51
|
Uçan HB, Kaplan M, Salman B, Yilmaz U, Mentes BB, Aybay C. Effect of oophorectomy and exogenous estrogen replacement on liver injury in experimental obstructive jaundice. World J Gastroenterol 2008; 14:2818-24. [PMID: 18473404 PMCID: PMC2710721 DOI: 10.3748/wjg.14.2818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of estrogen on liver injury in an experimental obstructive jaundice model.
METHODS: Three groups of female rats were constituted; group 1 was oophorectomized and given E2 (n = 14), group 2 was oophorectomized and given placebo (n = 14), and group 3 was sham operated (n = 14). Fourteen days following constitution of bile duct ligation, all groups were compared in terms of serum tests, histopathologic parameters, and tissue levels of IFN-γ and IL-6.
RESULTS: The parameters representing both the injury and/or the reactive response and healing were more pronounced in groups 1 and 2 (χ2 = 17.2, χ2 = 10.20; χ2 = 12.4, P < 0.05). In the sham operated or E2 administered groups significantly lower tissue levels of IFN-γ and higher IL-6 levels were found. In contrast, high IFN-γ and low IL-6 tissue levels were found in the oophorectomized and placebo group (P < 0.001). Kupffer cell alterations were observed to be more pronounced in the groups 1 and 3 (χ2 = 6.13, P < 0.05).
CONCLUSION: Our study indicates that E2 impaired liver functions, accelerated both the liver damage and healing. In the conditions of bile duct obstruction, estrogen significantly changed the cytokine milieu in the liver.
Collapse
|
52
|
Expression of an estrogen receptor agonist in differentiating osteoblast cultures. Proc Natl Acad Sci U S A 2008; 105:7022-7. [PMID: 18474857 DOI: 10.1073/pnas.0800085105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoblasts respond in direct and indirect ways to estrogens, and age-dependent changes in hormone levels and bone health can be limited by focused hormone replacement therapy. In this study, we report the release and isolation of an estrogen receptor agonist from osteoblast cultures. This entity reprises many aspects of estradiol activity in isolated osteoblasts, but differs from authentic estradiol by several biochemical and physical criteria. At levels that occur in conditioned medium from differentiating osteoblast cultures, the agonist directly drives gene expression through estrogen-sensitive response elements, activates the obligate osteoblast transcription factor Runx2, and potently enhances Smad-dependent gene expression in response to TGF-beta, but exhibits relatively lesser suppressive effects on gene expression through C/EBP and AP-1-binding protein transcription factors. Estrogen receptor agonist activity is resistant to heating at 100 degrees C and separable from the bulk of the remaining alcohol- and hexane-soluble molecules by C18 chromatography. MS and molecular fragmentation analyses predict a M(r) of 415.2 to 437.2. Therefore, in addition to earlier studies showing that osteoblasts readily respond to and metabolize various sex steroid-like substrates, we find that they also generate a potent estrogen receptor agonist during differentiation in vitro. Changes in the availability of a molecule like this within bone may relate to differences in skeletal integrity with aging or metabolic disease.
Collapse
|
53
|
Li AA, Baum MJ, McIntosh LJ, Day M, Liu F, Gray LE. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system. Neurotoxicology 2008; 29:504-19. [PMID: 18502513 DOI: 10.1016/j.neuro.2008.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 11/19/2022]
Abstract
There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. These different research goals have in common the need to develop reliable animal models to study the effect of hormones on brain function and behaviors that are predictive of effects in humans. This paper summarizes presentations given at the June 2007 11th International Neurotoxicology Association (INA-11) meeting, which addressed these issues. Using a few examples from the bisphenol A neurobehavioral literature for illustrative purposes, Dr. Abby Li discussed some of the methodological issues that should be considered in designing developmental neurobehavioral animal studies so they can be useful for human health risk assessment. Dr. Earl Gray provided an overview of research on the role of androgens and estrogens in the development of the brain and peripheral nervous system and behavior. Based on this scientific foundation, Dr. Gray proposed a rational framework for the study of the effects of developmental exposures to chemicals on the organization of the sexually dimorphic nervous system, including specific recommendations for experimental design and statistical analyses that can increase the utility of the research for regulatory decision-making. Dr. Michael Baum and by Dr. Feng Liu presented basic research on the hormonal mechanisms underlying sexual preference and estrogenic effects of cognition, respectively. These behaviors are among those studied in adult animals following in utero exposure to hormonally active chemicals, to evaluate their potential effects on sexual differentiation of the brain. Understanding of the hormonal mechanisms of these behaviors, and of relevance to humans, is needed to develop biologically plausible hypotheses regarding the potential effects of hormonally active chemicals in humans.