51
|
Guleria S, Simsek H, Chawla P, Relhan A, Bhasin A. Evaluation of Cladophora and Chlamydomonas microalgae for environmental sustainability: A comparative study of antimicrobial and photocatalytic dye degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122806. [PMID: 37926410 DOI: 10.1016/j.envpol.2023.122806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
The present study emphasizes exploring the potential of bioactive compounds such as polysaccharides, protein, pigments, antioxidants, and vitamins extracted from two microalgae species, Cladophora and Chlamydomonas. The extraction process was optimized for different periods, and the extracted bioactive compounds were characterized. These bioactive compounds showed significant antibacterial activity against gram-positive and gram-negative bacteria. Notably, Cladophora species exhibited a higher zone of inhibition than Chlamydomonas species against both gram-positive and gram-negative bacterial strains. Moreover, the photocatalytic activity of these bioactive compounds was investigated for the degradation of methylene blue and crystal violet dyes under different light conditions. The results demonstrated that Cladophora species exhibited superior photocatalytic activity under natural sunlight, UV light, and visible light sources compared to Chlamydomonas species. Moreover, Cladophora species achieved the highest dye degradation efficiencies of 78% and 72% for methylene blue and crystal violet, respectively, within 150 min compared to UV light and visible light sources.
Collapse
Affiliation(s)
- Samriti Guleria
- Department of Food Technology & Nutrition, Lovely Professional University, 144411, Phagwara, India.
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Prince Chawla
- Department of Food Technology & Nutrition, Lovely Professional University, 144411, Phagwara, India.
| | - Ankush Relhan
- Department of Horticulture, Lovely Professional University, 144411, Phagwara, India.
| | - Aparajita Bhasin
- Department of Food Technology & Nutrition, Lovely Professional University, 144411, Phagwara, India.
| |
Collapse
|
52
|
Cong SQ, Wang B, Wang H, Zheng QC, Yang QR, Yang RT, Li QL, Wang WS, Cui XJ, Luo FX. Fe 3O 4-lignin@Pd-NPs: A highly active, stable and broad-spectrum nanocomposite for water treatment. Int J Biol Macromol 2024; 256:128233. [PMID: 38040166 DOI: 10.1016/j.ijbiomac.2023.128233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In this work, we report an environmentally friendly renewable nanocomposite magnetic lignin-based palladium nanoparticles (Fe3O4-lignin@Pd-NPs) for efficient wastewater treatment by decorating palladium nanoparticles without using any toxic reducing agents on the magnetic lignin abstracted from Poplar. The structure of composite Fe3O4-lignin@Pd-NPs was unambiguously confirmed by XRD, SEM, TEM, EDS, FTIR, and Zeta potential. After systematic evaluation of the use and efficiency of the composite to remove toxic organic dyes in wastewater, some promising results were observed as follows: Fe3O4-lignin@Pd-NPs exhibits highly active and efficient performance in the removal of toxic methylene blue (MB) (up to 99.8 %) wastewater in 2 min at different concentrations of MB and different pH values. Moreover, except for toxic MB, the other organic dyes including Rhodamine B (RhB), Rhodamine 6G (Rh6G), and Methyl Orange (MO) can also be removed efficiently by the composite. Finally, the easily recovered composite Fe3O4-lignin@Pd-NPs exhibits well stability and reusability, and catalytic efficiency is maintained well after ten cycles. In conclusion, the lignin-based magnetism Pd composite exhibits powerful potential practical application in industrial wastewater treatment.
Collapse
Affiliation(s)
- Si-Qi Cong
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bo Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Han Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qiu-Cui Zheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Ru Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruo-Tong Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wen-Shu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiao-Jie Cui
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei-Xian Luo
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
53
|
Yang H, Zhang P, Zheng Q, Hameed MU, Raza S. Synthesis of cellulose cotton-based UiO-66 MOFs for the removal of rhodamine B and Pb(II) metal ions from contaminated wastewater. Int J Biol Macromol 2023; 253:126986. [PMID: 37739285 DOI: 10.1016/j.ijbiomac.2023.126986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
The presence of pollutants in drinking water has become a significant concern recently. Various substances, including activated carbon, membranes, biochar, etc., are used to remove these pollutants. In the present study, a new composite comprising cotton fabric and a mixture of Metal-Organic Frameworks (MOFs) was synthesized and used as an adsorbent for eliminating pollutants from wastewater. At first, the UiO-66 MOFs were prepared by a simple method of reacting Zirconium (IV) chloride (ZrCl4) and p-Phthalic acid (PTA) after successful preparation of UiO-66 then modified its surface with amino functional groups by reacting with APTES to obtain UiO-66-NH2. Moreover, the cellulose cotton fabric (CF) surface was modified with Polydopamine (PDA) and obtained CF@PDA. Further, with the help of EDC-HCl and NHS, the UiO-66-NH2 grafted on the surface of the CF@PDA and finally obtained CF@PDA/UiO-66-NH2. In addition, the adsorption study was performed toward RhB dye and Pb(II) metal ion pollutants. The maximum adsorption toward RhB dye was 68.5 mg/g, while toward Pb(II) metal ions was 65 mg/g. In addition, the kinetic study was also conducted and the result favoured the Pseudo-second order kinetic study. The adsorption isotherm was also studied and the Langmuir model was more fitted as compared with the Freundlich model. Moreover, the material has excellent regeneration and recycling ability after ten cycles. The significant adsorption ability, the novel combination of cotton and MOFs, and the recycling feature make our material CF@PDA/UiO-66-NH2 a promising potential absorbent material for wastewater treatment and even in other important areas of water research.
Collapse
Affiliation(s)
- Huanggen Yang
- Key Laboratory of Coordination Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Pei Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Qi Zheng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Muhammad Usman Hameed
- Department of Chemistry, University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| |
Collapse
|
54
|
Xie W, Zhang Y, Xu L, Xie D, Jiang L, Dong Y, Yuan Y. Degradation of Organic Dyes by the UCNP/h-BN/TiO 2 Ternary Photocatalyst. ACS OMEGA 2023; 8:48662-48672. [PMID: 38162774 PMCID: PMC10753565 DOI: 10.1021/acsomega.3c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 01/03/2024]
Abstract
In this study, upconversion nanoparticles (UCNPs) with a flower-like morphology were prepared using a urea coprecipitation method. A ternary photocatalyst was first prepared using a solvothermal method involving the use of titanium oxide (TiO2), hexagonal boron nitride (h-BN), and UCNPs (Y2O3, Yb3+, and Tm3+) as raw materials. The surface morphology, crystal structure, and functional groups of these materials were then characterized and analyzed through scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectrophotometry, and other techniques. Photocatalytic experiments were also conducted to investigate the effects of different catalyst types, raw material doping ratios, pH values, and catalyst quantities on the photocatalytic degradation of rhodamine B (RhB). The results indicated that doping with h-BN and UCNPs reduced the band gap width of RhB, increased its light absorption rate, and decreased the recombination rate of its photogenerated electrons and holes so that the photocatalytic degradation effect reached 100% within 2 h. After five experimental cycles, the 30% UC-BN-Ti photocatalyst remained highly durable and stable. To investigate the effects of different trapping agents on the degradation of RhB, benzoquinone, isopropanol, and ethylenediaminetetraacetic acid disodium salt were used as free-radical-capturing agents. The results indicated that •O2- was the primary active species in the degradation process. Finally, the pathway and mechanism of the degradation of RhB through ternary composite photocatalysis were identified.
Collapse
Affiliation(s)
- Weijun Xie
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Yue Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Lei Xu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Dan Xie
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Li Jiang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Yanmao Dong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| |
Collapse
|
55
|
Kaur M, Malik AK. Schiff base MOFs and their derivatives for sequestration and degradation of pollutants: present and future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118801-118829. [PMID: 37922083 DOI: 10.1007/s11356-023-30711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Removal of contaminants via adsorption and catalysis have received a significant interest as energy and money-saving solutions for treating the world's wastewater. Metal-organic frameworks (MOFs), a newly discovered class of porous crystalline materials, have demonstrated tremendous promise in the removal and destruction of contaminants for water purification. In order to improve the interactions of MOFs with the target pollutants for their selective removal and degradation, the Schiff base functionalities emerged as promising active sites. Through pre- and post-synthetic alterations, Schiff base functionalities are integrated into the pore cages of MOF adsorbent materials. To understand the adsorptive/catalytic mechanism, potential interactions between the Schiff base sites and the target pollutants are discussed. Based on cutting-edge techniques for their synthesis, this paper examines current developments in the creation of Schiff base-functionalized MOFs as innovative materials for adsorptive removal and catalytic degradation of contaminants for water remediation.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
56
|
Gnanadhas F, Sundaramoorthy S, Natarajan S, Gnanamanickam MS, Amesho KTT, Sharma B. Assessing the bioactive potential of low-cost textile dyes extracted from brown seaweeds and their dyeing properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125165-125175. [PMID: 37380864 DOI: 10.1007/s11356-023-28326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
This study focuses on the extraction and dyeing properties of natural fabric dyes derived from brown seaweeds, namely Padina tetrastromatica, Sargassum tenerrimum, and Turbinaria ornata. Various solvents (acetone, ethanol, methanol, and water) and mordants (CH3 COOH, FeSO4, and NaHCO3) were used to extract the dyes and achieve different shades with excellent fastness properties. Phytochemical and FTIR analyses were performed to identify the phytochemicals responsible for dyeing. The dyed cotton fabrics exhibited a range of colors based on the mordants and solvents used. Fastness assessments revealed that aqueous and ethanol dye extracts exhibited superior properties compared to acetone and methanol extracts. The influence of mordants on cotton fibers' fastness properties was also evaluated. In addition to the above findings, this study makes a significant contribution to the field by exploring the bioactive potential of natural fabric dyes derived from brown seaweeds. The utilization of these abundant and low-cost seaweed sources for dye extraction provides a sustainable alternative to synthetic dyes, addressing environmental concerns associated with the textile industry. Furthermore, the comprehensive analysis of different solvents and mordants in obtaining various shades and excellent fastness properties enhances our understanding of the dyeing process and opens avenues for further research in the development of eco-friendly textile dyes.
