51
|
Liu Y, Chang Y, Cai Y. Circ_0067835 sponges miR-324-5p to induce HMGA1 expression in endometrial carcinoma cells. J Cell Mol Med 2020; 24:13927-13937. [PMID: 33169939 PMCID: PMC7754019 DOI: 10.1111/jcmm.15996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Endometrial cancer is a common gynaecological malignant tumour among women across the world. Circular RNAs (circRNAs) are a novel kind of non‐coding RNAs, and they can play a crucial role in multiple cancers. Nevertheless, the mechanisms of circRNAs in regulating gene expression in endometrial cancer are still unclear. Here, our work sought to focus on the role that circ_0067835 exert in progression and development of endometrial cancer cells. We observed circ_0067835 was markedly elevated in endometrial cancer. Then, changes in endometrial cancer cell (RL95‐2 and HEC‐1B) function were determined after circ_0067835 knockdown. Loss‐of‐functional assays revealed that circ_0067835 down‐regulation significantly repressed RL95‐1 and HEC‐1B cell proliferation, migration and invasion. Bioinformatics analysis, luciferase reporter experiment and RNA pull‐down assay were employed to predict and validate circ_0067835 can bind to miR‐324‐5p. Increase in miR‐324‐5p remarkably depressed the proliferation, migration and invasion of endometrial cancer cells via inhibiting high mobility group A1 (HMGA1). HMGA1 is identified as a vital prognostic biomarker in endometrial cancer. Currently, we reported circ_0067835 was positively correlated with HMGA1 in endometrial cancer. We implied that circ_0067835 was capable of sponging miR‐324‐5p and inducing its downstream target HMGA1 in vitro and in vivo. In conclusion, circ_0067835 can compete with miR‐324‐5p, resulting in HMGA1 up‐regulation, and therefore induce the development of endometrial cancer.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Yang M, Guo Y, Liu X, Liu N. HMGA1 Promotes Hepatic Metastasis of Colorectal Cancer by Inducing Expression of Glucose Transporter 3 (GLUT3). Med Sci Monit 2020; 26:e924975. [PMID: 32989212 PMCID: PMC7532698 DOI: 10.12659/msm.924975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide, and more than half of CRC patients have CRC liver metastasis (CRCLM). Mounting evidence indicates that high mobility group protein A1(HMGA1) is overexpressed in many cancer types, but its role in CRCLM has been obscure. Material/Methods Using immunohistochemistry, we assessed the expression of HMGA1 in 73 patients with CRCLM, and compared HMGA1 mRNA in 17 pairs of CRCs, CRCLM tissues, and normal liver tissues. The clinical significance of HMGA1 was evaluated by analyzing its correlation with the clinicopathological factors and overall survival (OS) rates. The function of HMGA1 in CRC invasion was investigated and the underlying mechanism of HMGA1-induced invasion was explored with in vitro experiments. Results In CRCLMs, the high-HMGA1 and low-HMGA1 patients accounted for 53.42% and 46.58% of all patients, respectively. High HMGA1 expression in CRCLM was significantly associated with low OS rates. In vitro experiments demonstrated that HMGA1 promoted glucose transporter 3 (GLUT3) transcription and expression in CRC cells. GLUT3 was required in HMGA1-involved invasion, and GLUT3 expression was associated with poor prognosis of CRCLM. Conclusions High HMGA1 and GLUT3 expression in CRCLM was significantly correlated with poor prognosis of CRCLM. HMGA1 promoted CRC invasion by elevating GLUT3 transcription and expression.
Collapse
Affiliation(s)
- Meijing Yang
- Department of Geriatrics, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Yang Guo
- Department of Geriatrics, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Xiaoyun Liu
- Department of Cardiology, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Naiqing Liu
- Department of General Surgery, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
53
|
Pegoraro S, Ros G, Sgubin M, Petrosino S, Zambelli A, Sgarra R, Manfioletti G. Targeting the intrinsically disordered architectural High Mobility Group A (HMGA) oncoproteins in breast cancer: learning from the past to design future strategies. Expert Opin Ther Targets 2020; 24:953-969. [PMID: 32970506 DOI: 10.1080/14728222.2020.1814738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat because of its heterogeneity and lack of specific therapeutic targets. High Mobility Group A (HMGA) proteins are chromatin architectural factors that have multiple oncogenic functions in breast cancer, and they represent promising molecular therapeutic targets for this disease. AREAS COVERED We offer an overview of the strategies that have been exploited to counteract HMGA oncoprotein activities at the transcriptional and post-transcriptional levels. We also present the possibility of targeting cancer-associated factors that lie downstream of HMGA proteins and discuss the contribution of HMGA proteins to chemoresistance. EXPERT OPINION Different strategies have been exploited to counteract HMGA protein activities; these involve interfering with their nucleic acid binding properties and the blocking of HMGA expression. Some approaches have provided promising results. However, some unique characteristics of the HMGA proteins have not been exploited; these include their extensive protein-protein interaction network and their intrinsically disordered status that present the possibility that HMGA proteins could be involved in the formation of proteinaceous membrane-less organelles (PMLO) by liquid-liquid phase separation. These unexplored characteristics could open new pharmacological avenues to counteract the oncogenic contributions of HMGA proteins.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Michela Sgubin
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Sara Petrosino
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | |
Collapse
|
54
|
MYC-regulated pseudogene HMGA1P6 promotes ovarian cancer malignancy via augmenting the oncogenic HMGA1/2. Cell Death Dis 2020; 11:167. [PMID: 32127525 PMCID: PMC7054391 DOI: 10.1038/s41419-020-2356-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Pseudogenes have long been considered as nonfunctional genomic sequences. Recent studies have shown that they can potentially regulate the expression of protein-coding genes and are dysregulated in diseases including cancer. However, the potential roles of pseudogenes in ovarian cancer have not been well studied. Here we characterized the pseudogene expression profile in HGSOC (high-grade serous ovarian carcinoma) by microarray. We identified 577 dysregulated pseudogenes and most of them were up-regulated (538 of 577). HMGA1P6 (High mobility group AT-hook 1 pseudogene 6) was one of the overexpressed pseudogenes and its expression was inversely correlated with patient survival. Mechanistically, HMGA1P6 promoted ovarian cancer cell malignancy by acting as a ceRNA (competitive endogenous RNA) that led to enhanced HMGA1 and HMGA2 expression. Importantly, HMGA1P6 was transcriptionally activated by oncogene MYC in ovarian cancer. Our findings reveal that MYC may contribute to oncogenesis through transcriptional regulation of pseudogene HMGA1P6 in ovarian cancer.
Collapse
|
55
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
56
|
Schmidt F, Kern F, Schulz MH. Integrative prediction of gene expression with chromatin accessibility and conformation data. Epigenetics Chromatin 2020; 13:4. [PMID: 32029002 PMCID: PMC7003490 DOI: 10.1186/s13072-020-0327-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Enhancers play a fundamental role in orchestrating cell state and development. Although several methods have been developed to identify enhancers, linking them to their target genes is still an open problem. Several theories have been proposed on the functional mechanisms of enhancers, which triggered the development of various methods to infer promoter-enhancer interactions (PEIs). The advancement of high-throughput techniques describing the three-dimensional organization of the chromatin, paved the way to pinpoint long-range PEIs. Here we investigated whether including PEIs in computational models for the prediction of gene expression improves performance and interpretability. RESULTS We have extended our [Formula: see text] framework to include DNA contacts deduced from chromatin conformation capture experiments and compared various methods to determine PEIs using predictive modelling of gene expression from chromatin accessibility data and predicted transcription factor (TF) motif data. We designed a novel machine learning approach that allows the prioritization of TFs binding to distal loop and promoter regions with respect to their importance for gene expression regulation. Our analysis revealed a set of core TFs that are part of enhancer-promoter loops involving YY1 in different cell lines. CONCLUSION We present a novel approach that can be used to prioritize TFs involved in distal and promoter-proximal regulatory events by integrating chromatin accessibility, conformation, and gene expression data. We show that the integration of chromatin conformation data can improve gene expression prediction and aids model interpretability.
