to examine cellular migration and invasion. A tumor xenograft model was then used to investigate the role of miR‐195 on tumor growth in vivo. Results The expression level of apelin and miR‐195 showed an inverse correlation in lung adenocarcinoma tissues and cell lines. Luciferase reporter assay suggested that miR‐195 directly targets apelin messenger RNA. Overexpression of miR‐195 significantly inhibited the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and suppressed tumor growth in vivo. Further analysis revealed that apelin is one of the functional target genes of miR‐195, and the overexpression of apelin efficiently inhibits the promotion of cell proliferation and invasion mediated by miR‐195 mimics in lung adenocarcinoma cells. Conclusions Our data constitute evidence that miR‐195 inhibits lung adenocarcinoma cell proliferation and invasion though targeting apelin and provides novel insight into the mechanism underlying the development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yongchun Zhou
- The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming Zhao
- Department of Medical Records, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaxi Du
- Kunming Medical University, Key Laboratory of Lung Cancer Research of Yunnan Province and Kunming City, Kunming, China
| | - Yajie Liu
- Department of Asset Management, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guangqiang Zhao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lianhua Ye
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Quan Li
- Cancer Research Laboratory, The Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongsheng Li
- Cancer Research Laboratory, The Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoxiong Wang
- Cancer Research Laboratory, The Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Liu
- Cancer Research Laboratory, The Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinjin Guo
- Cancer Research Laboratory, The Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junxi Liu
- Cancer Research Laboratory, The Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
68
|
Wang QM, Lian GY, Song Y, Huang YF, Gong Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci 2019; 231:116335. [PMID: 30898647 DOI: 10.1016/j.lfs.2019.03.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND PD-L1 enhanced the tumorigenesis and immune escape abilities of cancers. The upstream mechanisms of PD-L1 in regulating tumorigenesis and immune escape of diffuse large B cell lymphoma (DLBCL) remained unclear. METHODS Human DLBCL cell line OCI-Ly10 and DLBCL patient samples were used in this study. MALAT1 was knocked down by shRNA. MiR-195 was inhibited by miR-195 inhibitor. Levels of MALAT1, PD-L1, miR-195 and CD8 were detected by RT-qPCR. Protein levels of PD-L1, Ras, p-ERK1/2, ERK1/2, Slug, E-cadherin, N-cadherin, Vimentin were detected by western blotting. The interaction between MALAT1 and miR-195, miR-195 and PD-L1 were detected by luciferase assay. OCI-Ly10 cell proliferation and apoptosis were detected by MTT and Annexin V/PI assays, respectively. Migration was detected by transwell assay. Cytotoxicity of CD8+ T cells was detected by LDH cytotoxicity kit. Proliferation and apoptosis of CD8+ T cell co-cultured with OCI-Ly10 cells were analyzed by CFSE and Annexin V/PI staining. RESULTS MALAT1, PD-L1 and CD8 were up-regulated in DLBCL tissues while miR-195 was down-regulated. MiR-195 was negatively correlated with MALAT1 and PD-L1. MALAT1 could sponge miR-195 to regulate the expression of PD-L1. shMALAT1 treatment increased miR-195 level and decreased PD-L1 level. It also inhibited cell proliferation, migration and immune escape ability while increased apoptosis ratio of OCI-Ly10 cells. shMALAT1 treatment in OCI-Ly10 cells also promoted proliferation and inhibited apoptosis of CD8+ T cells. Knocking down of MALAT1 also suppressed EMT-like process via Ras/ERK signaling pathway. These effects were all rescued by miR-195 inhibitor. CONCLUSION Long non-coding RNA MALAT1 sponged miR-195 to regulate proliferation, apoptosis and migration and immune escape abilities of DLBCL by regulation of PD-L1.
Collapse
Affiliation(s)
- Qing-Ming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| | - Guang-Yu Lian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yan-Fang Huang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yi Gong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
69
|
Yang X, Zhao C, Bamunuarachchi G, Wang Y, Liang Y, Huang C, Zhu Z, Xu D, Lin K, Senavirathna LK, Xu L, Liu L. miR-193b represses influenza A virus infection by inhibiting Wnt/β-catenin signalling. Cell Microbiol 2019; 21:e13001. [PMID: 30650225 PMCID: PMC6459727 DOI: 10.1111/cmi.13001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
Due to an increasing emergence of new and drug‐resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β‐catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β‐catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up‐regulated and 20 miRNAs that down‐regulated the Wnt/β‐catenin signalling pathway. Fifteen miRNAs were validated to up‐regulate and five miRNAs to down‐regulate the pathway. Overexpression of four selected miRNAs (miR‐193b, miR‐548f‐1, miR‐1‐1, and miR‐509‐1) that down‐regulated the Wnt/β‐catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34‐infected HEK293 cells, and progeny virus production. Overexpression of miR‐193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR‐193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that β‐catenin was a target of miR‐193b, and β‐catenin rescued miR‐193b‐mediated suppression of IAV infection. miR‐193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus‐mediated gene transfer of miR‐193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR‐193b represses IAV infection by inhibiting Wnt/β‐catenin signalling.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chunling Zhao
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lan Xu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
70
|
Retracted
: Ailanthone exerts an antitumor function on the development of human lung cancer by upregulating microRNA‐195. J Cell Biochem 2018; 120:10444-10451. [DOI: 10.1002/jcb.28329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
|
71
|
Lu YF, Yu JR, Yang Z, Zhu GX, Gao P, Wang H, Chen SY, Zhang J, Liu MY, Niu Y, Wei XM, Wang W, Ye FJ, Zhang LX, Zhao Y, Sun GG. Promoter hypomethylation mediated upregulation of MicroRNA-10b-3p targets FOXO3 to promote the progression of esophageal squamous cell carcinoma (ESCC). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:301. [PMID: 30514328 PMCID: PMC6280546 DOI: 10.1186/s13046-018-0966-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Background Esophageal cancer is a high incident cancer worldwide with poor survival and limited therapeutic options. Alterations of microRNAs are common in cancers, and many of these micro RNAs are potential therapeutic and diagnostic targets to treat these cancers. miR-10b-3p located in chromosome region 2q31.1, and its expression is frequently increased in esophageal squamous cell carcinoma (ESCC). However, the biological functions, clinical significance and therapeutic implications of miR-10b-3p in ESCC remain unclear. Methods The expression levels of miR-10b-3p in ESCC specimens were analyzed by in situ hybridization (ISH) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Ectopic overexpression of miR-10b-3p in ESCC cells, mouse xenograft model, and metastasis model were used to evaluate the effects of miR-10b-3p on proliferation, and migration of cancer cells. Luciferase reporter assay and Western blot were performed to validate the potential targets of miR-10b-3p after the preliminary screening by computer-aided microarray analysis. Results We found that miR-10b-3p expression levels were significantly upregulated in the tumor tissues and serum samples of patients with ESCC. The expression levels of miR-10b-3p in both tumor tissues and serum samples were inversely associated with lymph node metastasis and clinical stages. We identified the expression level of miR-10b-3p in ESCC cancer samples as an independent prognostic marker of the overall survival rates of ESCC patients. We found more frequent hypomethylation of the CpG sites located upstream of the miR-10b-3p gene in the ESCC tissues compared with in the adjacent normal tissues, and the DNA methylation status of miR-10b-3p promoter region inversely correlated with the expression levels of miR-10b-3p. Ectopic overexpression of miR-10b-3p promoted cell proliferation, colony formation, migration and invasion in ESCC. While knockdown of miR-10b-3p had the opposite effects, particularly in promoting apoptosis. Mouse xenograft model confirmed that miR-10b-3p functions as a potent oncogenic miRNA in ESCC, which also promoting ESCC metastasis. Mechanistically, we found miR-10b-3p regulated FOXO3 expression by directly binding to the 3′-untranslated region. And systemic delivery of miR-10b-3p antagomir reduced tumor growth and inhibit FOXO3 protein expression in nude mice. Conclusions Collectively, our findings suggested upregulated expression of miR-10b-3p caused by promoter hypomethylation contributed to the progression of ESCC; Thus, miR-10b-3p is a potentially effective biomarker for ESCC that could have further therapeutic implications. Electronic supplementary material The online version of this article (10.1186/s13046-018-0966-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Fang Lu
- Department of medicine, Tangshan gongren Hospital, Tangshan, China
| | - Jia-Rui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Guan-Xia Zhu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, 310022, China.,Wenzhou Medical College, Wenzhou, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Si-Yuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Jie Zhang
- Department of pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Mei-Yue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Xiao-Mei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Feng-Jin Ye
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Li-Xin Zhang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China
| | - Yue Zhao
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Guo-Gui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Shengli Road, Tangshan, 063000, China.