Collapse
Affiliation(s)
- Flora Gnanadhas
- Department of Botany, St. Mary's College (A), Thoothukudi, Tamilnadu, 628 001, India
| | - Surendarnath Sundaramoorthy
- Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology (A), Vijayawada, Andhra Pradesh, 521 180, India.
| | - Sowndharya Natarajan
- Department of Botany, St. Mary's College (A), Thoothukudi, Tamilnadu, 628 001, India
| | | | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Destinies Biomass Energy and Farming Pty Ltd, P.O.Box 7387, Swakomund, Namibia
| | - Bhisham Sharma
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140 401, India
| |
Collapse
|
57
|
Shoran S, Dahiya S, Singh S, Chaudhary S, Nehra SP, Sharma A. Unleashing the visible light-exposed photocatalytic potential of V 2O 5/g-C 3N 4 nanocomposites for dye industries wastewater cleaner production. CHEMOSPHERE 2023; 345:140452. [PMID: 37852386 DOI: 10.1016/j.chemosphere.2023.140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Dealing harmful dye-containing effluent from the textile sector significantly contributes to water contamination. The persistence of these dyes in wastewater complicates traditional treatment approaches, emphasizing the necessity for efficient photocatalytic materials for dye pollution degradation. Due to its unique features, V2O5/g-C3N4 nanocomposites are discovered as promising photocatalysts in this area. The V205 nanoparticles act as electron acceptors, while g-C3N4 acts as electron donors, thus encouraging charge separation and increasing photocatalytic activity. The V2O5/g-C3N4 nanocomposites are characterized using XRD, FTIR spectroscopy, SEM, TEM, XPS, and UV-DRS. Cationic dyes, anionic dyes and mix dyes (1:1 mixture of cationic and anionic dyes) are used to test the photocatalytic activity of the nanocomposites. Photocatalytic activity shows that V2O5/g-C3N4 nanocomposites are more active than their precursors. The V5G-2 nanocomposite degrades anionic (Rose Bengal (85.1%) and Xylenol Orange (77.6%), cationic (Auramine O (75% and Crystal Violet (79.5%), and mixed dyes (81%), after 120 min of irradiation. This study introduces a novel technique for synthesizing V2O5/g-C3N4 nanocomposites using solvothermal and ultrasonic processes. The findings of this research provide significant knowledge for the development of photocatalysts with enhanced efficiency in the degradation of dye pollutants.
Collapse
Affiliation(s)
- Sachin Shoran
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Saravjeet Singh
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - S P Nehra
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
58
|
Alghamdi MA, Ayed L, Aljarad MR, Altayeb HN, Abbes S, Chaieb K. Whole genome sequencing analysis and Box-Behnken design for the optimization of the decolourization of mixture textile dyes by halotolerant microbial consortium. Microbiol Res 2023; 276:127481. [PMID: 37651966 DOI: 10.1016/j.micres.2023.127481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
The use of dyes in textile industries has resulted in substantially contaminated soil, water and ecosystem including fauna and flora. So, the application of eco-friendly approach for dyes removal is in great demand. The goal of this research was to develop and test a bacterial consortium for biodegrading dyes in artificial textile effluent (ATE) derived from mixture of Indigo carmine (40 mg/l); Malachite green (20 mg/l); Cotton bleu (40 mg/l); Bromocresol green (20 mg/l) and CI Reactive Red 66 (40 mg/l) dissolved in artificial seawater. The Box-Behnken design (BBD) which combine six variables with three levels each was used to determine the potential removal of dyes in ATE, by the selected microbial consortium (M31 and M69b). The experimental process indicated that decolourization of ATE reached 77.36 % under these conditions values: salinity (30 g/l), pH (9), peptone (5 g/l), inoculum size (1.5 108 CFU/ml), agitation (150 rpm) and contact time (72 h). The decolourization was confirmed by FTIR spectrum analysis of ATE before and after bacterial treatment. Bacterial strains used in this study were identified as Halomonas pacifica M31 and Shewanella algae M69b using 16 rDNA sequences. Moreover, the total genome analysis of M31 and M69b validated the implication of bacterial genes in mixture dyes removal. Therefore, the effect of the selected bacterial consortium on ATE removal was confirmed and it may be used in industrial wastewater treatment to issuing environmental safety.
Collapse
Affiliation(s)
| | - Lamia Ayed
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Mohamed Rajeh Aljarad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N Altayeb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samir Abbes
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|
59
|
Shanmuganathan R, Sathiyavimal S, Hoang Le Q, M Al-Ansari M, A Al-Humaid L, Jhanani GK, Lee J, Barathi S. Green synthesized Cobalt oxide nanoparticles using Curcuma longa for anti-oxidant, antimicrobial, dye degradation and anti-cancer property. ENVIRONMENTAL RESEARCH 2023; 236:116747. [PMID: 37500035 DOI: 10.1016/j.envres.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
In the present study, cobalt oxide nanoparticles have been synthesized using the root extract of Curcuma longa in a manner that is both environmentally friendly and economical. Initially, the synthesized nanoparticles were characterized using a UV-Vis spectroscopy analysis, in which plasma resonance at 345 nm was observed, which confirmed that CL-Cobalt oxide nanoparticles were synthesized. While FTIR analysis showed a peak at 597.37 cm-1 indicating Co-O stretching vibration. In addition, DLS, SEM and XRD analyses confirmed the synthesis of polydispersed (average size distribution of 97.5 ± 35.1 nm), cubic phase structure, and spherical-shaped CL-Cobalt oxide nanoparticles. CL-Cobalt oxide nanoparticles synthesized from green materials showed antioxidant and antimicrobial properties. CL-Cobalt oxide nanoparticles exhibited antibacterial activity against Gram negative (Klebsiella pneumoniae and Escherichia coli) and Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus), while CL-Cobalt oxide nanoparticles additionally displayed significant antifungal activity against Aspergillus niger. CL-Cobalt oxide also showed application in a bioremediation perspective by showing strong photocatalytic degradation of methyl red, methyl orange and methyl blue dye. In addition, CL-Cobalt oxide also demonstrated anticancer activity against MDA-MB-468 cancer cell lines with an IC50 value of 150.8 μg/ml. Therefore, this is the first and foremost report on CL-Cobalt oxide nanoparticles synthesized using Curcuma longa showing antioxidant, antibacterial, antifungal, dye degradation and anticancer applications.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Selvam Sathiyavimal
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - G K Jhanani
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
60
|
Vo NTT, You SJ, Pham MT, Pham VV. A green synthesis approach of p-n CuO/ZnO junctions for multifunctional photocatalysis towards the degradation of contaminants. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 32:103285. [DOI: 10.1016/j.eti.2023.103285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
61
|
G V, Singh S, Kaul N, Ramamurthy PC, Naik T, Viswanath R, Kumar V, Bhojya Naik HS, A P, H A AK, Singh J, Khan NA. Green synthesis of nickel-doped magnesium ferrite nanoparticles via combustion for facile microwave-assisted optical and photocatalytic applications. ENVIRONMENTAL RESEARCH 2023; 235:116598. [PMID: 37451577 DOI: 10.1016/j.envres.2023.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
NixMg1-xFe2O4(x = 0, 0.2, 0.4, 0.6) nanoparticles were symphonized via combustion with microwave assistance in the presence of Tamarindus indica seeds extract as fuel. Nanoparticles nature, size, morphology, oxidation state, elemental composition, and optical and luminescence properties were analysed using PXRD, FTIR, SEM, EDX, and HRTEM with SAED, XPS, UV-Visible and photoluminescence spectroscopy. PXRD analysis confirms that synthesized nanoparticles are spinel cubic and have a 17-18 nm average crystalline size. Tetrahedral and octahedral sites regarding stretching vibrations were confirmed by FTIR analysis. SEM and HRTEM data it is disclosed that the morphology of synthesized nanoparticles has nano flakes-like structure with sponge-like agglomeration. Elemental compositions of prepared nanoparticles were confirmed through EDX spectroscopy. XPS Spectroscopy confirmed and revealed transition, oxidation states, and elemental composition. The band gap and absorption phenomenon were disclosed using UV-visible spectroscopy, where the band gap declines (2.1, 2, 1.6, 1.8 eV), with increase in nickel NixMg1-xFe2O4(x = 0, 0.2, 0.4, 0.6) doping. Photoluminescence intensity reduces with an incline in nickel doping, was confirmed and disclosed using photoluminescence spectroscopy. Dyes (Methylene blue and Rhodamine B) degradation activity was performed in the presence of NDMF nanoparticles as a photocatalyst, which disclosed that 98.1% of MB dye and 97.9% of RB dye were degraded in 0-120 min. Regarding initial dye concentration and catalyst load, 5 ppm was initiated as the ideal initial concentration for both RB and MB dyes. 50 mg catalyst dosage was found to be most effective for the degradation of MB and RB dyes. In comparison, pH studies revealed that photodegradation efficiency was higher in neutral (MB-98.1%, RB-97.9%) and basic (MB-99.6%, RB-99.3%) conditions than in acidic (MB-61.8%, RB-60.4%) conditions.