Collapse
Affiliation(s)
- Florian Schmidt
- High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max-Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore, 138672 Singapore
| | - Fabian Kern
- High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Chair for Clinical Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H. Schulz
- High-throughput Genomics & Systems Biology, Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max-Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Institute of Cardiovascular Regeneration, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
57
|
E. MP, Liu T, Zhang X, Yang H, Wang J, Huang R, Wang Y. High-mobility group A1 ( HMGA1) gene expressions in various colorectal cancer cell lines and correlation with prognosis. Transl Cancer Res 2020; 9:763-773. [PMID: 35117422 PMCID: PMC8798761 DOI: 10.21037/tcr.2019.12.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/15/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND The high-mobility group A1 gene (HMGA1) plays a major role in the development of malignant cancers. However, the mechanisms underlying the correlation between HMGA1 expression level and patients' overall survival rate in various malignant cancers is unclear. METHODS We used The Cancer Genome Atlas (TCGA) database (https://genome-cancer.ucsc.edu/) to search for mRNA expression levels of HMGA1 in tumor patients and grouped them by receiver operating characteristic (ROC) curve. This divided patients into a high expression cohort and low expression cohort, and Kaplan-Meier analysis revealed the overall survival of the cancer patients. We also used real-time quantitative PCR (qPCR) to detect the expression of HMGA1, CBX7, E-cadherin, and β-catenin gene was detected by normalized to the expression of β-actin in colorectal cancer cell lines. RESULTS High expression group correlated with worse survival prognosis statistically significant (P<0.05), and scatter plots showed HMGA1 high expression in the different cancers (lung cancers; lung adenocarcinoma and lung squamous cell carcinoma; stomach and colorectal cancers; liver and pancreatic cancer; kidney papillary cell carcinoma; kidney clear cell carcinoma, brain lower grade glioma; adrenocortical cancer; acute myeloid leukemia; and sarcoma; head and neck squamous cell carcinoma, cholangio and bladder urothelial cancers). Further, we also found that the mRNA expressions of HMGA1, CBX7, E-cadherin, and β-catenin genes significantly in colorectal cancer cell lines (P value: 0.0005), consistent with the results of HMGA1 in TCGA database. CONCLUSIONS HMGA1 is highly expressed in various cancers than normal tissues, and high expression levels of HMGA1 correlated with a worse prognosis. The gene expressions and the TCGA data clearly supports that targeting HMGA1 in the management of cancers increases the survival rate of cancer patients.
Collapse
Affiliation(s)
- Maruthi Prasad E.
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
- Department of Cell Biology and Genetics, Shenzhen Key of Laboratory of Translational Medicine of Tumor, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ting Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Xiang Zhang
- Department of Gynecologic Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongli Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jing Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Renpeng Huang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|
58
|
HMGA Genes and Proteins in Development and Evolution. Int J Mol Sci 2020; 21:ijms21020654. [PMID: 31963852 PMCID: PMC7013770 DOI: 10.3390/ijms21020654] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.
Collapse
|
59
|
Ros G, Pegoraro S, De Angelis P, Sgarra R, Zucchelli S, Gustincich S, Manfioletti G. HMGA2 Antisense Long Non-coding RNAs as New Players in the Regulation of HMGA2 Expression and Pancreatic Cancer Promotion. Front Oncol 2020; 9:1526. [PMID: 32010621 PMCID: PMC6978849 DOI: 10.3389/fonc.2019.01526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Natural antisense long non-coding RNAs (lncRNAs) are regulatory RNAs transcribed from the opposite strand of either protein coding or non-coding genes, able to modulate their own sense gene expression. Hence, their dysregulation can lead to pathologic processes. Cancer is a complex class of diseases determined by the aberrant expression of a variety of factors, among them, the oncofetal chromatin architectural proteins High Mobility Group A (HMGA) modulate several cancer hallmarks. Thus, we decided to investigate the presence of natural antisense lncRNAs in HMGA1 and HMGA2 loci, and their possible involvement in gene expression regulation. Methods: We used FANTOM5 data resources, FANTOM-CAT genome browser and Zenbu visualization tool, which employ 1,829 human CAGE and RNA-sequencing libraries, to determine expression, ontology enrichment, and dynamic regulation of natural antisense lncRNAs in HMGA1 and HMGA2 loci. We then performed qRT-PCR in different cancer cell lines to validate the existence of HMGA2-AS1 transcripts. We depleted HMGA2-AS1 transcripts with siRNAs and investigated HMGA2 expression by qRT-PCR and western blot analyses. Moreover, we evaluated cell viability and migration by MTS and transwell assays, and EMT markers by qRT-PCR and immunofluorescence. Furthermore, we used bioinformatics approaches to evaluate HMGA2 and HMGA2-AS1 correlation and overall survival in tumor patients. Results: We found the presence of a promoter-associated lncRNA (CATG00000088127.1) in the HMGA1 gene and three antisense genes (RPSAP52, HMGA2-AS1, and RP11-366L20.3) in the HMGA2 gene. We studied the uncharacterized HMGA2-AS1 transcripts, validating their existence in cancer cell lines and observing a positive correlation between HMGA2 and HMGA2-AS1 expression in a cancer-derived patient dataset. We showed that HMGA2-AS1 transcripts positively modulate HMGA2 expression and migration properties of PANC1 cells through HMGA2. In addition, Kaplan-Meier analysis showed that high level of HMGA2-AS1 is a negative prognostic factor in pancreatic cancer patients. Conclusions: Our results describe novel antisense lncRNAs associated with HMGA1 and HMGA2 genes. In particular, we demonstrate that HMGA2-AS1 is involved in the regulation of its own sense gene expression, mediating tumorigenesis. Thus, we highlight a new layer of complexity in the regulation of HMGA2 expression, providing new potential targets for cancer therapy.
