51
|
Hydroxytyrosol Ameliorates Intervertebral Disc Degeneration and Neuropathic Pain by Reducing Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2240894. [PMID: 36388163 PMCID: PMC9646310 DOI: 10.1155/2022/2240894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Low back pain (LBP) seriously affects human quality of life. Intervertebral disc degeneration (IVDD) is the main pathological factor that leads to LBP, but the pathological mechanism underlying IVDD has not been fully elucidated. Neuropathic pain caused by IVDD is an important pathological factor affecting people's daily lives. Therefore, it is very important to identify therapeutic drugs to ameliorate IVDD and secondary neuropathic pain. Hydroxytyrosol (HT) is a natural compound derived from olive leaves and oil and has anti-inflammatory, antioxidant, and antitumor activities and other properties. In this study, TNF-α-stimulated human nucleus pulposus cells (HNPCs) were used to simulate the local inflammatory microenvironment observed in IVDD in vitro to explore the role of HT in alleviating various pathological processes associated with IVDD. A rat needle puncture model was used to further explore the role of HT in alleviating IVDD. Lipopolysaccharide (LPS) was used to stimulate microglia in vitro to comprehensively explore the role of HT in alleviating neuropathic pain, and a rat model involving chronic compression of the dorsal root ganglion (CCD) was established to simulate the neuropathic pain caused by IVDD. This study suggests that HT reduces the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and matrix metalloproteinase-13 (MMP-13); inhibits the production of mitochondrial reactive oxygen species (ROS); and maintains mitochondrial homeostasis. Thus, HT appears to reduce the rate of apoptosis and mitigate the loss of major intervertebral disc components by inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Moreover, HT inhibited the secretion of COX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and iNOS and activation of the NLRP3 inflammasome in microglia by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and extracellular regulated protein kinase (ERK) signaling pathways. In conclusion, HT plays a protective role against IVDD and secondary neuropathic pain by inhibiting the NF-κB, PI3K/AKT, and ERK signaling pathways.
Collapse
|
52
|
Romaniyanto FNU, Mahyudin F, Prakoeswa CRS, Notobroto HB, Tinduh D, Ausrin R, Rantam FA, Suroto H, Utomo DN, Rhatomy S. Adipose-Derived Stem Cells (ASCs) for Regeneration of Intervertebral Disc Degeneration: Review Article. STEM CELLS AND CLONING: ADVANCES AND APPLICATIONS 2022; 15:67-76. [DOI: 10.2147/sccaa.s379714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
|
53
|
DPSCs Protect Architectural Integrity and Alleviate Intervertebral Disc Degeneration by Regulating Nucleus Pulposus Immune Status. Stem Cells Int 2022; 2022:7590337. [PMID: 36299466 PMCID: PMC9590116 DOI: 10.1155/2022/7590337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is the primary cause for low back pain that has a high prevalence in modern society and poses enormous economic burden on patients. Few effective therapeutic strategies are available for IVD degeneration treatment. To understand the biological effects of dental pulp stem cells (DPSCs) on nucleus pulposus (NP) cells, we carried out RNA sequencing, bioinformatic analysis which unveiled gene expression differences, and pathway variation in primarily isolated patients' NP cells after treatment with DPSCs supernatant. Western blot and immunofluorescence were used to verify these molecular alterations. Besides, to evaluate the therapeutic effect of DPSCs in IVD degeneration treatment, DPSCs were injected into a degeneration rat model in situ, with treatment outcome measured by micro-CT and histological analysis. RNA sequencing and in vitro experiments demonstrated that DPSCs supernatant could downregulate NP cells' inflammation-related NF-κB and JAK-STAT pathways, reduce IL-6 production, increase collagen II expression, and mitigate apoptosis. In vivo results showed that DPSCs treatment protected the integrity of the disc structure, alleviated extracellular matrix degradation, and increased collagen fiber expression. In this study, we verified the therapeutic effect of DPSCs in an IVD degeneration rat model and elucidated the underlying molecular mechanism of DPSCs treatment, which provides a foundation for the application of DPSCs in IVD degeneration treatment.
Collapse
|
54
|
Li B, Yang X, Zhang P, Guo J, Rong K, Wang X, Cao X, Zhou T, Zhao J. Engeletin Alleviates the Inflammation and Apoptosis in Intervertebral Disc Degeneration via Inhibiting the NF-κB and MAPK Pathways. J Inflamm Res 2022; 15:5767-5783. [PMID: 36238766 PMCID: PMC9553281 DOI: 10.2147/jir.s371809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Low back pain (LBP) induced by intervertebral disc degeneration (IDD) brings progressively painful status and impairs the normal daily living. Engeletin is a plant-derived medicine with anti-inflammation and antioxidant functions. Therefore, we aim to confirm its protective effects against the intervertebral disc degeneration in vivo and in vitro. Methods The cytotoxicity of engeletin was validated by CCK-8 tests. Using the TNF-α to simulate the inflammation status in vitro, the expression of inflammatory mediators and MMP families were determined by qPCR, Western blotting and confocal microscopy. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. The expression of apoptosis-related proteins was tested by Western blotting. The activation of NF-κB and MAPK pathways was evaluated by Western blotting and confocal microscopy. In vivo, percutaneous needle puncture was used to establish the IDD model in rat, and engeletin was administrated via intradiscal injection. The therapeutic effects of engeletin were detected through imaging and histology analysis. Results Cell viability tests demonstrated there was little cytotoxicity of engeletin toward NP cells. Pretreatment with engeletin effectively ameliorate the TNF-α-induced up-regulation of inflammatory mediators and MMP families, promoting the anabolism of ECM meanwhile. Cell apoptosis was also attenuated with the addition of engeletin. We found that the activation of MAPK and NF-κB signaling pathways and the nuclear translocation of phosphorylated p65 and p38 were inhibited prominently with the treatment of engeletin which may be the potential molecular mechanism for its anti-inflammation effects. Finally, the IDD induced by percutaneous needle puncture was partially alleviated with the injection of engeletin in vivo. Conclusion As a natural compound with little cytotoxicity, engeletin possesses the outstanding anti-inflammation and anti-apoptosis effects in the process of IDD in vitro and in vivo, which may be a promising medicine for the prevention and treatment of IDD-related low back pain.
Collapse
Affiliation(s)
- Baixing Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jiadong Guo
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China,Correspondence: Tangjun Zhou; Jie Zhao, Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Tel +8621-23271159, Fax +8621-63139920, Email ;
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
55
|
Liu J, Chen Y, Shan X, Wang H. Association between CILP and IL-1α polymorphisms and phenotype-dependent intervertebral disc degeneration susceptibility: A meta-analysis. Front Genet 2022; 13:1005393. [PMID: 36276953 PMCID: PMC9582649 DOI: 10.3389/fgene.2022.1005393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The relationship between CILP (1184T>C) and IL-1α(+889C/T) polymorphisms and intervertebral disc degeneration (IDD) have been explored in several studies but the results were conflicting. The aim of the study was to evaluate and synthesize the currently available data on the association between CILP (1184T>C) and IL-1α(+889C/T) polymorphisms and susceptibility of phenotype-dependent radiologic IDD (RIDD) and symptomatic intervertebral disk herniation (SIDH). Methods: A computerized literature search was in PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure database, and Web of Science. The pooled results were presented as odds ratios (ORs) with 95% confidence intervals (CIs). Moreover, the false-positive report probability (FPRP) test and trial sequential analysis (TSA) were applied to estimate the significant results. Results: Our evidence demonstrated that IL-1α(+889C/T) was significant associated with RIDD (allele model: OR = 1.34, 95%CI 1.03-1.74, p = 0.029) and SIDH (allele model: OR = 1.28, 95% CI 1.03-1.60, p = 0.028). However, the results were not noteworthy under the FPRP test and TSA analysis. Additionally, CILP (1184T>C) polymorphism was significantly associated with RIDD with adequate evidence (allele model: OR = 1.27, 95% CI 1.09-1.48, p = 0.002) instead of SIDH. Conclusion: The current meta-analysis illustrated firm evidence that CILP (1184T>C) polymorphism was significantly associated with the susceptibility of RIDD. However, the significant associations between IL-1α(+889C/T) and RIDD and SIDH were less credible. Thus, more multi-center studies with diverse populations were required to verify the results.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxia Chen
- Department of Endocrinology, Cangzhou People’s Hospital, Cangzhou, China
| | - Xiuqi Shan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
56
|
Fang X, Tang T, Sun D, Chen S, Wang N, Xie L. Comprehensive analysis of potential ceRNA network and immune cell infiltration in intervertebral disc degeneration. J Orthop Surg Res 2022; 17:432. [PMID: 36175893 PMCID: PMC9524080 DOI: 10.1186/s13018-022-03331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) has become a serious public health problem, the mechanism of which is complex and still unclear. We aimed to construct a ceRNA network related to IDD to explore its pathogenesis. Methods We downloaded the GSE67566, GSE63492, GSE116726 and GSE124272 datasets from GEO database, and obtained the differentially expressed RNAs. Then, we constructed a ceRNA network and the KEGG and GO enrichment analysis were performed. Finally, we performed immune cell infiltration analysis on the GSE124272 dataset and analysed the correlation between immune cell abundance and hub genes expression levels. Results The ceRNA network included three down-regulated circRNAs: hsa_circ_0074817, hsa_circ_0002702, hsa_circ_0003600, three up-regulated miRNAs: hsa-miR-4741, hsa-miR-3158-5p, hsa-miR-508-5p, and 57 down-regulated mRNAs, including six hub genes: IGF1, CHEK1, CCNB1, OIP5, BIRC5, AR. GO and KEGG analysis revealed that the network is involved in various biological functions. Immune infiltration analysis showed that IDD was closely related to immune cell infiltration, and hub genes could further affect the development of IDD by affecting immune cell infiltration. Conclusion This study identified the hsa_circ_0074817-hsa-miR-508-5p-IGF1/CHEK1/CCNB1, the hsa_circ_0003600-hsa-miR-4741-BIRC5/OIP5/AR and the hsa_circ_0002702-hsa-miR-3158-5p-IGF1/AR as important regulatory axis of IDD, which will help us gain further insight into the pathogenesis of IDD and determine potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyang Fang