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Health Sciences, San Francisco, CA 94114, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 2008; 70:165-90. [PMID: 18271749 DOI: 10.1146/annurev.physiol.70.113006.100518] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steroids play an important role in the regulation of normal physiology and the treatment of disease. Steroid receptors have classically been described as ligand-activated transcription factors mediating long-term genomic effects in hormonally regulated tissues. It is now clear that steroids also mediate rapid signaling events traditionally associated with growth factor receptors and G protein-coupled receptors. Although evidence suggests that the classical steroid receptors are capable of mediating many of these events, more recent discoveries reveal the existence of transmembrane receptors capable of responding to steroids with cellular activation. One such receptor, GPR30, is a member of the G protein-coupled receptor superfamily and mediates estrogen-dependent kinase activation as well as transcriptional responses. In this review, we provide an overview of the evidence for the cellular and physiological actions of GPR30 in estrogen-dependent processes and discuss the relationship of GPR30 with classical estrogen receptors.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Chen H, Hewison M, Adams JS. Control of estradiol-directed gene transactivation by an intracellular estrogen-binding protein and an estrogen response element-binding protein. Mol Endocrinol 2007; 22:559-69. [PMID: 18096692 DOI: 10.1210/me.2007-0297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
New World primates exhibit a form of resistance to estrogens that is associated with overexpression of an estrogen response element (ERE)-binding protein (ERE-BP) and an intracellular estradiol (E(2))-binding protein (IEBP). Both proteins suppress E(2)-mediated transcription when overexpressed in estrogen receptor-alpha (ERalpha)-positive cells. Although ERE-BP acts as a competitor for ERE occupancy by liganded ERalpha, the function of IEBP and its human homolog, heat-shock protein 27 (hsp27), is less clear. In data presented here, we have used E(2)-responsive human MCF-7 breast cancer cells to show that IEBP/hsp27 can regulate estrogen signaling as a cytosolic decoy for E(2) and as a protein chaperone for ERalpha. Furthermore, co-immunoprecipitation, colocalization, yeast two-hybrid, and glutathione S-transferase pull-down analyses indicate that IEBP/hsp27 also interacts with ERE-BP to form a dynamic complex that appears to cycle between the cytoplasm and nucleus during normal estrogen signaling. Overexpression of either IEBP/hsp27 or ERE-BP in MCF-7 cells resulted in abnormal subcellular distribution of the IEBP/hsp27 and ERE-BP, with concomitant dysregulation of ERE occupancy as determined by chromatin immunoprecipitation. We hypothesize that IEBP/hsp27 and ERE-BP not only cause hormone resistance in New World primates but are also crucial to normal estrogen signaling in human cells. This appears to involve a physical association between the two proteins to form a complex that is able to interact with both E(2) and ERalpha in cytosolic and nuclear compartments.
Collapse
Affiliation(s)
- Hong Chen
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
56
|
Lanvin O, Bianco S, Kersual N, Chalbos D, Vanacker JM. Potentiation of ICI182,780 (Fulvestrant)-induced estrogen receptor-alpha degradation by the estrogen receptor-related receptor-alpha inverse agonist XCT790. J Biol Chem 2007; 282:28328-28334. [PMID: 17631492 DOI: 10.1074/jbc.m704295200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ICI182,780 (Fulvestrant) is a pure anti-estrogen used in adjuvant therapies of breast cancer. This compound not only inhibits the transcriptional activities of the estrogen receptor-alpha (ER alpha) but also induces its proteasome-dependent degradation. The latter activity is believed to be required for the antiproliferative effects of ICI182,780. Estrogen receptor-related receptor-alpha (ERR alpha) is an orphan member of the nuclear receptor superfamily that is expressed in a wide range of tissues including breast tumors, in which its high expression correlates with poor prognosis. Although not regulated by any natural ligand, ERR alpha can be deactivated by the synthetic molecule XCT790. Here we demonstrate that this compound also induces a proteasome degradation of ERR alpha. We also show that although it does not act directly on the steady-state level of ER alpha, XCT790 potentiates the ICI182,780-induced ER alpha degradation. We suggest that treatment with XCT790 could thus enhance the efficacy of ICI182,780 in ER alpha-dependent pathologies such as breast cancer.