Collapse
Affiliation(s)
- Gloria Ros
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo De Angelis
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Zucchelli
- Department of Health Sciences, Center for Autoimmune and Allergic Diseases, Interdisciplinary Research Center of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | | | | |
Collapse
|
60
|
Wang X, Yu Q, Ghareeb WM, Zhang Y, Lu X, Huang Y, Huang S, Sun Y, Lin J, Liu J, Chi P. Downregulated SPINK4 is associated with poor survival in colorectal cancer. BMC Cancer 2019; 19:1258. [PMID: 31888570 PMCID: PMC6938003 DOI: 10.1186/s12885-019-6484-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SPINK4 is known as a gastrointestinal peptide in the gastrointestinal tract and is abundantly expressed in human goblet cells. The clinical significance of SPINK4 in colorectal cancer (CRC) is largely unknown. METHODS We retrieved the expression data of 1168 CRC patients from 3 Gene Expression Omnibus (GEO) datasets (GSE24551, GSE39582, GSE32323) and The Cancer Genome Atlas (TCGA) to compare the expression level of SPINK4 between CRC tissues and normal colorectal tissues and to evaluate its value in predicting the survival of CRC patients. At the protein level, these results were further confirmed by data mining in the Human Protein Atlas and by immunohistochemical staining of samples from 81 CRC cases in our own center. RESULTS SPINK4 expression was downregulated in CRC compared with that in normal tissues, and decreased SPINK4 expression at both the mRNA and protein levels was associated with poor prognosis in CRC patients from all 3 GEO datasets, the TCGA database and our cohort. Additionally, lower SPINK4 expression was significantly related to higher TNM stage. Moreover, in multivariate regression, SPINK4 was confirmed as an independent indicator of poor survival in CRC patients in all databases and in our own cohort. CONCLUSIONS We concluded that reduced expression of SPINK4 relates to poor survival in CRC, functioning as a novel indicator.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Qian Yu
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Waleed M Ghareeb
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Department of General and Gastrointestinal Surgery, Suez Canal University, Suez, Egypt
| | - Yiyi Zhang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xingrong Lu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Shenghui Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Yanwu Sun
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Jiayi Lin
- Clinical Laboratory, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jin Liu
- Clinical Laboratory, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
61
|
Wang J, Lv B, Su Y, Wang X, Bu J, Yao L. Exosome-Mediated Transfer of lncRNA HOTTIP Promotes Cisplatin Resistance in Gastric Cancer Cells by Regulating HMGA1/miR-218 Axis. Onco Targets Ther 2019; 12:11325-11338. [PMID: 31908497 PMCID: PMC6930390 DOI: 10.2147/ott.s231846] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Background Chemoresistance has become a major obstacle for cancer therapy in clinic. Long noncoding RNAs (lncRNAs) have been reported to play critical roles in the development of chemoresistance in various tumors, including gastric cancer (GC). However, the role of HOXA transcript at the distal tip (HOTTIP) within extracellular vesicles (exosomes) in cisplatin-resistant GC cells remains largely unknown. Materials and methods Cell proliferation, migration and invasion were detected using Cell Counting Kit-8 (CCK-8) and transwell assays, respectively. Western blot assay was employed to analyze the protein levels of E-cadherin, N-cadherin, Vimentin, CD63, CD83, GRP78, HMGA1, and high-mobility group A1 (HMGA1). The expression levels of HOTTIP, microRNA-218 (miR-218) and HMGA1were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-218 and HOTTIP or HMGA1 was predicted by bioinformatics software and confirmed by the dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Results Cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were promoted in cisplatin-resistant GC cells. HOTTIP level was upregulated in cisplatin-resistant GC cells and its downregulation enhanced cisplatin sensitivity. Moreover, extracellular HOTTIP could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating cisplatin resistance. Additionally, exosomal HOTTIP promoted cisplatin resistance via activating HMGA1 in GC cells. Interestingly, HMGA1 was a target of miR-218 and miR-218 could directly bind to HOTTIP. Clinically, high expression of exosomal HOTTIP in serum was associated with poor response to cisplatin treatment in GC patients. Conclusion Exosomal HOTTIP contributed to cisplatin resistance in GC cells by regulating miR-218/HMGA1 axis, providing a novel avenue for the treatment of GC.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliate Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Baojun Lv
- Department of Gastrointestinal Surgery, The Fifth Affiliate Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliate Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Xiao Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliate Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Juyuan Bu
- Department of Gastrointestinal Surgery, The Fifth Affiliate Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliate Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| |
Collapse
|
62
|
Nacarelli T, Fukumoto T, Zundell JA, Fatkhutdinov N, Jean S, Cadungog MG, Borowsky ME, Zhang R. NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer. Cancer Res 2019; 80:890-900. [PMID: 31857293 DOI: 10.1158/0008-5472.can-19-2830] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/15/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of gynecologic malignancies. The standard-of-care treatment for EOC is platinum-based chemotherapy such as cisplatin. Platinum-based chemotherapy induces cellular senescence. Notably, therapy-induced senescence contributes to chemoresistance by inducing cancer stem-like cells (CSC). However, therapeutic approaches targeting senescence-associated CSCs remain to be explored. Here, we show that nicotinamide phosphoribosyltransferase (NAMPT) inhibition suppresses senescence-associated CSCs induced by platinum-based chemotherapy in EOC. Clinically applicable NAMPT inhibitors suppressed the outgrowth of cisplatin-treated EOC cells both in vitro and in vivo. Moreover, a combination of the NAMPT inhibitor FK866 and cisplatin improved the survival of EOC-bearing mice. These phenotypes correlated with inhibition of the CSCs signature, which consists of elevated expression of ALDH1A1 and stem-related genes, high aldehyde dehydrogenase activity, and CD133 positivity. Mechanistically, NAMPT regulates EOC CSCs in a paracrine manner through the senescence-associated secretory phenotype. Our results suggest that targeting NAMPT using clinically applicable NAMPT inhibitors, such as FK866, in conjunction with platinum-based chemotherapy represents a promising therapeutic strategy by suppressing therapy-induced senescence-associated CSCs. SIGNIFICANCE: This study highlights the importance of NAMPT-mediated NAD+ biosynthesis in the production of cisplatin-induced senescence-associated cancer stem cells, as well as tumor relapse after cisplatin treatment.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joseph A Zundell
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Stephanie Jean
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware
| | - Mark G Cadungog
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware
| | - Mark E Borowsky
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
63
|
He L, Khanal P, Morse CI, Williams A, Thomis M. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle 2019; 10:1295-1306. [PMID: 31508907 PMCID: PMC6903450 DOI: 10.1002/jcsm.12478] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcopenia is characterized by progressive decreases in muscle mass, muscle strength, and muscle function with ageing. Although many studies have investigated the mechanisms of sarcopenia, its connection with epigenetic factors, such as DNA methylation, still remains poorly understood. The aim of this study was to explore sarcopenia-related DNA methylation differences in blood samples between age-matched sarcopenic and non-sarcopenic older women. METHODS A sarcopenic group (n = 24) was identified and selected from a set of 247 older Caucasian women (aged 65-80 years) based on cut-off points of skeletal muscle index at 6.75 kg/m2 and grip strength at 26 kg (the lower quintile of grip strength in the set). A non-sarcopenic group (n = 24) was created with a similar age distribution as that of the sarcopenic group. DNA methylation patterns of whole blood samples from both groups were analysed using Infinium MethylationEPIC BeadChip arrays. Differentially methylated cytosin-phosphate-guanine sites (dmCpGs) were identified at a P value threshold of 0.01 by comparing methylation levels between the sarcopenic and non-sarcopenic groups at each CpG site. dmCpG-related genes were annotated based on Homo sapiens hg19 genome build. The functions of these genes were further examined by GO and KEGG pathway enrichment analysis. RESULTS The global methylation level of all analysed CpG sites (n = 788 074) showed no significant difference between the sarcopenic and non-sarcopenic groups (0.812), while the average methylation level of dmCpGs (n = 6258) was significantly lower in the sarcopenic group (0.004). The sarcopenic group had significantly higher methylation levels in TSS200 (the region from transcription start site to 200 nucleotides upstream of the site) and lower methylation levels in gene body and 3'UTR regions. In respect of CpG regions, CpG islands in promoters and some intragenic regions showed greater levels of methylation in the sarcopenic group. dmCpG-related KEGG pathways were mainly associated with muscle function, actin cytoskeleton regulation, and energy metabolism. Seven genes (HSPB1, PBX4, CNKSR3, ORMDL3, MIR10A, ZNF619, and CRADD) were found with the same methylation direction as previous studies of blood sample methylation during ageing. Fifty-four genes were shared with previous studies of resistance training. CONCLUSIONS Our results improve understanding of epigenetic mechanisms of sarcopenia by identifying sarcopenia-related DNA methylation differences in blood samples of older women. These methylation differences suggest underlying alterations of gene expression and pathway function, which can partially explain sarcopenia-related muscular changes.
