51
|
Wang C, Fang J, Jiang T, Hu S, Wang P, Liu X, Zou S, Yang J. Development and validation of a prognostic nomogram model in locally advanced NSCLC based on metabolic features of PET/CT and hematological inflammatory indicators. EJNMMI Phys 2024; 11:24. [PMID: 38441779 PMCID: PMC10914655 DOI: 10.1186/s40658-024-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND We combined the metabolic features of 18F-FDG-PET/CT and hematological inflammatory indicators to establish a predictive model of the outcomes of patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiotherapy. RESULTS A predictive nomogram was developed based on sex, CEA, systemic immune-inflammation index (SII), mean SUV (SUVmean), and total lesion glycolysis (TLG). The nomogram presents nice discrimination that yielded an AUC of 0.76 (95% confidence interval: 0.66-0.86) to predict 1-year PFS, with a sensitivity of 63.6%, a specificity of 83.3%, a positive predictive value of 83.7%, and a negative predictive value of 62.9% in the training set. The calibration curves and DCA suggested that the nomogram had good calibration and fit, as well as promising clinical effectiveness in the training set. In addition, survival analysis indicated that patients in the low-risk group had a significantly longer mPFS than those in the high-risk group (16.8 months versus 8.4 months, P < 0.001). Those results were supported by the results in the internal and external test sets. CONCLUSIONS The newly constructed predictive nomogram model presented promising discrimination, calibration, and clinical applicability and can be used as an individualized prognostic tool to facilitate precision treatment in clinical practice.
Collapse
Affiliation(s)
- Congjie Wang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jian Fang
- Department of thoracic surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Tingshu Jiang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shanliang Hu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Ping Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xiuli Liu
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shenchun Zou
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Oncology, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Yantai, 250117, Shandong, China.
| |
Collapse
|
52
|
Shirakawa Y, Matsutomo N, Suyama J. Feasibility of noise-reduction reconstruction technology based on non-local-mean principle in SiPM-PET/CT. Phys Med 2024; 119:103303. [PMID: 38325223 DOI: 10.1016/j.ejmp.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Quantitative values of positron emission tomography (PET) images using non-local-mean in a silicon photomultiplier (SiPM)-PET/computed tomography (CT) system with phantom and clinical images. The evaluation was conducted on a National Electrical Manufacturers Association body phantom with micro-spheres (4, 5, 6, 8, 10, 13 mm) and clinical images using the SiPM-PET/CT system. The signal-to-background ratio of the phantom was set to 4, and all PET image data was obtained and reconstructed using three-dimensional ordered subset expectation maximization, time-of-flight, point-spread function, and a 4-mm Gaussian filter (GF) and clear adaptive low-noise method (CaLM) in mild, standard, and strong intensities. The evaluation included the standardized uptake value (SUV), percent contrast (QH), coefficient of variation of the background area (CVbackground) clinical imaging for SUV of lung nodules, liver signal-to-noise ratio (SNR), and visual evaluation. SUVmax for 8-mm sphere in phantom images at 2 min for GF and CaLM (mild, standard, strong) were 2.11, 2.32, 2.02, and 1.72; the QH, 8 mm was 27.33 %, 27.47 %, 21.81 %, and 16.09 %; and CVbackground was 12.78, 11.35, 7.86, and 4.71, respectively. CaLM demonstrated higher SUVmax in clinical images than GF for all lung nodule sizes. The average SUVmax for nodules with a diameter of ≤ 1 cm were 5.9 ± 2.4, 9.9 ± 4.9, 9.9 ± 5.0, and 9.9 ± 5.0 for GF and CaLM-mild, standard, and strong intensities, respectively. Liver SNRs were higher for CaLM (mild, standard, strong) compared to GF, with increasing CaLM intensity causing higher liver SNR. CaLM-mild and standard demonstrated suitability for diagnosis in visual evaluation.
Collapse
Affiliation(s)
- Yuya Shirakawa
- Department of Radiology, Kyorin University Hospital, Tokyo, Japan.
| | - Norikazu Matsutomo
- Department of Medical Radiological Technology, Faculty of Health Sciences, Kyorin University, Japan.
| | - Jumpei Suyama
- Department of Radiology, Faculty of Medicine, Kyorin University, Tokyo, Japan.
| |
Collapse
|
53
|
van der Aa DC, Gisbertz SS, Anderegg MCJ, Lagarde SM, Klaassen R, Meijer SL, van Dieren S, Hulshof M, Bergman J, Bennink RJ, van Laarhoven HWM, van Berge Henegouwen MI. 18F-FDG-PET/CT to Detect Pathological Complete Response After Neoadjuvant Treatment in Patients with Cancer of the Esophagus or Gastroesophageal Junction: Accuracy and Long-Term Implications. J Gastrointest Cancer 2024; 55:270-280. [PMID: 37393217 PMCID: PMC11096198 DOI: 10.1007/s12029-023-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE The curative strategy for patients with esophageal cancer without distant metastases consists of esophagectomy with preceding chemo(radio)therapy (CRT). In 10-40% of patients treated with CRT, no viable tumor is detectable in the resection specimen (pathological complete response (pCR)). This study aims to define the clinical outcomes of patients with a pCR and to assess the accuracy of post-CRT FDG-PET/CT in the detection of a pCR. METHODS Four hundred sixty-three patients with cancer of the esophagus or gastroesophageal junction who underwent esophageal resection after CRT between 1994 and 2013 were included. Patients were categorized as pathological complete responders or noncomplete responders. Standardized uptake value (SUV) ratios of 135 post-CRT FDG-PET/CTs were calculated and compared with the pathological findings in the corresponding resection specimens. RESULTS Of the 463 included patients, 85 (18.4%) patients had a pCR. During follow-up, 25 (29.4%) of these 85 patients developed recurrent disease. Both 5-year disease-free survival (5y-DFS) and 5-year overall survival (5y-OS) were significantly higher in complete responders compared to noncomplete responders (5y-DFS 69.6% vs. 44.2%; P = 0.001 and 5y-OS 66.5% vs. 43.7%; P = 0.001). Not pCR, but only pN0 was identified as an independent predictor of (disease-free) survival. CONCLUSION Patients with a pCR have a higher probability of survival compared to noncomplete responders. One third of patients with a pCR do develop recurrent disease, and pCR can therefore not be equated with cure. FDG-PET/CT was inaccurate to predict pCR and therefore cannot be used as a sole diagnostic tool to predict pCR after CRT for esophageal cancer.
Collapse
Affiliation(s)
- D C van der Aa
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - S S Gisbertz
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - M C J Anderegg
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - S M Lagarde
- Department of Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | - R Klaassen
- Department of Medical Oncology, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - S L Meijer
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - S van Dieren
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - McCm Hulshof
- Department of Radiotherapy, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - Jjghm Bergman
- Department of Gastroenterology, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - R J Bennink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - H W M van Laarhoven
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - M I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands.
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands.
| |
Collapse
|
54
|
Arıkan MG, Soyluoğlu S, Korkmaz Ü, Taştekin E, Elboğa U, Arda E. Correlation between pre-radical prostatectomy standardized SUVmax ratios detected on 68Ga-PSMA-I&T PET/CT and final histopathology outcomes: an in-depth analysis. Rev Esp Med Nucl Imagen Mol 2024; 43:100-106. [PMID: 38331250 DOI: 10.1016/j.remnie.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To evaluate the predictive potential of the maximum standardized uptake value(SUVmax) value of intraprostatic tumors derived from preoperative 68Ga-PSMA-I&T PET/CT (SUVT), and its ratios to SUVmax in the liver (SUVTLR) and parotid gland (SUVTPR) with respect to histopathological findings. MATERIALS AND METHODS Data from patients who underwent radical prostatectomy (RP) for prostate cancer (PC) at our clinic between 2017 and 2020 were assessed. Patients with a secondary malignancy, a history of transurethral prostate resection, prior treatment for PC, or who received salvage RP were excluded. Whole-body images obtained using the same device, as per the guidelines, were reviewed by two nuclear medicine specialists with more than a decade of experience to reach a consensus for each lesion. The relationships between age, PSA, Prostate Volume, clinical T stage, biopsy International Society of Urological Pathology grade (ISUP), D'amico risk group, intraprostatic tumor volume (HPTV) identified in the final histopathological specimen review, HP-ISUP grade, seminal vesicle invasion (SVI), extracapsular invasion (ECI), positive surgical margine (PSM), SUVT, SUVTLR, and SUVTPR were analyzed. RESULTS The mean age of the 64 included patients was 64.1 ± 5.3. A statistically significant correlation was found between SUVT, SUVTLR, SUVTPR values, and histopathologic stage parameters, such as biopsy ISUP, D'amico Risk Classification, HP-ISUP, HPTV (p < 0.05). PSMATV, SUVT, and SUVTLR were statistically significant predictors of extracapsular invasion, while PSA, PSMATV, and SUVTLR were significant predictors of SVI (p < 0.05). CONCLUSION The standardized SUVT, SUVTLR, and SUVTPR values could be employed as noninvasive markers to assist in predicting postoperative histopathological findings, particularly ECI, SVI, and PSM.