Collapse
Affiliation(s)
- Olivia Lanvin
- Institut de Génomique Fontionnelle, Université de Lyon, F-69003 Lyon, France; Institut National de la Recherche Agronomique (INRA), CNRS, Université Lyon 1, Ecole Normale Supérieure, F-69364 Lyon, France
| | - Stéphanie Bianco
- Institut de Génomique Fontionnelle, Université de Lyon, F-69003 Lyon, France; Institut National de la Recherche Agronomique (INRA), CNRS, Université Lyon 1, Ecole Normale Supérieure, F-69364 Lyon, France
| | | | | | - Jean-Marc Vanacker
- Institut de Génomique Fontionnelle, Université de Lyon, F-69003 Lyon, France; Institut National de la Recherche Agronomique (INRA), CNRS, Université Lyon 1, Ecole Normale Supérieure, F-69364 Lyon, France.
| |
Collapse
|
57
|
Arreguin-Arevalo JA, Davis TL, Nett TM. Differential Modulation of Gonadotropin Secretion by Selective Estrogen Receptor 1 and Estrogen Receptor 2 Agonists in Ovariectomized Ewes1. Biol Reprod 2007; 77:320-8. [PMID: 17429013 DOI: 10.1095/biolreprod.107.060046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objectives of this study were to determine whether activation of estrogen receptor 1 (ESR1; also known as ERalpha), or estrogen receptor 2 (ESR2; also known as ERbeta), or both are required to: 1) acutely inhibit secretion of LH, 2) induce the preovulatory-like surge of LH, and 3) inhibit secretion of FSH in ovariectomized (OVX) ewes. OVX ewes (n = 6) were administered intramuscularly 25 micrograms estradiol (E2), 12 mg propylpyrazoletriol (PPT; a subtype-selective ESR1 agonist), 21 mg diaprylpropionitrile (DPN; a subtype-selective ESR2 agonist), or PPT + DPN. Like E2, administration of PPT, DPN, or combination of the two rapidly decreased (P < 0.05) secretion of LH. Each agonist induced a gradual, prolonged rise in secretion of LH after the initial inhibition, but neither agonist alone nor the combined agonists was able to induce a "normal" preovulatory-like surge of LH similar to that induced by E2. Compared with E2-treated ewes, the beginning of the increase in secretion of LH occurred earlier (P < 0.01) in DPN-treated ewes, later (P < 0.05) in PPT-treated ewes, and at a similar interval in ewes receiving the combined agonist treatment. Like E2, PPT decreased (P < 0.05) secretion of FSH, but the duration of suppression was much longer in PPT-treated ewes. DPN did not alter secretion of FSH in this study. Modulation of the number of GnRH receptors by PPT and DPN was examined in primary cultures of ovine pituitary cells. In our hands, both PPT and DPN increased the number of GnRH receptors, but the dose of DPN required to stimulate synthesis of GnRH receptors was 10 times higher than that of PPT. We conclude that in OVX ewes: 1) ESR1 and ESR2 mediate the negative feedback of E2 on secretion of LH at the level of the pituitary gland, 2) ESR1 and ESR2 do not synergize or antagonize the effects of each other; however, they do interact to synchronize the beginning of the stimulatory effect of E2 on secretion of LH, 3) ESR1 and ESR2 may mediate at least partially the positive feedback of E2 on LH secretion by increasing the number of GnRH receptors, and 4) only ESR1 appears to be involved in the negative feedback of E2 on secretion of FSH.
Collapse
|
58
|
Bai C, Flores O, Schmidt A. Opportunities for development of novel therapies targeting steroid hormone receptors. Expert Opin Drug Discov 2007; 2:725-37. [DOI: 10.1517/17460441.2.5.725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
59
|
Shur I, Solomon R, Benayahu D. Dynamic interactions of chromatin-related mesenchymal modulator, a chromodomain helicase-DNA-binding protein, with promoters in osteoprogenitors. Stem Cells 2007; 24:1288-93. [PMID: 16705189 DOI: 10.1634/stemcells.2005-0300] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The newly identified protein chromatin-related mesenchymal modulator (CReMM) is expressed by marrow stromal progenitors in vivo and ex vivo. CReMM belongs to a recently identified subgroup of chromodomain helicase-DNA-binding proteins composed of multiple domains including chromodomains, SNF2/ATPase, helicase-C domain, SANT, and A/T-hook-DNA binding domain. Chromatin immunoprecipitation assay was applied to follow the dynamics of CReMM binding to A/T-rich regions on promoters of genes that play a role in osteoblast maturation. CReMM interaction with BMP4 and biglycan promoters in the marrow stromal cells was challenged with transforming growth factor-beta. Treatment with 17beta-estradiol enhanced the binding to estrogen receptor and abolished binding to the prolactin receptor promoters; CReMM interaction with osteocalcin promoter was identified constantly. CReMM binding to the analyzed endogenous promoters suggests its direct role in the transcriptional program activated during osteogenic cell differentiation, which may be a useful tool for following the molecular mechanism of the "stemness" of mesenchymal cells.