Collapse
Affiliation(s)
- Lingxiao He
- Department of Movement Sciences, Physical Activity, Sports & Health Research GroupKU LeuvenLeuvenBelgium
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
| | - Praval Khanal
- Department of Movement Sciences, Physical Activity, Sports & Health Research GroupKU LeuvenLeuvenBelgium
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
| | - Christopher I. Morse
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
| | - Alun Williams
- Department of Sport and Exercise SciencesManchester Metropolitan UniversityManchesterUK
- Institute of Sport, Exercise and HealthUniversity College LondonLondonUK
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research GroupKU LeuvenLeuvenBelgium
| |
Collapse
|
64
|
Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, Mei L, Gong C. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res 2019; 11:6860-6876. [PMID: 31814893 PMCID: PMC6895501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Platinum-based chemotherapy is still widely applied for the treatment of advanced non-small cell lung cancer (NSCLC). However, acquired chemoresistance compromises the curative effect of this drug. In this study, we found that glucose-6-phosphate dehydrogenase (G6PD), a critical enzyme of the pentose phosphate pathway, contributed to cisplatin resistance in NSCLC. The experimental results showed that transforming growth factor beta 1 (TGFβ1) increased the expression of G6PD by activating the forkhead box protein M1-high mobility group AT-hook 1-G6PD (FOXM1-HMGA1-G6PD) transcriptional regulatory pathway, in which TGFβ1 inhibited the ubiquitination and degradation of FOXM1 protein. Additionally, HMGA1 induced TGFβ1 expression, and neutralized TGFβ1 in the culture medium downregulated HMGA1 levels, suggesting the existence of a TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop and its role in maintaining G6PD expression. Further investigations showed that exogenous TGFβ1 enhanced the cisplatin resistance of NSCLC cells, while disrupting the FOXM1-HMGA1-G6PD pathway, thereby sensitizing the cells to cisplatin. Consistently, the TGFβ1-FOXM1-HMGA1-G6PD axis was confirmed in NSCLC tissues, and overactivation of this axis predicted poor survival in NSCLC patients. Collectively, the results of this study demonstrate that the TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop plays a crucial role in the cisplatin resistance of NSCLC by upregulating the expression of G6PD, providing a potential therapeutic target to restore chemosensitivity in cisplatin-resistant NSCLC.
Collapse
Affiliation(s)
- Rongwei Zhang
- Division of Thoracic Surgery, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
- Department of Emergency, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Fuzheng Tao
- Department of Cardiovascular, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Shenghui Ruan
- Department of Emergency, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Miaoxian Hu
- Department of Emergency, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Yanyan Hu
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Zejun Fang
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Lingming Mei
- Department of Educations, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221002, China
| |
Collapse
|
65
|
Li N, Qian S, Li B, Zhan X. Quantitative analysis of the human ovarian carcinoma mitochondrial phosphoproteome. Aging (Albany NY) 2019; 11:6449-6468. [PMID: 31442208 PMCID: PMC6738437 DOI: 10.18632/aging.102199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/10/2019] [Indexed: 05/02/2023]
Abstract
To investigate the existence and their potential biological roles of mitochondrial phosphoproteins (mtPPs) in human ovarian carcinoma (OC), mitochondria purified from OC and control tissues were analyzed with TiO2 enrichment-based iTRAQ quantitative proteomics. Totally 67 mtPPs with 124 phosphorylation sites were identified, which of them included 48 differential mtPPs (mtDPPs). Eighteen mtPPs were reported previously in OCs, and they were consistent in this study compared to previous literature. GO analysis revealed those mtPPs were involved in multiple cellular processes. PPI network indicated that those mtPPs were correlated mutually, and some mtPPs acted as hub molecules, such as EIF2S2, RPLP0, RPLP2, CFL1, MYH10, HSP90, HSPD1, PSMA3, TMX1, VDAC2, VDAC3, TOMM22, and TOMM20. Totally 32 mtPP-pathway systems (p<0.05) were enriched and clustered into 15 groups, including mitophagy, apoptosis, deubiquitination, signaling by VEGF, RHO-GTPase effectors, mitochondrial protein import, translation initiation, RNA transport, cellular responses to stress, and c-MYC transcriptional activation. Totally 29 mtPPs contained a certain protein domains. Upstream regulation analysis showed that TP53, TGFB1, dexamethasone, and thapsigargin might act as inhibitors, and L-dopa and forskolin might act as activators. This study provided novel insights into mitochondrial protein phosphorylations and their potential roles in OC pathogenesis and offered new biomarker resource for OCs.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
66
|
Jiménez-González V, Ogalla-García E, García-Quintanilla M, García-Quintanilla A. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca 2+ Homeostasis and Vesicle Transport. Int J Mol Sci 2019; 20:ijms20164005. [PMID: 31426446 PMCID: PMC6719933 DOI: 10.3390/ijms20164005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023] Open
Abstract
The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the Lifeguard family and is involved in calcium homeostasis, which governs key processes, such as cell survival or the release of neurotransmitters. GRINA is mainly associated with membranes of the endoplasmic reticulum, Golgi, endosome, and the cell surface, but its presence in the nucleus has not been explained yet. Here we dissect, with the help of different software tools, the potential roles of GRINA in the cell and how they may be altered in diseases, such as schizophrenia or celiac disease. We describe for the first time that the cytoplasmic N-terminal half of GRINA (which spans a Proline-rich domain) contains a potential DNA-binding sequence, in addition to cleavage target sites and probable PY-nuclear localization sequences, that may enable it to be released from the rest of the protein and enter the nucleus under suitable conditions, where it could participate in the transcription, alternative splicing, and mRNA export of a subset of genes likely involved in lipid and sterol synthesis, ribosome biogenesis, or cell cycle progression. To support these findings, we include additional evidence based on an exhaustive review of the literature and our preliminary data of the protein–protein interaction network of GRINA.
Collapse
Affiliation(s)
| | - Elena Ogalla-García
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Meritxell García-Quintanilla
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
67
|
HMGA1 exacerbates tumor progression by activating miR-222 through PI3K/Akt/MMP-9 signaling pathway in uveal melanoma. Cell Signal 2019; 63:109386. [PMID: 31394192 DOI: 10.1016/j.cellsig.2019.109386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022]
Abstract
High-mobility group A1 (HMGA1), an architectural transcription factor, participates in different human tumors' biological progression. HMGA1 overexpression is associated with malignant cellular behavior in a wide range of cancers but the underlying mechanism remains poorly illuminated. In this study, we showed PI3K/Akt/MMP9 pathway activity could be positively regulated by HMGA1 using western blotting, real-time polymerase chain reaction (RT-PCR) and immunochemistry both in vitro (C918 and MUM-2B cell lines) and in vivo (xenograft mouse model). Later, MiRTarBase was used to identify the relationship between HMGA1 and miR-222-3p, we found miR-222 is positively regulated by HMGA1. Moreover, the proliferation and migration of UM cells significantly increased in the miR-222 mimics group and decreased in the miR-222 inhibitor group detected by the Annexin V-FITC apoptosis detection kit, CCK-8 and scratch wound-healing. The p-PI3K, p-Akt and MMP9 expressions were elevated in UM cells transfected with miR-222 mimics, and suppressed in the miR-222 inhibitor group. Together, our study highlights that HMGA1 acts as a pivotal regulator in UM tumor growth, proposing a critical viewpoint that HMGA1 expedites progression through the PI3K/Akt/MMP9 pathway and oncogenic miR-222 in UM.