Collapse
Affiliation(s)
- Vishnu G
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Noyonika Kaul
- Sharda University, Knowledge Park 3, Greater Noida, 201310, Uttar Pradesh, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Tssk Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - R Viswanath
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, C.C.R.A.S., Govt. of India, Jhansi, Uttar Pradesh, 284003, India
| | - H S Bhojya Naik
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India.
| | - Prathap A
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India
| | - Anil Kumara H A
- Department of P.G. Studies and Research in Chemistry, Sahyadri Science College, Kuvempu University, Shimoga, 577203, Karnataka, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
62
|
Memon K, Memon R, Khalid A, Al-Anzi BS, Uddin S, Sherazi STH, Chandio A, Talpur FN, Latif AA, Liaqat I. Synthesis of PVP-capped trimetallic nanoparticles and their efficient catalytic degradation of organic dyes. RSC Adv 2023; 13:29270-29282. [PMID: 37818256 PMCID: PMC10560875 DOI: 10.1039/d3ra03663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 10/12/2023] Open
Abstract
The study proposes a simple and efficient way to synthesize a heterogeneous catalyst that can be used for the degradation of organic dyes. A simple and fast chemical process was employed to synthesize Au: Ni: Co tri-metal nanohybrid structures, which were used as a catalyst to eliminate toxic organic dye contamination from wastewater in textile industries. The catalyst's performance was tested by degrading individual dyes as well as mixtures of dyes such as methylene blue (MB), methyl orange (MO), methyl red (MR), and Rose Bengal (RB) at various time intervals. The experimental results show the catalytic high degradation efficiency of different dyes achieving 72-90% rates in 29 s. Moreover, the material displayed excellent recycling stability, maintaining its degradation efficiency over four consecutive runs without any degradation in performance. Overall, the findings of the study suggest that these materials possess efficient catalytic properties, opening avenues toward their use in clean energy alternatives, environmental remediation, and other biological applications.
Collapse
Affiliation(s)
- Kanwal Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh 76080 Pakistan
| | - Roomia Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh 76080 Pakistan
- Sabanci University, SUNUM Nanotechnology Research and Application Center Tuzla 34956 Istanbul Turkey
| | - Awais Khalid
- Department of Physics, Hazara University Mansehra Khyber Pakhtunkhwa 21300 Pakistan
| | - Bader S Al-Anzi
- Department of Environmental Technologies and Management, Kuwait University P.O. Box 5969 Safat 13060 Kuwait
| | - Siraj Uddin
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi 75270 Pakistan
| | | | - Answer Chandio
- National Centre of Excellence in Analytical Chemistry, University of Sindh 76080 Pakistan
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh 76080 Pakistan
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University Lahore 54000 Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore 54000 Pakistan
| |
Collapse
|
63
|
Kurnaz Yetim N, Hasanoğlu Özkan E, Öğütçü H. Use of Co 3O 4 nanoparticles with different surface morphologies for removal of toxic substances and investigation of antimicrobial activities via in vivo studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106585-106597. [PMID: 37730982 DOI: 10.1007/s11356-023-29879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Co3O4 nanoparticles (NPs) were formed using hydrothermal synthesis method and various surfactants to study the effect of changing surface morphology on catalytic and antibacterial activities. FT-IR, TEM, SEM, BET, XRD, and XPS analyses were performed to characterize the NPs. It was observed that as the morphology of Co3O4 changes, it creates differences in the reduction efficiency of organic dyes and p-nitrophenol (p-NP), which are toxic to living organisms and widely used in industry. The reaction rate constants (Kapp) for Co3O4-urea, Co3O4-ed, and Co3O4-NaOH in the reduction of p-NP were found to be 1.86 × 10-2 s-1, 1.83 × 10-2 s-1, and 2.4 × 10-3 s-1, respectively. In the presence of Co3O4-urea catalyst from the prepared nanoparticles, 99.29% conversion to p-aminophenol (p-AP) was observed, while in the presence of the same catalyst, 98.06% of methylene blue (MB) was removed within 1 h. The antibacterial activity of Co3O4 particles was compared with five standard antibiotics for both gram-positive and gram-negative bacteria. The results obtained indicate that the antimicrobial activity of the synthesized Co3O4 particles has a remarkable inhibitory effect on the growth of various pathogenic microorganisms. The current work could be an innovative and beneficial search for both biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Nurdan Kurnaz Yetim
- Department of Chemistry, Faculty of Arts and Sciences, University of Kırklareli, Kırklareli, Turkey
| | - Elvan Hasanoğlu Özkan
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, 06500, Ankara, Turkey.
| | - Hatice Öğütçü
- Department of Field Corps, Faculty of Agriculture, University of Kırşehir Ahi Evran, Kırşehir, Turkey
| |
Collapse
|
64
|
Łukasik N, Wikarska S, Świątek H, Łapiński M, Klimczuk T, Hemine K. The influence of magnetic particle incorporation on bisphenol A removal by β-cyclodextrin-derived sorbent. CHEMOSPHERE 2023; 338:139538. [PMID: 37478995 DOI: 10.1016/j.chemosphere.2023.139538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
A novel, biomass-derived hybrid sorbent Ban-CD-EPI-Fe was successfully synthesized in a coprecipitation method, in which β-cyclodextrin copolymerized with banana peel extract and epichlorohydrin was grafted onto an iron oxide surface. The composition, presence of functional groups, morphology, thermal stability, and magnetic properties of the obtained material were characterized by Powder X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Thermogravimetric Analysis (TGA), and Physical Properties Measurement System (PPMS). The material bearing around 28% of β-cyclodextrin units has mesoporous structure with plate-like morphology and active surface area determined by BET and Langmuir models equal to 38.35 and 53.59 m2 g-1, respectively. The sorption studies aimed to remove an endocrine disruptor - bisphenol A (BPA), from water. The results showed that the time evolution could be fitted with pseudo-second kinetic order with a rate constant k equal to 0.05 g mg-1 min-1. According to the Langmuir isotherm, a monolayer is created during BPA sorption, and the maximum sorption capacity was estimated as 93.5 mg g-1. After BPA sorption, the hybrid material could be easily separated by an external magnet and regenerated under mild conditions keeping its recyclability in at least eight cycles.
Collapse
Affiliation(s)
- Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland.
| | - Sandra Wikarska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Hanna Świątek
- Division of Strongly Correlated Electronic Systems, Institute of Nanotechnology and Materials Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Marcin Łapiński
- Division of Nanomaterials Physics, Institute of Nanotechnology and Materials Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Tomasz Klimczuk
- Division of Strongly Correlated Electronic Systems, Institute of Nanotechnology and Materials Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Koleta Hemine
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
65
|
Almutairi T, Al-Rasheed HH, Alaqil ZM, Hajri AK, Elsayed NH. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS OMEGA 2023; 8:32067-32077. [PMID: 37692231 PMCID: PMC10483690 DOI: 10.1021/acsomega.3c04117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Iron oxide nanoparticles (Fe3O4NPs) are a fascinating field of study due to their wide range of practical applications in environmental and medical contexts. This study presents a straightforward, environmentally friendly method for producing Fe3O4NPs utilizing β-cyclodextrin (β-CD) as a reducing and capping agent. This approach results in the rapid and effective eco-friendly synthesis of β-CD/Fe3O4NPs. The properties and characteristics of β-CD/Fe3O4NPs were investigated using various methods, including ultraviolet-visible (UV/vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA), and vibrating-sample magnetometry (VSM). The absorption of β-CD/Fe3O4NPs caused a distinct peak at 349 nm, as evidenced by the results of UV/vis studies. This peak was attributed to the absorption of surface plasmon resonance. The crystalline nature of β-CD/Fe3O4NPs was confirmed through XRD analysis. The SEM and TEM analyses have verified the geometry and structural characteristics of β-CD/Fe3O4NPs. The β-CD/Fe3O4NPs exhibited remarkable effectiveness in the decomposing efficiency (%) of methylene blue (MB) dye with 52.2, 94.1, and 100% for 0.2, 0.4, and 0.6 g β-CD/Fe3O4NPs, respectively. In addition, the highest efficiency in hunting radicals was observed (347.2 ± 8.2 mg/g) at 100 mg/mL β-CD/Fe3O4NPs; the combination of β-CD/Fe3O4NPs exhibited remarkable effectiveness in inhibiting the growth of some bacteria that cause infections. The capabilities of β-CD/Fe3O4NPs for various applications showed that these materials could be used in photocatalytic, antioxidants, and antibacterial. Additionally, the eco-friendly synthesis of these materials makes them a promising option for the remediation of harmful pollutants and microbes.