| |
Collapse
|
72
|
Gao P, Wang H, Yu J, Zhang J, Yang Z, Liu M, Niu Y, Wei X, Wang W, Li H, Wang Y, Sun G. miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2. PLoS Genet 2018; 14:e1007790. [PMID: 30557355 PMCID: PMC6312350 DOI: 10.1371/journal.pgen.1007790] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/31/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence indicates that miRNAs can be promising diagnostic and/or prognostic markers for various cancers. In this study, we identified a novel miRNA, miR-3607-3p, and its targets in non-small cell lung cancer (NSCLC). The expression of miR-3607-3p was measured and its correlation with patient prognosis was determined. Ectopic expression in NSCLC cells, xenografts, and metastasis models was used to evaluate the effects of miR-3607-3p on proliferation and migration of NSCLC. Luciferase assay and western blotting were performed to validate the potential targets of miR-3607-3p after preliminary screening by microarray analysis and computer-aided algorithms. We demonstrated that miR-3607-3p was downregulated in NSCLC tissues and that miR-3607-3p might act as an independent predictor for overall survival in NSCLC. Moreover, serum miR-3607-3p may be a novel and stable marker for NSCLC. We found that overexpression of miR-3607-3p inhibited cell proliferation, colony formation, migration and invasion, and hampered the cell cycle of NSCLC cell lines in vitro. Our results suggested that miR-3607-3p directly targets TGFBR1 and CCNE2. In accordance with in vitro studies, we confirmed that miR-3607-3p functions as a potent suppressor miRNA of NSCLC. We showed that miR-3607-3p agomir could reduce tumor growth and inhibit TGFBR1 and CCNE2 protein expression. Taken together, our findings indicate that miR-3607-3p can inhibit NSCLC cell growth and metastasis by targeting TGFBR1 and CCNE2 protein expression, and provide new evidence of miR-3607-3p as a potential non-invasive biomarker and therapeutic target for NSCLC.
Collapse
MESH Headings
- Aged
- Animals
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cyclins/antagonists & inhibitors
- Cyclins/genetics
- Down-Regulation
- Female
- Gene Knockdown Techniques
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Prognosis
- RNA, Small Nucleolar/antagonists & inhibitors
- RNA, Small Nucleolar/blood
- RNA, Small Nucleolar/genetics
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/genetics
Collapse
Affiliation(s)
- Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Jie Zhang
- Department of pathology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Xiaomei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Hongmin Li
- Department of pathology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| | - Yadi Wang
- Department of Radiation Oncology, PLA Army General Hospital, Beijing, China
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People’s Hospital, Tangshan, China
| |
Collapse
|
73
|
Yu W, Liang X, Li X, Zhang Y, Sun Z, Liu Y, Wang J. MicroRNA-195: a review of its role in cancers. Onco Targets Ther 2018; 11:7109-7123. [PMID: 30410367 PMCID: PMC6200091 DOI: 10.2147/ott.s183600] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to the 3′-UTR of target mRNAs. Recently, increasing evidence has highlighted their profound roles in various pathological processes, including human cancers. Deregulated miRNAs function as either oncogenes or tumor suppressor genes in multiple cancer types. Among them, miR-195 has been reported to significantly impact oncogenicity in various neoplasms by binding to critical genes and signaling pathways, enhancing or inhibiting the progression of cancers. In this review, we focus on the expression of miR-195 in regulatory mechanisms and tumor biological processes and discuss the future potential therapeutic implications of diverse types of human malignancies.
Collapse
Affiliation(s)
- Wanpeng Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Zhenqing Sun
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Liu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| | - Jianxun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao 266021, China;
| |
Collapse
|
74
|
Wang XH, Gan CZ, Xie JY. Inhibition of miR-24 suppresses malignancy of human non-small cell lung cancer cells by targeting WWOX in vitro and in vivo. Thorac Cancer 2018; 9:1583-1593. [PMID: 30307120 PMCID: PMC6275841 DOI: 10.1111/1759-7714.12824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/12/2023] Open
Abstract
Background We investigated the effect of micro‐RNA 24 (miR‐24) and WWOX on non‐small cell lung cancer (NSCLC) cell proliferation and migration in vitro and in vivo. Methods We performed bioinformatics analysis and 3′ untranslated region luciferase assay to investigate the direct target of miR‐24. Proliferation, apoptosis, and transwell invasion assays were employed to evaluate the effect of WWOX overexpression with pcDNA3‐WWOX and knocking down miR‐24 with miR‐24 small interfering RNA. Quantitative real‐time PCR, Western blot, and immunohistochemistry were also used to investigate miR‐24 and c‐Kit expression, and apoptosis and invasion‐related proteins. Finally, we constructed a tumor xenograft model in nude mice to confirm the effect of miR‐24 on NSCLC cell proliferation in vivo. Results According to our experimental data, miR‐24 inhibition could induce apoptosis by activating caspase 3 and suppress the viability and proliferation of NSCLC cells in vitro and in vivo. MiR‐24 downregulation could reduce the invasive ability of NSCLC cells by downregulating MMP9. WWOX was identified as a functional target of miR‐24. WWOX overexpression generated the same effect with antagonizing miR‐24, while blocking WWOX counteracted the tumor suppressive effect caused by miR‐24 inhibition. MiR‐24 may function as an oncogene and play an important role in the cell growth and migration of NSCLC. Conclusions Our findings enhance understanding of the miR‐24 regulatory network and the molecular mechanism that underlies the oncogenesis and development of NSCLC. Suppressing the effect of miR‐24 on cancer cells using a miR‐24 inhibitor may be an attractive therapeutic strategy against NSCLC.