Collapse
Affiliation(s)
- M G Arıkan
- Hatay Dörtyol State Hospital, Urology Clinic, Hatay, Turkey.
| | - S Soyluoğlu
- Trakya University School of Medicine, Department of Nuclear Medicine, Edirne, Turkey.
| | - Ü Korkmaz
- Trakya University School of Medicine, Department of Nuclear Medicine, Edirne, Turkey.
| | - E Taştekin
- Trakya University School of Medicine, Department of Pathology, Edirne, Turkey.
| | - U Elboğa
- Gaziantep University School of Medicine, Department of Nuclear Medicine, Gaziantep, Turkey.
| | - E Arda
- Trakya University School of Medicine, Department of Urology, Edirne, Turkey.
| |
Collapse
|
55
|
Soldath P, Binderup T, Kjaer A, Knigge U, Langer SW, Petersen RH. Prognostic thresholds of fluorine-18 fluorodeoxyglucose-positron emission tomography mean and maximum standardized uptake values for survival and nodal involvement in lung neuroendocrine neoplasms. Eur J Cardiothorac Surg 2024; 65:ezae030. [PMID: 38305412 DOI: 10.1093/ejcts/ezae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES The mean standardized uptake value (SUVmean) and maximum standardized uptake value (SUVmax) on fluorine-18 fluorodeoxyglucose-positron emission tomography are prognostic biomarkers for survival and nodal involvement in non-small-cell lung cancer but their prognostic value in lung neuroendocrine neoplasms (NENs) remains unexplored. In this study, we aimed to examine whether they are also prognostic biomarkers for survival and nodal involvement in lung NENs. METHODS We retrospectively studied patients with typical carcinoid, atypical carcinoid or large cell neuroendocrine carcinoma who had been radically resected at our institution between 2008 and 2020. We measured SUVmean and SUVmax on all primary tumours and lymph nodes that were clinically and/or pathologically involved. We dichotomized the patients into groups of high or low SUVmean and SUVmax of the primary tumour using time-dependent receiver operating characteristic curves and compared their overall survival using Kaplan-Meier curves and Cox models. Lastly, we predicted the patients' pathological nodal status with SUVmean and SUVmax of the lymph nodes using binomial logistic models. RESULTS The study included 245 patients. Patients died earlier if their SUVmean of the primary tumour exceeded 3.9 [hazard ratio 1.97, 95% confidence interval (CI) 1.27-3.04, P = 0.002] or SUVmax exceeded 5.3 (hazard ratio 1.85, 95% CI 1.20-2.87, P = 0.006). Likewise, patients had a higher risk of pathological nodal involvement if their SUVmean of the lymph nodes exceeded 3.3 (odds ratio 10.00, 95% CI 2.59-51.01, P = 0.002) or SUVmax exceeded 4.2 (odds ratio 4.00, 95% CI 1.20-14.65, P = 0.028). CONCLUSIONS The fluorine-18 fluorodeoxyglucose-positron emission tomography SUVmean and SUVmax are strong prognostic biomarkers for survival and nodal involvement in lung NENs and could be important guides for making treatment decisions.
Collapse
Affiliation(s)
- Patrick Soldath
- European Neuroendocrine Tumor Society Center of Excellence, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiothoracic Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Tina Binderup
- European Neuroendocrine Tumor Society Center of Excellence, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- European Neuroendocrine Tumor Society Center of Excellence, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Knigge
- European Neuroendocrine Tumor Society Center of Excellence, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Gastrointestinal Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Seppo W Langer
- European Neuroendocrine Tumor Society Center of Excellence, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - René H Petersen
- European Neuroendocrine Tumor Society Center of Excellence, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiothoracic Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
56
|
de Scals S, Fraile LM, Udías JM, Martínez Cortés L, Oteo M, Morcillo MÁ, Carreras-Delgado JL, Cabrera-Martín MN, España S. Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography. EJNMMI Phys 2024; 11:12. [PMID: 38291187 PMCID: PMC10828322 DOI: 10.1186/s40658-024-00618-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Pharmacokinetic positron emission tomography (PET) studies rely on the measurement of the arterial input function (AIF), which represents the time-activity curve of the radiotracer concentration in the blood plasma. Traditionally, obtaining the AIF requires invasive procedures, such as arterial catheterization, which can be challenging, time-consuming, and associated with potential risks. Therefore, the development of non-invasive techniques for AIF measurement is highly desirable. This study presents a detector for the non-invasive measurement of the AIF in PET studies. The detector is based on the combination of scintillation fibers and silicon photomultipliers (SiPMs) which leads to a very compact and rugged device. The feasibility of the detector was assessed through Monte Carlo simulations conducted on mouse tail and human wrist anatomies studying relevant parameters such as energy spectrum, detector efficiency and minimum detectable activity (MDA). The simulations involved the use of 18F and 68Ga isotopes, which exhibit significantly different positron ranges. In addition, several prototypes were built in order to study the different components of the detector including the scintillation fiber, the coating of the fiber, the SiPMs, and the operating configuration. Finally, the simulations were compared with experimental measurements conducted using a tube filled with both 18F and 68Ga to validate the obtained results. The MDA achieved for both anatomies (approximately 1000 kBq/mL for mice and 1 kBq/mL for humans) falls below the peak radiotracer concentrations typically found in PET studies, affirming the feasibility of conducting non-invasive AIF measurements with the fiber detector. The sensitivity for measurements with a tube filled with 18F (68Ga) was 1.2 (2.07) cps/(kBq/mL), while for simulations, it was 2.81 (6.23) cps/(kBq/mL). Further studies are needed to validate these results in pharmacokinetic PET studies.
Collapse
Affiliation(s)
- Sara de Scals
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Laura Martínez Cortés
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Miguel Ángel Morcillo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | - Samuel España
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
57
|
Yang H, Chen S, Qi M, Chen W, Kong Q, Zhang J, Song S. Investigation of PET image quality with acquisition time/bed and enhancement of lesion quantification accuracy through deep progressive learning. EJNMMI Phys 2024; 11:7. [PMID: 38195785 PMCID: PMC10776545 DOI: 10.1186/s40658-023-00607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVE To improve the PET image quality by a deep progressive learning (DPL) reconstruction algorithm and evaluate the DPL performance in lesion quantification. METHODS We reconstructed PET images from 48 oncological patients using ordered subset expectation maximization (OSEM) and deep progressive learning (DPL) methods. The patients were enrolled into three overlapped studies: 11 patients for image quality assessment (study 1), 34 patients for sub-centimeter lesion quantification (study 2), and 28 patients for imaging of overweight or obese individuals (study 3). In study 1, we evaluated the image quality visually based on four criteria: overall score, image sharpness, image noise, and diagnostic confidence. We also measured the image quality quantitatively using the signal-to-background ratio (SBR), signal-to-noise ratio (SNR), contrast-to-background ratio (CBR), and contrast-to-noise ratio (CNR). To evaluate the performance of the DPL algorithm in quantifying lesions, we compared the maximum standardized uptake values (SUVmax), SBR, CBR, SNR and CNR of 63 sub-centimeter lesions in study 2 and 44 lesions in study 3. RESULTS DPL produced better PET image quality than OSEM did based on the visual evaluation methods when the acquisition time was 0.5, 1.0 and 1.5 min/bed. However, no discernible differences were found between the two methods when the acquisition time was 2.0, 2.5 and 3.0 min/bed. Quantitative results showed that DPL had significantly higher values of SBR, CBR, SNR, and CNR than OSEM did for each acquisition time. For sub-centimeter lesion quantification, the SUVmax, SBR, CBR, SNR, and CNR of DPL were significantly enhanced, compared with OSEM. Similarly, for lesion quantification in overweight and obese patients, DPL significantly increased these parameters compared with OSEM. CONCLUSION The DPL algorithm dramatically enhanced the quality of PET images and enabled more accurate quantification of sub-centimeters lesions in patients and lesions in overweight or obese patients. This is particularly beneficial for overweight or obese patients who usually have lower image quality due to the increased attenuation.
Collapse
Affiliation(s)
- Hongxing Yang
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Shihao Chen
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ming Qi
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Wen Chen
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Qing Kong
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200032, People's Republic of China.
| | - Shaoli Song
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China.
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, People's Republic of China.
- Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
58
|
Morakote W, Baratto L, Ramasamy SK, Adams LC, Liang T, Sarrami AH, Daldrup-Link HE. Comparison of diffusion-weighted MRI and [ 18F]FDG PET/MRI for treatment monitoring in pediatric Hodgkin and non-Hodgkin lymphoma. Eur Radiol 2024; 34:643-653. [PMID: 37542653 PMCID: PMC10993778 DOI: 10.1007/s00330-023-10015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE To compare tumor therapy response assessments with whole-body diffusion-weighted imaging (WB-DWI) and 18F-fluorodeoxyglucose ([18F]FDG) PET/MRI in pediatric patients with Hodgkin lymphoma and non-Hodgkin lymphoma. MATERIALS AND METHODS In a retrospective, non-randomized single-center study, we reviewed serial simultaneous WB-DWI and [18F]FDG PET/MRI scans of 45 children and young adults (27 males; mean age, 13 years ± 5 [standard deviation]; age range, 1-21 years) with Hodgkin lymphoma (n = 20) and non-Hodgkin lymphoma (n = 25) between February 2018 and October 2022. We measured minimum tumor apparent diffusion coefficient (ADCmin) and maximum standardized uptake value (SUVmax) of up to six target lesions and assessed therapy response according to Lugano criteria and modified criteria for WB-DWI. We evaluated the agreement between WB-DWI- and [18F]FDG PET/MRI-based response classifications with Gwet's agreement coefficient (AC). RESULTS After induction chemotherapy, 95% (19 of 20) of patients with Hodgkin lymphoma and 72% (18 of 25) of patients with non-Hodgkin lymphoma showed concordant response in tumor metabolism and proton diffusion. We found a high agreement between treatment response assessments on WB-DWI and [18F]FDG PET/MRI (Gwet's AC = 0.94; 95% confidence interval [CI]: 0.82, 1.00) in patients with Hodgkin lymphoma, and a lower agreement for patients with non-Hodgkin lymphoma (Gwet's AC = 0.66; 95% CI: 0.43, 0.90). After completion of therapy, there was an excellent agreement between WB-DWI and [18F]FDG PET/MRI response assessments (Gwet's AC = 0.97; 95% CI: 0.91, 1). CONCLUSION Therapy response of Hodgkin lymphoma can be evaluated with either [18F]FDG PET or WB-DWI, whereas patients with non-Hodgkin lymphoma may benefit from a combined approach. CLINICAL RELEVANCE STATEMENT Hodgkin lymphoma and non-Hodgkin lymphoma exhibit different patterns of tumor response to induction chemotherapy on diffusion-weighted MRI and PET/MRI. KEY POINTS • Diffusion-weighted imaging has been proposed as an alternative imaging to assess tumor response without ionizing radiation. • After induction therapy, whole-body diffusion-weighted imaging and PET/MRI revealed a higher agreement in patients with Hodgkin lymphoma than in those with non-Hodgkin lymphoma. • At the end of therapy, whole-body diffusion-weighted imaging and PET/MRI revealed an excellent agreement for overall tumor therapy responses for all lymphoma types.
Collapse
Affiliation(s)
- Wipawee Morakote
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Shakthi K Ramasamy
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Tie Liang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Amir H Sarrami
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA.
| |
Collapse
|
59
|
Chen R, Ng YL, Yang X, Zhu Y, Li L, Zhao H, Zhou Y, Huang G, Liu J. Comparison of parametric imaging and SUV imaging with [ 68 Ga]Ga-PSMA-11 using dynamic total-body PET/CT in prostate cancer. Eur J Nucl Med Mol Imaging 2024; 51:568-580. [PMID: 37792025 DOI: 10.1007/s00259-023-06456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Standardized uptake value (SUV) has been prevalently used to measure [68 Ga]Ga-PSMA-11 activity in prostate cancer, but it is susceptible to multiple factors. Parametric imaging allows for absolute quantification of tracer uptake and provides a better diagnostic accuracy that is crucial for lesion detection. However, the clinical significance of total-body parametric imaging of [68 Ga]Ga-PSMA-11 remains to be fully assessed. Therefore, the aim of our study is to delve into the diagnostic implications of total-body parametric imaging of [68 Ga]Ga-PSMA-11 PET/CT for patients with prostate cancer. METHODS Twenty prostate cancer patients were included and underwent a dynamic total-body [68 Ga]Ga-PSMA-11 PET/CT scan. An irreversible two-tissue compartment model (2T3k) was fitted for each tissue time-to-activity curve, and the net influx rate (Ki) was obtained. The image quality and semi-quantitative analysis of lesion-to-background ratio (LBR), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were compared between parametric images and SUV images. RESULTS Kinetic modeling using 2T3k demonstrated favorable model fitting in both normal organs and lesions. All of the lesions detected on SUV images (55-60 min) could be detected on Ki images. The correlation between Ki, SUVmean, and SUVmax in both normal organs and pathological lesions was found to be positive and statistically significant. Conversely, a moderate positive correlations were found between Ki and K1 (R = 0.69, P < 0.001; R = 0.61, P < 0.001) and Ki and k3 (R = 0.69, P < 0.001; R = 0.62, P < 0.001), in normal organs and pathological lesions, respectively. Visual assessment in Ki images showed less image noise and higher lesions conspicuity compared to SUV images. Ki image-derived LBR, SNR, and CBR of pathological lesions including primary tumors (PTs), lymph node metastases (LNMs) and bone metastases (BMs), exhibited remarkably higher folds (1.4-3.6 folds) compared to those derived from SUV of corresponding lesions. CONCLUSIONS Total-body parametric imaging of [68 Ga]Ga-PSMA-11 enhanced lesion contrast and improved lesion detectability compared to SUV images. This may potentially serve as an imaging biomarker and theranostic tool for precise diagnosis and treatment evaluation in prostate cancer patients.
Collapse
Affiliation(s)
- Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Xinlan Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lianghua Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
60
|
Bomhals B, Cossement L, Maes A, Sathekge M, Mokoala KMG, Sathekge C, Ghysen K, Van de Wiele C. Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules. J Clin Med 2023; 12:7731. [PMID: 38137800 PMCID: PMC10743692 DOI: 10.3390/jcm12247731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we report on the added value of principal component analysis applied to a dataset of texture features derived from 39 solitary pulmonary lung nodule (SPN) lesions for the purpose of differentiating benign from malignant lesions, as compared to the use of SUVmax alone. Texture features were derived using the LIFEx software. The eight best-performing first-, second-, and higher-order features for separating benign from malignant nodules, in addition to SUVmax (MaximumGreyLevelSUVbwIBSI184IY), were included for PCA. Two principal components (PCs) were retained, of which the contributions to the total variance were, respectively, 87.6% and 10.8%. When included in a logistic binomial regression analysis, including age and gender as covariates, both PCs proved to be significant predictors for the underlying benign or malignant character of the lesions under study (p = 0.009 for the first PC and 0.020 for the second PC). As opposed to SUVmax alone, which allowed for the accurate classification of 69% of the lesions, the regression model including both PCs allowed for the accurate classification of 77% of the lesions. PCs derived from PCA applied on selected texture features may allow for more accurate characterization of SPN when compared to SUVmax alone.
Collapse
Affiliation(s)
- Birte Bomhals
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium; (B.B.); (L.C.)
| | - Lara Cossement
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium; (B.B.); (L.C.)
| | - Alex Maes
- Department of Morphology and Functional Imaging, University Hospital Leuven, 3000 Leuven, Belgium;
- Department of Nuclear Medicine, Katholieke University Leuven, AZ Groeninge, President Kennedylaan 4, 8500 Kortrijk, Belgium
| | - Mike Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital and Nuclear Medicine Research Infrastructure (NuMeRi), University of Pretoria, Pretoria 0002, South Africa
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, Steve Biko Academic Hospital and Nuclear Medicine Research Infrastructure (NuMeRi), University of Pretoria, Pretoria 0002, South Africa
| | - Chabi Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital and Nuclear Medicine Research Infrastructure (NuMeRi), University of Pretoria, Pretoria 0002, South Africa
| | - Katrien Ghysen
- Department of Pneumology, AZ Groeninge, 8500 Kortrijk, Belgium
| | - Christophe Van de Wiele
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium; (B.B.); (L.C.)
- Department of Nuclear Medicine, Katholieke University Leuven, AZ Groeninge, President Kennedylaan 4, 8500 Kortrijk, Belgium
| |
Collapse
|
61
|
Mostert JM, Dur NB, Li X, Ellermann JM, Hemke R, Hales L, Mazzoli V, Kogan F, Griffith JF, Oei EH, van der Heijden RA. Advanced Magnetic Resonance Imaging and Molecular Imaging of the Painful Knee. Semin Musculoskelet Radiol 2023; 27:618-631. [PMID: 37935208 PMCID: PMC10629992 DOI: 10.1055/s-0043-1775741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.