Collapse
Affiliation(s)
- Tahani
M. Almutairi
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab M. Alaqil
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nadia H. Elsayed
- Department
of Polymers and Pigments, National Research
Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|
66
|
Li X, Wei H, Song T, Lu H, Wang X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO 2. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1495-1507. [PMID: 37768751 PMCID: wst_2023_288 DOI: 10.2166/wst.2023.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Organic pollutants in water bodies pose a serious environmental problem, and photocatalytic technology is an efficient and environmentally friendly water treatment method. Titanium dioxide (TiO2) is a widely used photocatalyst, but it suffers from some drawbacks such as a narrow light response range, fast charge recombination, and low photocatalytic activity. To improve the photocatalytic performance of TiO2, this article reviews the preparation methods, performance evaluation, and applications of modified TiO2 photocatalysts. Firstly, the article introduces the effects of doping modification, semiconductor composite modification, and other modification methods on the structure and properties of TiO2 photocatalysts, as well as the common characterization techniques and activity test methods of photocatalysts. Secondly, the article discusses the effects and mechanisms of modified TiO2 photocatalysts on degrading dye, pesticide, and other organic pollutants in water bodies, as well as the influencing factors. Finally, the article summarizes the main achievements and advantages of modified TiO2 photocatalysts in degrading organic pollutants in water bodies, points out the existing problems and challenges, and prospects for the development direction and future of this field.
Collapse
Affiliation(s)
- Xueqi Li
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China E-mail:
| | - Hongyan Wei
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China
| | - Tiehong Song
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China
| | - Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, China
| | - Xiaoyan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, China
| |
Collapse
|
67
|
Saviano L, Brouziotis AA, Suarez EGP, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Spica VR, Lofrano G, Libralato G. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023; 28:6185. [PMID: 37687014 PMCID: PMC10488708 DOI: 10.3390/molecules28176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.
Collapse
Affiliation(s)
- Lorenzo Saviano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- CeSMA Advanced Metrological and Technological Service Center, University of Naples Federico II, 80126 Naples, Italy
| | - Donatella Del Bianco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Maurizio Carotenuto
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| |
Collapse
|
68
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
69
|
Ahmed W, Suliman A, Khan GA, Qayyum H. Electrostatically enabled dye reduction using laser synthesized gold nanoparticles. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
70
|
Alamier WM, D Y Oteef M, Bakry AM, Hasan N, Ismail KS, Awad FS. Green Synthesis of Silver Nanoparticles Using Acacia ehrenbergiana Plant Cortex Extract for Efficient Removal of Rhodamine B Cationic Dye from Wastewater and the Evaluation of Antimicrobial Activity. ACS OMEGA 2023; 8:18901-18914. [PMID: 37273622 PMCID: PMC10233848 DOI: 10.1021/acsomega.3c01292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (Ag-NPs) exhibit vast potential in numerous applications, such as wastewater treatment and catalysis. In this study, we report the green synthesis of Ag-NPs using Acacia ehrenbergiana plant cortex extract to reduce cationic Rhodamine B (RhB) dye and for antibacterial and antifungal applications. The green synthesis of Ag-NPs involves three main phases: activation, growth, and termination. The shape and morphologies of the prepared Ag-NPs were studied through different analytical techniques. The results confirmed the successful preparation of Ag-NPs with a particle size distribution ranging from 1 to 40 nm. The Ag-NPs were used as a heterogeneous catalyst to reduce RhB dye from aqueous solutions in the presence of sodium borohydride (NaBH4). The results showed that 96% of catalytic reduction can be accomplished within 32 min using 20 μL of 0.05% Ag-NPs aqueous suspension in 100 μL of 1 mM RhB solution, 2 mL of deionized water, and 1 mL of 10 mM NaBH4 solution. The results followed a zero-order chemical kinetic (R2 = 0.98) with reaction rate constant k as 0.059 mol L-1 s-1. Furthermore, the Ag-NPs were used as antibacterial and antifungal agents against 16 Gram-positive and Gram-negative bacteria as well as 1 fungus. The green synthesis of Ag-NPs is environmentally friendly and inexpensive, as well as yields highly stabilized nanoparticles by phytochemicals. The substantial results of catalytic reductions and antimicrobial activity reflect the novelty of the prepared Ag-NPs. These nanoparticles entrench the dye and effectively remove the microorganisms from polluted water.
Collapse
Affiliation(s)
- Waleed M. Alamier
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohammed D Y Oteef
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Ayyob M. Bakry
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Nazim Hasan
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Khatib Sayeed Ismail
- Department
of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
71
|
Anjum F, Shaban M, Ismail M, Gul S, Bakhsh EM, Khan MA, Sharafat U, Khan SB, Khan MI. Novel Synthesis of CuO/GO Nanocomposites and Their Photocatalytic Potential in the Degradation of Hazardous Industrial Effluents. ACS OMEGA 2023; 8:17667-17681. [PMID: 37251181 PMCID: PMC10210201 DOI: 10.1021/acsomega.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Photocatalytic degradation of dyes has been the subject of extensive study due to its low cost, eco-friendly operation, and absence of secondary pollutants. Copper oxide/graphene oxide (CuO/GO) nanocomposites are emerging as a new class of fascinating materials due to their low cost, nontoxicity, and distinctive properties such as a narrow band gap and good sunlight absorbency. In this study, copper oxide (CuO), graphene oxide (GO), and CuO/GO were synthesized successfully. X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectroscopy confirm the oxidation and production of GO from the graphene of lead pencil. According to the morphological analysis of nanocomposites, CuO nanoparticles of sizes ≤20 nm on the GO sheets were evenly adorned and distributed. Nanocomposites of different CuO:GO ratios (1:1 up to 5:1) were applied for the photocatalytic degradation of methyl red (MR). CuO:GO(1:1) nanocomposites achieved 84% MR dye removal, while CuO:GO(5:1) nanocomposites achieved the highest value (95.48%). The thermodynamic parameters of the reaction for CuO:GO(5:1) were evaluated using the Van't Hoff equation and the activation energy was found to be 44.186 kJ/mol. The reusability test of the nanocomposites showed high stability even after seven cycles. CuO/GO catalysts can be used in the photodegradation of organic pollutants in wastewater at room temperature due to their excellent properties, simple synthesis process, and low cost.
Collapse
Affiliation(s)
- Farhana Anjum
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed Shaban
- Physics
Department, Faculty of Science, Islamic
University of Madinah, P. O. Box: 170, Al Madinah Al Monawara 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef 62514, Egypt
| | - Muhammad Ismail
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Saima Gul
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Esraa M. Bakhsh
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box: 80203, Jeddah 21589, Saudi Arabia
| | - Murad Ali Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Uzma Sharafat
- School
of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, Newfoundland A2H 5G4, Canada
| | - Sher Bahadar Khan
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box: 80203, Jeddah 21589, Saudi Arabia
| | - M. I. Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
72
|
Chand M, Barthwal S, Rawat AS, Khanuja M, Rawat S. Enhancing Photocatalytic Efficiency of Spent Tea Leaf Powder on ZnIn 2S 4 Incorporation: Role of Surface Charge on Dye Degradation. ACS OMEGA 2023; 8:17880-17890. [PMID: 37251171 PMCID: PMC10210206 DOI: 10.1021/acsomega.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Photocatalytic degradation of dye contaminants using nanocomposite adsorbents has emerged as a promising solution for wastewater treatment. Owing to its abundant availability, eco-friendly composition, biocompatibility, and strong adsorption activity, spent tea leaf (STL) powder has been extensively explored as a viable dye-adsorbent material. In this work, we report spectacular enhancement in the dye-degradation properties of STL powder on incorporation of ZnIn2S4 (ZIS). The STL/ZIS composite was synthesized using a novel, benign, and scalable aqueous chemical solution method. Comparative degradation and reaction kinetics studies were performed onto an anionic dye, Congo red (CR), and two cationic dyes, Methylene blue (MB) and Crystal violet (CV). The degradation efficiencies of CR, MB, and CV dyes were obtained to be 77.18, 91.29, and 85.36%, respectively, using the STL/ZIS (30%) composite sample after the 120 min experiment. The spectacular improvement in the degradation efficiency of the composite was attributed to its slower charge transfer resistance (as concluded by the EIS study) and optimized surface charge (as concluded by ζ potential study). Scavenger tests and reusability tests deciphered the active species (•O2-) and reusability of the composite samples, respectively. To the best of our knowledge, this is the first report to demonstrate improvement in the degradation efficiency of STL powder on ZIS incorporation.