Collapse
|
68
|
Zanin R, Pegoraro S, Ros G, Ciani Y, Piazza S, Bossi F, Bulla R, Zennaro C, Tonon F, Lazarevic D, Stupka E, Sgarra R, Manfioletti G. HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:313. [PMID: 31311575 PMCID: PMC6636010 DOI: 10.1186/s13046-019-1307-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Background Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. Methods RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. Results Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. Conclusions This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossella Zanin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| | - Gloria Ros
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Yari Ciani
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy.,Present address: Department of Cellular, Computational and Integrative Biology - (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Fleur Bossi
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) "Burlo Garofolo", via dell'Istria 65/1, 34134, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Cristina Zennaro
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Federica Tonon
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Present address: Life Sciences Business Health Catalyst, Cambridge, Via Sommarive 9, 38123, USA
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | |
Collapse
|
69
|
HMGA1 promoting gastric cancer oncogenic and glycolytic phenotypes by regulating c-myc expression. Biochem Biophys Res Commun 2019; 516:457-465. [PMID: 31229266 DOI: 10.1016/j.bbrc.2019.06.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
The high mobility group A1 (HMGA1) protein, an architectural transcription factor, is profoundly implicated in the pathogenesis and progression of multiple malignant tumors. Reprogrammed energy metabolism is a hallmark of diverse types of cancer cells. However, little is known about the regulatory role of HMGA1 in aerobic glycolysis. In this study, we found that HMGA1 was highly expressed in many types of human cancers including gastric cancer and predicted a poor prognosis. However, high HMGA1 expression was not correlated with TNM stages. Gene set enrichment analysis result suggested a link between HMGA1 expression and glycolytic phenotype in gastric cancer. Genetic silencing of HMGA1 significantly inhibited gastric cancer glycolytic activity as revealed by reduced glucose uptake, lactate release, and extracellular acidification ratio. In addition, cell proliferation and invasive capacity of gastric cancer cells were also suppressed by HMGA1 knockdown. Mechanistically, the key glycolysis regulator c-Myc was identified as a downstream target of HMGA1. In gastric cancer patients, HMGA1 and c-Myc expression were closely associated with the glycolysis gene signature. Taken together, our findings identify a novel function of HMGA1 in regulating aerobic glycolysis in gastric cancer.
Collapse
|
70
|
Huang B, Chang C, Wang BL, Li H. ELK1-induced upregulation of lncRNA TRPM2-AS promotes tumor progression in gastric cancer by regulating miR-195/ HMGA1 axis. J Cell Biochem 2019; 120:16921-16933. [PMID: 31104318 DOI: 10.1002/jcb.28951] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to be aberrantly expressed in various diseases including tumors. Recently, a new tumor-related lncRNA, lncRNA TRPM2 antisense RNA (TRPM2-AS), was shown to be involved in many tumors, such as lung cancer and breast cancer. However, the expression and role of TRPM2-AS in the development of gastric cancer (GC) have not been elucidated. In the current study, we provided evidence that the expression levels of TRPM2-AS were increased in both GC tissues and cell lines. We also showed that overexpression of TRPM2-AS was modulated by ELK1, a transcription factor. The results of clinical assays showed that higher expressions of TRPM2-AS were significantly related with invasion depth, TNM stage, lymphatic metastasis, and shorter overall survival. Further clinical assays using multivariate analysis suggested that TRPM2-AS expression was an independent prognostic factor in patients with GC. Functional experiments illustrated that depression of TRPM2-AS suppressed proliferation, migration, and invasion in GC cells. In terms of mechanism, we found that TRPM2-AS directly inhibited miR-195, which targeted the 3'-untranslated region of high-mobility group AT-hook 1 (HMGA1) messenger RNA. Overall, these findings revealed that ELK1-induced overexpression of TRPM2-AS promoted the development and progression of GC in part through miR-195/HMGA1 signaling axis, and established its candidacy as a new cancer biomarker for GC patients.
Collapse
Affiliation(s)
- Bo Huang
- Department of General Surgery, Guangzhou Red Cross Hospital, Guangzhou, Guangdong, China
| | - Cheng Chang
- Department of General Surgery, Guangzhou Red Cross Hospital, Guangzhou, Guangdong, China
| | - Bai-Lin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Guangzhou, Guangdong, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Women and Children Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
71
|
Palumbo Júnior A, de Sousa VPL, Esposito F, De Martino M, Forzati F, Moreira FCDB, Simão TDA, Nasciutti LE, Fusco A, Ribeiro Pinto LF, Bessa Pereira Chaves C, Meireles Da Costa N. Overexpression of HMGA1 Figures as a Potential Prognostic Factor in Endometrioid Endometrial Carcinoma (EEC). Genes (Basel) 2019; 10:genes10050372. [PMID: 31096664 PMCID: PMC6562754 DOI: 10.3390/genes10050372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrioid endometrial carcinomas (EEC) are the most common malignant gynecologic tumors. Despite the increase in EEC molecular knowledge, the identification of new biomarkers involved in disease's development and/or progression would represent an improvement in its course. High-mobility group A protein (HMGA) family members are frequently overexpressed in a wide range of malignancies, correlating with a poor prognosis. Thus, the aim of this study was to analyze HMGA1 and HMGA2 expression pattern and their potential role as EEC biomarkers. HMGA1 and HMGA2 expression was initially evaluated in a series of 46 EEC tumors (stages IA to IV), and the findings were then validated in The Cancer Genome Atlas (TCGA) EEC cohort, comprising 381 EEC tumors (stages IA to IV). Our results reveal that HMGA1 and HMGA2 mRNA and protein are overexpressed in ECC, but only HMGA1 expression is associated with increased histological grade and tumor size. Moreover, HMGA1 but not HMGA2 overexpression was identified as a negative prognostic factor to EEC patients. Finally, a positive correlation between expression of HMGA1 pseudogenes-HMGA1-P6 and HMGA1-P7-and HMGA1 itself was detected, suggesting HMGA1 pseudogenes may play a role in HMGA1 expression regulation in EEC. Thus, these results indicate that HMGA1 overexpression possesses a potential role as a prognostic biomarker for EEC.
Collapse
Affiliation(s)
- Antonio Palumbo Júnior
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-bloco F, sala 26, Rio de Janeiro, RJ 21941-902, Brasil.
| | - Vanessa Paiva Leite de Sousa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Floriana Forzati
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Fábio Carvalho de Barros Moreira
- Divisão de Patologia, Instituto Nacional de Câncer-INCA, Rua Cordeiro da Graça, 156-Santo Cristo, Rio de Janeiro, RJ 20220-040, Brazil.
| | - Tatiana de Almeida Simão
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de setembro, 87-fundos-4º andar, Rio de Janeiro, RJ 20551-030, Brazil.
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-bloco F, sala 26, Rio de Janeiro, RJ 21941-902, Brasil.
| | - Alfredo Fusco
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
| | - Cláudia Bessa Pereira Chaves
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
- Seção de Ginecologia Oncológica, Hospital de Câncer II, Instituto Nacional de Câncer-INCA, Rua Equador, 835. Santo Cristo, Rio de Janeiro, RJ 20220-410, Brazil.