Collapse
Affiliation(s)
- Xue-Hai Wang
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Chong-Zhi Gan
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jia-Yong Xie
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
75
|
He X, Chen SY, Yang Z, Zhang J, Wang W, Liu MY, Niu Y, Wei XM, Li HM, Hu WN, Sun GG. miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:230. [PMID: 30227870 PMCID: PMC6145328 DOI: 10.1186/s13046-018-0882-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) is a leading cause of death worldwide. MicroRNAs (miRNAs) have been indicated as crucial actors in cancer biology. Accumulating evidence suggests that miRNAs can be used as diagnostic and prognostic markers for NSCLC. Methods The purpose of this study was to characterize and identify the novel biomarker miR-4317 and its targets in NSCLC. The expression of miR-4317 was analyzed by in situ hybridization (ISH) and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The effect of miR-4317 on proliferation was evaluated through 3–4,5-dimethylthiazol-2-yl-5-3–carboxymethoxyphenyl-2-4-sulfophenyl-2H-tetrazolium (MTS) and colony formation assays, and cell migration and invasion were evaluated through transwell assays. The expression of target proteins and downstream molecules was analyzed by qRT-PCR and western blot. Dual-luciferase reporter assay was used to assess the target genes of miR4317 in NSCLC cells. Results Our results demonstrated that miR-4317 was downregulated in NSCLC tissues and serum, particularly in lymph node metastasis and advanced clinical stage tissues. Kaplan-Meier survival analysis showed that NSCLC patients with high expression of miR-4317 exhibited better overall survival (OS). Enhanced expression of miR-4317 significantly inhibited proliferation, colony formation, migration and invasion, and hampered cycles of NSCLC cell lines in vitro. Our results suggested that miR-4317 functions by directly targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). In concordance with in vitro studies, mouse xenograft, lung, and brain metastatic studies validated that miR-4317 functions as a potent suppressor miRNA of NSCLC in vivo. Systemically delivered agomiR-4317 reduced tumor growth and inhibited FGF9 and CCND2 protein expression. Reintroduction of FGF9 and CCND2 attenuated miR-4317-mediated suppression of migration and invasion in NSCLC. Conclusions Our results indicate that miR-4317 can reduce NSCLC cell growth and metastasis by targeting FGF9 and CCND2. These findings provide new evidence of miR-4317 as a potential non-invasive biomarker and therapeutic target for NSCLC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0882-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi He
- Department of Thoracic Surgery, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Si-Yuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Mei-Yue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Xiao-Mei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Hong-Min Li
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Wan-Ning Hu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China.
| | - Guo-Gui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China.
| |
Collapse
|
76
|
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2018; 70:3-20. [PMID: 30102929 DOI: 10.1016/j.mam.2018.07.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Lung cancer is the cardinal cause of cancer-related deaths with restricted recourse of therapy throughout the world. Clinical success of therapies is not very promising due to - late diagnosis, limited therapeutic tools, relapse and the development of drug resistance. Recently, small ∼20-24 nucleotides molecules called microRNAs (miRNAs) have come into the limelight as they play outstanding role in the process of tumorigenesis by regulating cell cycle, metastasis, angiogenesis, metabolism and apoptosis. miRNAs essentially regulate gene expression via post-transcriptional regulation of mRNA. Nevertheless, few studies have conceded the role of miRNAs in activation of gene expression. A large body of data generated by numerous studies is suggestive of their tumor-suppressing, oncogenic, diagnostic and prognostic biomarker roles in lung cancer. They have also been implicated in regulating cancer cell metabolism and resistance or sensitivity towards chemotherapy and radiotherapy. Further, miRNAs have also been convoluted in regulation of immune checkpoints - Programmed death 1 (PD-1) and its ligand (PD-L1). These molecules play a significant role in tumor immune escape leading to the generation of a microenvironment favouring tumor growth and progression. Therefore, it is imperative to explore the expression of miRNA and understand its relevance in lung cancer and development of anti-cancer strategies (anti - miRs, miR mimics and micro RNA sponges). In view of the above, the role of miRNA in lung cancer has been dissected and the associated mechanisms and pathways are discussed in this review.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Shweta Arora
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX-77030, USA.
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| |
Collapse
|
77
|
Li B, Wang S, Wang S. MiR-195 suppresses colon cancer proliferation and metastasis by targeting WNT3A. Mol Genet Genomics 2018; 293:1245-1253. [PMID: 29948330 DOI: 10.1007/s00438-018-1457-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of diagnostic and therapeutic target in cancer. Here, we aimed to explore the effects and mechanism of miR-195 regulation in colon cancer. The expressions of several putative miRNAs in colon tumors, compared to those in normal tissues, were investigated by bioinformatical analysis of a Gene Expression Omnibus database. Quantitative real-time PCR analysis (qRT-PCR) was used to validate the identified changes in normal tissues, primary tumors, and metastatic tumors. MTT, soft agar colony formation, and transwell assays were used to evaluate the effects of miR-195 overexpression or inhibition on cell viability, proliferation, migration, and invasion. Targets of miR-195 were identified by TargetScan, and subsequently verified by qRT-PCR and Western blot. The role of miR-195 in the β-catenin pathway was also studied using RT-PCR and Western blot. MiR-195 expression was downregulated in colon carcinoma tissues and negatively correlated with the metastatic potential. While transfecting miR-195 mimics decreased the proliferation, migration, and invasion of colon cancer cells, miR-195 inhibition exerted opposing effects. WNT3A was identified as a direct target of miR-195. β-catenin was also downregulated by miR-195 in colon cancers. MiR-195 downregulation is associated with the enhanced proliferation, migration, and invasion of colon cancer. MiR-195 directly downregulates WNT3A. Our results indicate that miR-195 is a potential diagnostic marker and therapeutic target for improving the clinical management of colon cancer.
Collapse
Affiliation(s)
- Baoyu Li
- General Surgery Department, Yidu Central Hospital of Weifang, 4138 Linglongshan Nanlu, Qingzhou, 262500, Shandong, China.
| | - Shunsheng Wang
- General Surgery Department, Yidu Central Hospital of Weifang, 4138 Linglongshan Nanlu, Qingzhou, 262500, Shandong, China
| | - Shumei Wang
- General Surgery Department, Yidu Central Hospital of Weifang, 4138 Linglongshan Nanlu, Qingzhou, 262500, Shandong, China
| |
Collapse
|
78
|
Wen P, Chidanguro T, Shi Z, Gu H, Wang N, Wang T, Li Y, Gao J. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Mol Med Rep 2018; 18:1538-1550. [PMID: 29845250 PMCID: PMC6072191 DOI: 10.3892/mmr.2018.9095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Small cell lung cancer (SCLC) is one of the highly malignant tumors and a serious threat to human health. The aim of the present study was to explore the underlying molecular mechanisms of SCLC. mRNA microarray datasets GSE6044 and GSE11969 were downloaded from Gene Expression Omnibus database, and the differentially expressed genes (DEGs) between normal lung and SCLC samples were screened using GEO2R tool. Functional and pathway enrichment analyses were performed for common DEGs using the DAVID database, and the protein-protein interaction (PPI) network of common DEGs was constructed by the STRING database and visualized with Cytoscape software. In addition, the hub genes in the network and module analysis of the PPI network were performed using CentiScaPe and plugin Molecular Complex Detection. Finally, the mRNA expression levels of hub genes were validated in the Oncomine database. A total of 150 common DEGs with absolute fold-change >0.5, including 66 significantly downregulated DEGs and 84 upregulated DEGs were obtained. The Gene Ontology term enrichment analysis suggested that common upregulated DEGs were primarily enriched in biological processes (BPs), including ‘cell cycle’, ‘cell cycle phase’, ‘M phase’, ‘cell cycle process’ and ‘DNA metabolic process’. The common downregulated genes were significantly enriched in BPs, including ‘response to wounding’, ‘positive regulation of immune system process’, ‘immune response’, ‘acute inflammatory response’ and ‘inflammatory response’. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that the common downregulated DEGs were primarily enriched in the ‘complement and coagulation cascades’ signaling pathway; the common upregulated DEGs were mainly enriched in ‘cell cycle’, ‘DNA replication’, ‘oocyte meiosis’ and the ‘mismatch repair’ signaling pathways. From the PPI network, the top 10 hub genes in SCLC were selected, including topoisomerase IIα, proliferating cell nuclear antigen, replication factor C subunit 4, checkpoint kinase 1, thymidylate synthase, minichromosome maintenance protein (MCM) 2, cell division cycle (CDC) 20, cyclin dependent kinase inhibitor 3, MCM3 and CDC6, the mRNA levels of which are upregulated in Oncomine SCLC datasets with the exception of MCM2. Furthermore, the genes in the significant module were enriched in ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis’ signaling pathways. Therefore, the present study can shed new light on the understanding of molecular mechanisms of SCLC and may provide molecular targets and diagnostic biomarkers for the treatment and early diagnosis of SCLC.