Collapse
Affiliation(s)
- Irena Shur
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
60
|
Babiker FA, Lips D, Meyer R, Delvaux E, Zandberg P, Janssen B, van Eys G, Grohé C, Doevendans PA. Estrogen Receptor β Protects the Murine Heart Against Left Ventricular Hypertrophy. Arterioscler Thromb Vasc Biol 2006; 26:1524-30. [PMID: 16627800 DOI: 10.1161/01.atv.0000223344.11128.23] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Left ventricular hypertrophy (LVH) displays significant gender-based differences. 17β-estradiol (E2) plays an important role in this process because it can attenuate pressure overload hypertrophy via 2 distinct estrogen receptors (ERs): ERα and ERβ. However, which ER is critically involved in the modulation of LVH is poorly understood. We therefore used ERα-deficient (ERα
−
/
−
) and ERβ-deficient (ERβ
−
/
−
) mice to analyze the respective ER-mediated effects.
Methods and Results—
Respective ER-deficient female mice were ovariectomized and were given E2 or placebo subcutaneously using 60-day release pellets. After 2 weeks, they underwent transverse aortic constriction (TAC) or sham operation. In ERα
−
/
−
animals, TAC led to a significant increase in ventricular mass compared with sham operation. E2 treatment reduced TAC induced cardiac hypertrophy significantly in wild-type (WT) and ERα
−
/
−
mice but not in ERβ
−/−
mice. Biochemical analysis showed that E2 blocked the increased phosphorylation of p38–mitogen-activated protein kinase observed in TAC-treated ERα
−
/
−
mice. Moreover, E2 led to an increase of ventricular atrial natriuretic factor expression in WT and ERα
−
/
−
mice.
Conclusions—
These findings demonstrate that E2, through ERβ-mediated mechanisms, protects the murine heart against LVH.
Collapse
Affiliation(s)
- Fawzi A Babiker
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University Hospital Maastricht, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Endometrial cancer is the most common gynaecological cancer, and is associated with endometrial hyperplasia, unopposed oestrogen exposure and adjuvant therapy for breast cancer using selective oestrogen-receptor modulators (SERMs), particularly tamoxifen. Oestrogen and SERMs are thought to be involved in endometrial carcinogenesis through their effects on transcriptional regulation. Ultimately, oestrogen and SERMs affect the transduction of cellular signalling pathways that govern cell growth and proliferation, through downstream effectors such as PAX2 (paired box 2).
Collapse
Affiliation(s)
- Yongfeng Shang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100083, China.
| |
Collapse
|
62
|
Psarra AMG, Solakidi S, Sekeris CE. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol 2006; 246:21-33. [PMID: 16388892 DOI: 10.1016/j.mce.2005.11.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondria are key cellular organelles that regulate events related to energy production and apoptosis. These processes are modulated, in turn, by steroid and thyroid hormones in the course of their actions on metabolism, growth and development. In this context, a direct effect of these hormones on the mitochondrial-linked processes, possibly by way of cognate mitochondrial receptors, has been proposed. In this paper we review data from the literature and present new findings supporting this concept. Receptors for steroid hormones, glucocorticoids and estrogens, and for T(3), have been detected in mitochondria by immunofluorescence labeling and confocal laser microscopy, by Western blotting of mitochondrial proteins and by immunogold electron microscopy. Furthermore, the mitochondrial genome contains nucleotide sequences with high similarity to known hormone-responsive elements, which interact with the appropriate receptors to confer hormone-dependent activation of reporter genes in transfection experiments. Thus, thyroid hormone stimulates mitochondrial transcription mediated by the cognate receptor when added to an in organello mitochondrial system, capable of faithful transcription.