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37 - Centro, Rio de Janeiro, RJ 20231-050, Brazil.
| |
Collapse
|
72
|
Nacarelli T, Zhang R. NAD + metabolism controls inflammation during senescence. Mol Cell Oncol 2019; 6:1605819. [PMID: 31211232 DOI: 10.1080/23723556.2019.1605819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
We have recently discovered that nicotinamide adenine dinucleotide metabolism controls the pro-inflammatory senescence-associated secretory phenotype during cellular senescence. This newly discovered epigenetic-metabolic signaling axis, mediated by high mobility group A and nicotinamide phosphoribosyltransferase, drives key metabolic changes and pro-inflammatory responses of senescent cells that fuel cancer progression.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
73
|
NAD + metabolism governs the proinflammatory senescence-associated secretome. Nat Cell Biol 2019; 21:397-407. [PMID: 30778219 PMCID: PMC6448588 DOI: 10.1038/s41556-019-0287-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a stable growth arrest that is implicated in tissue ageing and cancer. Senescent cells are characterized by an upregulation of proinflammatory cytokines, which is termed the senescence-associated secretory phenotype (SASP). NAD+ metabolism influences both tissue ageing and cancer. However, the role of NAD+ metabolism in regulating the SASP is poorly understood. Here we show that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway, governs the proinflammatory SASP independent of senescence-associated growth arrest. NAMPT is regulated by HMGAs during senescence. The HMGAs/NAMPT/NAD+ signaling axis promotes the proinflammatory SASP through enhancing glycolysis and mitochondrial respiration. HMGAs/NAMPT promotes the proinflammatory SASP through NAD+-mediated suppression of AMPK kinase, which suppresses p53-mediated inhibition of p38MAPK to enhance NFκb activity. We conclude that NAD+ metabolism governs the proinflammatory SASP. Given the tumor-promoting effects of the proinflammatory SASP, our results suggest that anti-ageing dietary NAD+ augmentation should be administered with precision.
Collapse
|
74
|
Knockdown of high mobility group box 3 impairs cell viability and colony formation but increases apoptosis in A549 human non-small cell lung cancer cells. Oncol Lett 2019; 17:2937-2945. [PMID: 30854071 DOI: 10.3892/ol.2019.9927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Previous research has linked high mobility group box 3 (HMGB3) overexpression to the malignant progression and poor prognosis of non-small cell lung cancer (NSCLC). The present study investigated the role of HMGB3 in cell survival and colony formation of NSCLC cells. Stable knockdown of HMGB3 in A549 cells was achieved by lentiviral-based shRNA interference and verified by detection of the transcriptional and translational level of HMGB3 with reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The influence of HMGB3 knockdown on A549 cell viability and apoptotic rate was evaluated by Cell Counting Kit-8 assay and flow cytometry following annexin V staining, respectively. The proliferative capacity of A549 cells with or without HMGB3 knockdown was compared by measuring their colony forming efficiency. The results of the current study revealed that HMGB3 knockdown significantly reduced cell viability and colony forming efficiency while promoting apoptosis in A549 cells, indicating that HMGB3 may be pivotal for the survival and colony formation of A549 cells, serving a notable role in NSCLC progression.
Collapse
|
75
|
Zhou Y, Zhu W, Zhang L, Zeng Y, Xu C, Tian Q, Deng HW. Transcriptomic Data Identified Key Transcription Factors for Osteoporosis in Caucasian Women. Calcif Tissue Int 2018; 103:581-588. [PMID: 30056508 PMCID: PMC6343666 DOI: 10.1007/s00223-018-0457-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/14/2018] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a prevalent bone metabolic disease, mainly caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Identifying the key transcription factors and understanding the regulatory network influencing osteoclastogenesis will be helpful to explore the potential biological mechanism for osteoporosis. In our study, peripheral blood monocyte (PBM) was used as a cell model for bone mineral density (BMD) research. PBMs serve as progenitors of osteoclasts and produce important cytokines for osteoclastogenesis. In our study, via exon arrays, gene expression profiles of PBMs were analyzed between high versus low hip BMD groups. Transcription factors for differentially expressed genes were then predicted based on the enrichment analysis. We found that 591 genes were differentially expressed between the two BMD groups (nominally significant, raw p value < 0.05). For high BMD subjects, 482 genes were up-regulated and 109 genes were down-regulated. We then found 29 potential transcription factors for up-regulated genes and nine transcription factors for down-regulated genes. Among these transcription factors, HMGA1 and NFKB2 were differentially expressed between high versus low BMD groups. In addition, their regulation types with their target genes were consistent with the information from public databases. Our findings of key transcription factors and their target genes for osteoporosis were further validated by GWAS analysis. Overall, we predicted important transcription factors for osteoporosis. We were also able to infer the regulatory mechanism that exists between transcription factors and target genes in bone metabolism.
Collapse
Affiliation(s)
- Yu Zhou
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Wei Zhu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Lan Zhang
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Yong Zeng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Chao Xu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., RM 1619F, New Orleans, LA, 70112, USA.
| |
Collapse
|
76
|
Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2018; 120:4783-4793. [PMID: 30450580 DOI: 10.1002/jcb.27857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone with a strong tendency to early metastasis, and occurs in growing bones more commonly in children and adolescents. Considering the limited therapeutic methods and lack of 100% success of these methods, developing innovative therapies with high efficacy and lower side effects is needed. Meanwhile, miRNAs and the studies indicating the involvement of miRNAs in OS development have attracted attentions as a result of the frequent abnormalities in expression of miRNAs in cancer. miRNAs are noncoding short sequences with lengths ranging from 18 to 25 nucleotides that play a very important role in cellular processes, such as proliferation, differentiation, migration, and apoptosis. MiRNAs can have either oncogenic or tumor suppressive role based on cellular function and targets. This review aimed to have overview on miR-142 as a tumor suppressor in OS. Moreover, the genes involved in the disease, such as RAC1, HMAG1, MMP9, MMP2, and E-cadherin, which have irregularities as a result of change in miR-142 expression, and, thereby, result in increasing the proliferation, invasion, and metastasis of the cells in the tissues and OS cells will be discussed.
Collapse
Affiliation(s)
- Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
77
|
Liu Y, Wu W, Zhou L, Cheng L, Miao C. MicroRNA-142a-3p promotes the differentiation of 3T3-L1 preadipocytes by targeting high-mobility group AT-hook 1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5249-5256. [PMID: 31949605 PMCID: PMC6963016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obesity is characterized by the excess accumulation of adipose tissues, mainly composed of adipocytes. The differentiation of adipocytes is one of the major events in the process of adipogenesis. Among various adipogenic transcription factors, CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferators-activated receptor γ (PPARγ) have been identified as essential regulators of adipocyte differentiation. METHODS RT-qPCR assay was conducted to detect the expression of microRNA-142a-3p (miR-142a-3p), high-mobility group AT-hook 1 (HMGA1) mRNA, C/EBPα mRNA, and PPARγ mRNA. Western blot assay was performed to measure the protein levels of HMGA1, C/EBPα and PPARγ. Bioinformatics analysis and luciferase reporter assay were carried out to explore the interaction between miR-142a-3p and HMGA1. RESULTS miR-142a-3p expression was notably increased and HMGA1 expression was markedly reduced during 3T3-L1 preadipocyte differentiation. Functional analysis revealed that miR-142a-3p overexpression promoted 3T3-L1 preadipocyte differentiation. Further investigations on molecular mechanisms showed that HMGA1 was a target of miR-142a-3p in 3T3-L1 preadipocytes. Moreover, the knockdown of HMGA1 induced 3T3-L1 preadipocyte differentiation. Additionally, HMGA1 silencing abolished miR-142a-3p deficiency-mediated inhibitory effect on 3T3-L1 preadipocyte differentiation. CONCLUSION MiR-142a-3p overexpression facilitated 3T3-L1 preadipocyte differentiation by targeting HMGA1, highlighting the importance of miR-142a-3p, HMGA1 and the miR-142a-3p/HMGA1 axis in adipogenesis.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Health Science, Xi’an Physical Education UniversityXi’an, China
| | - Wenping Wu
- Graduate Faculty, Xi’an Physical Education UniversityXi’an, China
| | - Lirong Zhou
- Graduate Faculty, Xi’an Physical Education UniversityXi’an, China
| | - Liqin Cheng
- Graduate Faculty, Xi’an Physical Education UniversityXi’an, China
| | - Changqing Miao
- Department of Emergency Medicine, First Affiliated Hospital, Xi’an Jiaotong University Health Science CenterXi’an, China
| |
Collapse
|
78
|
Wang R, Shen J, Wang Q, Zhang M. Bortezomib inhibited the progression of diffuse large B-cell lymphoma via targeting miR-198. Biomed Pharmacother 2018; 108:43-49. [PMID: 30216798 DOI: 10.1016/j.biopha.2018.08.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, which is an aggressive malignancy with high variance of clinical features and response to the treatment. The proteasome inhibitor bortezomib (BTZ) has been demonstrated to suppress the progression of DLBCL, however, the underlying molecular mechanisms by which BTZ regulates the growth of DLBCL cells remain largely unknown. Increasing evidence has suggested that microRNAs (miRNAs) are novel targets of anti-cancer drugs to modulate the progression of cancers. Here, we showed BTZ treatment significantly inhibited the proliferation of DLBCL CRL-2630 cells. Mechanistically, exposure of BTZ up-regulated the expression of miR-198 in DLBCL cells. Depletion of miR-198 significantly reversed the inhibitory effect of BTZ on the proliferation of CRL-2630 cells. To further characterize the involvement of miR-198 in BTZ-induced growth defects of CRL-2630 cells, the downstream targets of miR-198 were predicted with the bioinformatics tools. The results showed that miR-198 bound the 3'-untranslated region (UTR) of the high mobility group AT-hook 1 (HMGA1) and suppressed the expression of HMGA1 in DLBCL cells. Consistently, BTZ treatment decreased the level of HMAG1 and inhibited the migration of DLBCL cells. Our results provided the possible mechanism by which BTZ suppressed the growth of DLBCL cells.