Collapse
Affiliation(s)
- Pushuai Wen
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tungamirai Chidanguro
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhuo Shi
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Huanyu Gu
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Nan Wang
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tongmei Wang
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuhong Li
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing Gao
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
79
|
Wang X, Li J, Xu X, Zheng J, Li Q. miR-129 inhibits tumor growth and potentiates chemosensitivity of neuroblastoma by targeting MYO10. Biomed Pharmacother 2018; 103:1312-1318. [PMID: 29864913 DOI: 10.1016/j.biopha.2018.04.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Although the treatment strategies for neuroblastoma (NB) develop rapidly, a considerable number of patients could not benefit from chemotherapy. Here, we revealed a miR-129-MYO10 axis that regulated neuroblastoma growth and chemosensitivity. Mechanistically, MYO10 was up-regulated in neuroblastoma tissues and associated with poor overall survival. While overexpression of MYO10 enhanced tumor growth, genetic inhibition of MYO10 led to growth-inhibitory and chemopotentiating effects in neuroblastoma. MYO10 was further identified as a target of miR-129. Our data showed that miR-129 down-regulated MYO10 expression and subsequently suppressed cell growth. Re-expression of MYO10 significantly rescued miR129-mediated proliferation repression and chemosensitivity. In conclusion, our results demonstrated that miR-129 inhibited neuroblastoma growth and potentiated chemosensitivity by targeting MYO10, which may represent promising targets and rational therapeutic options for neuroblastoma.
Collapse
Affiliation(s)
- Xiqian Wang
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Jing Li
- Department of Urology, First People's Hospital of Jinan City, Jinan, China
| | - Xiao Xu
- Community Clinic of First people's Hospital of Jinan, Jinan, China
| | - Jiachun Zheng
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Qingbo Li
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
80
|
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 2018; 10:59. [PMID: 29713393 PMCID: PMC5913875 DOI: 10.1186/s13148-018-0492-1] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are endogenous single-stranded non-coding small RNA molecules that can be secreted into the circulation and exist stably. They usually exhibit aberrant expression under different physiological and pathological conditions. Recently, differentially expressed circulating microRNAs were focused on as potential biomarkers for cancer screening. We herein review the role of circulating microRNAs for cancer diagnosis, tumor subtype classification, chemo- or radio-resistance monitoring, and outcome prognosis. Moreover, circulating microRNAs still have several issues hindering their reliability for the practical clinical application. Future studies need to elucidate further potential application of circulating microRNAs as specific and sensitive markers for clinical diagnosis or prognosis in cancers.
Collapse
Affiliation(s)
- Hao Wang
- 1Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Ran Peng
- 2Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- 2Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zelian Qin
- 1Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- 1Medical Research Center, Peking University Third Hospital, Beijing, China.,2Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
81
|
Zhao H, Kuang L, Wang L, Ping P, Xuan Z, Pei T, Wu Z. Prediction of microRNA-disease associations based on distance correlation set. BMC Bioinformatics 2018; 19:141. [PMID: 29665774 PMCID: PMC5905221 DOI: 10.1186/s12859-018-2146-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recently, numerous laboratory studies have indicated that many microRNAs (miRNAs) are involved in and associated with human diseases and can serve as potential biomarkers and drug targets. Therefore, developing effective computational models for the prediction of novel associations between diseases and miRNAs could be beneficial for achieving an understanding of disease mechanisms at the miRNA level and the interactions between diseases and miRNAs at the disease level. Thus far, only a few miRNA-disease association pairs are known, and models analyzing miRNA-disease associations based on lncRNA are limited. RESULTS In this study, a new computational method based on a distance correlation set is developed to predict miRNA-disease associations (DCSMDA) by integrating known lncRNA-disease associations, known miRNA-lncRNA associations, disease semantic similarity, and various lncRNA and disease similarity measures. The novelty of DCSMDA is due to the construction of a miRNA-lncRNA-disease network, which reveals that DCSMDA can be applied to predict potential lncRNA-disease associations without requiring any known miRNA-disease associations. Although the implementation of DCSMDA does not require known disease-miRNA associations, the area under curve is 0.8155 in the leave-one-out cross validation. Furthermore, DCSMDA was implemented in case studies of prostatic neoplasms, lung neoplasms and leukaemia, and of the top 10 predicted associations, 10, 9 and 9 associations, respectively, were separately verified in other independent studies and biological experimental studies. In addition, 10 of the 10 (100%) associations predicted by DCSMDA were supported by recent bioinformatical studies. CONCLUSIONS According to the simulation results, DCSMDA can be a great addition to the biomedical research field.
Collapse
Affiliation(s)
- Haochen Zhao
- Key Laboratory of Intelligent Computing & Information Processing (Xiangtan University), Ministry of Education, China, Xiangtan, 411105, Hunan, People's Republic of China.,College of Information Engineering, Xiangtan University, Xiangtan, Hunan, People's Republic of China
| | - Linai Kuang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410001, Hunan, People's Republic of China.,Key Laboratory of Intelligent Computing & Information Processing (Xiangtan University), Ministry of Education, China, Xiangtan, 411105, Hunan, People's Republic of China.,College of Information Engineering, Xiangtan University, Xiangtan, Hunan, People's Republic of China
| | - Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410001, Hunan, People's Republic of China. .,Key Laboratory of Intelligent Computing & Information Processing (Xiangtan University), Ministry of Education, China, Xiangtan, 411105, Hunan, People's Republic of China. .,Department of Computer Science, Lakehead University, Thunder Bay, ON, P7B5E1, Canada. .,College of Information Engineering, Xiangtan University, Xiangtan, Hunan, People's Republic of China.
| | - Pengyao Ping
- Key Laboratory of Intelligent Computing & Information Processing (Xiangtan University), Ministry of Education, China, Xiangtan, 411105, Hunan, People's Republic of China.,College of Information Engineering, Xiangtan University, Xiangtan, Hunan, People's Republic of China
| | - Zhanwei Xuan
- Key Laboratory of Intelligent Computing & Information Processing (Xiangtan University), Ministry of Education, China, Xiangtan, 411105, Hunan, People's Republic of China.,College of Information Engineering, Xiangtan University, Xiangtan, Hunan, People's Republic of China
| | - Tingrui Pei
- Key Laboratory of Intelligent Computing & Information Processing (Xiangtan University), Ministry of Education, China, Xiangtan, 411105, Hunan, People's Republic of China.,College of Information Engineering, Xiangtan University, Xiangtan, Hunan, People's Republic of China
| | - Zhelun Wu
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
82
|
Yu X, Zhang Y, Ma X, Pertsemlidis A. miR-195 potentiates the efficacy of microtubule-targeting agents in non-small cell lung cancer. Cancer Lett 2018; 427:85-93. [PMID: 29656007 DOI: 10.1016/j.canlet.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/30/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
Abstract
Microtubule-targeting agents (MTAs) are widely used for the treatment of non-small cell lung cancer (NSCLC). The response rate is only ∼25%, mainly attributable to drug resistance. To identify determinants of resistance in NSCLC, we performed a high-throughput screen using a library of miRNA mimics. Here we report that miR-195 synergizes with MTAs to inhibit the growth of NSCLC cells in vitro, that increased expression of miR-195 sensitizes NSCLC cells to MTAs and that repression of miR-195 confers resistance to MTAs. We show that NSCLC tumors over-expressing miR-195 are more sensitive to MTA treatment and that induced expression of miR-195 in NSCLC tumors potentiates the anti-tumor effect of MTAs. Additionally, we demonstrate that miR-195 targets checkpoint kinase 1 (CHEK1) to regulate the response of NSCLC cells to MTAs, that over-expression of CHEK1 contributes to resistance to MTAs and that knock-down of CHEK1 synergizes with MTAs to repress cell growth. Our results highlight the importance of miR-195 in regulating the response of NSCLC cells to MTAs and underline the potential application of miR-195 as a biomarker for response to MTAs, and as a therapeutic adjuvant to MTA treatment.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, TX, 78229, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, TX, 78229, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, TX, 78229, USA; Department of Pediatrics, The University of Texas Health Science Center at San Antonio, TX, 78229, USA.