Collapse
Affiliation(s)
- A-M G Psarra
- Foundation for Biomedical Research of the Academy of Athens, Center for Basic Research, Athens, Greece
| | | | | |
Collapse
|
63
|
Krieger N, Löwy I, Aronowitz R, Bigby J, Dickersin K, Garner E, Gaudillière JP, Hinestrosa C, Hubbard R, Johnson PA, Missmer SA, Norsigian J, Pearson C, Rosenberg CE, Rosenberg L, Rosenkrantz BG, Seaman B, Sonnenschein C, Soto AM, Thornton J, Weisz G. Hormone replacement therapy, cancer, controversies, and women's health: historical, epidemiological, biological, clinical, and advocacy perspectives. J Epidemiol Community Health 2006; 59:740-8. [PMID: 16100311 PMCID: PMC1733142 DOI: 10.1136/jech.2005.033316] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Routine acceptance of use of hormone replacement therapy (HRT) was shattered in 2002 when results of the largest HRT randomised clinical trial, the women's health initiative, indicated that long term use of oestrogen plus progestin HRT not only was associated with increased risk of cancer but, contrary to expectations, did not decrease, and may have increased, risk of cardiovascular disease. In June 2004 a group of historians, epidemiologists, biologists, clinicians, and women's health advocates met to discuss the scientific and social context of and response to these findings. It was found that understanding the evolving and contending knowledge on hormones and health requires: (1) considering its societal context, including the impact of the pharmaceutical industry, the biomedical emphasis on individualised risk and preventive medicine, and the gendering of hormones; and (2) asking why, for four decades, since the mid-1960s, were millions of women prescribed powerful pharmacological agents already demonstrated, three decades earlier, to be carcinogenic? Answering this question requires engaging with core issues of accountability, complexity, fear of mortality, and the conduct of socially responsible science.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Society, Human Development and Health, Harvard School of Public Health, Kresge 717, 677 Huntington Avenue, Boston, MA 02130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Long X, Nephew KP. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 2006; 281:9607-15. [PMID: 16459337 DOI: 10.1074/jbc.m510809200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The antiestrogen fulvestrant (ICI 182,780) causes immobilization of estrogen receptor-alpha (ERalpha) in the nuclear matrix accompanied by rapid degradation by the ubiquitin-proteasome pathway. In this study we tested the hypothesis that fulvestrant induces specific nuclear matrix protein-ERalpha interactions that mediate receptor immobilization and turnover. A glutathione S-transferase (GST)-ERalpha-activating function-2 (AF2) fusion protein was used to isolate and purify receptor-interacting proteins in cell lysates prepared from human MCF-7 breast cancer cells. After SDS-PAGE and gel excision, mass spectrometry was used to identify two major ERalpha-interacting proteins, cytokeratins 8 and 18 (CK8.CK18). We determined, using ERalpha-activating function-2 mutants, that helix 12 (H12) of ERalpha, but not its F domain, is essential for fulvestrant-induced ERalpha-CK8 and CK18 interactions. To investigate the in vivo role of H12 in fulvestrant-induced ERalpha immobilization/degradation, transient transfection assays were performed using wild type ERalpha,ERalpha with a mutated H12, and ERalpha with a deleted F domain. Of those, only the ERalpha H12 mutant was resistant to fulvestrant-induced immobilization to the nuclear matrix and protein degradation. Fulvestrant treatment caused ERalpha degradation in CK8.CK18-positive human breast cancer cells, and CK8 and CK18 depletion by small interference RNAs partially blocked fulvestrant-induced receptor degradation. Furthermore, fulvestrant-induced ERalpha degradation was not observed in CK8 or CK18-negative cancer cells, suggesting that these two intermediate filament proteins are necessary for fulvestrant-induced receptor turnover. Using an ERalpha-green fluorescent protein construct in fluorescence microscopy revealed that fulvestrant-induced cytoplasmic localization of newly synthesized receptor is mediated by its interaction with CK8 and CK18. In summary, this study provides the first direct evidence linking ERalpha immobilization and degradation to the nuclear matrix. We suggest that fulvestrant induces ERalpha to interact with CK8 and CK18, drawing the receptor into close proximity to nuclear matrix-associated proteasomes that facilitate ERalpha turnover.
Collapse
Affiliation(s)
- Xinghua Long
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
65
|
Milam SB. Pathogenesis of degenerative temporomandibular joint arthritides. Odontology 2006; 93:7-15. [PMID: 16170470 DOI: 10.1007/s10266-005-0056-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/14/2005] [Indexed: 12/15/2022]
Abstract
Over the past decade, remarkable progress has been made in the study of molecular mechanisms involved in degenerative temporomandibular joint arthritides. Based on recent findings, models of degenerative temporomandibular joint disease predict that mechanical loads trigger a cascade of molecular events leading to disease in susceptible individuals. These events involve the production or release of free radicals, cytokines, fatty acid catabolites, neuropeptides, and matrix-degrading enzymes. Under normal circumstances, these molecules may be involved in the remodeling of articular tissues in response to changing functional demands. However, if functional demands exceed the adaptive capacity of the temporomandibular joint or if the affected individual is susceptible to maladaptive responses, then a disease state will ensue. An individual's susceptibility to degenerative temporomandibular joint disease may be determined by several factors, including genetic backdrop, sex, age, and nutritional status. It is hoped that, by furthering our understanding of the molecular events that underlie degenerative temporomandibular joint diseases, improved diagnostics and effective therapies for these debilitating conditions will be developed.