Collapse
Affiliation(s)
- Mool Chand
- Department
of Physics, Hemvati Nandan Bahuguna Garhwal
University (A Central University), Garhwal, Srinagar, Uttarakhand 246174, India
| | - Swapnil Barthwal
- Department
of Energy Science and Engineering, Indian
Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Arun Singh Rawat
- Department
of Physics, Hemvati Nandan Bahuguna Garhwal
University (A Central University), Garhwal, Srinagar, Uttarakhand 246174, India
| | - Manika Khanuja
- Center
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Seema Rawat
- Department
of Physics, Zakir Hussain Delhi College, Jawahar Lal Nehru Marg, New Delhi 110002, India
| |
Collapse
|
73
|
Ahmad A, Kamaruddin MA, H.P.S. AK, Yahya EB, Muhammad S, Rizal S, Ahmad MI, Surya I, Abdullah CK. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels 2023; 9:416. [PMID: 37233007 PMCID: PMC10218182 DOI: 10.3390/gels9050416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Water pollution is a significant environmental issue that has emerged because of industrial and economic growth. Human activities such as industrial, agricultural, and technological practices have increased the levels of pollutants in the environment, causing harm to both the environment and public health. Dyes and heavy metals are major contributors to water pollution. Organic dyes are a major concern because of their stability in water and their potential to absorb sunlight, increasing the temperature and disrupting the ecological balance. The presence of heavy metals in the production of textile dyes adds to the toxicity of the wastewater. Heavy metals are a global issue that can harm both human health and the environment and are mainly caused by urbanization and industrialization. To address this issue, researchers have focused on developing effective water treatment procedures, including adsorption, precipitation, and filtration. Among these methods, adsorption is a simple, efficient, and cheap method for removing organic dyes from water. Aerogels have shown potential as a promising adsorbent material because of their low density, high porosity, high surface area, low thermal and electrical conductivity, and ability to respond to external stimuli. Biomaterials such as cellulose, starch, chitosan, chitin, carrageenan, and graphene have been extensively studied for the production of sustainable aerogels for water treatment. Cellulose, which is abundant in nature, has received significant attention in recent years. This review highlights the potential of cellulose-based aerogels as a sustainable and efficient material for removing dyes and heavy metals from water during the treatment process.
Collapse
Affiliation(s)
- Azfaralariff Ahmad
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Anuar Kamaruddin
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H.P.S.
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Syaifullah Muhammad
- Chemical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- ARC-PUIPT Nilam Aceh, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Samsul Rizal
- Mechanical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Indra Surya
- Department of Chemical Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - C. K. Abdullah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
74
|
Habtamu A, Ujihara M. The mechanism of water pollutant photodegradation by mixed and core-shell WO 3/TiO 2 nanocomposites. RSC Adv 2023; 13:12926-12940. [PMID: 37114017 PMCID: PMC10128107 DOI: 10.1039/d3ra01582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Environmental pollution is one of the biggest concerns in the world today, and solar energy-driven photocatalysis is a promising method for decomposing pollutants in aqueous systems. In this study, the photocatalytic efficiency and catalytic mechanism of WO3-loaded TiO2 nanocomposites of various structures were analyzed. The nanocomposites were synthesized via sol-gel reactions using mixtures of precursors at various ratios (5%, 8%, and 10 wt% WO3 in the nanocomposites) and via core-shell approaches (TiO2@WO3 and WO3@TiO2 in a 9 : 1 ratio of TiO2 : WO3). After calcination at 450 °C, the nanocomposites were characterized and used as photocatalysts. The kinetics of photocatalysis with these nanocomposites for the degradation of methylene blue (MB+) and methyl orange (MO-) under UV light (365 nm) were analyzed as pseudo-first-order reactions. The decomposition rate of MB+ was much higher than that of MO-, and the adsorption behavior of the dyes in the dark suggested that the negatively charged surface of WO3 played an important role in adsorbing the cationic dye. Scavengers were used to quench the active species (superoxide, hole, and hydroxyl radicals), and the results indicated that hydroxyl radicals were the most active species; however, the active species were generated more evenly on the mixed surfaces of WO3 and TiO2 than on the core-shell structures. This finding shows that the photoreaction mechanisms could be controlled through adjustments to the nanocomposite structure. These results can guide the design and preparation of photocatalysts with improved and controlled activities for environmental remediation.
Collapse
Affiliation(s)
- Abdisa Habtamu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology 43 Keelung Road 10607 Taipei Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology 43 Keelung Road 10607 Taipei Taiwan
| |
Collapse
|
75
|
Kanakaraju D, Chandrasekaran A. Recent advances in TiO 2/ZnS-based binary and ternary photocatalysts for the degradation of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161525. [PMID: 36642264 DOI: 10.1016/j.scitotenv.2023.161525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Semiconductor-mediated photocatalysis plays a pivotal role in the elimination of organic pollutants from water systems. Titanium dioxide (TiO2) and zinc sulphide (ZnS) semiconductors are commonly utilized as photocatalysts in water purification due to their physical and chemical stability and also large band gap. The drawbacks of both semiconductors, nevertheless, prevent them from being used in real and large-scale treatments. Therefore, binary and ternary-based TiO2/ZnS nanostructured materials may be a promising solution to improve the quantum efficiency, structural, and electrical features of pure TiO2 and ZnS semiconductors for improved photoefficiency. This review aims to unravel the development of binary TiO2/ZnS and the modification of ternary photocatalysts (TiO2/ZnS-X, X = metal, non-metal, and dye sensitization) by various approaches. The engineered TiO2/ZnS-based ternary nanostructured materials have exhibited exceptional performance to accelerate the degradation of organic pollutants in wastewater. These materials were fabricated by modifying TiO2/ZnS binary composite and embedding co-catalysts like carbonaceous material, polymeric material, transition metal, metal oxide, and metal. The relationship between the properties of the resulting nanomaterials and their photocatalytic performances has been examined. This review has also placed a special focus on the synthetic routes applied to derive the binary and ternary TiO2/ZnS composites. Another aim of this review is to scrutinize the factors that influence the performance of binary and ternary-based TiO2/ZnS composites on the degradation of organic pollutants. Opportunities for further investigation have been also outlined, along with limitations and impediments based on the current findings.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Aneshaa Chandrasekaran
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
76
|
Hussain I, Shahid M, Ali F, Irfan A, Begum R, Farooqi ZH. Polymer hydrogels for stabilization of inorganic nanoparticles and their application in catalysis for degradation of toxic chemicals. ENVIRONMENTAL TECHNOLOGY 2023; 44:1679-1689. [PMID: 34821537 DOI: 10.1080/09593330.2021.2011429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Poly(styrene-N-isopropylmethacrylamide-methacrylic acid) core-shell [P(SNM)CS] microgel particles were synthesised by seed-mediated emulsion polymerisation method. Silver nanoparticles were loaded into shell of P(SNM)CS microgels by in situ reduction of Ag+ ions. Synthesised core-shell microgels and hybrid core-shell microgels were characterised by using Fourier transformed infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), UV-Visible spectroscopy and Dynamic light scattering (DLS). Stability of Ag nanoparticles within P(SNM)CS system was also investigated over the time using UV-Visible spectroscopy. Catalytic properties of silver nanoparticles loaded microgel system [Ag-P(SNM)CS] were studied by reducing Eosin-Y and Methylene blue with NaBH4 in water. The values of observed rate constant (kobs) were determined under different reaction conditions. The hybrid system was capable to degrade both dyes and may be used for degradation of several other toxic chemicals efficiently.