| |
Collapse
|
83
|
Ma X, Zou L, Li X, Chen Z, Lin Q, Wu X. MicroRNA-195 regulates docetaxel resistance by targeting clusterin in prostate cancer. Biomed Pharmacother 2018; 99:445-450. [PMID: 29665645 DOI: 10.1016/j.biopha.2018.01.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been implicated in neoplasm growth, metastasis, vasculogenesis, and drug resistance. It has been validated that abnormal miR-195 expression was related with poor survival of prostate cancer (PC); however, its role in the resistance to chemotherapeutic drugs docetaxel (DOC) in PC is still acquainted scarcely. In our study, the lower expression of miR-195 was appeared in DOC-resistant PC cells (DU145/DOC) rather than DOC-sensitive DU145 cells. The up-regulation of miR-195 lowered the IC50 of DOC, facilitated the apoptosis and inhibited the colony formation ability in DU145/DOC cells. Moreover, we also found that miR-195 had the binding site with clusterin (CLU) by the online TargetScan database mining. Luciferase tests revealed that miR-195 binds to the 3'-UTR of CLU. MiR-195 overexpression decreased the amassment of CLU in DU145/DOC cells. Knockdown of CLU diminished the IC50 of DOC and enhanced the apoptosis of DU145/DOC cells, which was consistent with the influence of miR-195 on DOC-induced cell apoptosis. Taken together, our results illuminated that miR-195 improved the sensitivity of resistant PC cells to DOC by suppressing CLU. Hence, miR-195 may be a potentially promising molecular target for drug resistance of PC.
Collapse
Affiliation(s)
- Xiaokun Ma
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Liyuan Zou
- Department of Prevention and Health Care, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Li
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhanhong Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qu Lin
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiangyuan Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
84
|
Liu M, Zhang Y, Zhang J, Cai H, Zhang C, Yang Z, Niu Y, Wang H, Wei X, Wang W, Gao P, Li H, Zhang J, Sun G. MicroRNA-1253 suppresses cell proliferation and invasion of non-small-cell lung carcinoma by targeting WNT5A. Cell Death Dis 2018; 9:189. [PMID: 29415994 PMCID: PMC5833797 DOI: 10.1038/s41419-017-0218-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNA) are a class of small, noncoding RNA molecules that regulate the expression of target genes. miRNA dysregulation is involved in carcinogenesis and tumor progression. In this study, we identified microRNA-1253 (miR-1253) as being significantly down-regulated in non-small-cell lung carcinoma (NSCLC) tissues and associated with advanced clinical stage, lymph node metastasis, and poor survival. The enhanced expression of miR-1253 significantly inhibited the proliferation, migration, and invasion of NSCLC cells in vitro. Bioinformatics analyses showed that miR-1253 directly targeted WNT5A (long isoform), which was confirmed using the dual-luciferase reporter assay. The inhibitory effects of miR-1253 on the growth and metastasis of NSCLC cells were attenuated and phenocopied by WNT5A (long) overexpression and knockdown, respectively. Consistent with the in vitro results, subcutaneous tumor and metastatic NSCLC mouse models showed that miR-1253 functions as a potent suppressor of NSCLC in vivo. Taken together, our findings indicated that miR-1253 inhibited the proliferation and metastasis of NSCLC cells by targeting WNT5A (long isoform) and provided new evidence of miR-1253 as a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Yue Zhang
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Haifeng Cai
- Department of Breast Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Chao Zhang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Xiaomei Wei
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Wei Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Peng Gao
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Hongmin Li
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China
| | - Jinghua Zhang
- Department of Breast Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China.
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, 063000, China.
| |
Collapse
|
85
|
Yu X, Zhang Y, Cavazos D, Ma X, Zhao Z, Du L, Pertsemlidis A. miR-195 targets cyclin D3 and survivin to modulate the tumorigenesis of non-small cell lung cancer. Cell Death Dis 2018; 9:193. [PMID: 29416000 PMCID: PMC5833354 DOI: 10.1038/s41419-017-0219-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
miR-195 has recently been reported to function as a tumor suppressor in various cancers, including non-small cell lung cancer (NSCLC). However, the mechanisms by which miR-195 represses the tumorigenesis of NSCLC cells are not fully understood. We performed a high-throughput screen using an miRNA mimic library and confirmed the identification of miR-195 as a tumor suppressor in NSCLC. We demonstrated that overexpression or induced expression of miR-195 in lung tumors slows tumor growth and that repression of miR-195 accelerates tumor growth. In addition, we found that knockout of miR-195 promotes cancer cell growth. We demonstrated that miR-195 targets cyclin D3 to cause cell cycle arrest at the G1 phase and that miR-195 targets survivin to induce apoptosis and senescence in NSCLC cells. Overexpression of cyclin D3 or survivin reverses the effects of miR-195 in NSCLC cells. Through the analysis of data from The Cancer Genome Atlas, we confirmed that the expression of miR-195 is lower in tumors than in adjacent normal tissues and that low expression of miR-195 is associated with poor survival in both lung adenocarcinoma and squamous cell carcinoma patients. Specifically, we found that BIRC5, which codes for survivin, is upregulated in both adenocarcinoma and squamous cell carcinoma tissues and that high expression of BIRC5 is associated with poor survival in adenocarcinoma, but not squamous cell carcinoma. In addition, the ratio of miR-195 level to BIRC5 level is associated with both recurrence-free and overall survival in lung adenocarcinoma. Our results suggest that the miR-195/BIRC5 axis is a potential target for treatment of lung adenocarcinoma specifically, and NSCLC in general.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Cavazos
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhenze Zhao
- Department of Chemistry and Biochemistry, Texas State University at San Marcos, San Marcos, TX, USA
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University at San Marcos, San Marcos, TX, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
86
|
Chen L, Kong G, Zhang C, Dong H, Yang C, Song G, Guo C, Wang L, Yu H. MicroRNA-432 functions as a tumor suppressor gene through targeting E2F3 and AXL in lung adenocarcinoma. Oncotarget 2018; 7:20041-53. [PMID: 26942465 PMCID: PMC4991437 DOI: 10.18632/oncotarget.7884] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/31/2016] [Indexed: 12/28/2022] Open
Abstract
Abnormal proliferation and drug resistance are the hallmarks of lung adenocarcinoma (LAD). Dispite the advances in diagnosis and therapy, the 5-year survival remains low. Increasing studies regarding its pathological mechanism have been focused on microRNA (miRNA) due to its nodal regulatory properties. This study aims to characterize the expression of miR-432 in LAD and investigate its effects on the proliferation and sensitivity of lung cancer cells to cisplatin. Here, we report that downregulation of miR-432 in LAD tissues was correlated with a higher clinical stage (p = 0.03) and poor prognosis (p = 0.036). Additionally, miR-432 expression was negative correlated with high Ki67 labeling index (p = 0.016) in our cohorts. Functionally, over-expression of miR-432 inhibits cell proliferation through arresting cell cycle and sensitizes tumor cells to cisplatin. Mechanistically, miR-432 functions by directly targeting E2F3 and AXL, and they, in turn, mediate the regulation of miR-432 towards cell proliferation and cisplatin sensitivity. Importantly, miR-432 levels are negatively correlated with the levels of E2F3 and AXL in human LAD tissues. These results demonstrated that miR-432 functions as a tumor-suppressive miRNA and may represent a prognostic parameter and therapeutic target for LAD.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Guangming Kong