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian Tang
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Daoxi Sun
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang Chen
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Wang
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Xie
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
57
|
Zhang Z, Wu J, Teng C, Wang J, Yu J, Jin C, Wang L, Wu L, Lin Z, Yu Z, Lin Z. Orientin downregulating oxidative stress-mediated endoplasmic reticulum stress and mitochondrial dysfunction through AMPK/SIRT1 pathway in rat nucleus pulposus cells in vitro and attenuated intervertebral disc degeneration in vivo. Apoptosis 2022; 27:1031-1048. [PMID: 36125665 DOI: 10.1007/s10495-022-01770-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Although considered as a major contributor to low back pain (LBP), intervertebral disc degeneration (IVDD) has poor medical and surgical treatments. Various studies have revealed that endoplasmic reticulum (ER) stress and extracellular matrix (ECM) degeneration play a vital role in initiating and developing the progression of IVDD. Moreover, restoration of SIRT1/AMPK was confirmed to prevent IVDD and damage via maintaining ER and extracellular homeostasis. In addition, orientin (Ori) has been shown to upregulate SIRT1. However, the effect of Ori in nucleus pulposus cells (NPCs) is not determined. Hence, in this study we aim to explore the function of Ori in IVDD pathological model. The results demonstrate that Ori treatment in vitro increased SIRT1/AMPK in NPCs, maintained ECM and ER balance and decreased oxidative stress (OS) response. Ori rescued the disordered homeostasis stimulated by tert-butyl hydroperoxide (TBHP), and its function can be inhibited by thapsigargin (TG). Compound C and EX-527, inhibitors of AMPK and SIRT1 counteracted the Ori-mediated ER stress elimination. These results confirm that Ori exerts its effects by upregulating AMPK and SIRT1. Puncture-stimulated IVDD rats were used to show that Ori attenuates the pathological development in vivo. In all, we partly unveil the underlying mechanisms of Ori in IVDD.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiapei Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Libo Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ziping Yu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
58
|
Dihydroartemisinin Attenuated Intervertebral Disc Degeneration via Inhibiting PI3K/AKT and NF-κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8672969. [PMID: 36120596 PMCID: PMC9481359 DOI: 10.1155/2022/8672969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain (LBP). However, effective therapeutic drugs for IDD remain to be further explored. Inflammatory cytokines play a pivotal role in the onset and progression of IDD. Dihydroartemisinin (DHA) has been well reported to have powerful anti-inflammatory effects, but whether DHA could ameliorate the development of IDD remained unclear. In this study, the effects of DHA on extracellular matrix (ECM) metabolism and cellular senescence were firstly investigated in nucleus pulposus cells (NPCs) under tumor necrosis factor alpha (TNFα)-induced inflammation. Meanwhile, AKT agonist sc-79 was used to determine whether DHA exerted its actions through regulating PI3K/AKT and NF-κB signaling pathways. Next, the therapeutic effects of DHA were tested in a puncture-induced rat IDD model. Finally, we detected the activation of PI3K/AKT and NF-κB signaling pathways in clinical degenerative nucleus pulposus specimens. We demonstrated that DHA ameliorated the imbalance between anabolism and catabolism of extracellular matrix and alleviated NPCs senescence induced by TNFα in vitro. Further, we illustrated that DHA mitigated the IDD progression in a puncture-induced rat model. Mechanistically, DHA inhibited the activation of PI3K/AKT and NF-κB signaling pathways induced by TNFα, which was undermined by AKT agonist sc-79. Molecular docking predicted that DHA bound to the PI3K directly. Intriguingly, we also verified the activation of PI3K/AKT and NF-κB signaling pathways in clinical degenerative nucleus pulposus specimens, suggesting that DHA may qualify itself as a promising drug for mitigating IDD.
Collapse
|
59
|
Chen CN, Chang HI, Yen CK, Liu WL, Huang KY. Mechanical Stretch Induced Osteogenesis on Human Annulus Fibrosus Cells through Upregulation of BMP-2/6 Heterodimer and Activation of P38 and SMAD1/5/8 Signaling Pathways. Cells 2022; 11:cells11162600. [PMID: 36010676 PMCID: PMC9406707 DOI: 10.3390/cells11162600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Degenerative disc disease (DDD) is an important cause of low back pain. Repetitive tensile stress from the daily motion of the spine predisposes it to injury of the annulus fibrosus (AF) which causes IVD degeneration. This study aims to determine the causal relationship between mechanical stretch and osteogenesis in the AF cells of IVD as affected by bone morphogenic proteins (BMPs), specifically BMP-2/6 heterodimers. Our results found that 15% tensile stress (high cyclic stretching, HCS) may induce the expression of osteogenesis-related markers (Runx2, osterix) by upregulating BMP-2/6 heterodimeric ligands and their receptors on the human AF cell line. HCS also induced transient phosphorylation of p38 mitogen-activated protein (MAP) kinase and SMAD1/5/8. Neutralizing antibodies to the BMP-2/6 receptor (ALK3) blocked the expression of Runx2 and osterix, as well as the phosphorylation of p38 and SMAD1/5/8. In addition, treatment with a p38 MAPK inhibitor (SB203580) or siRNA to neutralize the effects of SMAD1/5/8 suppressed tensile stress-induced Runx2 and osterix expression. Mechanical stretching induces activation of p38 MAP kinase and SMAD1/5/8 signaling pathways, followed by the upregulation of BMP-2/6 heterodimer expression, thereby stimulating osteogenic Runx2 and osterix expression on AF cells. HCS may accelerate the progression of IVD degeneration by promoting an osteogenic response.
Collapse
Affiliation(s)
- Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chia-Kung Yen
- Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan
| | - Wen-Lung Liu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5237); Fax: +886-6-2766189
| |
Collapse
|
60
|
Zhang K, Gao L, Wang HX, Ye L, Shi YY, Yang WY, Li YN, Li Y. Interleukin-18 Inhibition Protects Against Intervertebral Disc Degeneration via the Inactivation of Caspase-3/9 Dependent Apoptotic Pathways. Immunol Invest 2022; 51:1895-1907. [PMID: 35921125 DOI: 10.1080/08820139.2022.2077113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The present study was designed to identify and understand the potential effectiveness of therapeutic target in intervertebral disc degeneration (IVDD) and its regulation mechanism. METHODS The role and mechanism of interleukin-18 (IL-18) in the disease were investigated. The IVDD degenerative nucleus pulposus (NP) tissues from the human and mouse models were used.A total of three groups of Male BALB/c mice were randomly made i.e control, IVDD, and IVDD+Ad-shIL-18 groups. After Ad-shIL-18 transfection, the expression of ECM synthesis related protein Aggrecan (ACAN) and Collagen II, apoptotic effector Caspases (Caspase-3, 8, 9, 12 and Cleaved-Caspase 3, 8, 9, 12), pro-apoptotic gene Bax and anti-apoptotic factors Bcl-2 in NP cells of the human were evaluated. RESULTS The results of our study revealed that the mRNA and protein expression levels of IL-18 were notably increased in the NP tissues of IVDD patients and mice models. In the IVDD mice model, Ad-sh-IL-18 treatment reversed the IVDD progression. The levels of Aggrecan and Collagen II, contributing to ECM degradation in NP cells, were also significantly increased. Additionally, Ad-sh-IL-18 could inhibit the NP cell's apoptosis via regulating the caspase-3/9 pathway. CONCLUSION The IL-18 knockdown via the caspase-3/9 pathway, might reduce the NP cell's death as well as the imbalance between catabolism and anabolism of ECM in IVDD.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Lei Gao
- Department of Bone Oncology, Second Hospital of Zhangjiakou, Zhangjiakou, Hebei, China
| | - Hai-Xu Wang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Ye
- Department of Infection Control, HanDan Central Hospital, Handan, Hebei, China
| | - Yan-Yan Shi
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Wu-Yan Yang
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Ya-Nan Li
- Department of Neurology, HanDan Central Hospital, Handan, Hebei, China
| | - Yan Li
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| |
Collapse
|
61
|
Schweizer TA, Andreoni F, Acevedo C, Scheier TC, Heggli I, Maggio EM, Eberhard N, Brugger SD, Dudli S, Zinkernagel AS. Intervertebral disc cell chondroptosis elicits neutrophil response in Staphylococcus aureus spondylodiscitis. Front Immunol 2022; 13:908211. [PMID: 35967370 PMCID: PMC9366608 DOI: 10.3389/fimmu.2022.908211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the pathophysiology of spondylodiscitis due to Staphylococcus aureus, an emerging infectious disease of the intervertebral disc (IVD) and vertebral body with a high complication rate, we combined clinical insights and experimental approaches. Clinical data and histological material of nine patients suffering from S. aureus spondylodiscitis were retrospectively collected at a single center. To mirror the clinical findings experimentally, we developed a novel porcine ex vivo model mimicking acute S. aureus spondylodiscitis and assessed the interaction between S. aureus and IVD cells within their native environment. In addition, the inflammatory features underlying this interaction were assessed in primary human IVD cells. Finally, mirroring the clinical findings, we assessed primary human neutrophils for their ability to respond to secreted inflammatory modulators of IVD cells upon the S. aureus challenge. Acute S. aureus spondylodiscitis in patients was characterized by tissue necrosis and neutrophil infiltration. Additionally, the presence of empty IVD cells’ lacunae was observed. This was mirrored in the ex vivo porcine model, where S. aureus induced extensive IVD cell death, leading to empty lacunae. Concomitant engagement of the apoptotic and pyroptotic cell death pathways was observed in primary human IVD cells, resulting in cytokine release. Among the released cytokines, functionally intact neutrophil-priming as well as broad pro- and anti-inflammatory cytokines which are known for their involvement in IVD degeneration were found. In patients as well as ex vivo in a novel porcine model, S. aureus IVD infection caused IVD cell death, resulting in empty lacunae, which was accompanied by the release of inflammatory markers and recruitment of neutrophils. These findings offer valuable insights into the important role of inflammatory IVD cell death during spondylodiscitis and potential future therapeutic approaches.