Collapse
Affiliation(s)
- Jacob M. Mostert
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niels B.J. Dur
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Xiufeng Li
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Jutta M. Ellermann
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Robert Hemke
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Laurel Hales
- Department of Radiology, Stanford University, Stanford, California
| | | | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California
| | - James F. Griffith
- Department of Imaging and Interventional Radiology Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Edwin H.G. Oei
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rianne A. van der Heijden
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
62
|
Duan Y, Zan K, Zhao M, Ng YL, Li H, Ge M, Chai L, Cui X, Quan W, Li K, Zhou Y, Chen L, Wang X, Cheng Z. The feasibility of quantitative assessment of dynamic 18F-fluorodeoxyglucose PET in Takayasu's arteritis: a pilot study. Eur J Nucl Med Mol Imaging 2023; 51:81-92. [PMID: 37691022 DOI: 10.1007/s00259-023-06429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE PET has been demonstrated to be sensitive for detecting active inflammation in Takayasu's arteritis (TAK) patients, but semi-quantitative-based assessment may be susceptible to various biological and technical factors. Absolute quantification via dynamic PET (dPET) may provide a more reliable and quantitative assessment of TAK-active arteries. The purpose of this study was to investigate the feasibility and efficacy of dPET in quantifying TAK-active arteries compared to static PET. MATERIALS AND METHODS This prospective study enrolled 10 TAK-active patients (fulfilled the NIH criteria) and 5 control participants from March to October 2022. One-hour dPET scan (all TAK and control participants) and delayed static PET scan at 2-h (all TAK patients) were acquired. For 1-h static PET, summed images from 50 to 60 min of the dPET were extracted. PET parameters derived from 1- and 2-h static PET including SUV (SUV1H and SUV2H), target-to-background ratio (TBR) (TBR1H and TBR2H), net influx rate (Ki), and TBRKi extracted from dPET were obtained. The detectability of TAK-active arteries was compared among different scanning methods using the generalized estimating equation (GEE) with a logistic regression with repeated measures, and the GEE with gamma distribution and log link function was used to evaluate the different study groups or scanning methods. RESULTS Based on the disease states, 5 cases of TAK were classified as untreated and relapsed, respectively. The SUVmax on 2-h PET was higher than that on 1-h PET in the untreated patients (P < 0.05). However, no significant differences were observed in the median SUVmax between 1-h PET and 2-h PET in the relapsed patients (P > 0.05). The TBRKi was significantly higher than both TBR1H and TBR2H (all P < 0.001). Moreover, the detectability of TAK-active arteries by dPET-derived Ki was significantly higher than 1-h and 2-h PET (all P < 0.001). Significant differences were observed in Kimax, SUVmax-1H, TBR1H, and TBRKi among untreated, relapsed, and control groups (all P < 0.05). CONCLUSIONS Absolute quantitative assessment by dPET provides an improved sensitivity and detectability in both visualization and quantification of TAK-active arteries. This elucidates the clinical significance of dPET in the early detection of active inflammation and monitoring recurrence.
Collapse
Affiliation(s)
- Yanhua Duan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Keyu Zan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Minjie Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Hui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Min Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Leiying Chai
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xiao Cui
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Wenjin Quan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Li Chen
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China, 250021.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China, 250021.
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
63
|
Park HL, Boo SH, Park SY, Moon SW, Yoo IR. Prognostic value of TLR from FDG PET/CT in patients with margin-negative stage IB and IIA non-small cell lung cancer. Eur Radiol 2023; 33:7274-7283. [PMID: 37060445 DOI: 10.1007/s00330-023-09641-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVES To evaluate the prognostic value of TLR from PET/CT in patients with resection margin-negative stage IB and IIA non-small cell lung cancer (NSCLC) and compare high-risk factors necessitating adjuvant treatment (AT). METHODS Consecutive FDG PET/CT scans performed for the initial staging of NSCLC stage IB and IIA were retrospectively reviewed. The maximum standardized uptake value (SUVmax) of the primary tumor and mean SUV of the liver were acquired. The tumor-to-liver SUV ratio (TLR) was also calculated. Charts were reviewed for basic patient characteristics and high-risk factors for considering AT (poor differentiation, visceral pleura invasion, vascular invasion, tumors > 4 cm, and wedge resection). Statistical analysis was performed using Cox regression analysis and the Kaplan-Meier method. RESULTS Of the 112 patients included, 15 (13.4%) died, with a median overall survival (OS) of 43.8 months. Twenty-two patients (19.6%) exhibited recurrence, with median disease-free survival (DFS) of 36.0 months. In univariable analysis, pathology, poor differentiation, and TLR were associated with shorter DFS and OS. In multivariable analysis, TLR (hazard ratio [HR] = 1.263, p = 0.008) and differentiation (HR = 3.087, p = 0.012) were associated with shorter DFS. Also, TLR (HR = 1.422, p < 0.001) was associated with shorter OS. CONCLUSION TLR from FDG PET/CT was an independent prognostic factor for recurrence and survival. PET parameters constitute risk factors for consideration in the decision-making for AT in margin-negative stage IB and IIA NSCLC. CLINICAL RELEVANCE STATEMENT In this study, TLR from FDG PET/CT was an independent prognostic factor in stage IB-IIA non-small cell cancer patients. Although additional validation studies are warranted, TLR has the potential to be used to determine the need for adjuvant therapy. KEY POINTS • High TLR is an independent poor prognostic factor in stage IB-IIA NSCLC. • Adjuvant treatment should be considered in patients with high TLR following complete tumor resection.
Collapse
Affiliation(s)
- Hye Lim Park
- Division of Nuclear Medicine, Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Ha Boo
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Sonya Youngju Park
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ie Ryung Yoo
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
64
|
Ha LN, Chau ND, Bieu BQ, Son MH. The Prognostic Value of Sequential 18 F-FDG PET/CT Metabolic Parameters in Outcomes of Upper-Third Esophageal Squamous Cell Carcinoma Patients Treated with Definitive Chemoradiotherapy. World J Nucl Med 2023; 22:226-233. [PMID: 37854080 PMCID: PMC10581756 DOI: 10.1055/s-0043-1774417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Objective The aim of this study is to determine prognostic values of sequential 18 F-FDG PET/CT metabolic parameters in locally advanced esophageal squamous cell carcinoma (ESCC) patients treated with definitive chemoradiotherapy. Materials and Methods Forty locally advanced ESCC patients treated with definitive chemoradiotherapy (dCRT) who received pre-treatment 18 F-FDG PET/CT (PET1) and 3-months post-treatment 18 F-FDG PET/CT (PET2) were enrolled in the prospective study. 18 F-FDG PET parameters of the primary tumor including maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were calculated on PET delineated primary tumor. Using Kaplan-Meier curves to estimated overall survival (OS), progression-free survival (PFS), and local-regional control (LRC). Cox regression analysis was performed to find significant prognostic factors for survival. Results With a median follow-up of 13.5 months, the 4-year OS, PFS, and LRC rates were 67.3%, 52.6%, and 53.4% respectively. Patients with MTV 2 > 5.7 had lower OS, PFS, and LRC rates than the lower MTV 2 group (p < 0.05). Univariate Cox regression analysis showed that MTV2 was a significant prognostic factor for OS, PFS, and LRC (p < 0.05). Conclusion MTV parameter of sequential 18 F-FDG PET/CT could be used as a prognostic factor for OS, PFS, and LRC in locally advanced ESCC patients treated with dCRT.
Collapse
Affiliation(s)
- Le Ngoc Ha
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Nguyen Dinh Chau
- Department of Radiation Oncology and Radiosurgery, Hospital 108, Hanoi, Vietnam
| | - Bui Quang Bieu
- Department of Radiation Oncology and Radiosurgery, Hospital 108, Hanoi, Vietnam
| | - Mai Hong Son
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| |
Collapse
|
65
|
Kim JW, Munavvar R, Kamil A, Haldar P. PET-CT for characterising TB infection (TBI) in immunocompetent subjects: a systematic review. J Med Microbiol 2023; 72. [PMID: 37750439 DOI: 10.1099/jmm.0.001749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Introduction. There is emerging evidence of a potential role for PET-CT scan as an imaging biomarker to characterise the spectrum of tuberculosis infection (TBI) in humans and animal models.Gap Statement. Synthesis of available evidence from current literature is needed to understand the utility of PET-CT for characterising TBI and how this may inform application of PET-CT in future TBI research.Aim. The aims of this review are to summarise the evidence of PET-CT scan use in immunocompetent hosts with TBI, and compare PET-CT features observed in humans and animal models.Methodology. MEDLINE, Embase and PubMed Central were searched to identify relevant publications. Studies were selected if they reported PET-CT features in human or animals with TBI. Studies were excluded if immune deficiency was present at the time of the initial PET-CT scan.Results. Six studies - four in humans and two in non-human primates (NHP) were included for analysis. All six studies used 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG) PET-CT. Features of TBI were comparable between NHP and humans, with 2-[18F]FDG avid intrathoracic lymph nodes observed during early infection. Progressive TBI was characterised in NHP by increasing 2-[18F]FDG avidity and size of lesions. Two human studies suggested that PET-CT can discriminate between active TB and inactive TBI. However, data synthesis was generally limited by human studies including inconsistent and poorly characterised cohorts and the small number of eligible studies for review.Conclusion. Our review provides some evidence, limited primarily to non-human primate models, of PET-CT utility as a highly sensitive imaging modality to reveal and characterise meaningful metabolic and structural change in early TBI. The few human studies identified exhibit considerable heterogeneity. Larger prospective studies are needed recruiting well characterised cohorts with TBI and adopting a standardized PET-CT protocol, to better understand utility of this imaging biomarker to support future research.