- Emergency Department, Qingdao Municipal Hospital, Qingdao, China
| | - Chuantao Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Dong
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Cuicui Yang
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengye Guo
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Lin Wang
- Research Center for Medicinal Biotechnology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, China
| | - Hongsheng Yu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
87
|
Gao X, Tang RX, Xie QN, Lin JY, Shi HL, Chen G, Li ZY. The clinical value of miR-193a-3p in non-small cell lung cancer and its potential molecular mechanism explored in silico using RNA-sequencing and microarray data. FEBS Open Bio 2018; 8:94-109. [PMID: 29321960 PMCID: PMC5757172 DOI: 10.1002/2211-5463.12354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/21/2017] [Accepted: 11/10/2017] [Indexed: 12/01/2022] Open
Abstract
miR‐193a‐3p is a tumor‐related miRNA playing an essential role in tumorigenesis and progression of non‐small cell lung cancer (NSCLC). The objective of the present study was to investigate the relationship between miR‐193a‐3p expression and clinical value and to further explore the potential signaling of miR‐193a‐3p in the carcinogenesis of NSCLC. RNA‐sequencing and microarray data were collected from the databases GEO, ArrayExpress and The Cancer Genome Atlas (TCGA). Furthermore, in silico assessments were performed to analyze the prospective pathways and networks of the target genes of miR‐193a‐3p. In total, 453 cases of NSCLC patients and 476 normal controls were included in blood samples, while 920 cases of NSCLC patients and 406 normal controls were included in tissue samples. The pooled positive likelihood ratio, the pooled negative likelihood ratio and the pooled diagnostic odds ratio were calculated to reflect the diagnostic value of miR‐193a‐3p in blood and tissue samples. Moreover, the areas under the curve of the summary receiver operating characteristic curve of blood and tissue were 0.64 and 0.79, respectively. In addition, we found a lower level of miR‐193a in NSCLC tissues than in non‐cancerous controls based on TCGA. A gene ontology (GO) enrichment analysis demonstrated that miR‐193a‐3p could be related to key signaling pathways in NSCLC. Also, several vital pathways were illustrated by KEGG. Lower expression of miR‐193a‐3p in tissue samples of NSCLC may be associated with tumorigenesis and be a predictor of deterioration of NSCLC patients, and pathway analysis revealed crucial signaling pathways correlated with the incidence and progress of NSCLC.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Rui-Xue Tang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Qiong-Ni Xie
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jia-Ying Lin
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hong-Lan Shi
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Zu-Yun Li
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
88
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Despite significant advances in the early detection and treatment of the disease, the prognosis remains poor, with an overall 5-year survival rate ranging from 15% to 20%. This poor prognosis results largely from early micrometastatic spread of cancer cells to nearby lymph nodes or tissues and partially from early recurrence after curative surgical resection. Recently, precision medicines that target potential oncogenic driver mutations have been approved to treat lung cancer. However, some lung cancer patients do not have targetable mutations, and many patients develop resistance to targeted therapy. Tumor heterogeneity and mutational density are also challenges in treating lung cancer, which underscores the need for developing alternative therapeutic strategies for treating lung cancer. Epigenetic therapy may circumvent the problems of tumor heterogeneity and drug resistance by affecting the expression of several hundred target genes. This review highlights precision medicine using an innovative approach of epigenetic priming prior to conventional standard therapy or targeted cancer therapy in lung cancer.
Collapse
Affiliation(s)
- Dongho Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea. .,Samsung Medical Center, Research Institute for Future Medicine, Seoul, South Korea.
| |
Collapse
|
89
|
Yu X, Ye X, Lin H, Feng N, Gao S, Zhang X, Wang Y, Yu H, Deng X, Qian B. Knockdown of long non-coding RNA LCPAT1 inhibits autophagy in lung cancer. Cancer Biol Med 2018; 15:228-237. [PMID: 30197790 PMCID: PMC6121053 DOI: 10.20892/j.issn.2095-3941.2017.0150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) are involved in numerous biological processes in lung cancer cells. In our previous studies, we identified a lncRNA, ENST00000439577, which is highly expressed in lung carcinomas, and termed it lung cancer progression-associated transcript 1 (LCPAT1). To characterize the role of LCPAT1 in lung cancer, we conducted the current study. Methods Expression of LCPAT1 and autophagy-associated markers in tumor tissues and lung cancer cell lines was determined by real-time quantitative polymerase chain reaction (qPCR). Hematoxylin and eosin (HE) staining, qPCR, Western blot, and immunohistochemistry were performed to evaluate xenografted tumor tissues. Autophagy induced by rapamycin was detected by Western blot and immunofluorescence in lung cancer cell lines. Results Expression of LCPAT1 and microtubule-associated protein 1 light chain 3 beta (LC3B) was positively correlated in lung cancer. Knockdown of LCPAT1 inhibited tumor growth and suppressed cell autophagy in vivo. Moreover, LCPAT1 knockdown in lung cancer cell lines resulted in decreased autophagy-associated gene expression and alleviated the cell autophagy induced by rapamycin. Conclusions We speculate that LCPAT1 plays a crucial role in regulating autophagy in lung cancer.
Collapse
Affiliation(s)
- Xiao Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofei Ye
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyan Lin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nannan Feng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sumeng Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohong Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Xiaobei Deng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
90
|
Yang Z, He J, Gao P, Niu Y, Zhang J, Wang L, Liu M, Wei X, Liu C, Zhang C, Wang W, Du J, Li H, Hu W, Sun G. miR-769-5p suppressed cell proliferation, migration and invasion by targeting TGFBR1 in non-small cell lung carcinoma. Oncotarget 2017; 8:113558-113570. [PMID: 29371929 PMCID: PMC5768346 DOI: 10.18632/oncotarget.23060] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators of multiple cancers, including non-small cell lung carcinoma (NSCLC). The aim of this study was to determine the expression pattern of miR-769-5p in NSCLC and to investigate its biological role during tumorigenesis. We showed that miR-769-5p was significantly downregulated and predicted poor prognosis in NSCLC compared with corresponding normal tissues. We then investigated its function and found that miR-769-5p significantly inhibited cell proliferation, migration and invasion in vitro and reduced tumor growth and metastasis in vivo. Furthermore, we explored the molecular mechanisms by which miR-769-5p contributes to NSCLC suppression and identified TGFBR1 as a direct target gene of miR-769-5p. Finally, we showed that TGFBR1 had opposite effects to those of miR-769-5p on lung cancer cells, suggesting that miR-769-5p might inhibit lung tumorigenesis by silencing TGFBR1. Taken together, our results demonstrated that miR-769-5p plays a pivotal role in NSCLC by inhibiting cell proliferation, migration and invasion by targeting TGFBR1.