Collapse
Affiliation(s)
- Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Claudio Acevedo
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C. Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Irina Heggli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadia Eberhard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- *Correspondence: Annelies S. Zinkernagel,
| |
Collapse
|
62
|
Jiang X, Wu J, Guo C, Song W. Key LncRNAs Associated With Oxidative Stress Were Identified by GEO Database Data and Whole Blood Analysis of Intervertebral Disc Degeneration Patients. Front Genet 2022; 13:929843. [PMID: 35937989 PMCID: PMC9353269 DOI: 10.3389/fgene.2022.929843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Intervertebral disc degeneration (IDD) is a major cause of low back pain, but the onset and progression of IDD are unknown. Long non-coding RNA (lncRNA) has been validated to play a critical role in IDD, while an increasing number of studies have linked oxidative stress (OS) to the initiation and progression of IDD. We aim to investigate key lncRNAs in IDD through a comprehensive network of competing endogenous RNA (ceRNA) and to identify possible underlying mechanisms. Methods: We downloaded IDD-related gene expression data from the Gene Expression Omnibus (GEO) database and obtained differentially expressed-lncRNAs (DE-lncRNA), -microRNAs (DE-miRNA), and -messenger RNAs (DE-mRNA) by bioinformatics analysis. The OS-related lncRNA-miRNA-mRNA ceRNA interaction axis was constructed and key lncRNAs were identified based on ceRNA theory. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses on mRNAs regulated by lncRNAs in the ceRNA network. Single sample gene set enrichment analysis (ssGSEA) was used to reveal the immune landscape. Expression of key lncRNAs in IDD was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: In this study, 111 DE-mRNAs, 20 DE-lncRNAs, and 502 DE-miRNAs were identified between IDD patients and controls, and 16 OS-related DE-lncRNAs were also identified. The resulting lncRNA-miRNA-mRNA network consisted of eight OS-related DE-lncRNA nodes, 24 DE-miRNA nodes, 70 DE-mRNA nodes, and 183 edges. Functional enrichment analysis suggested that the ceRNA network may be involved in regulating biological processes related to cytokine secretion, lipid, and angiogenesis. We also identified four key lncRNAs, namely lncRNA GNAS-AS1, lncRNA MIR100HG, lncRNA LINC01359, and lncRNA LUCAT1, which were also found to be significantly associated with immune cells. Conclusion: These results provide novel insights into the potential applications of OS-related lncRNAs in patients with IDD.
Collapse
|
63
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
64
|
Wang DK, Zheng HL, Zhou WS, Duan ZW, Jiang SD, Li B, Zheng XF, Jiang LS. Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1569-1582. [PMID: 35673928 PMCID: PMC9363752 DOI: 10.1111/os.13302] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by‐product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress‐mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.
Collapse
Affiliation(s)
- Dian-Kai Wang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Duan
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
65
|
Martin JT, Wesorick B, Oldweiler AB, Kosinski AS, Goode AP, DeFrate LE. In vivo fluid transport in human intervertebral discs varies by spinal level and disc region. JOR Spine 2022; 5:e1199. [PMID: 35783907 PMCID: PMC9238288 DOI: 10.1002/jsp2.1199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/25/2022] Open
Abstract
Background The lumbar discs are large, dense tissues that are primarily avascular, and cells residing in the central region of the disc are up to 6-8 mm from the nearest blood vessel in adults. To maintain homeostasis, disc cells rely on nutrient transport between the discs and adjacent vertebrae. Thus, diminished transport has been proposed as a factor in age-related disc degeneration. Methods In this study, we used magnetic resonance imaging (MRI) to quantify diurnal changes in T2 relaxation time, an MRI biomarker related to disc hydration, to generate 3D models of disc fluid distribution and determine how diurnal changes in fluid varied by spinal level. We recruited 10 participants (five males/five females; age: 21-30 years; BMI: 19.1-29.0 kg/m2) and evaluated the T2 relaxation time of each disc at 8:00 AM and 7:00 PM, as well as degeneration grade (Pfirrmann). We also measured disc height, volume, and perimeter in a subset of individuals as a preliminary comparison of geometry and transport properties. Results We found that the baseline (AM) T2 relaxation time and the diurnal change in T2 relaxation time were greatest in the cranial lumbar discs, decreasing along the lumbar spine from cranial to caudal. In cranial discs, T2 relaxation times decreased in each disc region (nucleus pulposus [NP], inner annulus fibrosus [IAF], and outer annulus fibrosus [OAF]), whereas in caudal discs, T2 relaxation times decreased in the NP but increased in the AF. Conclusions Fluid transport varied by spinal level, where transport was greatest in the most cranial lumbar discs and decreased from cranial to caudal along the lumbar spine. Future work should evaluate what level-dependent factors affect transport.
Collapse
Affiliation(s)
- John T. Martin
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Benjamin Wesorick
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Alexander B. Oldweiler
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Andrzej S. Kosinski
- Duke Clinical Research InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Adam P. Goode
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Louis E. DeFrate
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
66
|
Bendtsen MAF, Hanberg P, Slater J, Hansen J, Öbrink-Hansen K, Stilling M, Bue M. Steady-state concentrations of flucloxacillin in porcine vertebral cancellous bone and intervertebral disc following oral and intravenous administration assessed by microdialysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1508-1514. [PMID: 35488132 DOI: 10.1007/s00586-022-07208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/03/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
AIMS Flucloxacillin is a frequently used antibiotic in the treatment of spondylodiscitis. We assessed steady-state concentrations and time above minimal inhibitory concentration (fT > MIC) of flucloxacillin in the intervertebral disc, vertebral cancellous bone, subcutaneous tissue and plasma, after intravenous and oral administration. METHODS Sixteen pigs were randomized into two groups; Group Peroral (Group PO) and Group Intravenous (Group IV) received 1 g flucloxacillin every 6 h for 24 h orally or intravenously. Microdialysis was used for sampling in the compartments of interest. A flucloxacillin target of 50% fT > MIC was applied for three MIC targets: 0.125, 0.5 and 2.0 μg/mL. RESULTS Intravenous administration resulted in significantly longer fT > MIC for all targets. Target attainment was only reached for the low target of 0.125 μg/mL in Group IV in vertebral cancellous bone, subcutaneous tissue, and plasma (intervertebral disc 47%). In Group IV, mean fT > MIC values in the investigated compartments were in the range of 47-67% of the dosing interval for 0.125 μg/mL, 20-35% for 0.5 μg/mL, and 0-15% for 2.0 μg/mL. In Group PO, mean fT > MIC values for 0.125 μg/mL were in the range of 1-33%. No pigs reached a concentration of 0.5 μg/mL in any of the investigated compartments in Group PO. CONCLUSION Administration of 1 g flucloxacillin every 6 h resulted in surprisingly low steady-state fT > MIC after intravenous and oral administration. However, intravenous administration resulted in significantly higher concentrations across compartments compared to oral administration. Sufficient target tissue concentrations for treatment of spondylodiscitis may require a dose increase or alternative dosing regimens.
Collapse
Affiliation(s)
- Mathias A F Bendtsen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
- Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.
- Department of Orthopedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark.
| | - Pelle Hanberg
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark
- Department of Orthopedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Josefine Slater
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Jakob Hansen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Institute of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Kristina Öbrink-Hansen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Stilling
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Mats Bue
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| |
Collapse
|
67
|
Theodorou DJ, Theodorou SJ, Gelalis ID, Kakitsubata Y. Lumbar Intervertebral Disc and Discovertebral Segment, Part 1: An Imaging Review of Normal Anatomy. Cureus 2022; 14:e25558. [PMID: 35784982 PMCID: PMC9249043 DOI: 10.7759/cureus.25558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
The intervertebral disc is designated the most important cartilaginous articulation of the vertebral column that functions to withstand compressive biomechanical forces and confer strength and flexibility to the spine. A thorough study of the complex fine structure and anatomic relationships of the intervertebral disc is essential for the characterization of the integrity of each individual structure in the discovertebral segment. This elaborate work in human cadavers explores the sophisticated internal structure of the normal intervertebral disc and the discovertebral segment, providing detailed data derived from the dissection of specimens through imaging and close anatomic-histologic correlation. Familiarity with the normal appearances and basic functional properties of the lumbar intervertebral disc and discovertebral segment is fundamental for the recognition of aberrations that may have important clinical implications in patients with low back pain. In Part I of this article, the anatomic structure and features of the discovertebral complex in adults will be described.
Collapse
|
68
|
Hiyama A, Suyama K, Sakai D, Tanaka M, Watanabe M. Correlational analysis of chemokine and inflammatory cytokine expression in the intervertebral disc and blood in patients with lumbar disc disease. J Orthop Res 2022; 40:1213-1222. [PMID: 34191345 DOI: 10.1002/jor.25136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023]
Abstract
The involvement of intervertebral disc (IVD) tissues, whole blood (WB) cytokines, and chemokines in pain in patients with lumbar degenerative disc disease (LDD) is unknown. We investigated the relationships between inflammatory cytokines and chemokines in human IVD tissues and WB samples and their association with pain. Expression levels of chemokines and cytokine gene expression were measured in samples from 20 patients with LDD and compared between IVD tissues and WB samples. The associations between WB chemokine and cytokine gene expression levels and pain intensity (numeric rating scale) were also analyzed. The mRNA of C-C chemokine ligand 20 (CCL20), C-C chemokine receptor 6 (CCR6), interleukin-6 (IL-6), IL-1β, IL-17, and tumor necrosis factor-α (TNF-α) was expressed in degenerated IVD tissues. Pearson's product-moment correlation analysis produced positive correlations between CCR6 and IL-6 expression levels in IVD tissues (r = 0.845, p < 0.001) and WB samples (r = 0.963, p < 0.001). WB IL-6 and CCR6 mRNA expression levels correlated significantly with present pain, maximum pain, and average pain. By contrast, low back pain (LBP) did not correlate with serum chemokine/cytokine expression. This is the first study to report correlations between chemokine and inflammatory cytokine gene expression levels in IVD tissues and WB samples in patients with LDD in relation to pain intensity. WB CCR6 and IL-6 gene expression levels correlated significantly with present pain, maximum pain, and average pain, but not with LBP. These data provide a new understanding of the role of chemokines and inflammatory cytokines in patients with LDD and may lead to new treatment strategies for pain.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kaori Suyama
- Department of Anatomy and Cellular Biology, Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiro Tanaka
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
69
|
Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1271-1280. [PMID: 35486489 PMCID: PMC9251272 DOI: 10.1111/os.13254] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD) causes a variety of signs and symptoms, such as low back pain (LBP), intervertebral disc herniation, and spinal stenosis, which contribute to high social and economic costs. IDD results from many factors, including genetic factors, aging, mechanical injury, malnutrition, and so on. The pathological changes of IDD are mainly composed of the senescence and apoptosis of nucleus pulposus cells (NPCs), the progressive degeneration of extracellular matrix (ECM), the fibrosis of annulus fibrosus (AF), and the inflammatory response. At present, IDD can be treated by conservative treatment and surgical treatment based on patients' symptoms. However, all of these can only release the pain but cannot reverse IDD and reconstruct the mechanical function of the spine. The latest research is moving towards the field of biotherapy. Mesenchymal stem cells (MSCs) are regard as the potential therapy of IDD because of their ability to self-renew and differentiate into a variety of tissues. Moreover, the non-coding RNAs (ncRNAs) are found to regulate many vital processes in IDD. There have been many successes in the in vitro and animal studies of using biotherapy to treat IDD, but how to transform the experimental data to real therapy which can apply to humans is still a challenge. This article mainly reviews the treatment strategies and research progress of IDD and indicates that there are many problems that need to be solved if the new biotherapy is to be applied to clinical treatment of IDD. This will provide reference and guidance for clinical treatment and research direction of IDD.