Collapse
Affiliation(s)
- Jee Whang Kim
- Department of Respiratory Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Anver Kamil
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
66
|
Abrahamsen BS, Knudtsen IS, Eikenes L, Bathen TF, Elschot M. Pelvic PET/MR attenuation correction in the image space using deep learning. Front Oncol 2023; 13:1220009. [PMID: 37692851 PMCID: PMC10484800 DOI: 10.3389/fonc.2023.1220009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The five-class Dixon-based PET/MR attenuation correction (AC) model, which adds bone information to the four-class model by registering major bones from a bone atlas, has been shown to be error-prone. In this study, we introduce a novel method of accounting for bone in pelvic PET/MR AC by directly predicting the errors in the PET image space caused by the lack of bone in four-class Dixon-based attenuation correction. Methods A convolutional neural network was trained to predict the four-class AC error map relative to CT-based attenuation correction. Dixon MR images and the four-class attenuation correction µ-map were used as input to the models. CT and PET/MR examinations for 22 patients ([18F]FDG) were used for training and validation, and 17 patients were used for testing (6 [18F]PSMA-1007 and 11 [68Ga]Ga-PSMA-11). A quantitative analysis of PSMA uptake using voxel- and lesion-based error metrics was used to assess performance. Results In the voxel-based analysis, the proposed model reduced the median root mean squared percentage error from 12.1% and 8.6% for the four- and five-class Dixon-based AC methods, respectively, to 6.2%. The median absolute percentage error in the maximum standardized uptake value (SUVmax) in bone lesions improved from 20.0% and 7.0% for four- and five-class Dixon-based AC methods to 3.8%. Conclusion The proposed method reduces the voxel-based error and SUVmax errors in bone lesions when compared to the four- and five-class Dixon-based AC models.
Collapse
Affiliation(s)
- Bendik Skarre Abrahamsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingerid Skjei Knudtsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
67
|
Zhang P, Chen W, Zhao K, Qiu X, Li T, Zhu X, Sun P, Wang C, Song Y. Tumor to liver maximum standardized uptake value ratio of FDG-PET/CT parameters predicts tumor treatment response and survival of stage III non-small cell lung cancer. BMC Med Imaging 2023; 23:107. [PMID: 37582701 PMCID: PMC10428530 DOI: 10.1186/s12880-023-01067-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND To assess the predictive values of primary tumor FDG uptake for patients with inoperable stage III non-small cell lung cancer (NSCLC) after concurrent chemoradiotherapy (CCRT). METHODS A total of 107 patients with diagnosis of stage III NSCLC and CCRT were enrolled. The tumor maximum uptake value (SUVmax) was standardized by calculating several ratios between tumor and each background tissues. The receiver operating characteristics curve (ROC) was used to compare the predictive power of prognostic models. The tumor objective response rate (ORR) and overall survival (OS) were compared and analyzed by the Kaplan-Meier method and univariate and multivariate Cox regression models. RESULTS The areas under ROC curve (AUCs) ranged from 0.72 to 0.81 among these tumor SUVmax and standardized SUVmax ratios, and the tumor SUVmax and tumor SUVmax-to-liver SUVmean ratio (TLMR) were more predictive of ORR (AUC, 0.81; 95% CI, 0.73-0.88 for tumor SUVmax and AUC, 0.84; 95%CI, 0.76-0.91 for TLMR) than any of other SUVmax ratios. The patients with lower tumor SUVmax, SUVmean and SUVmax ratios had a significantly better OS than those with their corresponding higher ones. Moreover, both univariate and multivariable analyses revealed that TLMR was significantly associated with better ORR and OS after adjustment with other prognostic variables. CONCLUSIONS TLMR, a standardized tumor SUVmax, was an independent prognostic predictor for tumor ORR and OS of patients with stage III NSCLC after CCRT.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Wei Chen
- Department of Training Education, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Kewei Zhao
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowen Qiu
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Tao Li
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Xingzhuang Zhu
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chunsheng Wang
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| | - Yipeng Song
- Department of Radiation Oncology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| |
Collapse
|
68
|
Mokoala KMG, Lawal IO, Maserumule LC, Bida M, Maes A, Ndlovu H, Reed J, Mahapane J, Davis C, Van de Wiele C, Popoola G, Giesel FL, Vorster M, Sathekge MM. Correlation between [ 68Ga]Ga-FAPI-46 PET Imaging and HIF-1α Immunohistochemical Analysis in Cervical Cancer: Proof-of-Concept. Cancers (Basel) 2023; 15:3953. [PMID: 37568769 PMCID: PMC10417683 DOI: 10.3390/cancers15153953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Hypoxia leads to changes in tumor microenvironment (upregulated CAFs) with resultant aggressiveness. A key factor in the physiological response to hypoxia is hypoxia-inducible factor-1alpha (HIF-1α). [68Ga]Ga-FAPI PET imaging has been demonstrated in various cancer types. We hypothesized that [68Ga]Ga-FAPI PET may be used as an indirect tracer for mapping hypoxia by correlating the image findings to pathological analysis of HIF-1α expression. The [68Ga]Ga-FAPI PET/CT scans of women with cancer of the cervix were reviewed and the maximum and mean standardized uptake value (SUVmax and SUVmean) and FAPI tumor volume (FAPI-TV) were documented. Correlation analysis was performed between PET-derived parameters and immunohistochemical staining as well as between PET-derived parameters and the presence of metastasis. Ten women were included. All patients demonstrated tracer uptake in the primary site or region of the primary. All patients had lymph node metastases while only six patients had distant visceral or skeletal metastases. The mean SUVmax, SUVmean, and FAPI-TV was 18.89, 6.88, and 195.66 cm3, respectively. The average FAPI-TV for patients with additional sites of metastases was higher than those without. Immunohistochemistry revealed varying intensities of HIF-1α expression in all tested samples. There was a positive correlation between the presence of skeletal metastases and staining for HIF-1α (r=0.80;p=0.017). The presence of skeletal metastasis was correlated to the HIF-1⍺ staining (percentage distribution). Furthermore, the FAPI-TV was a better predictor of metastatic disease than the SUVmax.
Collapse
Affiliation(s)
- Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Letjie C. Maserumule
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Meshack Bida
- National Health Laboratory Services, Department of Anatomical Pathology, Pretoria 0001, South Africa;
| | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Katholieke University Leuven, 3000 Kortrijk, Belgium
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Janet Reed
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria 0028, South Africa;
| | - Cindy Davis
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
| | - Gbenga Popoola
- Lincolnshire Partnership NHS Foundation Trust, St George’s, Lincoln, Lincolnshire LN1 1FS, UK;
| | - Frederik L. Giesel
- Department of Nuclear Medicine, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Kwazulu Natal, Durban 4001, South Africa;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
69
|
Chong JW, Chong ST, Lee JC. Using standardized uptake values in pyrophosphate imaging. J Nucl Cardiol 2023; 30:1737. [PMID: 37217813 DOI: 10.1007/s12350-023-03298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Jia Wen Chong
- Faculty of Medicine, University of Queensland, Herston, Australia
| | | | - Joseph C Lee
- Faculty of Medicine, University of Queensland, Herston, Australia.
- Department of Medical Imaging, The Prince Charles Hospital, Chermside, QLD, 4032, Australia.
| |
Collapse
|
70
|
Mannes PZ, Barnes CE, Latoche JD, Day KE, Nedrow JR, Lee JS, Tavakoli S. 2-deoxy-2-[ 18F]fluoro-D-glucose Positron Emission Tomography to Monitor Lung Inflammation and Therapeutic Response to Dexamethasone in a Murine Model of Acute Lung Injury. Mol Imaging Biol 2023; 25:681-691. [PMID: 36941514 PMCID: PMC10027262 DOI: 10.1007/s11307-023-01813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.