Collapse
Affiliation(s)
- Iftikhar Hussain
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| |
Collapse
|
77
|
Hu K, Luo H, Han Y, Zuo M, Li J. Hierarchically Porous and Magnetic MgFe
2
O
4
@MgAl‐LDHs Microspheres Synthesized by a Bio‐Templating Strategy for Efficient Removal of Congo Red from Water**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Kaiyuan Hu
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Hui Luo
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Yang Han
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Min Zuo
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Jia Li
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| |
Collapse
|
78
|
Silver/graphene oxide nanocomposite: process optimization of mercury sensing and investigation of crystal violet removal. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
79
|
Yadav K, Latelwar SR, Datta D, Jana B. Efficient removal of MB dye using litchi leaves powder adsorbent: Isotherm and kinetic studies. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
80
|
Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts 2023. [DOI: 10.3390/catal13030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The degradation of dyes is a difficult task due to their persistent and stable nature; therefore, developing materials with desirable properties to degrade dyes is an important area of research. In the present study, we propose a simple, one-pot mechanochemical approach to synthesize CuO nanoparticles (NPs) using the leaf extract of Seriphidium oliverianum, as a reducing and stabilizing agent. The CuO NPs were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and Fourier-transform infrared spectroscopy (FTIR). The photocatalytic activity of CuO NPs was monitored using ultraviolet-visible (UV-Vis) spectroscopy. The CuO NPs exhibited high potential for the degradation of water-soluble industrial dyes. The degradation rates for methyl green (MG) and methyl orange (MO) were 65.231% ± 0.242 and 65.078% ± 0.392, respectively. Bio-mechanochemically synthesized CuO NPs proved to be good candidates for efficiently removing dyes from water.
Collapse
|
81
|
Chitosan-based composite films to remove cationic and anionic dyes simultaneously from aqueous solutions: Modeling and optimization using RSM. Int J Biol Macromol 2023; 235:123723. [PMID: 36801220 DOI: 10.1016/j.ijbiomac.2023.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Regarding the existence of cationic and anionic dyes in the water environment developing new and effective techniques to remove them simultaneously is essential. Herein, a chitosan/poly-2-aminothiazole composite film reinforced with multi-walled carbon nanotube-Mg Al-layered double hydroxide (CPML) was created, characterized, and used as an effective adsorbent for methylene blue (MB) and methyl orange (MO) dyes removal from the aquatic medium. The SEM, TGA, FTIR, XRD, and BET methods were used to characterize the synthesized CPML. Response surface methodology (RSM) was utilized to evaluate dye removal based on the initial concentration, dosage, and pH factors. The highest adsorption capacities were measured at 471.12 and 230.87 mg g-1 for MB and MO, respectively. The study of different isotherm and kinetic models revealed that the adsorption of the dyes onto CPML nanocomposite (NC) was correlated with the Langmuir and pseudo-second-order kinetic model, which indicated a monolayer adsorption manner on the homogeneous surface of NCs. The reusability experiment clarified that the CPML NC could be applied multiple times. Experimental results show that the CPML NC has sufficient potential for treating cationic and anionic dye-contaminated water.
Collapse
|
82
|
Khodamorady M, Bahrami K. A novel ZnS-CdS nanocomposite as a visible active photocatalyst for degradation of synthetic and real wastewaters. Sci Rep 2023; 13:2177. [PMID: 36750747 PMCID: PMC9905579 DOI: 10.1038/s41598-023-28725-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
In this study, new magnetic nanocomposites with shell core structure with different molar ratios of ZnS-CdS were synthesized and their photocatalytic activity in dye removal from synthetic and real effluents in the presence of mercury high pressure lamp as a visible light source was investigated. Optimal photocatalyst with molar ratio of ZnS-CdS 0.25:0.75 showed the best performance in dye removal. Based on the particle distribution histogram of Fe3O4@BNPs@ZnS-CdS (ZnS/CdS: 0.25:0.75), particles with 60-100 nm have the highest abundance. According to the DRS results, hybridization of zinc sulfide with cadmium sulfide reduced the gap and as a result, light absorption was successfully extended to the visible area. The PL results confirm that the optimal photocatalyst (Fe3O4@BNPs@ZnS-CdS) has the lowest electron-hole recombination compared to Fe3O4@BNPs@ZnS and Fe3O4@BNPs@CdS. It should be noted that according to the DLS results, the charge on the optical photocomposite surface is negative at all acidic, alkaline and neutral pHs. One of the significant advantages in this study is the use of high-pressure mercury lamps as a light source, so that these lamps are very economical in terms of economy and also have a long life and excellent efficiency. The optimal photocatalyst not only showed excellent photocatalytic activity for the removal of methylene blue (96.6%) and methyl orange (70.9%) but also for the dye removal of textile effluents (Benton 98.5% and dark olive 100%). Introduced magnetic heterostructures are suitable options for dye removal from textile and spinning wastewaters.
Collapse
Affiliation(s)
- Minoo Khodamorady
- grid.412668.f0000 0000 9149 8553Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971 Iran
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran. .,Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran.
| |
Collapse
|
83
|
Fabrication, Properties, and Performance of Polymer-Clay Nanocomposites for Organic Dye Removal from Aqueous Media. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/5683415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Methylene blue dye (MB dye) is a harmful contaminant for wastewater streams of industries and is harmful to human and aquatic life. An ecofriendly sugar templating process was used to generate porous bentonite/polydimethylsiloxane (PB) and porous magnetite nanoparticles/bentonite/polydimethylsiloxane (PBNP) composite absorbents to remove MB dye in this study. During the infiltration of PDMS solution into the sugar template in the vacuum chamber, bentonite and magnetite particles were integrated on the surface of the PDMS, and the porous structure was generated during the leaching out of sugar particles in water. The absorbents were characterized using Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The absence of the methyl bond at 2924 cm-1 and phenol bond at 3325 cm-1 in the FTIR spectra of the formed membrane proves that the food grade sugar was completely removed. The SEM images confirm that porosity was achieved as well as uniform mixing of the in the formation of composite. MB dye was effectively removed from wastewater using the as-prepared composite as absorbent. The removal efficiencies of the composite PBNP and PB were ~91% and ~85%, respectively. The experimental data was applied to pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models as well as the Dubinin-Radushkevich, Harkins-Jura, and Elovich models for the adsorption isotherm. The data was found to fit the pseudo-second-order and Elovich models, respectively. The results show that the presence of magnetite nanoparticles improved MB dye removal significantly.
Collapse
|
84
|
Ultrasound‐driven design and catalytic activity of nanostructured Cobalt (II) 3D‐supramolecular coordination polymer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
Bahramian Nasab S, Homaei A, Fernandez-Lafuente R, Del Arco J, Fernández-Lucas J. A Novel, Highly Potent NADPH-Dependent Cytochrome P450 Reductase from Waste Liza klunzingeri Liver. Mar Drugs 2023; 21:md21020099. [PMID: 36827140 PMCID: PMC9964268 DOI: 10.3390/md21020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The use of marine enzymes as catalysts for biotechnological applications is a topical subject. Marine enzymes usually display better operational properties than their animal, plant or bacterial counterparts, enlarging the range of possible biotechnological applications. Due to the fact that cytochrome P450 enzymes can degrade many different toxic environmental compounds, these enzymes have emerged as valuable tools in bioremediation processes. The present work describes the isolation, purification and biochemical characterization of a liver NADPH-dependent cytochrome P450 reductase (CPR) from the marine fish Liza klunzingeri (LkCPR). Experimental results revealed that LkCPR is a monomer of approximately 75 kDa that is active in a wide range of pH values (6-9) and temperatures (40-60 °C), showing the highest catalytic activity at pH 8 and 50 °C. The activation energy of the enzyme reaction was 16.3 kcal mol-1 K-1. The KM values for cytochrome C and NADPH were 8.83 μM and 7.26 μM, and the kcat values were 206.79 s-1 and 202.93 s-1, respectively. LkCPR displayed a specific activity versus cytochrome C of 402.07 µmol min-1 mg1, the highest activity value described for a CPR up to date (3.2-4.7 times higher than the most active reported CPRs) and showed the highest thermostability described for a CPR. Taking into account all these remarkable catalytic features, LkCPR offers great potential to be used as a suitable biocatalyst.
Collapse
Affiliation(s)
- Soudeh Bahramian Nasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas P.O. Box 3995, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas P.O. Box 3995, Iran
- Correspondence:
| | | | - Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid Urbanización El Bosque, E-28670 Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid Urbanización El Bosque, E-28670 Villaviciosa de Odón, 28670 Madrid, Spain
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla 080002, Colombia
| |
Collapse
|
86
|
A New 2D Metal–Organic Framework for Photocatalytic Degradation of Organic Dyes in Water. Catalysts 2023. [DOI: 10.3390/catal13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Two–dimensional (2D) metal–organic frameworks (MOFs) are fascinating photocatalytic materials because of their unique physical and catalytic properties. Herein, we report a new (E)–4–(3–carboxyacrylamido) benzoic acid [ABA–MA] ligand synthesized under facile conditions. This ABA–MA ligand is further utilized to synthesize a copper-based 2D MOF via the solvothermal process. The resulting 2D MOF is characterized for morphology and electronic structural analysis using advanced techniques, such as proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, and scanning electron microscopy. Furthermore, 2D MOF is employed as a photocatalyst for degrading organic dyes, demonstrating the degradation/reduction of methylene blue (MeBl) dye with excellent catalytic/photodegradation activity in the absence of any photosensitizer or cocatalyst. The apparent rate constant (kap) values for the catalytic degradation/reduction of MeBl on the Cu(II)–[ABA-MA] MOF are reported to be 0.0093 min−1, 0.0187 min−1, and 0.2539 min−1 under different conditions of sunlight and NaBH4. The kinetics and stability evaluations reveal the noteworthy photocatalytic potential of the Cu(II)–[ABA–MA] MOF for wastewater treatment. This work offers new insights into the fabrication of new MOFs for highly versatile photocatalytic applications.