Collapse
Affiliation(s)
- Stephen B Milam
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
66
|
Beleza-Meireles A, Omrani D, Kockum I, Frisén L, Lagerstedt K, Nordenskjöld A. Polymorphisms of estrogen receptor beta gene are associated with hypospadias. J Endocrinol Invest 2006; 29:5-10. [PMID: 16553027 DOI: 10.1007/bf03349170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Hypospadias is a common male congenital urethral malformation, defined as the displacement of the urethral meatus ventrally from the tip of the glans penis. The importance of androgen receptor in male external genitalia development has been well recognized. Recently, the presence of active estrogen receptors (ER) in the developing male external genitalia has also been demonstrated. There are two isoforms of the human estrogen receptor, ESR1 and ESR2, which occur, with distinct tissue and cell patterns of expression. We hypothesized that modifications in these nuclear receptors' genes could lead to hypospadias. MATERIALS AND METHODS We screened 60 boys with hypospadias for mutations in the coding regions of ESR1 and ESR2 genes, by denaturing high-performance liquid chromatography and automated sequence analysis. We also genotyped the CA repeat polymorphism in ESR2 and the TA repeat polymorphism in ESR1. RESULTS The CA repeat polymorphism in ESR2 is prolonged in hypospadias patients compared to controls (p < 0.05). Prolongation of this CA repeat polymorphism has previously been associated with lower levels of testosterone. Six patients presented the genetic variant 2681-4A > G (rs944050) in the heterozygous form in ESR2, which was a significantly higher frequency than in the control population (p < 0.05). One of these patients also presented a 266_267insC in exon 1 of ESR2, which is also a known single nucleotide polymorphism (SNP; rs3832949). In ESR1, no significant gene alteration was found to be associated with hypospadias. CONCLUSIONS Our results suggest that variations in the ESR2 might influence susceptibility to hypospadias.
Collapse
Affiliation(s)
- A Beleza-Meireles
- Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
67
|
Schmitt PM, Gohil K, Kaufman MP. Spinal estrogen attenuates the exercise pressor reflex but has little effect on the expression of genes regulating neurotransmitters in the dorsal root ganglia. J Appl Physiol (1985) 2005; 100:958-64. [PMID: 16306253 DOI: 10.1152/japplphysiol.01098.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, our laboratory showed that estrogen, topically applied to the spinal cord, attenuated the exercise pressor reflex in female cats (Schmitt PM and Kaufman MP. J Appl Physiol 95: 1418-1424, 2003; 98: 633-639, 2005). The attenuation was gender specific and was in part opioid dependent. Our finding that the mu- and delta-opioid antagonist naloxone was only able to partially restore estrogen's attenuating effect on the pressor response to static contraction suggested that estrogen affected an additional pathway, involving the dorsal root ganglion (DRG). Estrogen has been described to stimulate transcription within 10 min of its application to the DRG, raising the possibility that rapid genomic effects on neurotransmitter production may have contributed to estrogen's effect on the exercise pressor reflex. This prompted us to test the hypothesis that estrogen modulated the pressor response to static contraction by influencing gene expression of the neurotransmitters released by the thin-fiber muscle afferents that evoke the exercise pressor reflex. We confirmed in decerebrated female rats that topical application of estrogen (0.01 microg/ml) to the lumbosacral spinal cord attenuated the pressor response to static muscle contraction (from 10+/-3 to 1+/-1 mmHg; P<0.05). DRG were then harvested postmortem, and changes in mRNA expression were analyzed. GeneChip analysis revealed that neither estrogen nor contraction alone changed the mRNA expression of substance P, the neurokinin-1 receptor, CGRP, NGF, the P2X3 receptor, GABAA and GABAB, the 5-HT3A and 5-HT3B receptor, N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors, opioid receptors, and opioid-like receptor. Surprisingly, however, contraction stimulated the expression of neuropeptide Y in the DRG in the presence and absence of estrogen. We conclude that estrogen does not attenuate the exercise pressor reflex through a genomic effect in the DRG.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Estradiol/pharmacology
- Female
- Ganglia, Spinal/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Neuropeptide Y/genetics
- Neuropeptide Y/physiology
- Neurotransmitter Agents/genetics
- Neurotransmitter Agents/physiology
- Physical Conditioning, Animal/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Receptor, trkA/genetics
- Receptor, trkA/physiology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/physiology
- Receptors, GABA-B/genetics
- Receptors, GABA-B/physiology
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/physiology
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Spine/drug effects
- Spine/physiology
Collapse
Affiliation(s)
- Petra M Schmitt
- Div. of Cardiovascular Medicine, TB-172, One Shields Dr., Univ. of California-Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
68
|
Mabley JG, Horváth EM, Murthy KGK, Zsengellér Z, Vaslin A, Benko R, Kollai M, Szabó C. Gender differences in the endotoxin-induced inflammatory and vascular responses: potential role of poly(ADP-ribose) polymerase activation. J Pharmacol Exp Ther 2005; 315:812-20. [PMID: 16079296 DOI: 10.1124/jpet.105.090480] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of various cardiovascular and inflammatory diseases. Here, we report that the gender-specific inflammatory response is preferentially down-regulated by PARP in male animals. Female mice produce less tumor necrosis factor-alpha and macrophage inflammatory protein-1alpha in response to systemic inflammation induced by endotoxin than male mice and are resistant to endotoxin-induced mortality. Pharmacological inhibition of PARP is effective in reducing inflammatory mediator production and mortality in male, but not in female, mice. Ovariectomy partially reverses the protection seen in female mice. Endotoxin-induced PARP activation in circulating leukocytes is reduced in male, but not female, animals by pharmacological PARP inhibition, as shown by flow cytometry. Pretreatment of male mice with 17-beta-estradiol prevents endotoxin-induced hepatic injury and reduces poly(ADP-ribosyl)ation in vivo. In male, but not female, animals, endotoxin induces an impairment of the endothelium-dependent relaxant responses, which is prevented by PARP inhibition. In vitro oxidant-induced PARP activation is reduced in cultured cells placed in female rat serum compared with male serum. Estrogen does not directly inhibit the enzymatic activity of PARP in vitro. However, PARP and estrogen receptor alpha form a complex, which binds to DNA in vitro, and the DNA binding of this complex is enhanced by estrogen. Thus, estrogen may anchor PARP to estrogen receptor alpha and to the DNA and prevent its recognition of DNA strand breaks and hence its activation. In conclusion, the gender difference in the inflammatory response shows preferential modulation by PARP in male animals.