Collapse
Affiliation(s)
- Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shuo Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Na
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
70
|
Cui X, Li Y, Bao J, Wang K, Wu X. Downregulation of miR-760 Causes Human Intervertebral Disc Degeneration by Targeting the MyD88/Nuclear Factor-Kappa B Signaling Pathway. Front Bioeng Biotechnol 2022; 10:813070. [PMID: 35480984 PMCID: PMC9035519 DOI: 10.3389/fbioe.2022.813070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) plays a critical role in the development of intervertebral disc degeneration (IDD). In this study, we present evidence from in vitro and in vivo research to elucidate the mechanism underlying the role of miR-760 in IDD. miRNA microarray and quantitative reverse transcription-polymerase chain reaction were used to determine the miRNA profiles in patients with IDD. Functional analysis was performed to evaluate the role of miR-760 in the pathogenesis of IDD. Luciferase reporter and western blotting assays were used to confirm the miRNA targets. The expression of miR-760 was significantly decreased in degenerative nucleus pulposus (NP) cells and negatively correlated with disc degeneration grade. Functional assays demonstrated that miR-760 delivery significantly increased NP cell proliferation and promoted the expression of collagen II and aggrecan. Moreover, MyD88 was identified as a target gene of miR-760. miR-760 effectively suppressed MyD88 expression by interacting with the 3'-untranslated region, which was abolished by miR-760 binding site mutations. An in vivo experiment using an IDD mouse model showed that the upregulation of miR-760 could effectively suspend IDD. Therefore, miR-760 was found to play an important role in IDD and can be used as a promising therapeutic target for the treatment of patients with IDD.
Collapse
Affiliation(s)
- Xueliang Cui
- Medical School of Southeast University, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yanan Li
- Department of Orthopaedics, Qingdao Women and Children's Hospital, Qingdao, China
| | - Junping Bao
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Kun Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
71
|
Zhang Z, Huang Y, Xu N, Wang J, Yao T, Xu Y, Qiao D, Gao J, Shen S, Ma J. PLK1 Mitigates Intervertebral Disc Degeneration by Delaying Senescence of Nucleus Pulposus Cells. Front Cell Dev Biol 2022; 10:819262. [PMID: 35372354 PMCID: PMC8964438 DOI: 10.3389/fcell.2022.819262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/11/2022] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain; however, the molecular mechanisms involved in the pathogenesis of IVDD are not fully understood. Polo-like kinase 1 (PLK1) plays numerous roles in the cell cycle, including in cell proliferation and senescence. To investigate the involvement of PLK1 in IVDD, we used patient tissues and an animal model of IVDD. Samples were analyzed via immunoblotting, quantitative real-time polymerase chain reaction (qPCR), immunofluorescence, and immunohistochemistry. Our results demonstrated that PLK1 expression was decreased in nucleus pulposus cells (NPCs) of degenerative IVDs. The inhibition of PLK1 kinase activity in normal NPCs increased the expression of p53 protein, inhibited cell proliferation, and induced senescence. Our results suggest that PLK1 regulates the degeneration of the IVD through p53, revealing the function and mechanism of PLK1 in IVDD and providing a theoretical basis and experimental evidence for the potential treatment of low back pain.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China
| | - Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China
| | - Nizhen Xu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Hangzhou, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China
| | - Yining Xu
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China.,Shaoxing University School of Medicine, Shaoxing, China
| | - Di Qiao
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China.,Shaoxing University School of Medicine, Shaoxing, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang University Zhejiang Province, Hangzhou, China.,Shaoxing University School of Medicine, Shaoxing, China
| |
Collapse
|
72
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
73
|
Cheng F, Wang C, Ji Y, Yang B, Shu J, Shi K, Wang L, Wang S, Zhang Y, Huang X, Zhou X, Xia K, Liang C, Chen Q, Li F. Partial reprogramming strategy for intervertebral disc rejuvenation by activating energy switch. Aging Cell 2022; 21:e13577. [PMID: 35266272 PMCID: PMC9009234 DOI: 10.1111/acel.13577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/08/2023] Open
Abstract
Rejuvenation of nucleus pulposus cells (NPCs) in degenerative discs can reverse intervertebral disc degeneration (IDD). Partial reprogramming is used to rejuvenate aging cells and ameliorate progression of aging tissue to avoiding formation of tumors by classical reprogramming. Understanding the effects and potential mechanisms of partial reprogramming in degenerative discs provides insights for development of new therapies for IDD treatment. The findings of the present study show that partial reprogramming through short‐term cyclic expression of Oct‐3/4, Sox2, Klf4, and c‐Myc (OSKM) inhibits progression of IDD, and significantly reduces senescence related phenotypes in aging NPCs. Mechanistically, short‐term induction of OSKM in aging NPCs activates energy metabolism as a “energy switch” by upregulating expression of Hexokinase 2 (HK2) ultimately promoting redistribution of cytoskeleton and restoring the aging state in aging NPCs. These findings indicate that partial reprogramming through short‐term induction of OSKM has high therapeutic potential in the treatment of IDD.
Collapse
Affiliation(s)
- Feng Cheng
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Chenggui Wang
- Department of Orthopedics The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University Wenzhou China
| | - Yufei Ji
- Department of Gastrointestinal Surgery Xiamen Cancer Center The First Affiliated Hospital of Xiamen University Xiamen China
| | - Biao Yang
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Jiawei Shu
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Kesi Shi
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Lulu Wang
- Laboratory of Metabolism and Cell Fate Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Shaoke Wang
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Yuang Zhang
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Xianpeng Huang
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Kaishun Xia
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Chengzhen Liang
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Qixin Chen
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| | - Fangcai Li
- Department of Orthopedics Surgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
- Orthopedics Research Institute of Zhejiang University Hangzhou China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou China
| |
Collapse
|
74
|
Wan ZY, Shan H, Liu TF, Song F, Zhang J, Liu ZH, Ma KL, Wang HQ. Emerging Issues Questioning the Current Treatment Strategies for Lumbar Disc Herniation. Front Surg 2022; 9:814531. [PMID: 35419406 PMCID: PMC8999845 DOI: 10.3389/fsurg.2022.814531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Lumbar disc herniation is among the common phenotypes of degenerative lumbar spine diseases, significantly affecting patients' quality of life. The practice pattern is diverse. Choosing conservative measures or surgical treatments is still controversial in some areas. For those who have failed conservative treatment, surgery with or without instrumentation is recommended, causing significant expenditures and frustrating complications, that should not be ignored. In the article, we performed a literature review and summarized the evidence by subheadings to unravel the cons of surgical intervention for lumbar disc herniation. There are tetrad critical issues about surgical treatment of lumbar disc herniation, i.e., favorable natural history, insufficient evidence in a recommendation of fusion surgery for patients, metallosis, and implant removal. Firstly, accumulating evidence reveals immune privilege and auto-immunity hallmarks of human lumbar discs within the closed niche. Progenitor cells within human discs further expand the capacity with the endogenous repair. Clinical watchful follow-up studies with repeated diagnostic imaging reveal spontaneous resolution for lumbar disc herniation, even calcified tissues. Secondly, emerging evidence indicates long-term complications of lumbar fusion, such as adjacent segment disease, pseudarthrosis, implant failure, and sagittal spinal imbalance, which get increasing attention. Thirdly, systemic and local reactions (metallosis) for metal instrumentation have been noted with long-term health concerns and toxicity. Fourthly, the indications and timing for spinal implant removal have not reached a consensus. Other challenging issues include postoperative lumbar stiffness. The review provided evidence from a negative perspective for surgeons and patients who attempt to choose surgical treatment. Collectively, the emerging underlying evidence questions the benefits of traditional surgery for patients with lumbar disc herniation. Therefore, the long-term effects of surgery should be closely observed. Surgical decisions should be made prudently for each patient.