Collapse
|
87
|
Sime T, Fito J, Nkambule TTI, Temesgen Y, Sergawie A. Adsorption of Congo Red from Textile Wastewater Using Activated Carbon Developed from Corn Cobs: The Studies of Isotherms and Kinetics. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
88
|
Sboui M, Niu W, Lu G, Zhang K, Pan JH. Electrically conductive TiO 2/CB/PVDF membranes for synchronous cross-flow filtration and solar photoelectrocatalysis. CHEMOSPHERE 2023; 310:136753. [PMID: 36216114 DOI: 10.1016/j.chemosphere.2022.136753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Combining photocatalysis (PC) and membrane filtration (MF) has emerged as an attractive technology for water purification, however, the water purification efficiency and membrane fouling are still challenging. Herein, we report a novel photoelectrocatalytic (PEC) membrane mediated by a ternary polyvinylidene fluoride (PVDF)-carbon black (CB)-TiO2 composite conductive membrane synthesized by a phase inversion method assisted by the mixed surfactants of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS). The resultant electrically conductive TiO2/CB/PVDF membrane features a homogeneous surface with obvious pore size of 20-150 nm, a thickness ∼116 μm, and an average resistivity as low as ∼3.165 Ω∙m. The cooperation of PVP and SDS surfactants dramatically improves the organic-inorganic interactions and thus eventually enhances the porosity, stability of porous structure, mechanical stability, and conductivity and electrochemical properties of the hybrid membrane. Upon the solvent evaperation of the wellblended casting solution and the phase inversion, TiO2/CB preferentially exist on the surface of PVDF membrane, enabling the efficient PEC degradation of organic pollutants. The synergistic coupling of TiO2 and CB in PVDF membrane results in efficient PEC properties with bi-functional membrane antifouling and enhanced water purification in azo dyes decolorization under the stationary mode and in our lab-made continuous cross-flow PEC system, superior to those by photocatalysis and electrocatalysis. The developed synchronous MF and PEC system mediated by the conductive TiO2/CB/PVDF membrane proves to a feasible route to improving the self-cleaning properties of the polymer membrane while simultaneously increasing the water decontaminating efficiency.
Collapse
Affiliation(s)
- Mouheb Sboui
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wenke Niu
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China
| | - Gui Lu
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Kai Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jia Hong Pan
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
89
|
Haribhau Waghchaure R, Ashok Adole V, Shivaji Kushare S, Ashok Shinde R, Sonu Jagdale B. Visible light prompted and modified ZnO catalyzed rapid and efficient removal of hazardous crystal violet dye from aqueous solution: A systematic experimental study. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
90
|
Catalytic Degradation of Rhodamine B by a Novel Cobalt Complex Based on TTF Derivative. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
91
|
Liu B, Wang S, Wang H, Wang Y, Xiao Y, Cheng Y. Quaternary Ammonium Groups Modified Magnetic Cyclodextrin Polymers for Highly Efficient Dye Removal and Sterilization in Water Purification. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010167. [PMID: 36615361 PMCID: PMC9822413 DOI: 10.3390/molecules28010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Water recovery is a significant proposition for human survival and sustainable development, and we never stop searching for more efficient, easy-operating, low-cost and environmentally friendly methods to decontaminate water bodies. Herein, we combined the advantages of β-cyclodextrin (β-CD), magnetite nanoparticles (MNs), and two kinds of quaternary ammonium salts to synthesize two porous quaternary ammonium groups capped magnetic β-CD polymers (QMCDP1 and QMCDP2) to remove organic pollutants and eradicate pathogenic microorganisms effectively through a single implementation. In this setting, β-CD polymer (CDP) was utilized as the porous substrate material, while MNs endowed the materials with excellent magnetism enhancing recyclability in practical application scenarios, and the grafting of quaternary ammonium groups was beneficial for the adsorption of anionic dyes and sterilization. Both QMCDPs outperformed uncapped MCDPs in their adsorption ability of anionic pollutants, using methyl blue (MB) and orange G (OG) as model dyes. Additionally, QMCDP2, which was modified with longer alkyl chains than QMCDP1, exhibits superior bactericidal efficacy with a 99.47% removal rate for Staphylococcus aureus. Accordingly, this study provides some insights into designing a well-performed and easily recyclable adsorbent for simultaneous sterilization and adsorption of organic contaminants in wastewater.
Collapse
Affiliation(s)
- Bingjie Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuoxuan Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - He Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - Yong Wang
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yue Cheng
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| |
Collapse
|
92
|
Wei F, Zhu Y, He T, Zhu S, Wang T, Yao C, Yu C, Huang P, Li Y, Zhao Q, Song W. Insights into the pH-Dependent Adsorption Behavior of Ionic Dyes on Phosphoric Acid-Activated Biochar. ACS OMEGA 2022; 7:46288-46302. [PMID: 36570255 PMCID: PMC9773931 DOI: 10.1021/acsomega.2c04799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Activated biochar is a promising porous carbonaceous adsorbent material for organic pollutant removal, but it remains challenging to obtain high porosity and aromaticity through a simple and low-cost synthetic method. The common adsorption mechanisms of organic dyes on activated biochar should be further investigated in order to guide the synthesis of high-efficiency adsorbent materials. Here, we proposed a high-yield (up to 40 wt %) synthetic method of phosphoric acid-activated biochar from pomelo peel (PPC) with a high specific area of 877.3 m2/g through a facile thermal treatment at a relatively low temperature (250 °C). The specific activation mechanism of H3PO4 in the preparation of the adsorbent was investigated by a range of experiments and characterizations. The kinetic and isotherm experiments are also conducted to evaluate its dye adsorption behavior. According to the adsorption experiment results, PPC exhibits high saturated adsorption capacities for methyl orange (MO, 239.1 mg/g), rhodamine B (RhB, 2821.8 mg/g), methylene blue (MB, 580.5 mg/g), and crystal violate (CV, 396.6 mg/g) according to the Langmuir model. The maximum initial concentration of each dye solution for acquiring 90% removal efficiency is estimated to be 234.55 ppm (MO), 2943.8 ppm (RhB), 633.8 ppm (MB), and 423.6 ppm (CV) at 298 K with an adsorbent dosage of 1 g/L. The characterization results also indicate PPC has a complex synergetic mechanism for ionic dye adsorption behavior. This provides perspectives regarding PPC as a promising biochar adsorbent from biomass waste, which is probably useful for high-efficiency dye removal in water treatment.
Collapse
Affiliation(s)
- Fang Wei
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Yuwei Zhu
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Tongmin He
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Shengpu Zhu
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Tianhao Wang
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Chunyi Yao
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Chenlu Yu
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Peipei Huang
- School
of Physics & Information Technology, Shaanxi Normal University, Xi’an710119, China
| | - Yan Li
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Qiang Zhao
- College
of Science, Civil Aviation University of
China (CAUC), Tianjin300300, China
| | - Weiguo Song
- Laboratory
of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
93
|
Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248866. [PMID: 36558000 PMCID: PMC9785790 DOI: 10.3390/molecules27248866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The present work describes the preparation and characterization of a new cobalt(III) porphyrin coordination compound named (chlorido)(nicotinoylchloride)[meso-tetra(para-chlorophenyl)porphyrinato]cobalt(III) dichloromethane monosolvate with the formula [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4). The single-crystal X-ray molecular structure of 4 shows very important ruffling and waving distortions of the porphyrin macrocycle. The Soret and Q absorption bands of 4 are very red-shifted as a consequence of the very distorted porphyrin core. This coordination compound was also studied by fluorescence and cyclic voltammetry. The efficiency of our four porphyrinic compounds-the H2TClPP (1) free-base porphyrin, the [CoII(TClPP)] (2) and [CoIII(TClPP)Cl] (3) starting materials, and the new Co(III) metalloporphyrin [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4)-as catalysts in the photochemical degradation was tested on malachite green (MG) dye. The current voltage of complexes 3 and 4 was also studied. Electrical parameters, including the saturation current density (Js) and barrier height (ϕb), were measured.