Collapse
Affiliation(s)
- Zhao Yang
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jin He
- 2 Department of Hepatobiliary Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Cencer, Tianjin, China
| | - Peng Gao
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Yi Niu
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jie Zhang
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Lei Wang
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Meiyue Liu
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Xiaomei Wei
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Chunling Liu
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Chao Zhang
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Wei Wang
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jiayi Du
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Hongmin Li
- 3 Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Wanning Hu
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Guogui Sun
- 1 Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| |
Collapse
|
91
|
Liu X, Zheng J, Xue Y, Qu C, Chen J, Wang Z, Li Z, Zhang L, Liu Y. Inhibition of TDP43-Mediated SNHG12-miR-195-SOX5 Feedback Loop Impeded Malignant Biological Behaviors of Glioma Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:142-158. [PMID: 29499929 PMCID: PMC5751968 DOI: 10.1016/j.omtn.2017.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 01/05/2023]
Abstract
Long non-coding RNA (lncRNA) dysregulation is involved in tumorigenesis and regulation of diverse cellular processes in gliomas. lncRNA SNHG12 is upregulated and promotes cell growth in human osteosarcoma cells. TAR-DNA binding protein 43 (TDP43) functions as an oncogene in various tumors by modulating RNA expression. Downregulation of TDP43 or SNHG12 significantly inhibited malignant biological behaviors of glioma cells. miR-195, downregulated in glioma tissues and cells, significantly impaired the malignant progression of glioma cells. TDP43 upregulated miR-195 in an SNHG12-dependent manner. We further revealed that SNHG12 and miR-195 were in an RNA-induced silencing complex (RISC). Inhibition of SNHG12 combined with restoration of miR-195 robustly reduced tumor growth in vivo. SOX5 was overexpressed in glioma tissues and cells. miR-195 targeted SOX5 3′ UTR in a sequence-specific manner. Gelsolin was activated by SOX5. More importantly, SOX5 activated SNHG12 promoter and upregulated its expression, forming a feedback loop. Dysregulation of SNHG12, miR-195, and SOX5 predicted poor prognosis of glioma patients. The present study demonstrated that SNHG12-miR-195-SOX5 feedback loop exerted a crucial role in the regulation of glioma cells’ malignant progression.
Collapse
Affiliation(s)
- Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
92
|
Yang W, Zhou C, Luo M, Shi X, Li Y, Sun Z, Zhou F, Chen Z, He J. MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1. Oncotarget 2017; 7:16703-15. [PMID: 26934648 PMCID: PMC4941345 DOI: 10.18632/oncotarget.7697] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/06/2016] [Indexed: 12/17/2022] Open
Abstract
Our previous study found that miR-652-3p is markedly upregulated in the serum of patients with NSCLC and suggesting that miR-652-3p is a potential biomarker for the early diagnosis of NSCLC. In this study, we detected the expression of miR-652-3p in NSCLC tumor tissues and cell lines and investigated the effect of miR-652-3p on the proliferation and metastasis of NSCLC cells. Our results showed that the expression of miR-652-3p was significantly upregulated in tumor tissues of 50 patients with NSCLC, and it was significantly higher in patients with positive lymph node metastasis, advanced TNM stage and poor prognosis. Using functional analyses by overexpressing or suppressing miR-652-3p in NSCLC cells, we demonstrated that miR-652-3p promoted cell proliferation, migration, invasion and inhibited cell apoptosis. Moreover, the lethal(2) giant larvae 1 (Lgl1) was identified as a direct and functional target of miR-652-3p. Overexpression or knockdown of miR-652-3p led to decreased or increased expression of Lgl1 protein, and the binding site mutation of LLGL1 3'UTR abrogated the responsiveness of the luciferase reporters to miR-652-3p. Overexpression of Lgl1 partially attenuated the function of miR-652-3p. Collectively, these results revealed that miR-652-3p execute a tumor-promoter function in NSCLC through direct binding and regulating the expression of Lgl1.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Mei Luo
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xuejiao Shi
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zengmiao Sun
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fang Zhou
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
93
|
Zhao F, Ge YZ, Zhou LH, Xu LW, Xu Z, Ping WW, Wang M, Zhou CC, Wu R, Jia RP. Identification of hub miRNA biomarkers for bladder cancer by weighted gene coexpression network analysis. Onco Targets Ther 2017; 10:5551-5559. [PMID: 29200870 PMCID: PMC5702163 DOI: 10.2147/ott.s146479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bladder cancer (BC) is a common urinary system tumor with high aggressiveness, and it results in relatively high mortality due to a lack of precise and suitable biomarkers. In this study, we applied the weighted gene coexpression network analysis method to miRNA expression data from BC patients, and screened for network modules associated with BC progression. Hub miRNAs were selected, followed by functional enrichment analyses of their target genes for the most closely related module. These hub miRNAs were found to be involved in several functional pathways including pathway in cancer, regulation of actin cytoskeleton, PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, Wnt signaling pathway, proteoglycans in cancer, focal adhesion and p53 signaling pathway via regulating target genes. Finally, their prognostic significance was tested using analyses of overall survival. A few novel prognostic miRNAs were identified based on expression profiles and related survival data. In conclusion, several miRNAs that were critical in BC initiation and progression have been identified in this study. These miRNAs, which may contribute to a comprehensive understanding of the pathogenesis of BC, could serve as potential biomarkers for BC prognosis or as new therapeutic targets.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Wei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Ping
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Cheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
94
|
Hassan N, Zhao JT, Sidhu SB. The role of microRNAs in the pathophysiology of adrenal tumors. Mol Cell Endocrinol 2017; 456:36-43. [PMID: 28007658 DOI: 10.1016/j.mce.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression in a sequence-specific manner. Due to its association with an assortment of diseases, miRNAs have been extensively studied in the last decade. In this review, the current understanding of the role of miRNAs in the pathophysiology of adrenal tumors is discussed. The recent contributions of high-throughput miRNA profiling studies have identified miRNAs that have functional and molecular roles in adrenal tumorigenesis. With respect to the biological heterogeneity of adrenal tumors and the limitations of the current treatments, an improved understanding of miRNAs may hold potential diagnostic and therapeutic value to facilitate better clinical management.
Collapse
Affiliation(s)
- Nunki Hassan
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia
| | - Jing Ting Zhao
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia
| | - Stan B Sidhu
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia; University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, Sydney, St Leonards, Sydney, NSW, Australia.
| |
Collapse
|
95
|
Liang B, Che J, Zhao H, Zhang Z, Shi G. MiR-195 promotes abdominal aortic aneurysm media remodeling by targeting Smad3. Cardiovasc Ther 2017; 35. [PMID: 28665537 DOI: 10.1111/1755-5922.12286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Bing Liang
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Jianbo Che
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Hui Zhao
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Zhi Zhang
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| | - Gongning Shi
- Department of Cardiothoracic Surgery; Huaihe Hospital of Henan University; Kaifeng China
| |
Collapse
|
96
|
miR-195-5p Suppresses the Proliferation, Migration, and Invasion of Oral Squamous Cell Carcinoma by Targeting TRIM14. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7378148. [PMID: 29204446 PMCID: PMC5674489 DOI: 10.1155/2017/7378148] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in tumor biological processes through interacting with specific gene targets. The involvement of miR-195-5p in cell proliferation, invasion, and migration has been demonstrated in several cancer cell lines, while its function in oral squamous cell carcinoma (OSCC) remains unclear. Here we find that miR-195-5p expression is lower in OSCC than in nontumor tissues, while its overexpression in cell lines can lead to the promotion of apoptosis and the reduction of cell growth, migration, and invasion. Moreover, we identify the tripartite motif-containing protein (TRIM14) as a target of miR-195-5p. Therefore, we reason that the tumor suppressor role of miR-195-5p in OSCC is dependent on the interaction with TRIM14.