Collapse
Affiliation(s)
- Jon G Mabley
- Inotek Pharmaceuticals Corporation, Beverly, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Bianco N, Chaplin L, Montano M. Differential induction of quinone reductase by phytoestrogens and protection against oestrogen-induced DNA damage. Biochem J 2005; 385:279-87. [PMID: 15456407 PMCID: PMC1134696 DOI: 10.1042/bj20040959] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quinone reductase (QR) is a phase II detoxification enzyme that plays an important role in detoxifying quinones and may help maintain the antioxidant function of the cell. We have previously observed that QR is up-regulated by anti-oestrogens, but not oestrogen, in breast cancer cells via ERbeta (oestrogen receptor beta) transactivation. Such QR induction appears to protect breast cells against oestrogen-induced oxidative DNA damage, most likely by reducing reactive oestrogen metabolites termed catecholestrogen-quinones back to the hydroxy-catecholestrogens which may be conjugated. We now report that the phytoestrogens biochanin A, genistein and resveratrol also up-regulate QR expression in breast cancer cells. We observe that regulation can occur at the transcriptional level, preferentially through ERbeta transactivation at the electrophile response element of the QR gene promoter. By chromatin immunoprecipitation analysis, we show binding of ERalpha and ERbeta to the QR promoter, with increased ERbeta binding in the presence of resveratrol. Functional studies show that biochanin A and resveratrol, but not genistein, can significantly protect against oestrogen-induced oxidative DNA damage in breast cancer cells. Antisense technology was used to determine whether such protection was dependent on ERbeta or QR. Our results with resveratrol are consistent with our hypothesis that the protective ability of resveratrol is partially dependent on the presence of ERbeta and QR. In conclusion, we postulate that phytoestrogen-mediated induction of QR may represent an additional mechanism for breast cancer protection, although the effects may be specific for a given phytoestrogen.
Collapse
Affiliation(s)
- Nicole R. Bianco
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, U.S.A
| | - Laura J. Chaplin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, U.S.A
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
70
|
York B, Lou D, Panettieri RA, Krymskaya VP, Vanaman TC, Noonan DJ. Cross-talk between tuberin, calmodulin, and estrogen signaling pathways. FASEB J 2005; 19:1202-4. [PMID: 15851513 DOI: 10.1096/fj.04-3142fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease that occurs primarily in women and has been linked to both estrogen-mediated signaling events and mutations associated with the tuberous sclerosis complex 2 gene product tuberin. These two observations fostered the hypothesis that tuberin's impact on estrogen-mediated signaling might be through a direct interaction with the intracellular receptor for estrogen, estrogen receptor alpha (ERalpha). In the study presented here, tuberin was shown to co-immunoprecipitate and directly bind ERalpha through a domain localized within the carboxyl 73 amino acids of tuberin. This domain had previously been shown to serve as a binding domain for the intracellular calcium signaling molecule calmodulin (CaM). Competition binding studies identified a potential competitive relationship for binding of tuberin by ERalpha and CaM. Additionally, tuberin-ERalpha interactions were found to be modulated by the presence of tuberin's predominant intracellular binding partner hamartin, suggesting that tuberin-hamartin interactions negatively impact the ability of tuberin to modulate ERalpha-mediated gene transcription events. Cumulatively, data presented here support the hypothesis that interactions between tuberin, ERalpha, and CaM may play a critical role in the pathology of LAM disease.