Collapse
Affiliation(s)
- Zhong Y. Wan
- Department of Orthopedics, The Seventh Medical Center of General Hospital of People's Liberation Army (PLA), Beijing, China
| | - Hua Shan
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Tang F. Liu
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Fang Song
- Department of Stomatology, The Specialty Medical Center Rocket Force of People's Liberation Army (PLA), Beijing, China
| | - Jun Zhang
- Department of Orthopedics, Baoji Central Hospital, Baoji, China
| | - Zhi H. Liu
- Department of Cardiac Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Kun L. Ma
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hai Q. Wang
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
75
|
Jiang Z, Zhao Q, Chen L, Luo Y, Shen L, Cao Z, Wang Q. UBR3 promotes inflammation and apoptosis via DUSP1/p38 pathway in the nucleus pulposus cells of patients with intervertebral disc degeneration. Hum Cell 2022; 35:792-802. [PMID: 35332432 DOI: 10.1007/s13577-022-00693-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
Intervertebral disc disease (IDD) is a primary cause of low back pain, affecting 5% of individuals. Previous study have shown that dual-specificity (Thr/Tyr) phosphatase 1 (DUSP1) regulates p38 MAPK activity and DUSP1 level is regulated by ubiquitination. As an E3 ubiquitin-protein ligase, UBR3 has been shown to regulate a variety of biological processes through ubiquitination. However, the role of UBR3/DUSP1/p38 in IDD remains to be elucidated. In the current study, we found that UBR3 was significantly increased in the nucleus pulposus tissues of IDD patients and was correlated with IDD severity. Silencing UBR3 promoted the growth, inhibited apoptosis, and inhibited inflammation in primary NPCs. Mechanism study suggested that UBR3 exerted its effects through p38. Co-immunoprecipitation assay indicated that UBR3 promoted DUSP1 ubiquitination. Overexpression of DUSP1 reversed the effect of UBR3 overexpression. Our data also supported that UBR3 was positively correlated with p-p38, but negatively correlated with DUSP1 in IDD. In summary, UBR3 promotes inflammation and apoptosis via inhibiting the p38 signaling pathway by DUSP1 ubiquitination in the NPCs of IDD patients. These findings highlight the importance of UBR3/DUSP1/p38 signaling pathway in IDD and provide new insights for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Zhenhuan Jiang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Qinghua Zhao
- Department of Orthopaedics, School of Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liang Chen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Lei Shen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| | - Qiang Wang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| |
Collapse
|
76
|
Chen Y, Chen Q, Zhong M, Xu C, Wu Y, Chen R. miR-637 Inhibits Osteogenic Differentiation of Human Intervertebral Disc Cartilage Endplate Stem Cells by Targeting WNT5A. J INVEST SURG 2022; 35:1313-1321. [PMID: 35296211 DOI: 10.1080/08941939.2022.2050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background: Degenerative disk disease (DDD) remains the leading incentive of severe lumbago. DDD is mainly caused by degeneration of cartilage endplate (CEP). Cartilage endplate stem cells (CESCs) are essential in chondrogenesis and osteogenesis of CEP. This study investigated the mechanism of miR-637 inhibiting osteogenic differentiation of human CESC by regulating WNT5A.Methods: The degenerative CEP (N = 10) and non-degenerative CEP (N = 6) were obtained from patients undergoing disk fusion surgery. CESCs were examined for surface stem cell markers, alkaline phosphatase (ALP) levels, osteogenic differentiation, osteogenic genes (Runx2, COL1), and chondrogenic gene (COL2). The miR-637 expression in CESCs was detected. The targeting relationship of miR-637 and WNT5A was confirmed. After miR-637 overexpression/WNT5A down-regulation, the action of miR-637/WNT5A on osteogenic differentiation of CESCs was evaluated. After simultaneous overexpression of miR-637/WNT5A, the effect of miR-637 on osteogenic differentiation of CESCs was assessed.Results: miR-637 was down-expressed in degenerative CESCs (D-CESCs), and miR-637 overexpression inhibited the osteogenic differentiation of D-CESCs, while inhibition of miR-637 promoted the osteogenic differentiation ability of D-CESCs. miR-637 targeted WNT5A and down-regulation of WNT5A inhibited the osteogenic differentiation of D-CESCs. Up-regulated WNT5A partially annulled the inhibitory action of miR-637 overexpression on osteogenic differentiation of D-CESCs.Conclusion: miR-637 inhibited osteogenic differentiation of D-CESCs via targeting WNT5A.
Collapse
Affiliation(s)
- Yunsheng Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Mingliang Zhong
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Canhua Xu
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Yaohong Wu
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Rongchun Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
77
|
Feng X, Li Y, Su Q, Tan J. Degenerative Nucleus Pulposus Cells Derived Exosomes Promoted Cartilage Endplate Cells Apoptosis and Aggravated Intervertebral Disc Degeneration. Front Mol Biosci 2022; 9:835976. [PMID: 35359595 PMCID: PMC8963919 DOI: 10.3389/fmolb.2022.835976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a complex multifactorial disease model, which pathogenesis has not been fully defined. There are few studies on the information interaction between nucleus pulposus (NP) cells and cartilage endplate (CEP) cells. Exosomes, as a carrier of information communication between cells, have become a research hotspot recently. The purpose of this study was to explore whether degenerative NP cells-derived exosomes promoted CEP cells apoptosis and aggravated IVD degeneration. The degenerative NP cells model was induced by TNFα. NPC exosomes were isolated from the supernatant of the NP cell culture medium. The viability of NP cells and CEP cells was examined by CCK-8 assays. The exosomes were identified by TEM, NTA, and western blot. Extracellular matrix (ECM) metabolism was measured by cellular immunofluorescence and qRT-PCR. Apoptosis was detected by flow cytometry and TUNEL. X-ray and magnetic resonance imaging (MRI), as well as hematoxylin-eosin (H&E), Safranine O-Green staining was adopted to evaluate IVD degeneration grades. TNFα had a minor impact on NPC viability but inhibited ECM synthesis and promoted ECM degradation. TNFα-NPC-Exo had less effect on CEPC proliferation but promoted CEPC apoptosis and affect ECM metabolism, inhibiting aggrecan and collagen II expression and enhancing MMP-3 expression. TNFα-NPC-Exo aggravates IVD degeneration in a rat model and promoted CEPC apoptosis. In conclusion, this study demonstrated that degenerated NPC-exosome could induce apoptosis of CEPCs, inhibit ECM synthesis, and promote ECM degradation. In addition, it was proved that degenerated NPC-exosome aggravates IVD degeneration.
Collapse
Affiliation(s)
- Xiaofei Feng
- School of Medicine, Tongji University, Shanghai, China
| | - Yongchao Li
- School of Medicine, Tongji University, Shanghai, China
| | - Qihang Su
- School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Shanghai, China
| | - Jun Tan
- School of Medicine, Tongji University, Shanghai, China
- Department of Spinal Surgery, Shanghai East Hospital, Shanghai, China
| |
Collapse
|
78
|
Oxidative Stress Aggravates Apoptosis of Nucleus Pulposus Cells through m 6A Modification of MAT2A Pre-mRNA by METTL16. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4036274. [PMID: 35069973 PMCID: PMC8767407 DOI: 10.1155/2022/4036274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
The process of intervertebral disc degeneration (IVDD) is complex, and its mechanism is considered multifactorial. Apoptosis of oxidative stressed nucleus pulposus cells (NPCs) should be a fundamental element in the pathogenesis of IVDD. In our pilot study, we found that the expression of MAT2A decreased, and METTL16 increased in the degenerative nucleus pulposus tissues. Previous studies have shown that the balance of splicing, maturation, and degradation of MAT2A pre-mRNA is regulated by METTL16 m6A modification. In the current study, we aimed to figure out whether this mechanism was involved in the aberrant apoptosis of NPCs and IVDD. Human NPCs were isolated and cultured under oxidative stress. An IVDD animal model was established. It showed that significantly higher METTL16 expression and lower MAT2A expression were seen in either the NPCs under oxidative stress or the degenerative discs of the animal model. MAT2A was inhibited with siRNA in vitro or cycloleucine in vivo. METTL16 was overexpressed with lentivirus in vitro or in vivo. Downregulation of MAT2A or upregulation of METTL16 aggravated nucleus pulposus cell apoptosis and disc disorganization. The balance of splicing, maturation, and degradation of MAT2A pre-mRNA was significantly inclined to degradation in the NPCs with the overexpression of METTL16. Increased apoptosis of NPCs under oxidative stress could be rescued by reducing the expression of METTL16 using siRNA with more maturation of MAT2A pre-mRNA. Collectively, oxidative stress aggravates apoptosis of NPCs through disrupting the balance of splicing, maturation, and degradation of MAT2A pre-mRNA, which is m6A modified by METTL16.
Collapse
|
79
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
80
|
Exogenous Parathyroid Hormone Alleviates Intervertebral Disc Degeneration through the Sonic Hedgehog Signalling Pathway Mediated by CREB. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9955677. [PMID: 35265269 PMCID: PMC8898813 DOI: 10.1155/2022/9955677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
As an important hormone that regulates the balance of calcium and phosphorus, parathyroid hormone (PTH) has also been found to have an important function in intervertebral disc degeneration (IVDD). Our aim was to investigate the mechanism by which PTH alleviates IVDD. In this study, the PTH 1 receptor was found to be highly expressed in severely degenerated human nucleus pulposus (NP) cells. We found in the mouse model of IVDD that supplementation with exogenous PTH alleviated the narrowing of the intervertebral space and the degradation of the extracellular matrix (ECM) caused by tail suspension (TS). In addition, inflammation, oxidative stress, and apoptosis levels were significantly increased in the intervertebral disc tissues of TS-induced mice, and the activity of NP cells was decreased. TS also led to the downregulation of Sonic hedgehog (SHH) signalling pathway-related signal molecules in NP cells such as SHH, Smoothened, and GLI1. However, supplementation with exogenous PTH can reverse these changes. In vitro, PTH also promotes the activity of NP cells and the secretion of ECM. However, the antagonist of the SHH signalling pathway can inhibit the therapeutic effect of PTH on NP cells. In addition, a cAMP-response element-binding protein, as an important transcription factor, was found to mediate the promotion of PTH on the SHH signalling pathway. Our results revealed that PTH can alleviate IVDD by inhibiting inflammation, oxidative stress, and apoptosis and improving the activity of NP cells via activating the SHH signalling pathway.