Collapse
Affiliation(s)
- Philip Z Mannes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clayton E Barnes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph D Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Day
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessie R Nedrow
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
71
|
Li G, Yang S, Wang S, Jiang R, Xu X. Diagnostic Value of Dynamic 18F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography ( 18F-FDG PET-CT) in Cervical Lymph Node Metastasis of Nasopharyngeal Cancer. Diagnostics (Basel) 2023; 13:2530. [PMID: 37568893 PMCID: PMC10417831 DOI: 10.3390/diagnostics13152530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Dynamic 18F-FDG PET-CT scanning can accurately quantify 18F-FDG uptake and has been successfully applied in diagnosing and evaluating therapeutic effects in various malignant tumors. There is no conclusion as to whether it can accurately distinguish benign and malignant lymph nodes in nasopharyngeal cancer. The main purpose of this study is to reveal the diagnostic value of dynamic PET-CT in cervical lymph node metastasis of nasopharyngeal cancer through analysis. METHOD We first searched for cervical lymph nodes interested in static PET-CT, measured their SUV-Max values, and found the corresponding lymph nodes in magnetic resonance images before and after treatment. The valid or invalid groups were included according to the changes in lymph node size before and after treatment. If the change in the product of the maximum diameter and maximum vertical transverse diameter of the lymph node before and after treatment was greater than or equal to 50%, they would be included in the valid group. If the change was less than 50%, they would be included in the invalid group. Their Ki values were measured on dynamic PET-CT and compared under different conditions. Then, we conducted a correlation analysis between various factors and Ki values. Finally, diagnostic tests were conducted to compare the sensitivity and specificity of Ki and SUV-Max. RESULT We included 67 cervical lymph nodes from different regions of 51 nasopharyngeal cancer patients and divided them into valid and invalid groups based on changes before treatment. The valid group included 50 lymph nodes, while the invalid group included 17. There wer significant differences (p < 0.001) between the valid and the invalid groups in SUV-Max, Ki-Mean, and Ki-Max values. When the SUV-Max was ≤4.5, there was no significant difference in the Ki-Mean and Ki-Max between the two groups (p > 0.05). When the SUV-Max was ≤4.5 and pre-treatment lymph nodes were <1.0 cm, the valid group had significantly higher Ki-Mean (0.00910) and Ki-Maximum (0.01004) values than the invalid group (Ki-Mean = 0.00716, Ki-Max = 0.00767) (p < 0.05). When the SUV-Max was ≤4.5, the pre-treatment lymph nodes < 1.0 cm, and the EBV DNA replication normal, Ki-Mean (0.01060) and Ki-Max (0.01149) in the valid group were still significantly higher than the invalid group (Ki-Mean = 0.00670, Ki-Max = 0.00719) (p < 0.05). The correlation analysis between different factors (SUV-Max, T-stage, normal EB virus DNA replication, age, and pre-treatment lymph node < 1.0 cm) and the Ki value showed that SUV-Max and a pre-treatment lymph node < 1.0 cm were related to Ki-Mean and Ki-Max. Diagnostic testing was conducted; the AUC value of the SUV-Max value was 0.8259 (95% confidence interval: 0.7296-0.9222), the AUC value of the Ki-Mean was 0.8759 (95% confidence interval: 0.7950-0.9567), and the AUC value of the Ki-Max was 0.8859 (95% confidence interval: 0.8089-0.9629). After comparison, it was found that there was no significant difference in AUC values between Ki-Mean and SUV-Max (p = 0.220 > 0.05), and there was also no significant difference in AUC values between Ki max and SUV-Max (p = 0.159 > 0.05). By calculating the Youden index, we identified the optimal cut-off value. It was found that the sensitivity of SUV-Max was 100% and the specificity was 66%, the sensitivity of Ki-Mean was 100% and the specificity was 70%, and the sensitivity of Ki-Max was 100% and the specificity was 72%. After Chi-Square analysis, it was found that there was no significant difference in specificity between Ki-Mean and SUV-Max (p = 0.712), and there was also no significant difference in specificity between Ki-Max and SUV-Max (p = 0.755). CONCLUSION Dynamic PET-CT has shown a significant diagnostic value in diagnosing cervical lymph node metastasis of nasopharyngeal cancer, especially for the small SUV value, and lymph nodes do not meet the metastasis criteria before treatment, and EBV DNA replication is normal. Although the diagnostic accuracy, sensitivity, and specificity of dynamic PET-CT were not significantly different from traditional static PET-CT, the dynamic PET-CT had a more accurate tendency.
Collapse
Affiliation(s)
- Guanglie Li
- Department of Head and Neck Oncology, The Fifth Hospital of Sun Yat-sen University, Zhuhai 519000, China; (G.L.); (S.W.)
| | - Shuai Yang
- Department of Radiotherapy Physics, The Fifth Hospital of Sun Yat-sen University, Zhuhai 519000, China;
| | - Siyang Wang
- Department of Head and Neck Oncology, The Fifth Hospital of Sun Yat-sen University, Zhuhai 519000, China; (G.L.); (S.W.)
| | - Renwei Jiang
- Department of Radiotherapy Physics, The Fifth Hospital of Sun Yat-sen University, Zhuhai 519000, China;
| | - Xiwei Xu
- Department of Head and Neck Oncology, The Fifth Hospital of Sun Yat-sen University, Zhuhai 519000, China; (G.L.); (S.W.)
| |
Collapse
|
72
|
Illimoottil M, Ginat D. Recent Advances in Deep Learning and Medical Imaging for Head and Neck Cancer Treatment: MRI, CT, and PET Scans. Cancers (Basel) 2023; 15:3267. [PMID: 37444376 PMCID: PMC10339989 DOI: 10.3390/cancers15133267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning techniques have been developed for analyzing head and neck cancer imaging. This review covers deep learning applications in cancer imaging, emphasizing tumor detection, segmentation, classification, and response prediction. In particular, advanced deep learning techniques, such as convolutional autoencoders, generative adversarial networks (GANs), and transformer models, as well as the limitations of traditional imaging and the complementary roles of deep learning and traditional techniques in cancer management are discussed. Integration of radiomics, radiogenomics, and deep learning enables predictive models that aid in clinical decision-making. Challenges include standardization, algorithm interpretability, and clinical validation. Key gaps and controversies involve model generalizability across different imaging modalities and tumor types and the role of human expertise in the AI era. This review seeks to encourage advancements in deep learning applications for head and neck cancer management, ultimately enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Mathew Illimoottil
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Daniel Ginat
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
73
|
Sipilä O, Liukkonen J, Halme HL, Tolvanen T, Sohlberg A, Hakulinen M, Manninen AL, Tahvanainen K, Tunninen V, Ollikainen T, Kangasmaa T, Kangasmäki A, Vuorela J. Variability in PET image quality and quantification measured with a permanently filled 68Ge-phantom: a multi-center study. EJNMMI Phys 2023; 10:38. [PMID: 37322376 DOI: 10.1186/s40658-023-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND This study evaluated, as a snapshot, the variability in quantification and image quality (IQ) of the clinically utilized PET [18F]FDG whole-body protocols in Finland using a NEMA/IEC IQ phantom permanently filled with 68Ge. METHODS The phantom was imaged on 14 PET-CT scanners, including a variety of models from two major vendors. The variability of the recovery coefficients (RCmax, RCmean and RCpeak) of the hot spheres as well as percent background variability (PBV), coefficient of variation of the background (COVBG) and accuracy of corrections (AOC) were studied using images from clinical and standardized protocols with 20 repeated measurements. The ranges of the RCs were also compared to the limits of the EARL 18F standards 2 accreditation (EARL2). The impact of image noise on these parameters was studied using averaged images (AVIs). RESULTS The largest variability in RC values of the routine protocols was found for the RCmax with a range of 68% and with 10% intra-scanner variability, decreasing to 36% when excluding protocols with suspected cross-calibration failure or without point-spread-function (PSF) correction. The RC ranges of individual hot spheres in routine or standardized protocols or AVIs fulfilled the EARL2 ranges with two minor exceptions, but fulfilling the exact EARL2 limits for all hot spheres was variable. RCpeak was less dependent on averaging and reconstruction parameters than RCmax and RCmean. The PBV, COVBG and AOC varied between 2.3-11.8%, 9.6-17.8% and 4.8-32.0%, respectively, for the routine protocols. The RC ranges, PBV and COVBG were decreased when using AVIs. With AOC, when excluding routine protocols without PSF correction, the maximum value dropped to 15.5%. CONCLUSION The maximum variability of the RC values for the [18F]FDG whole-body protocols was about 60%. The RC ranges of properly cross-calibrated scanners with PSF correction fitted to the EARL2 RC ranges for individual sphere sizes, but fulfilling the exact RC limits would have needed further optimization. RCpeak was the most robust RC measure. Besides COVBG, also RCs and PVB were sensitive to image noise.
Collapse
Affiliation(s)
- O Sipilä
- HUS Diagnostic Center, Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, P. O. Box 442, 00029, Helsinki, Finland.
| | - J Liukkonen
- Radiation and Nuclear Safety Authority, Vantaa, Finland
| | - H-L Halme
- HUS Diagnostic Center, Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, P. O. Box 442, 00029, Helsinki, Finland
| | - T Tolvanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - A Sohlberg
- Department of Nuclear Medicine, Päijät-Häme Central Hospital, Lahti, Finland
| | - M Hakulinen
- Department of Clinical Physiology and Nuclear Medicine, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - A-L Manninen
- OYS Department of Nuclear Medicine and Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - K Tahvanainen
- HUS Diagnostic Center, Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, P. O. Box 442, 00029, Helsinki, Finland
| | - V Tunninen
- Department of Clinical Physiology and Nuclear Medicine, Satakunta Central Hospital, Pori, Finland
| | - T Ollikainen
- Clinical Physiology and Neurophysiology, North Karelia Central Hospital, Joensuu, Finland
| | - T Kangasmaa
- Department of Clinical Physiology and Nuclear Medicine, Vaasa Central Hospital, Wellbeing Services County of Ostrobothnia, Vaasa, Finland
| | - A Kangasmäki
- Department of Imaging and Radiotherapy, Docrates Cancer Center, Helsinki, Finland
| | - J Vuorela
- Clinical Physiology and Nuclear Medicine, Central Finland Health Care District, Jyväskylä, Finland
| |
Collapse
|
74
|
Black R, Barentsz J, Howell D, Bostwick DG, Strum SB. Optimized 18F-FDG PET-CT Method to Improve Accuracy of Diagnosis of Metastatic Cancer. Diagnostics (Basel) 2023; 13:diagnostics13091580. [PMID: 37174971 PMCID: PMC10178450 DOI: 10.3390/diagnostics13091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The diagnosis of cancer by FDG PET-CT is often inaccurate owing to subjectivity of interpretation. We compared the accuracy of a novel normalized (standardized) method of interpretation with conventional non-normalized SUV. Patients (n = 393) with various malignancies were studied with FDG PET/CT to determine the presence or absence of cancer. Target lesions were assessed by two methods: (1) conventional SUVmax (conSUVmax) and (2) a novel method that combined multiple factors to optimize SUV (optSUVmax), including the patient's normal liver SUVmax, a liver constant (k) derived from a review of the literature, and use of site-specific thresholds for malignancy. The two methods were compared to pathology findings in 154 patients being evaluated for mediastinal and/or hilar lymph node (MHLNs) metastases, 143 evaluated for extra-thoracic lymph node (ETLNs) metastases, and 96 evaluated for liver metastases. OptSUVmax was superior to conSUVmax for all patient groups. For MHLNs, sensitivity was 83.8% vs. 80.7% and specificity 88.7% vs. 9.6%, respectively; for ETLNs, sensitivity was 92.1% vs. 77.8% and specificity 80.1% vs. 27.6%, respectively; and for lesions in the liver parenchyma, sensitivity was 96.1% vs. 82.3% and specificity 88.8% vs. 23.0%, respectively. Optimized SUVmax increased diagnostic accuracy of FDG PET-CT for cancer when compared with conventional SUVmax interpretation.