Collapse
|
97
|
Pazhouhandeh M, Samiee F, Boniadi T, Khedmat AF, Vahedi E, Mirdamadi M, Sigari N, Siadat SD, Vaziri F, Fateh A, Ajorloo F, Tafsiri E, Ghanei M, Mahboudi F, Rahimi Jamnani F. Comparative Network Analysis of Patients with Non-Small Cell Lung Cancer and Smokers for Representing Potential Therapeutic Targets. Sci Rep 2017; 7:13812. [PMID: 29062084 PMCID: PMC5653836 DOI: 10.1038/s41598-017-14195-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023] Open
Abstract
Cigarette smoking is the leading cause of lung cancer worldwide. In this study, we evaluated the serum autoantibody (AAb) repertoires of non-small cell lung cancer (NSCLC) patients and smokers (SM), leading to the identification of overactivated pathways and hubs involved in the pathogenesis of NSCLC. Surface- and solution-phase biopanning were performed on immunoglobulin G purified from the sera of NSCLC and SM groups. In total, 20 NSCLC- and 12 SM-specific peptides were detected, which were used to generate NSCLC and SM protein datasets. NSCLC- and SM-related proteins were visualized using STRING and Gephi, and their modules were analyzed using Enrichr. By integrating the overrepresented pathways such as pathways in cancer, epithelial growth factor receptor, c-Met, interleukin-4 (IL-4) and IL-6 signaling pathways, along with a set of proteins (e.g. phospholipase D (PLD), IL-4 receptor, IL-17 receptor, laminins, collagens, and mucins) into the PLD pathway and inflammatory cytokines network as the most critical events in both groups, two super networks were made to elucidate new aspects of NSCLC pathogenesis and to determine the influence of cigarette smoking on tumour formation. Taken together, assessment of the AAb repertoires using a systems biology approach can delineate the hidden events involved in various disorders.
Collapse
Affiliation(s)
| | - Fatemeh Samiee
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Tahereh Boniadi
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Abbas Fadaei Khedmat
- Department of Pulmonology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirdamadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Naseh Sigari
- Internal Medicine Department, Medical Faculty, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Ajorloo
- Department of Biology, Faculty of Science, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - Elham Tafsiri
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
98
|
Wang W, Zhang Y, Chen R, Tian Z, Zhai Y, Janz S, Gu C, Yang Y. Chromosomal instability and acquired drug resistance in multiple myeloma. Oncotarget 2017; 8:78234-78244. [PMID: 29100463 PMCID: PMC5652852 DOI: 10.18632/oncotarget.20829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal instability (CIN) is an important hallmark of human cancer. CIN not only contributes to all stages of tumor development (initiation, promotion and progression) but also drives, in large measure, the acquisition of drug resistance by cancer cells. Although CIN is a cornerstone of the complex mutational architecture that underlies neoplastic cell development and tumor heterogeneity and has been tightly associated with treatment responses and survival of cancer patients, it may be one of the least understood features of the malignant phenotype in terms of genetic pathways and molecular mechanisms. Here we review new insights into the type of CIN seen in multiple myeloma (MM), a blood cancer of terminally differentiated, immunoglobulin-producing B-lymphocytes called plasma cells that remains incurable in the great majority of cases. We will consider bona fide myeloma CIN genes, methods for measuring CIN in myeloma cells, and novel approaches to CIN-targeted treatments of patients with myeloma. The new findings generate optimism that enhanced understanding of CIN will lead to the design and testing of new therapeutic strategies to overcome drug resistance in MM in the not-so-distant future.
Collapse
Affiliation(s)
- Wang Wang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ruini Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhidan Tian
- Department of Pathology, Nanjing First Hospital, Nanjing, 210006, China
| | - Yongpin Zhai
- Department of Hematology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242, USA
| | - Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
99
|
Liu Y, Liu J, Wang L, Yang X, Liu X. MicroRNA‑195 inhibits cell proliferation, migration and invasion in laryngeal squamous cell carcinoma by targeting ROCK1. Mol Med Rep 2017; 16:7154-7162. [PMID: 28901478 DOI: 10.3892/mmr.2017.7460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
Laryngeal carcinoma is the second most common malignancy of the head and neck cancers. The most common type of laryngeal carcinoma comprises laryngeal squamous cell carcinoma (LSCC), which accounts for ~95% of laryngeal carcinoma cases. Despite great progress in diagnostic and therapeutic techniques over the last few decades, the prognosis for patients with LSCC remains poor. A number of studies reported that various miRNAs are dysregulated in LSCC and serve critical roles in LSCC tumorigenesis and tumor development. The present study aimed to evaluate the expression level of microRNA (miR)‑195 and its possible roles in LSCC. Briefly, miR‑195 was downregulated in LSCC tissues and cell lines. In addition, low miR‑195 expression was significantly correlated with lymph node metastasis and TNM stage of LSCC patients. Further study has demonstrated that miR‑195 overexpression suppressed cell proliferation, migration and invasion of LSCC. Moreover, rho‑associated kinase 1 (ROCK1) was identified as a direct target gene of miR‑195. Downregulation of ROCK1 exerted similar roles to that of miR‑195 overexpression in LSCC, suggesting ROCK1 was a direct downstream target of miR‑195. These findings elucidated a novel molecular mechanism for the pathogenic mechanism in LSCC carcinogenesis and progression, and may have a potential role in the treatment of patients with LSCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jixiang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Lin Wang
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xiangli Yang
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xiang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
100
|
Zhou D, Xie M, He B, Gao Y, Yu Q, He B, Chen Q. Microarray data re-annotation reveals specific lncRNAs and their potential functions in non-small cell lung cancer subtypes. Mol Med Rep 2017; 16:5129-5136. [PMID: 28849055 PMCID: PMC5647101 DOI: 10.3892/mmr.2017.7244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Non‑small‑cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. The most common subtypes of NSCLC are adenocarcinoma (AC) and squamous cell carcinoma (SCC). However, the pathophysiological mechanisms contributing to AC and SCC are still largely unknown, especially the roles of long non‑coding RNAs (lncRNAs). The present study identified differentially expressed lncRNAs between lung AC and SCC by re‑annotation of NSCLC microarray data analysis profiling. The potential functions of lncRNAs were predicted by using coding‑non‑coding gene co‑expressing network. Reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) was used to investigate lncRNA expression levels in AC cell lines (A549 and L78), SCC cell lines (H226 and H520) and normal cells (NL‑20). Western blotting analysis was used to investigate the protein expression levels in these cell lines. A total of 65 lncRNAs were differentially expressed between AC and SCC including 28 lncRNAs that were downregulated in SCC subtypes compared with those in AC ones, and 37 upregulated lncRNAs in SCC subtypes compared with AC subtypes. Three lncRNAs, sex determining region Y‑box 2 overlapping transcript (SOX2‑OT), NCBP2 antisense RNA 2 (NCBP2‑AS2) and ubiquitin like with PHD and ring finger domains 1 (UHRF1), were predicted to be associated with lung cancer; RT‑qPCR confirmed that SOX2‑OT and NCBP2‑AS2 were associated with lung cancer. Finally, western blot assays demonstrated that there was no difference in β‑catenin and glycogen synthase kinase 3β (GSK‑3β) expression in cancer cells compared with NL‑20, but increased phosphorylated (p‑)β‑catenin and p‑GSK‑3β was detected in lung cancer cell lines compared with NL‑20, particularly in A549 cells. Although these results require further experimental verification, the analysis of lncRNA signatures between AC and SCC has provided insights into the regulatory mechanism of NSCLC development.
Collapse
Affiliation(s)
- Dongbo Zhou
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Mingxuan Xie
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Baimei He
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Ying Gao
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Qiao Yu
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Bixiu He
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Qiong Chen
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|