Collapse
|
81
|
Chen S, Shi G, Zeng J, Li PH, Peng Y, Ding Z, Cao HQ, Zheng R, Wang W. MiR-1260b protects against LPS-induced degenerative changes in nucleus pulposus cells through targeting TCF7L2. Hum Cell 2022; 35:779-791. [PMID: 35165858 DOI: 10.1007/s13577-021-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
Nucleus pulposus (NP) cells play a critical role in maintaining intervertebral disc integrity through producing the components of extracellular matrix (ECM). NP cell dysfunction, including senescence and hyper-apoptosis, has been regarded as critical events during intervertebral disc degeneration development. In the present study, we found that Transcription Factor 7-Like 2 (TCF7L2) was overexpressed within degenerative intervertebral disc tissue samples, and TCF7L2 silencing improved lipopolysaccharide (LPS)-induced repression on NP cell proliferation, ECM synthesis, and LPS-induced NP cell senescence. miR-1260b directly targeted TCF7L2 and inhibited TCF7L2 expression. miR-1260b overexpression improved LPS-induced degenerative changes in NP cells; more importantly, TCF7L2 overexpression significantly reversed the effects of miR-1260b overexpression on LPS-stimulated degenerative changes within NP cells. For the first time, we demonstrated the function of the miR-1260b/TCF7L2 axis on the phenotypic maintenance of chondrocyte-like NP cells and ECM synthesis by NP cells under LPS stimulation.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guixia Shi
- Department of Internal Medicine, Changsha Health Vocational Collage, Changsha, 410100, Hunan, China
| | - Jin Zeng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ping Huang Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Hong Qing Cao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
82
|
Wu ZL, Chen YJ, Zhang GZ, Xie QQ, Wang KP, Yang X, Liu TC, Wang ZQ, Zhao GH, Zhang HH. SKI knockdown suppresses apoptosis and extracellular matrix degradation of nucleus pulposus cells via inhibition of the Wnt/β-catenin pathway and ameliorates disc degeneration. Apoptosis 2022; 27:133-148. [PMID: 35147801 DOI: 10.1007/s10495-022-01707-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 01/18/2023]
Abstract
This study aimed to determine the effects of SKI on interleukin (IL)-1β-induced apoptosis of nucleus pulposus (NP) cells, intervertebral disc degeneration (IDD), and the Wnt signaling pathway. NP tissue specimens of different Pfirrmann grades (II-V) were collected from patients with different grades of IDD. Real-time polymerase chain reaction and western blotting were used to compare SKI mRNA and protein expression in NP tissues from patients. Using the IL-1β-induced IDD model, NP cells were infected with lentivirus-coated si-SKI to downregulate the expression of SKI and treated with LiCl to evaluate the involvement of the Wnt/β-catenin signaling pathway. Western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect NP cell apoptosis, extracellular matrix (ECM) metabolism, and related protein expression changes in the Wnt/β-catenin signaling pathway. To investigate the role of SKI in vivo, a rat IDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-SKI and evaluated by magnetic resonance imaging (MRI), and hematoxylin and eosin (HE) and safranin O staining. SKI expression positively correlated with the severity of human IDD. In the IL-1β-induced NP cell degeneration model, SKI expression increased significantly and reached a peak at 24 h. SKI knockdown protected against IL-1β-induced NP cell apoptosis and ECM degradation. LiCl treatment reversed the protective effects of si-SKI on NP cells. Furthermore, lentivirus-coated si-SKI injection partially reversed the NP tissue damage in the IDD model in vivo. SKI knockdown reduced NP cell apoptosis and ECM degradation by inhibiting the Wnt/β-catenin signaling pathway, ultimately protecting against IDD. Therefore, SKI may be an effective target for IDD treatment.
Collapse
Affiliation(s)
- Zuo-Long Wu
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ya-Jun Chen
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou Maternal and Child Health Hospital, Lanzhou, 730000, Gansu, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi-Qi Xie
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ke-Ping Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xin Yang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tai-Cong Liu
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhi-Qiang Wang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Guang-Hai Zhao
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Hai-Hong Zhang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Gansu, 730000, China.
- Key Laboratory of Orthopaedics Disease of Gansu Province, Gansu, 730000, China.
- Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
83
|
Wang C, Cui L, Gu Q, Guo S, Zhu B, Liu X, Li Y, Liu X, Wang D, Li S. The Mechanism and Function of miRNA in Intervertebral Disc Degeneration. Orthop Surg 2022; 14:463-471. [PMID: 35142050 PMCID: PMC8926997 DOI: 10.1111/os.13204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) disease has been considered as the main cause of low back pain (LBP), which is a very common symptom and the leading cause of disability worldwide today. The pathological mechanism of IDD remains quite complicated, and genetic, developmental, biochemical, and biomechanical factors all contribute to the development of the disease. There exists no effective, non-surgical treatment for IDD nowadays, which is largely related to the lack of knowledge of the specific mechanisms of IDD, and the lack of effective specific targets. Recently, non-coding RNA, including miRNA, has been recognized as an important regulator of gene expression. Current studies on the effects of miRNA in IDD have confirmed that a variety of miRNAs play a crucial role in the process of IDD via nucleus pulposus cells (NPC) apoptosis, abnormal proliferation, inflammatory factors, the extracellular matrix (ECM) degradation, and annulus fibrosus (AF) degeneration. In the past 10 years, research on miRNA has been quite active in IDD. This review summarizes the current research progression of miRNA in the IDD and puts forward some prospects and challenges on non-surgical treatment for IDD.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liqiang Cui
- Department of Spine Surgery, Mianyang Orthopaedic Hospital, Mianyang, China
| | - Qinwen Gu
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
84
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
85
|
Is There Any Relationship between Plasma IL-6 and TNF-α Levels and Lumbar Disc Degeneration? A Retrospective Single-Center Study. DISEASE MARKERS 2022; 2022:6842130. [PMID: 35096205 PMCID: PMC8791708 DOI: 10.1155/2022/6842130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the most common degenerative diseases all over the world. A growing number of studies have proved that large amounts of cytokines are produced during the development of IDD, and the inflammatory responses induced by these cytokines aggravate the occurrence and development of the disc degeneration. In this retrospective single-center study, a total of 182 lumbar spine cases were retrospectively reviewed between July 2020 and October 2021. An appropriate cutoff value was found for discriminating severity of IDD by William rank-sum test and locally weighted scatterplot smoothing algorithm. The cumulative grade was also calculated by summing Pfirrmann grades for all lumbar spine intervertebral discs. It was found that high-score group (total score > 18) plasma interleukin-6 (IL-6) concentration was significantly higher than that of the low-score group (total score ≤ 18) (9.6 ± 1.75 vs. 5.40 ± 0.61 pg/ml, p = 0.002), tumor necrosis factor-α (TNF-α) following the same trend (5.27 ± 1.48 vs. 2.97 ± 0.23, p = 0.006), which was most pronounced in the upper lumbar intervertebral discs (L1-3). In the entire sample, preoperative IL-6 concentration was significantly higher than that of the postoperation (p < 0.001), while the TNF-α was the opposite (p = 0.039). It was also found that there were significant differences in the two groups with respect to age and hypertension (p < 0.001 and p = 0.037). In conclusion, this study preliminarily indicated the relationship between IL-6 and TNF-α and the severity of lumbar disc degeneration.
Collapse
|
86
|
Aloin Regulates Matrix Metabolism and Apoptosis in Human Nucleus Pulposus Cells via the TAK1/NF- κB/NLRP3 Signaling Pathway. Stem Cells Int 2022; 2022:5865011. [PMID: 35035490 PMCID: PMC8758297 DOI: 10.1155/2022/5865011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a degenerative disease that is characterized by decreased matrix synthesis and extra degradation, nucleus pulposus cells (NPCs) apoptosis, and infiltration of inflammatory factors. Aloin, a colored compound from aloe plants, has been shown to be effective against skeletal degenerative diseases, but it is unclear whether it is protective against IDD. Herein, we investigated the role of aloin in NPCs. In our study, the upregulation of proinflammatory factors, apoptosis, and unbalanced matrix metabolism were observed in degenerative NP tissues. We found that aloin had a curative effect on extracellular matrix metabolism and apoptosis in TNF-alpha- (TNF-α-) treated NPCs by inhibiting oxidative stress and the proinflammatory factor expression. Further investigation revealed that aloin treatment suppressed the TAK1/NF-κB pathway. Moreover, the expression level of the NLPR3 inflammasome was downregulated after aloin treatment in TNF-α-treated NPCs. In summary, our results demonstrated that aloin treatment can reverse TNF-α-induced unbalanced matrix metabolism and apoptosis of NPCs via the TAK1/NF-κB/NLRP3 axis. This study supports that aloin can be a promising therapeutic agent for IDD.
Collapse
|
87
|
Zou F, Zhang L, Zou X, Huang J, Nie C, Jiang J, Guo C, Wang H, Ma X, Ji M. Differential characterization of lumbar spine associated tissue histology with nonlinear optical microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:474-484. [PMID: 35154886 PMCID: PMC8803016 DOI: 10.1364/boe.446351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Percutaneous endoscopic lumbar discectomy (PELD) is the major effective treatment for lumbar disc herniation, and rapid histological identification of dissected tissue is critical to guide the discectomy. In this work, we revealed the histological features of different types of peridural tissues of the lumbar spine by label-free multi-modal nonlinear optical microscopy. Stimulated Raman scattering (SRS) was used to extract lipid and protein distributions, while second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals were applied to image the collagen and elastin fibers at the same time. Our results demonstrated that the nonlinear optical features of the dura and adjacent soft tissues were significantly different, showing the potentials of our method for intraoperative differentiation of these critical tissues and improving the surgical outcome of PELD.
Collapse
Affiliation(s)
- Fei Zou
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
- These authors contributed equally
| | - Lili Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- These authors contributed equally
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- These authors contributed equally
| | - Jing Huang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Cong Nie
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianyuan Jiang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chongyuan Guo
- Shanghai Starriver Bilingual School, Shanghai 201108, China
| | - Hongli Wang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaosheng Ma
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang 322000, China
| |
Collapse
|
88
|
Fasser MR, Kuravi R, Bulla M, Snedeker JG, Farshad M, Widmer J. A novel approach for tetrahedral-element-based finite element simulations of anisotropic hyperelastic intervertebral disc behavior. Front Bioeng Biotechnol 2022; 10:1034441. [PMID: 36582835 PMCID: PMC9792499 DOI: 10.3389/fbioe.2022.1034441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral discs are microstructurally complex spinal tissues that add greatly to the flexibility and mechanical strength of the human spine. Attempting to provide an adjustable basis for capturing a wide range of mechanical characteristics and to better address known challenges of numerical modeling of the disc, we present a robust finite-element-based model formulation for spinal segments in a hyperelastic framework using tetrahedral elements. We evaluate the model stability and accuracy using numerical simulations, with particular attention to the degenerated intervertebral discs and their likely skewed and narrowed geometry. To this end, 1) annulus fibrosus is modeled as a fiber-reinforced Mooney-Rivlin type solid for numerical analysis. 2) An adaptive state-variable dependent explicit time step is proposed and utilized here as a computationally efficient alternative to theoretical estimates. 3) Tetrahedral-element-based FE models for spinal segments under various loading conditions are evaluated for their use in robust numerical simulations. For flexion, extension, lateral bending, and axial rotation load cases, numerical simulations reveal that a suitable framework based on tetrahedral elements can provide greater stability and flexibility concerning geometrical meshing over commonly employed hexahedral-element-based ones for representation and study of spinal segments in various stages of degeneration.