Collapse
Affiliation(s)
- Ruihuan Wang
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China.
| | - Jie Shen
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China
| | - Qing Wang
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China
| | - Minjuan Zhang
- The Second Hematology Department, Cangzhou Central Hospital, 061001, China
| |
Collapse
|
79
|
Albrecht NE, Alevy J, Jiang D, Burger CA, Liu BI, Li F, Wang J, Kim SY, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gaspero A, Justice MJ, Westenskow PD, Yamamoto S, Seavitt JR, Beaudet AL, Dickinson ME, Samuel MA. Rapid and Integrative Discovery of Retina Regulatory Molecules. Cell Rep 2018; 24:2506-2519. [PMID: 30157441 PMCID: PMC6170014 DOI: 10.1016/j.celrep.2018.07.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Retinal function relies on precisely organized neurons and synapses and a properly patterned vasculature to support them. Alterations in these features can result in vision loss. However, our understanding of retinal organization pathways remains incomplete because of a lack of methods to rapidly identify neuron and vasculature regulators in mammals. Here we developed a pipeline for the identification of neural and synaptic integrity genes by high-throughput retinal screening (INSiGHT) that analyzes candidate expression, vascular patterning, cellular organization, and synaptic arrangement. Using this system, we examined 102 mutant mouse lines and identified 16 unique retinal regulatory genes. Fifteen of these candidates are identified as novel retina regulators, and many (9 of 16) are associated with human neural diseases. These results expand the genetic landscape involved in retinal circuit organization and provide a road map for continued discovery of mammalian retinal regulators and disease-causing alleles.
Collapse
Affiliation(s)
- Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian I Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fenge Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julia Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seon-Young Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Uchechukwu Udensi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ritu Bohat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angelina Gaspero
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J Justice
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter D Westenskow
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
80
|
Role of Pseudogenes in Tumorigenesis. Cancers (Basel) 2018; 10:cancers10080256. [PMID: 30071685 PMCID: PMC6115995 DOI: 10.3390/cancers10080256] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Functional genomics has provided evidence that the human genome transcribes a large number of non-coding genes in addition to protein-coding genes, including microRNAs and long non-coding RNAs (lncRNAs). Among the group of lncRNAs are pseudogenes that have not been paid attention in the past, compared to other members of lncRNAs. However, increasing evidence points the important role of pseudogenes in diverse cellular functions, and dysregulation of pseudogenes are often associated with various human diseases including cancer. Like other types of lncRNAs, pseudogenes can also function as master regulators for gene expression and thus, they can play a critical role in various aspects of tumorigenesis. In this review we discuss the latest developments in pseudogene research, focusing on how pseudogenes impact tumorigenesis through different gene regulation mechanisms. Given the high sequence homology with the corresponding parent genes, we also discuss challenges for pseudogene research.
Collapse
|
81
|
Fu F, Wang T, Wu Z, Feng Y, Wang W, Zhou S, Ma X, Wang S. HMGA1 exacerbates tumor growth through regulating the cell cycle and accelerates migration/invasion via targeting miR-221/222 in cervical cancer. Cell Death Dis 2018; 9:594. [PMID: 29789601 PMCID: PMC5964147 DOI: 10.1038/s41419-018-0683-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
High-mobility group AT-hook1 (HMGA1, formerly HMG-I/Y), an architectural transcription factor, participates in a number of tumor biological processes. However, its effect on cervical cancer remains largely indistinct. In this study, we found that HMGA1 was generally overexpressed in cervical cancer tissues and was positively correlated with lymph node metastasis and advanced clinical stage. Via exogenously increasing or decreasing the expression of HMGA1, we showed that HMGA1 affected the proliferation, colony formation, migration and invasion of cervical cancer cells in vitro. Rescue experiments suggested that miR-221/222 could partly reverse HMGA1-mediated migration and invasion processes. Mechanistically, we discovered that HMGA1 accelerated the G1/S phase transition by regulating the expression of cyclin D1 and cyclin E1, which was consistent with the results of the in vivo experiment. Furthermore, we found that HMGA1 regulated the expression of the miR-221/222 cluster at the transcriptional level and that miR-221/222 targeted the 3'UTR of tissue inhibitor of metalloproteinases 3(TIMP3). We propose a fresh perspective that HMGA1 participates in the migration and invasion process via the miR-221/222-TIMP3-MMP2/MMP9 axis in cervical cancer. In summary, our study identified a critical role played by HMGA1 in the progression of cervical cancer and the potential mechanisms by which exerts its effects, suggesting that targeting HMGA1-related pathways could be conducive to the therapies for cervical cancer.
Collapse
Affiliation(s)
- Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhangying Wu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, 55000, Guiyang, Guizhou, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
82
|
Resar L, Chia L, Xian L. Lessons from the Crypt: HMGA1-Amping up Wnt for Stem Cells and Tumor Progression. Cancer Res 2018; 78:1890-1897. [PMID: 29618461 DOI: 10.1158/0008-5472.can-17-3045] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
High mobility group A1 (HMGA1) chromatin remodeling proteins are enriched in aggressive cancers and stem cells, although their common function in these settings has remained elusive until now. Recent work in murine intestinal stem cells (ISC) revealed a novel role for Hmga1 in enhancing self-renewal by amplifying Wnt signaling, both by inducing genes expressing Wnt agonist receptors and Wnt effectors. Surprisingly, Hmga1 also "builds" a stem cell niche by upregulating Sox9, a factor required for differentiation to Paneth cells; these cells constitute an epithelial niche by secreting Wnt and other factors to support ISCs. HMGA1 is also highly upregulated in colon cancer compared with nonmalignant epithelium and SOX9 becomes overexpressed during colon carcinogenesis. Intriguingly, HMGA1 is overexpressed in diverse cancers with poor outcomes, where it regulates developmental genes. Similarly, HMGA1 induces genes responsible for pluripotency and self-renewal in embryonic stem cells. These findings demonstrate that HMGA1 maintains Wnt and other developmental transcriptional networks and suggest that HMGA1 overexpression fosters carcinogenesis and tumor progression through dysregulation of these pathways. Studies are now needed to determine more precisely how HMGA1 modulates chromatin structure to amplify developmental genes and how to disrupt this process in cancer therapy. Cancer Res; 78(8); 1890-7. ©2018 AACR.