Collapse
Affiliation(s)
| | - Jelle Barentsz
- Department of Radiology, Andros Clinics, Meester E.N. van Kleffensstraat 5, 6842 CV Arnhem, The Netherlands
| | - David Howell
- Department of Radiation Oncology, Ohio Health Cancer Center, 75 Hospital Drive, Athens, OH 45701, USA
| | - David G Bostwick
- Rampart Health, 601 Biotech Drive, North Chesterfield, VA 23235, USA
| | - Stephen B Strum
- Community Practice of Hematology, Oncology and Internal Medicine, Focus on Prostate Cancer and Prostate Diseases, Medford, OR 97504, USA
| |
Collapse
|
75
|
Fukai S, Daisaki H, Ishiyama M, Shimada N, Umeda T, Motegi K, Ito R, Terauchi T. Reproducibility of the principal component analysis (PCA)-based data-driven respiratory gating on texture features in non-small cell lung cancer patients with 18 F-FDG PET/CT. J Appl Clin Med Phys 2023; 24:e13967. [PMID: 36943700 PMCID: PMC10161026 DOI: 10.1002/acm2.13967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Texture analysis is one of the lung cancer countermeasures in the field of radiomics. Even though image quality affects texture features, the reproducibility of principal component analysis (PCA)-based data-driven respiratory gating (DDG) on texture features remains poorly understood. Hence, this study aimed to clarify the reproducibility of PCA-based DDG on texture features in non-small cell lung cancer (NSCLC) patients with 18 F-Fluorodeoxyglucose (18 F-FDG) Positron emission tomography/computed tomography (PET/CT). METHODS Twenty patients with NSCLC who underwent 18 F-FDG PET/CT in routine clinical practice were retrospectively analyzed. Each patient's PET data were reconstructed in two PET groups of no gating (NG-PET) and PCA-based DDG gating (DDG-PET). Forty-six image features were analyzed using LIFEx software. Reproducibility was evaluated using Lin's concordance correlation coefficient ( ρ c ${\rho _c}$ ) and percentage difference (%Diff). Non-reproducibility was defined as having unacceptable strength ( ρ c $({\rho _c}$ < 0.8) and a %Diff of >10%. NG-PET and DDG-PET were compared using the Wilcoxon signed-rank test. RESULTS A total of 3/46 (6.5%) image features had unacceptable strength, and 9/46 (19.6%) image features had a %Diff of >10%. Significant differences between the NG-PET and DDG-PET groups were confirmed in only 4/46 (8.7%) of the high %Diff image features. CONCLUSION Although the DDG application affected several texture features, most image features had adequate reproducibility. PCA-based DDG-PET can be routinely used as interchangeable images for texture feature extraction from NSCLC patients.
Collapse
Affiliation(s)
- Shohei Fukai
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Hiromitsu Daisaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsutomi Ishiyama
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoki Shimada
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Umeda
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuki Motegi
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryoma Ito
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Terauchi
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
76
|
Crowley JR, Barvi I, Kiser JW. Active monitoring improves radiopharmaceutical administration quality. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1126029. [PMID: 39355027 PMCID: PMC11440977 DOI: 10.3389/fnume.2023.1126029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/16/2023] [Indexed: 10/03/2024]
Abstract
Introduction In 2016, our center adopted technology to routinely monitor 18F-FDG radiopharmaceutical administrations. Within six months of following basic quality improvement methodology, our technologists reduced extravasation rates from 13.3% to 2.9% (p < 0.0001). These same technologists administer other radiopharmaceuticals (without monitoring technology) for general nuclear medicine procedures in a separate facility at the clinic. Our hypothesis was that they would apply 18F-FDG lessons-learned to 99mTc-MDP administrations and that 99mTc-MDP manual injection extravasation rate would be consistent with the ongoing 18F-FDG manual injection extravasation rate (3.4%). We tested our hypothesis by following the same quality improvement methodology and added monitoring equipment to measure extravasation rates for 99mTc-MDP administrations. Results 816 99mTc-MDP administrations were monitored during 16-month period (four 4-month periods: A, B, C, D). Period A (first four months of active monitoring) extravasation rate was not statistically different from the Measure Phase extravasation rate of the previously completed PET/CT QI Project: 12.75% compared to 13.3% (p-0.7925). Period A extravasation rate was statistically different from Period C (months 9-12) extravasation rate and Period D (months 13-16) extravasation rate: 12.75% compared to 2.94% and to 3.43% (p < 0.0001). During Period C and D technologists achieved extravasation rates comparable to the longstanding manual 18F-FDG injection extravasation rate (3.4%). Conclusion Our initial hypothesis, that awareness of a problem and the steps need to correct it would result in process improvement, was not accurate. While those factors are important, they are not sufficient. Our findings suggest that active monitoring and the associated display of results are critical to quality improvement efforts to reduce and sustain radiopharmaceutical extravasation rates.
Collapse
Affiliation(s)
- James R Crowley
- Department of Molecular Imaging, Carilion Clinic, Roanoke, VA, United States
| | - Iryna Barvi
- Lucerno Dynamics, LLC, Cary, NC, United States
| | - Jackson W Kiser
- Department of Molecular Imaging, Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
77
|
Schadt F, Israel I, Beez A, Alushi K, Weiland J, Ernestus RI, Westermaier T, Samnick S, Lilla N. Analysis of cerebral glucose metabolism following experimental subarachnoid hemorrhage over 7 days. Sci Rep 2023; 13:427. [PMID: 36624132 PMCID: PMC9829694 DOI: 10.1038/s41598-022-26183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Little is known about changes in brain metabolism following SAH, possibly leading towards secondary brain damage. Despite sustained progress in the last decade, analysis of in vivo acquired data still remains challenging. The present interdisciplinary study uses a semi-automated data analysis tool analyzing imaging data independently from the administrated radiotracer. The uptake of 2-[18F]Fluoro-2-deoxy-glucose ([18F]FDG) was evaluated in different brain regions in 14 male Sprague-Dawley rats, randomized into two groups: (1) SAH induced by the endovascular filament model and (2) sham operated controls. Serial [18F]FDG-PET measurements were carried out. Quantitative image analysis was performed by uptake ratio using a self-developed MRI-template based data analysis tool. SAH animals showed significantly higher [18F]FDG accumulation in gray matter, neocortex and olfactory system as compared to animals of the sham group, while white matter and basal forebrain region showed significant reduced tracer accumulation in SAH animals. All significant metabolic changes were visualized from 3 h, over 24 h (day 1), day 4 and day 7 following SAH/sham operation. This [18F]FDG-PET study provides important insights into glucose metabolism alterations following SAH-for the first time in different brain regions and up to day 7 during course of disease.