Collapse
Affiliation(s)
- Marie-Rosa Fasser
- Spine Biomechanics, Department of Orthopedic Surgery, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ramachandra Kuravi
- Spine Biomechanics, Department of Orthopedic Surgery, Balgrist University Hospital, Zurich, Switzerland.,Engineering Division, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | | | - Jess G Snedeker
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jonas Widmer
- Spine Biomechanics, Department of Orthopedic Surgery, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
89
|
Wang Z, Xue T, Zhang T, Wang X, Zhang H, Gao Z, Zhou Q, Gao E, Zhang T, Li Z. Identification of compositional and structural changes in the nucleus pulposus of patients with cervical disc herniation by Raman spectroscopy. Front Endocrinol (Lausanne) 2022; 13:1015198. [PMID: 36277712 PMCID: PMC9585164 DOI: 10.3389/fendo.2022.1015198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Cervical disc herniation (CDH) is one of the most common spinal diseases in modern society; intervertebral disc degeneration (IVDD) has long been considered as its primary cause. However, the mechanism of intervertebral disc degeneration is still unclear. The aim of the study is to examine the components and structures of proteoglycan and collagen in cervical disc herniated nucleus pulposus (NP) using a validated and convenient Raman spectra technique and histological methods to further elucidate the mechanism of IVDD at the microscopic level. METHODS Our study used a burgeoning technique of Raman spectroscopy combined with in vitro intervertebral disc NP to characterize the above mentioned research purposes. Firstly, we collected cervical disc NP samples and imaging data by certain inclusion and exclusion criteria. Then, we graded the NP of the responsible segment according to the patient's preoperative cervical magnetic resonance imaging (MRI) T2-weighted images by Pfirrmann grading criteria while measuring the T2 signal intensity value of NP. In addition, the structure of the NP samples was evaluated by histological staining (H&E staining and Safranin-O staining). Finally, the samples were scanned and analyzed by Raman spectroscopy. RESULTS A total of 28 NP tissues from 26 patients (two of these patients were cases that involved two segments) with CDH were included in this study. According to the Raman spectroscopy scan, the relative content of proteoglycans which is characterized by the ratio of the two peaks (I 1,064/ I 1,004) in the NP showed a significantly negative correlation with Pfirrmann grade (P < 0.001), while the collagen content and the NP intensity value showed a positive correlation (P < 0.001). For the microstructural characterization of collagen, we found that it may have an essential role in the degenerative process of the intervertebral disc. Moreover, histological staining (H&E staining and Safranin-O staining) showed the general structure of the NP and the distribution of macromolecules. CONCLUSION The present study demonstrated the possibility of characterizing the macromolecular substances inside the cervical disc NP tissue by Raman spectroscopy. It also confirmed that macromolecular substances such as proteoglycans and collagen have some degree of alteration in content and structure during degeneration, which has a further positive significance for the elucidation of CDH's mechanism.
Collapse
Affiliation(s)
- Zhiqi Wang
- Department of Orthopedic, Tianjin First Central Hospital, Tianjin, China
| | - Tao Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xuehui Wang
- Department of Orthopedic and Joint Sports Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Hui Zhang
- Department of Orthopedic, Tianjin First Central Hospital, Tianjin, China
| | - Zhongyu Gao
- Department of Orthopedic, Tianjin First Central Hospital, Tianjin, China
| | - Qiang Zhou
- Department of Orthopedic, Tianjin First Central Hospital, Tianjin, China
| | - Erke Gao
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- Department of Orthopedic, Tianjin First Central Hospital, Tianjin, China
- *Correspondence: Tao Zhang, ; Zhaoyang Li,
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- *Correspondence: Tao Zhang, ; Zhaoyang Li,
| |
Collapse
|
90
|
Current Status of the Instructional Cues Provided by Notochordal Cells in Novel Disc Repair Strategies. Int J Mol Sci 2021; 23:ijms23010427. [PMID: 35008853 PMCID: PMC8745519 DOI: 10.3390/ijms23010427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023] Open
Abstract
Numerous publications over the past 22 years, beginning with a seminal paper by Aguiar et al., have demonstrated the ability of notochordal cell-secreted factors to confer anabolic effects upon intervertebral disc (IVD) cells. Since this seminal paper, other scientific publications have demonstrated that notochordal cells secrete soluble factors that can induce anti-inflammatory, pro-anabolic and anti-cell death effects upon IVD nucleus pulposus (NP) cells in vitro and in vivo, direct human bone marrow-derived mesenchymal stem cells toward an IVD NP-like phenotype and repel neurite ingrowth. More recently these factors have been characterized, identified, and used therapeutically to induce repair upon injured IVDs in small and large pre-clinical animal models. Further, notochordal cell-rich IVD NPs maintain a stable, healthy extracellular matrix whereas notochordal cell-deficient IVDs result in a biomechanically and extracellular matrix defective phenotype. Collectively this accumulating body of evidence indicates that the notochordal cell, the cellular originator of the intervertebral disc holds vital instructional cues to establish, maintain and possibly regenerate the intervertebral disc.
Collapse
|
91
|
Croft AS, Roth Y, Oswald KAC, Ćorluka S, Bermudez-Lekerika P, Gantenbein B. In Situ Cell Signalling of the Hippo-YAP/TAZ Pathway in Reaction to Complex Dynamic Loading in an Intervertebral Disc Organ Culture. Int J Mol Sci 2021; 22:ijms222413641. [PMID: 34948441 PMCID: PMC8707270 DOI: 10.3390/ijms222413641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, a dysregulation of the Hippo-YAP/TAZ pathway has been correlated with intervertebral disc (IVD) degeneration (IDD), as it plays a key role in cell survival, tissue regeneration, and mechanical stress. We aimed to investigate the influence of different mechanical loading regimes, i.e., under compression and torsion, on the induction and progression of IDD and its association with the Hippo-YAP/TAZ pathway. Therefore, bovine IVDs were assigned to one of four different static or complex dynamic loading regimes: (i) static, (ii) "low-stress", (iii) "intermediate-stress", and (iv) "high-stress" regime using a bioreactor. After one week of loading, a significant loss of relative IVD height was observed in the intermediate- and high-stress regimes. Furthermore, the high-stress regime showed a significantly lower cell viability and a significant decrease in glycosaminoglycan content in the tissue. Finally, the mechanosensitive gene CILP was significantly downregulated overall, and the Hippo-pathway gene MST1 was significantly upregulated in the high-stress regime. This study demonstrates that excessive torsion combined with compression leads to key features of IDD. However, the results indicated no clear correlation between the degree of IDD and a subsequent inactivation of the Hippo-YAP/TAZ pathway as a means of regenerating the IVD.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
| | - Ysaline Roth
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
| | - Katharina A. C. Oswald
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Slavko Ćorluka
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-88-15
| |
Collapse
|
92
|
Cui H, Du X, Liu C, Chen S, Cui H, Liu H, Wang J, Zheng Z. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte 2021; 10:201-215. [PMID: 33853482 PMCID: PMC8057091 DOI: 10.1080/21623945.2021.1910155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visfatin reportedly induces the expression of proinflammatory cytokines. Severe grades of intervertebral disc disease (IVDD) exhibit higher expression of visfatin than mild ones. However, the direct relationship between visfatin and IVDD remains to be elucidated. This study aimed to clarify whether stimulation of visfatin in IVDD is mediated by IL-6. To investigate the role of visfatin in IVDD, a rat model of anterior disc puncture was established by injecting visfatin or PBS using a 27-gauge needle. Results revealed an obvious aggravation of the histological morphology of IVDD in the visfatin group. On treating human NP cellswith visfatin, the levels of collagenII and aggrecan decreased and those of matrix metallopeptidase 3 and IL-6 gradually increased. A rapid increase in ERK, JNK, and p38 phosphorylation was also noted after visfatin treatment. Compared to those treated with visfatin alone, NP cells pretreated with ERK1/2, JNK, and p38 inhibitors or siRNA targeting p38, ERK, and JNK exhibited a significant suppression of IL-6. Our data represent the first evidence that visfatin promotes IL-6 expression in NP cells via the JNK/ERK/p38-MAPK signalling pathways. Further, our findings suggest epidural fat and visfatin as potential therapeutic targets for controlling IVDD-associated inflammation.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xianfa Du
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shunlun Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haowen Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Pain Research Center, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
93
|
Chen J, Zhu H, Zhu Y, Zhao C, Wang S, Zheng Y, Xie Z, Jin Y, Song H, Yang L, Zhang J, Dai J, Hu Z, Wang H. Injectable self-healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration. Bioact Mater 2021; 9:29-43. [PMID: 34820553 PMCID: PMC8586437 DOI: 10.1016/j.bioactmat.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory responses of nucleus pulposus (NP) can induce imbalanced anabolism and catabolism of extracellular matrix, and the cytosolic dsDNA accumulation and STING–NF–κB pathway activation found in NP inflammation are considered as fairly important cause of intervertebral disc (IVD) degeneration. Herein, we constructed a siSTING delivery hydrogel of aldehyde hyaluronic acid (HA-CHO) and poly(amidoamine) PAMAM/siRNA complex to intervene the abnormal STING signal for IVD degeneration treatment, where the formation of dynamic Schiff base bonds in the system (siSTING@HPgel) was able to overcome the shortcomings such as low cellular uptake, short half-life, and rapid degradation of siRNA-based strategy. PAMAM not only formed complexes with siRNA to promote siRNA transfection, but also served as dynamic crosslinker to construct hydrogel, and the injectable and self-healing hydrogel efficiently and steadily silenced STING expression in NP cells. Finally, the siSTING@HPgel significantly eased IVD inflammation and slowed IVD degeneration by prolonging STING knockdown in puncture-induced IVD degeneration rat model, revealing that STING pathway was a therapeutic target for IVD degeneration and such novel hydrogel had great potential for being applied to many other diseases for gene delivery. STING-NF-κB pathway activation was identified an important cause of intervertebral disc degeneration. PAMAM was employed as both linker and gene vector for siRNA delivery. The injectable self-healing hydrogel could significantly ease the IVD inflammation and degeneration by prolonging STING knockdown. This novel hydrogel system opened new ways of thinking and had great potential for gene delivery.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Haifeng Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Chenchen Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Yixin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Yang Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, East Qing Chun Road, Hangzhou, 310016, PR China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| |