Collapse
Affiliation(s)
- Brian York
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
71
|
García-Arencibia M, Dávila N, Campión J, Carmen Carranza M, Calle C. Identification of two functional estrogen response elements complexed with AP-1-like sites in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 2005; 94:1-14. [PMID: 15862945 DOI: 10.1016/j.jsbmb.2004.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was designed to explore the possible existence and location of estrogen response elements (EREs) in the human insulin receptor (hIR) gene promoter. Transfections of U-937 cells with the reported plasmids phIR(-1819)-GL2, phIR(-1473)-GL2, and phIR(-876)-GL2, that contain the -1819 to -271 bp fragment of the hIR promoter (wild-type promoter) and progressive 5' deletions of this promoter, revealed that while the activity of the wild-type promoter, was repressed 36% by treatment with 17beta-estradiol (E(2)), the activities of progressive 5' deletions of this promoter were reduced by 26% and by 0%, by this hormone. This suggests that E(2) needs the wild-type promoter for full transcriptional repression of this gene and it also suggests the presence of putative EREs in the region between -1819/-877 bp of this promoter. To identify these EREs we performed a computer search, using the SEQFIND programme developed in our laboratory, by homology with the consensus vit-ERE (5'GGTCAnnnTGACC3') of the Xenopus vitellogenin A(2) gene promoter. The results of our search indicated no sequence identical to this consensus ERE, and neither was any sequence found to show 9 or 8 of the 10 bases of this consensus in this promoter. Nevertheless, a putative hIR ERE1 (5'AGTGAaacTGGCC3') showing 7 bases of the consensus vit-ERE, and 10 bases of the optimal binding sequence ERE (5'CA/GGGTCAnnnTGACCT/CG3'), was identified between -1430/-1418bp of the hIR promoter. An AP-1-like site was covering the 3' half-element of this ERE; another AP-1-like site was overlapping the first AP-1-like site, and finally a third AP-1-like site was located beside to the 5' half-element. In addition, another putative hIR ERE2 (5'GCTCCtagCAAAC3') showing 5 bases of the consensus vit-ERE, and 9 bases of the optimal binding sequence ERE, was located upstream of the hIR promoter, between -1567/-1555 bp. An AP-1-like site was located downstream of the 3' half-element of this ERE, and another AP-1-like site was beside the 5' half-element. EMSA analysis using nuclear extracts of E(2)-treated cells and natural sequences, including these putative EREs, indicated that ERbeta - the only isoform expressed in U-937 cells - specifically recognized both EREs because ERbeta-DNA complexes were efficiently competed by the corresponding unlabelled probe and supershifted by the anti-human ERbeta (L-20) antibody. These data provide the first identification of EREs complexed with AP-1-like sites in the hIR promoter, which account for the transcriptional repression of the hIR gene mediated by ERbeta in U-937 cells.
Collapse
Affiliation(s)
- Moisés García-Arencibia
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
72
|
Bajpayee M, Pandey AK, Parmar D, Mathur N, Seth PK, Dhawan A. Comet assay responses in human lymphocytes are not influenced by the menstrual cycle: a study in healthy Indian females. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 565:163-72. [PMID: 15661614 DOI: 10.1016/j.mrgentox.2004.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 10/19/2004] [Accepted: 10/21/2004] [Indexed: 12/17/2022]
Abstract
The single-cell gel electrophoresis or Comet assay measures qualitative and quantitative DNA damage in single cells. Its simplicity and non-invasive nature has made it widely accepted for the monitoring of human genotoxicity, employing peripheral blood lymphocytes. Factors, such as gender, age, and dietary and smoking habits are known to affect the Comet assay responses in lymphocytes. However, there is no information regarding the influence of the menstrual cycle on the results of the assay in lymphocytes of females. A study was therefore undertaken among 18 healthy Indian female volunteers to assess the effect of the menstrual cycle on Comet assay responses. During a complete menstrual cycle, only minor changes were observed in the basal levels of DNA damage in the lymphocytes as evident by Comet parameters, such as tail length (microm), tail DNA (%) and Olive tail moment (arbitrary units). To assess the effect of the estrogen 17beta-estradiol (at physiological concentrations of 0.5, 1.0 and 2.0 nM) on the Comet assay responses, an in vitro study was conducted in the human lymphocyte cell line JM-1 and the breast cancer cell line MCF-7. As was evident from the Comet parameters, a significant (p < 0.01) concentration-dependent increase in the level of DNA damage was observed in the MCF-7 cells while no significant change was found in the JM-1 cells. The results indicate that the menstrual cycle does not influence the Comet assay responses in lymphocytes; hence, these can serve as a model for monitoring genotoxicity in females.
Collapse
Affiliation(s)
- Mahima Bajpayee
- Developmental Toxicology Division, Industrial Toxicology Research Centre, P.O. Box 80, M.G. Marg, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|