Collapse
|
94
|
Yousefi A, Nezamzadeh-Ejhieh A. Characterization of BiOCl/BiOI binary catalyst and its photocatalytic activity towards rifampin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
95
|
Mencho BB. Assessing the effects of gold mining on environment: A case study of Shekiso district, Guji zone, Ethiopia. Heliyon 2022; 8:e11882. [PMID: 36478826 PMCID: PMC9720523 DOI: 10.1016/j.heliyon.2022.e11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Environmental sustainability has become a serious problem in the world. Similarly, on environmental of the mining in the Shekiso district has become a severe issue at present. Such events have fueled an often contentious debate about how to identify areas that should be declared off-limits to mining because of too-rapid social and environmental sensitivity. Therefore, this study aims to assess the effects of the gold mining on the environment at a selected kebele in the case of Shekiso District, Guji Zone, Ethiopia. The primary data used for this study was obtained from 283 randomly selected sample in the study area. This data was collected using a structured interview, focus group discussions, observation, and key informant interviews, then analyzed using descriptive statistics. Besides, a semi-structured interview was used to collect data from the mining and energy office in Shekiso District. The key informant was selected specifically to infer the effects of gold mining on the environment in the study area. The survey results indicate that mining serves as a key source of income (53%), a source of raw materials (30%), and employment (17%). On the other hand, gold mining is a root cause of environmental problems such as water shortages (8.8%), dehydration of the brook (10.6%), soil erosion (20.8%), damage to the street (17.6%), and destruction of the ecosystem (7.0%). Besides that, about 8.8%, 8.8%, and 6.3% of households stated that mining operations cause deforestation, air pollution, and destruction of aquatic life, respectively. Generally, due to a lack of environmental awareness programs through education in many gold mining communities, safeguarding sustainable use of the natural environment poses several challenges in study area. As a result, local governments should raise awareness, facilitate registration, and address rules and enforcement in an effort to enhance ecologically friendly mining.
Collapse
Affiliation(s)
- Birhanu Bekele Mencho
- Department of Geography and Environmental Studies, Injibara University, Awi, Po Box 40, Ethiopia
| |
Collapse
|
96
|
Ghani U, Hina K, Iqbal M, Irshad MK, Aslam I, Saeed R, Ibrahim M. Kinetic and isotherms modeling of methyl orange and chromium (VI) onto hexagonal ZnO microstructures as a membrane for environmental remediation of wastewater. CHEMOSPHERE 2022; 309:136681. [PMID: 36195126 DOI: 10.1016/j.chemosphere.2022.136681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Globally, contamination of water by dyes and heavy metals (HMs) is a serious environmental and public health problem due to their carcinogenic and mutagenic nature. It is incumbent to treat innocuously before discharge. It is the first time, hexagonal zinc oxide (ZnO) microstructure are being employeed as a membrane in the simultaneous removal of methyl orange (MO) and chromium (Cr (VI)) from the aqueous solution. The surface chemistry of hexagonal ZnO was characterized for morphology, surface functional groups, crystalline nature, and elemental composition by scanning electron microscope (SEM), Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). Adsorption capacity and removal efficiency was determined by the laboratory batch adsorption experiments, while nonlinear, linear kinetics and isotherm models were fitted to experimental data to investigate the adsorption process. The results exhibited that the maximum adsorption capacity (qmax) of hexagonal ZnO from the Langmuir isotherm model was 80.39 mg g-1 and 84.10 mg g-1 for MO and Cr (VI) respectively. According to the modeling findings, linear langmuir fitted to the experimental data with R2 0.967 and 0.971 for both MO and Cr (VI) which indicates monolayer physical adsorption of both pollutants has taken place. Whereas, kinetic study showed nonlinear pseudo-second order with R2 0.989 and 0.986 for MO and Cr (VI) model best fitted with the experimental data. The values of thermodynamics parameters Gibbs free energy change ΔG°, heat of enthalpy ΔH° and, heat of entropy ΔS° indicate that spontaneous, endothermic, and irreversible adsorption reactions occurred. Overall, it is concluded from our observations that hexagonal ZnO has the potential to be used as an eco-friendly, cost-effective adsorbent for simultaneous remaoval of both MO and Cr (VI) from water. Findings of the current investigation provide valuable insights for the development of an inexpensive, effective and sustainable filtration method for the treatment of MO and Cr (VI) synergistically.
Collapse
Affiliation(s)
- Usman Ghani
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Meenal Iqbal
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Imran Aslam
- Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore, NWL Campus, Pakistan
| | - Rashid Saeed
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
97
|
Marchuk MV, Asanov IP, Panafidin MA, Vorotnikov YA, Shestopalov MA. Nano TiO 2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4282. [PMID: 36500904 PMCID: PMC9736415 DOI: 10.3390/nano12234282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Emissions of various organic pollutants in the environment becomes a more and more acute problem in the modern world as they can lead to an ecological disaster in foreseeable future. The current situation forces scientists to develop numerous methods for the treatment of polluted water. Among these methods, advanced photocatalytic oxidation is a promising approach for removing organic pollutants from wastewater. In this work, one of the most common photocatalysts-titanium dioxide-was obtained by direct aqueous hydrolysis of titanium (IV) isopropoxide and impregnated with aqueous solutions of octahedral cluster complexes [{M6I8}(DMSO)6](NO3)4 (M = Mo, W) to overcome visible light absorption issues and increase overall photocatalytic activity. XRPD analysis showed that the titania is formed as anatase-brookite mixed-phase nanoparticles and cluster impregnation does not affect the morphology of the particles. Complex deposition resulted in the expansion of the absorption up to ~500 nm and in the appearance of an additional cluster-related band gap value of 1.8 eV. Both types of materials showed high activity in the photocatalytic decomposition of RhB under UV- and sunlight irradiation with effective rate constants 4-5 times higher than those of pure TiO2. The stability of the catalysts is preserved for up to 5 cycles of photodegradation. Scavengers' experiments revealed high impact of all of the active species in photocatalytic process indicating the formation of an S-scheme heterojunction photocatalyst.
Collapse
Affiliation(s)
- Margarita V. Marchuk
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Igor P. Asanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Maxim A. Panafidin
- Boreskov Institute of Catalysis SB RAS, 5 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
98
|
Zafar S, Bukhari DA, Rehman A. Azo dyes degradation by microorganisms - An efficient and sustainable approach. Saudi J Biol Sci 2022; 29:103437. [PMID: 36131780 PMCID: PMC9483650 DOI: 10.1016/j.sjbs.2022.103437] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic aromatic compounds consisting of various functional groups are known as dyes. These colored compounds are often discharged in effluents, and they are very dangerous to aquatic life. Basically, the dye industry started by using natural plant and insect sources, and then suddenly turned into artificial manufacturing. Natural equilibrium of our environment gets changed by the reduction in photosynthetic activity due to the dyes. In China 900,000 tons of all kinds of dyes are usually produced, which are used in many industries like food, textile, food, paper and leather. Untreated wastewater contaminates aquatic bodies by causing eutrophication, change in water color, oxygen depletion which affect aquatic organisms to a great extent. Dye wastewater is now the key environmental pollution form. In recent eras an extensive study line has been developed to explore the dye decolorization and biodegradation under both aerobic as well as anaerobic conditions. In this review, the chemistry, toxicity and microbial biodegradation/decolorization are presented. Some recent studies along with the new techniques and methodologies of remediating the dye pollution are also discussed to provide the bases of their handling. Overall, efficient and high biodegradation potential make microbes an impending foundation for green chemistry to eradicate toxic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Sadia Zafar
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Dilara A. Bukhari
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Corresponding author at: Department of Microbiology & Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
99
|
Bazan-Wozniak A, Paluch D, Wolski R, Cielecka-Piontek J, Nosal-Wiercińska A, Pietrzak R. Biocarbons Obtained from Fennel and Caraway Fruits as Adsorbents of Methyl Red Sodium Salt from Water System. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8177. [PMID: 36431663 PMCID: PMC9695654 DOI: 10.3390/ma15228177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
The aim of this study was to prepare biocarbons by biomass activation with carbon(IV) oxide. Fennel and caraway fruits were used as the precursors of bioadsorbents. The impact of the precursor type and temperature of activation on the physicochemical properties of the obtained biocarbons and their interaction with methyl red sodium salt upon adsorption process have been checked. The obtained bioadsorbents were characterized by determination of-low temperature nitrogen adsorption/desorption, elemental analysis, ash content, Boehm titration, and pH of water extracts. The biocarbons have surface area varying from 233-371 m2/g and basic in nature with acidic/basic oxygen-containing functional groups (3.23-5.08 mmol/g). The adsorption capacity varied from 63 to 141 mg/g. The influence of different parameters, such as the effectiveness of methyl red sodium salt adsorption, was evaluated. The adsorption kinetics was well fitted using a pseudo-second-order model. The Freundlich model best represented the equilibrium data. The amount of adsorbed dye was also found to increase with the increasing temperature of the process.
Collapse
Affiliation(s)
- Aleksandra Bazan-Wozniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dorota Paluch
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Robert Wolski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland
| | - Agnieszka Nosal-Wiercińska
- Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
100
|
Synthesis and characterization of clay graphene oxide iron oxide (clay/GO/Fe2O3)-nanocomposite for adsorptive removal of methylene blue dye from wastewater. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|