Collapse
|
94
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
95
|
He R, Wang Z, Cui M, Liu S, Wu W, Chen M, Wu Y, Qu Y, Lin H, Chen S, Wang B, Shao Z. HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy. Autophagy 2021; 17:3338-3360. [PMID: 33455530 PMCID: PMC8632345 DOI: 10.1080/15548627.2021.1872227] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary pathological mechanism that underlies low back pain. Overloading-induced cell death, especially endogenous stem cell death, is the leading factor that undermines intrinsic repair and aggravates IDD. Previous research has separately studied the effect of oxygen concentration and mechanical loading in IDD. However, how these two factors synergistically influence endogenous repair remains unclear. Therefore, we established in vitro and in vivo models to study the mechanisms by which hypoxia interacted with overloading-induced cell death of the nucleus pulposus derived stem cells (NPSCs). We found the content of HIF1A (hypoxia inducible factor 1 subunit alpha) and the number of NPSCs decreased with disc degeneration in both rats and human discs. Hence, we isolated this subpopulation from rat discs and treated them simultaneously with hypoxia and excessive mechanical stress. Our results demonstrated that hypoxia exerted protective effect on NPSCs under compression, partially through elevating macroautophagy/autophagy. Proteomics and knockdown experiments further revealed HIF1A-BNIP3-ATG7 axis mediated the increase in autophagy flux, in which HMOX1 and SLC2A1 were also involved. Moreover, HIF1A-overexpressing NPSCs exhibited stronger resistance to over-loading induced apoptosis in vitro. They also showed higher survival rates, along with elevated autophagy after being intra-disc transplanted into over-loaded discs. Jointly, both in vivo and in vitro experiments proved the anti-apoptotic effect of HIF1A on NPSCs under the excessive mechanical loading, suggesting that restoring hypoxia and manipulating autophagy is crucial to maintain the intrinsic repair and to retard disc degeneration.Abbreviations: 3-MA: 3-methyladenine; ACAN: aggrecan; ATG7: autophagy related 7; BafA1: bafilomycin A1; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CASP3: caspase 3; CCK8: cell counting kit-8; CHT: chetomin; CMP: compression; CoCl2: cobalt chloride; COL2A1: collagen type II alpha 1 chain; Ctrl: control; DAPI: 4,6-diamidino-2-phenylindole; DEP: differentially expressed protein; DiR: 1,1-dioctadecyl-3,3,3,3-tetramethyl indotricarbocyanine; ECM: extracellular matrix; FCM: flow cytometry; GD2: disialoganglioside GD 2; GFP: green fluorescent protein; GO: gene ontology; GSEA: gene set enrichment analysis; H&E: hematoxylin-eosin; HIF1A: hypoxia inducible factor 1 subunit alpha; HK2: hexokinase 2; HMOX1: heme oxygenase 1; HX: hypoxia mimicry; IDD: intervertebral disc degeneration; IF: immunofluorescence; IHC: immunohistochemistry; IVD: intervertebral disc; KEGG: kyoto encyclopedia of genes and genomes; LBP: low back pain; Lv: lentivirus; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MMP: mitochondrial membrane potential; NC: negative control; NIR: near-infrared; NP: nucleus pulposus; NPC: nucleus pulposus cell; NPSC: nucleus pulposus derived stem cell; NX: normoxia; PPI: protein-protein interactions; RFP: red fluorescent protein; SLC2A1/GLUT1: solute carrier family 2 member 1; SQSTM1/p62: sequestosome 1; TEK/TIE2: TEK receptor tyrosine kinase; TEM: transmission electron microscopy; TUBB: tubulin beta class I.
Collapse
Affiliation(s)
- Ruijun He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhe Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cui
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mo Chen
- Department of Health Management, School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongchao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
96
|
Xu Z, Zheng J, Zhang Y, Wu H, Sun B, Zhang K, Wang J, Zang F, Zhang X, Guo L, Wu X. Increased Expression of Integrin Alpha 6 in Nucleus Pulposus Cells in Response to High Oxygen Tension Protects against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8632823. [PMID: 34707783 PMCID: PMC8545551 DOI: 10.1155/2021/8632823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
The destruction of the low oxygen microenvironment in nucleus pulposus (NP) cells played a critical role in the pathogenesis of intervertebral disc degeneration (IVDD). The purpose of this study was to determine the potential role of integrin alpha 6 (ITG α6) in NP cells in response to high oxygen tension (HOT) in IVDD. Immunofluorescence staining and western blot analysis showed that the levels of ITG α6 expression were increased in the NP tissue from IVDD patients and the IVDD rat model with mild degeneration, which were reduced as the degree of degeneration increases in severity. In NP cells, the treatment of HOT resulted in upregulation of ITG α6 expression, which could be alleviated by blocking the PI3K/AKT signaling pathway. Further studies found that ITG α6 could protect NP cells against HOT-induced apoptosis and oxidative stress and protect NP cells from HOT-inhibited ECM protein synthesis. Upregulation of ITG α6 expression by HOT contributed to maintaining NP tissue homeostasis through the interaction with hypoxia-inducible factor-1α (HIF-1α). Furthermore, silencing of ITG α6 in vivo could obviously accelerate puncture-induced IVDD. Taken together, these results revealed that the increase of ITG α6 expression by HOT in NP cells might be a protective factor in IVD degeneration as well as restore NP cell function.
Collapse
Affiliation(s)
- Zeng Xu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Jiancheng Zheng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ying Zhang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Huiqiao Wu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Bin Sun
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Ke Zhang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Jianxi Wang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Fazhi Zang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Xingkai Zhang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xiaodong Wu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
97
|
Cui S, Zhou Z, Chen X, Wei F, Richards RG, Alini M, Grad S, Li Z. Transcriptional profiling of intervertebral disc in a post-traumatic early degeneration organ culture model. JOR Spine 2021; 4:e1146. [PMID: 34611583 PMCID: PMC8479529 DOI: 10.1002/jsp2.1146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The goal of this study is to characterize transcriptome changes and gene regulation networks in an organ culture system that mimics early post-traumatic intervertebral disc (IVD) degeneration. METHODS To mimic a traumatic insult, bovine caudal IVDs underwent one strike loading. The control group was cultured under physiological loading. At 24 hours after one strike or physiological loading, RNA was extracted from nucleus pulposus (NP) and annulus fibrosus (AF) tissue. High throughput next generation RNA sequencing was performed to identify differentially expressed genes (DEGs) between the one strike loading group and the control group. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes analyses were performed to analyze DEGs and pathways. Protein-protein interaction (PPI) network was analyzed with cytoscape software. DEGs were verified using qRT-PCR. Degenerated human IVD tissue was collected for immunofluorescence staining to verify the expression of DEGs in human disc tissue. RESULTS One strike loading resulted in significant gene expression changes compared with physiological loading. In total 253 DEGs were found in NP tissue and 208 DEGs in AF tissue. Many of the highly dysregulated genes have known functions in disc degeneration and extracellular matrix (ECM) homeostasis. ACTB, ACTG, PFN1, MYL12B in NP tissue and FGF1, SPP1 in AF tissue were verified by qRT-PCR and immunofluorescence imaging. The identified DEGs were involved in focal adhesion, ECM-receptor interaction, PI3K-AKT, and cytokine-cytokine receptor interaction pathways. Three clusters of PPI networks were identified. GO enrichment revealed that these DEGs were mainly involved in inflammatory response, the ECM and growth factor signaling and protein folding biological process. CONCLUSION Our study revealed different DEGs, pathways, biological process and PPI networks involved in post-traumatic IVD degeneration. These findings will advance the understanding of the pathogenesis of IVD degeneration, and help to identify novel biomarkers for the disease diagnosis.
Collapse
Affiliation(s)
- Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyu Zhou
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Xu Chen
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Fuxin Wei
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - R. Geoff Richards
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | | | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
98
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
99
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
100
|
Xia B, Xing J, Ai Q, Li H, Xu M, Hou T. [Expression profile of intervertebral disc degeneration-specific genes: a transcriptome sequencing-based analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:883-890. [PMID: 34238741 DOI: 10.12122/j.issn.1673-4254.2021.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To identify new therapeutic targets for intervertebral disc degeneration (IDD) by analyzing gene variations in IDD. OBJECTIVE We analyzed surgical samples of intervertebral disc from 4 patients with IDD and 3 patients with non-IDD using RNA sequencing (RNA-seq) technology to identify significant differentially expressed genes (DEGs) in IDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were utilized for gene enrichment studies to acquire the key genes and signal pathways during IDD progression. The differential expressions of the identified genes in IDD were validated in clinical samples with qRT-PCR. OBJECTIVE The transcriptome profile revealed 512 significant DEGs, which were enriched in terms of keratinization, extracellular matrix (ECM) components, growth factor binding, and inflammatory chemotaxis in GO analysis. The top 10 terms of KEGG enrichment included amoebiasis, viral protein interaction with cytokine and cytokine receptor, ECM-receptor interaction, IL-17 signaling pathway, cytokine-cytokine receptor interaction, TNF signaling pathway, AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt signaling pathway, chemokine signaling pathway and estrogen signaling pathway. Thirteen DEGs selected as the targets for qRT-PCR validation showed significant differential expressions in IDD (P < 0.001), and their expression trends were all consistent with the results of RNA-seq. Among these genes, 10 genes showed significant intergroup fold change (Log2FoldChange>1). OBJECTIVE ECM, growth factors, collagen components, inflammatory chemokines and such signal pathways as TNF-α and PI3K-Akt all have important contributions to IDD progression and may thus serve as new therapeutic targets for treatment of IDD.
Collapse
Affiliation(s)
- B Xia
- Department of Orthopedics, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - J Xing
- Department of Orthopedics, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Q Ai
- Department of Orthopedics, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - H Li
- Department of Orthopedics, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - M Xu
- Department of Orthopedics, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - T Hou
- Department of Orthopedics, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|