Collapse
Affiliation(s)
- Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lionel Chia
- Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingling Xian
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
83
|
High Mobility Group A (HMGA) proteins: Molecular instigators of breast cancer onset and progression. Biochim Biophys Acta Rev Cancer 2018. [DOI: 10.1016/j.bbcan.2018.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
84
|
Zhao C, Li Y, Zhang W, Zhao D, Ma L, Ma P, Yang F, Wang Y, Shu Y, Qiu W. IL‑17 induces NSCLC A549 cell proliferation via the upregulation of HMGA1, resulting in an increased cyclin D1 expression. Int J Oncol 2018; 52:1579-1592. [PMID: 29512693 DOI: 10.3892/ijo.2018.4307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is considered to be an inflammation-associated carcinoma. Although interleukin‑17 (IL‑17) production contributes to the proliferation and growth of NSCLC, the mechanisms underlying IL‑17-induced NSCLC cell proliferation have not been fully elucidated. In the present study, by using ELISA and immunohistochemical analyses, we first found that the expression levels of IL‑17, IL‑17 receptor (IL‑17R), high-mobility group A1 (HMGA1) and cyclin D1 were elevated in the samples of patients with NSCLC. Subsequently, by RT-qPCR, western blot analysis and cell proliferation assay in vitro, we revealed that stimulation with recombinant human IL‑17 (namely IL‑17A) markedly induced the expression of HMGA1 and cyclin D1 in the A549 cells (a human lung adenocarcinoma cell line) and promoted cell proliferation. Furthermore, luciferase reporter and ChIP assays confirmed that upregulated HMGA1 directly bound to the cyclin D1 gene promoter and activated its transcription. Notably, the response element of HMGA1 binding to the cyclin D1 promoter was disclosed for the first time, at least to the best of our knowledge. Taken together, our findings indicate that the IL‑17/HMGA1/cyclin D1 axis plays an important role in NSCLC cell proliferation and may provide new insight into NSCLC pathogenesis and may thus aid in the development of novel therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yongting Li
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Weiming Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
85
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
86
|
Hassan F, Ni S, Arnett TC, McKell MC, Kennedy MA. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability. MOLECULAR THERAPY-ONCOLYTICS 2018; 8:52-61. [PMID: 29511732 PMCID: PMC5832671 DOI: 10.1016/j.omto.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/17/2018] [Indexed: 11/23/2022]
Abstract
High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%–80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.
Collapse
Affiliation(s)
- Faizule Hassan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Tyler C Arnett
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Melanie C McKell
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
87
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, Greco M, Manfioletti G, Brunetti A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne) 2018; 9:357. [PMID: 30034366 PMCID: PMC6043803 DOI: 10.3389/fendo.2018.00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| |
Collapse
|
88
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
89
|
Dai N, Ji F, Wright J, Minichiello L, Sadreyev R, Avruch J. IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1. eLife 2017; 6:27155. [PMID: 28753127 PMCID: PMC5576481 DOI: 10.7554/elife.27155] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the Insulin-like Growth Factor 2 mRNA binding protein 2/IMP2 is amplified and overexpressed in many human cancers, accompanied by a poorer prognosis. Mice lacking IMP2 exhibit a longer lifespan and a reduced tumor burden at old age. Herein we show in a diverse array of human cancer cells that IMP2 overexpression stimulates and IMP2 elimination diminishes proliferation by 50–80%. In addition to its known ability to promote the abundance of Insulin-like Growth Factor 2/IGF2, we find that IMP2 strongly promotes IGF action, by binding and stabilizing the mRNA encoding the DNA binding protein HMGA1, a known oncogene. HMGA1 suppresses the abundance of IGF binding protein 2/IGFBP2 and Grb14, inhibitors of IGF action. IMP2 stabilization of HMGA1 mRNA plus IMP2 stimulated IGF2 production synergistically drive cancer cell proliferation and account for IMP2’s tumor promoting action. IMP2’s ability to promote proliferation and IGF action requires IMP2 phosphorylation by mTOR. Some types of cancers develop when genes known as oncogenes or tumor promoters become faulty, and are present at abnormally high levels or inappropriately turned on. For example, cancer cells often have extra copies of the gene IMP2 and therefore produce too much the IMP2 protein. Previous research has shown that mice that lack the IMP2 protein develop fewer cancers and live longer, while patients whose cancers make too much IMP2 have a poorer prognosis. In healthy cells, the IMP2 protein normally helps to make new gene products by stabilising certain newly produced RNA molecules – the precursors of proteins, and in some cases by promoting the translation of these RNAs into proteins. For example, IMP2 binds to the mRNA that encodes the protein IGF2, which is a protein that helps cells to grow and is commonly produced in large quantities by cancer cells. However, until now it was not clear whether IMP2 only acts by increasing the production of IGF2 or also contributes to cancer growth in other ways. Using a range of human cancer cell lines, and healthy mouse cells, Dai et al. first confirmed that without IMP2, cancer cells made less IGF2 and grew less quickly. When IGF2 was added to the cells lacking IMP2, it only partially restored their ability to grow. Further experiments revealed that cells without IMP2 had increased levels of proteins that counteract the effects of IGF2. Usually, IMP2 binds and stabilizes the mRNA that encodes the oncogenic protein HMGA1, which is known to regulate the number of ‘anti-IGF2 proteins’. However, without IMP2, the HMGA1 levels drop, which causes an increase of the anti-IGF2 proteins. This indicates that IMP2 promotes cancer cell growth both by enabling cells to produce more IGF2 and by suppressing inhibitors of IGF2 action. This suggests that cancer patients whose tumors have abnormally high levels of IMP2 may be especially sensitive to drugs that target and inhibit IGF2.
Collapse
Affiliation(s)
- Ning Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Jason Wright
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Pathology, Harvard Medical School, Boston, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|
90
|
Yang YF, Zhang MF, Tian QH, Zhang CZ. TRIM65 triggers β-catenin signaling via ubiquitylation of Axin1 to promote hepatocellular carcinoma. J Cell Sci 2017; 130:3108-3115. [PMID: 28754688 DOI: 10.1242/jcs.206623] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Deregulation of ubiquitin ligases contributes to the malignant progression of human cancers. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase and has been implicated in human diseases, but its role and clinical significance in hepatocellular carcinoma (HCC) remain unknown. Here, we showed that TRIM65 expression was increased in HCC tissues and associated with poor outcome in two independent cohorts containing 888 patients. In vitro and in vivo data demonstrated that overexpression of TRIM65 promoted cell growth and tumor metastasis, whereas knockdown of TRIM65 resulted in opposite phenotypes. Further studies revealed that TRIM65 exerted oncogenic activities via ubiquitylation of Axin1 to activate the β-catenin signaling pathway. TRIM65 directly bound to Axin1 and accelerated its degradation through ubiquitylation. Furthermore, HMGA1 was identified as an upstream regulator of TRIM65 in HCC cells. In clinical samples, TRIM65 expression was positively correlated with the expression of HMGA1 and nuclear β-catenin. Collectively, our data indicate that TRIM65 functions as an oncogene in HCC. The newly identified HMGA1/TRIM65/β-catenin axis serves as a promising prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qiu-Hong Tian
- Department of Oncology, First Affiliated Hospital of NanChang University, NanChang, Jiangxi 330006, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|