Collapse
Affiliation(s)
- Fabian Schadt
- grid.411760.50000 0001 1378 7891Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Alexandra Beez
- grid.411760.50000 0001 1378 7891Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany
| | - Kastriot Alushi
- grid.411760.50000 0001 1378 7891Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Vascular Medicine, German Aortic Center Hamburg, University Heart and Vascular Center, Hamburg, Germany
| | - Judith Weiland
- grid.411760.50000 0001 1378 7891Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany
| | - Ralf-Ingo Ernestus
- grid.411760.50000 0001 1378 7891Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany
| | - Thomas Westermaier
- grid.411760.50000 0001 1378 7891Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany ,grid.491610.bDepartment of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Samuel Samnick
- grid.411760.50000 0001 1378 7891Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080, Würzburg, Germany. .,Department of Neurosurgery, University Hospital Magdeburg, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
78
|
Zhang J, Jiang H, Shi T. ASE-Net: A tumor segmentation method based on image pseudo enhancement and adaptive-scale attention supervision module. Comput Biol Med 2023; 152:106363. [PMID: 36516579 DOI: 10.1016/j.compbiomed.2022.106363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Fluorine 18(18F) fluorodeoxyglucose positron emission tomography and Computed Tomography (PET/CT) is the preferred imaging method of choice for the diagnosis and treatment of many cancers. However, factors such as low-contrast organ and tissue images, and the original scale of tumors pose huge obstacles to the accurate segmentation of tumors. In this work, we propose a novel model ASE-Net which is used for multimodality tumor segmentation. Firstly, we propose a pseudo-enhanced CT image generation method based on metabolic intensity to generate pseudo-enhanced CT images as additional input, which reduces the learning of the network in the spatial position of PET/CT and increases the discriminability of the corresponding structural positions of the high and low metabolic region. Second, unlike previous networks that directly segment tumors of all scales, we propose an Adaptive-Scale Attention Supervision Module at the skip connections, after combining the results of all paths, tumors of different scales will be given different receptive fields. Finally, Dual Path Block is used as the backbone of our network to leverage the ability of residual learning for feature reuse and dense connection for exploring new features. Our experimental results on two clinical PET/CT datasets demonstrate the effectiveness of our proposed network and achieve 78.56% and 72.57% in Dice Similarity Coefficient, respectively, which has better performance compared to state-of-the-art network models, whether for large or small tumors. The proposed model will help pathologists formulate more accurate diagnoses by providing reference opinions during diagnosis, consequently improving patient survival rate.
Collapse
Affiliation(s)
- Junzhi Zhang
- Software College, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, Liaoning, China
| | - Huiyan Jiang
- Software College, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, Liaoning, China; Key Laboratory of Intelligent Computing in Biomedical Image, Ministry of Education, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, Liaoning, China.
| | - Tianyu Shi
- Software College, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, Liaoning, China
| |
Collapse
|
79
|
Application of the long axial field-of-view PET/CT with low-dose [ 18F]FDG in melanoma. Eur J Nucl Med Mol Imaging 2023; 50:1158-1167. [PMID: 36474125 PMCID: PMC9931831 DOI: 10.1007/s00259-022-06070-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
AIM The recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has yielded very promising results regarding image quality and sensitivity in oncological patients. We, herein, aim to determine an appropriate acquisition time range for the new long axial field of view Biograph Vision Quadra PET/CT (Siemens Healthcare) using low dose [18F]FDG activity in a group of melanoma patients. METHODOLOGY Forty-nine melanoma patients were enrolled in the study. All patients underwent total body PET/CT from the top of the head through the feet in two bed positions (field-of-view 106 cm) after i.v. injection of 2.0 MBq/kg [18F]FDG. The PET images of the first bed position (head to upper thigh; PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were performed between the different reconstructed scan times with regard to the visual evaluation of the PET/CT scans using the PET-10 images as reference and by calculating the 95%-CI for the differences between different time acquisitions. Moreover, objective evaluation of PET/CT image quality was performed based on SUV calculations of tumor lesions and background, leading to calculation of liver signal-to-noise ratio (SNR), and tumor-to-background ratio (TBR). RESULTS A total of 60 scans were evaluated. Concerning visual analysis, 49/60 (81.7%) PET-10 scans were pathological, while the respective frequencies were 49/60 (81.7%) for PET-8 (95%-CI: - 0.0602-0.0602), 49/60 (81.7%) for PET-6 (95%-CI: - 0.0602-0.0602), 48/60 (80%) for PET-5 (95%-CI: - 0.0445-0.0886), 46/60 (76.7%) for PET-4 (95%-CI: - 0.0132-0.1370), and 45/60 (75%) for PET-2 (95%-CI: 0.0025-0.1593). In 18 PET-10 scans, the extent of metastatic involvement was very large, rendering the accurate calculation of [18F]FDG-avid tumor lesions very complicated. In the remaining 42 PET-10 scans, for which the exact calculation of tumor lesions was feasible, a total of 119 tumor lesions were counted, and the respective lesion detection rates for shorter acquisitions were as follows: 97.5% (116/119) for PET-8 (95%-CI: 0-1), 95.0% (113/119) for PET-6 (95%-CI: 0-1), 89.9% (107/119) for PET-5 (95%-CI: 0-2), 83.2% (99/119) for PET-4 (95%-CI: 1-2), and 73.9% (88/119) for PET-2 (95%-CI: 2-4). With regard to objective image quality evaluations, as a general trend, the reduction of acquisition time was associated with a decrease of liver SNR and a decrease of TBR, although in lesion-based analysis the change in TBR and tumor SUVmean values was non-significant up to 6 and 5 min acquisitions, respectively. CONCLUSIONS In melanoma, low-dose LAFOV PET/CT imaging is feasible and can reduce the total scan time from head to upper thigh up to 5 min providing comparable diagnostic data to standard lengths of acquisition. This may have significant implications for the diagnostic work-up of patients with melanoma, given the need for true whole-body imaging in this type of cancer.
Collapse
|
80
|
Linguanti F, Abenavoli EM, Briganti V, Danti G, Lavacchi D, Matteini M, Vaggelli L, Novelli L, Grosso AM, Mungai F, Mini E, Antonuzzo L, Miele V, Sciagrà R, Berti V. Added prognostic value of molecular imaging parameters over proliferation index in typical lung carcinoid: an [18F]FDG PET/CT and SSTR imaging study. Ann Nucl Med 2023; 37:1-9. [PMID: 36309948 PMCID: PMC9813078 DOI: 10.1007/s12149-022-01797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This study was performed to evaluate the prognostic meaning of volumetric and semi-quantitative parameters measured using [18F]FDG PET/CT and somatostatin receptor (SSTR) imaging in patients with typical lung carcinoid (TC), and their relationship with proliferative index (Ki67). METHODS We retrospectively reviewed 67 patients (38-94 years old, mean: 69.7) with diagnosis of TC who underwent [18F]FDG PET/CT and/or SSTR scintigraphy/SPECT with [111In]DTPA-Octreotide plus contrast-enhanced CT (CECT) at staging evaluation. All patients had Ki67 measured and a follow-up (FU) of at least 1 year. SSTR density (SSTRd) was calculated as the percentage difference of tumor/non-tumor ratio at 4 and 24 h post-injection. At PET/CT, metabolic activity was measured using SUVmax and SUVratio; volumetric parameters included MTV and TLG of the primary tumor, measured using the threshold SUV41%. ROC analysis, discriminant analysis and Kaplan-Meier curves (KM) were performed. RESULTS 11 patients died during FU. Disease stage (localized versus advanced), SUVratio, SUVmax, Ki67, MTV and TLG were significantly higher in non-survivors than in survivors. ROC curves resulted statistically significant for Ki67, SUVratio, SUVmax, MTV and TLG. On multivariate analysis, stage of disease and TLG were significant independent predictors of overall survival (OS). In KM curves, the combination of disease stage and TLG identified four groups with significantly different outcomes (p < 0.005). Metabolic activity (SUVmax and SUVratio) was confirmed as significant independent prognostic factor for OS also in patients with advanced disease, with the best AUC using SUVmax. In patients with advanced and localized disease, SSTRd proved to be the best imaging prognostic factor for progression and for disease-free survival (DFS), respectively. In localized disease, SSTRd 31.5% identified two subgroups of patients with significant different DFS distribution and in advanced disease, a high cutoff value (58.5%) was a significant predictor of adverse prognosis. CONCLUSION Volumetric and semi-quantitative parameters measured using [18F]FDG PET/CT and SSTR imaging combined with Ki67 may provide a reference for prognosis evaluation of patients with TC, to better stratify risk groups with the goal of developing individualized therapeutic strategies.
Collapse
Affiliation(s)
- Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences ``Mario Serio’’, University of Florence, 50134 Florence, Italy
| | - Elisabetta M. Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences ``Mario Serio’’, University of Florence, 50134 Florence, Italy
| | - Vittorio Briganti
- Nuclear Medicine Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Lavacchi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Matteini
- Nuclear Medicine Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Luca Vaggelli
- Nuclear Medicine Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Luca Novelli
- Department of Pathology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Anna M. Grosso
- Unit of Pneumology and Thoracic-Pulmonary Physiopathology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesco Mungai
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy ,Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences ``Mario Serio’’, University of Florence, 50134 Florence, Italy
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences ``Mario Serio’’, University of Florence, 50134 Florence, Italy
| |
Collapse
|
81
|
Akamatsu G, Tsutsui Y, Daisaki H, Mitsumoto K, Baba S, Sasaki M. A review of harmonization strategies for quantitative PET. Ann Nucl Med 2023; 37:71-88. [PMID: 36607466 PMCID: PMC9902332 DOI: 10.1007/s12149-022-01820-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
PET can reveal in vivo biological processes at the molecular level. PET-derived quantitative values have been used as a surrogate marker for clinical decision-making in numerous clinical studies and trials. However, quantitative values in PET are variable depending on technical, biological, and physical factors. The variability may have a significant impact on a study outcome. Appropriate scanner calibration and quality control, standardization of imaging protocols, and any necessary harmonization strategies are essential to make use of PET as a biomarker with low bias and variability. This review summarizes benefits, limitations, and remaining challenges for harmonization of quantitative PET, including whole-body PET in oncology, brain PET in neurology, PET/MR, and non-18F PET imaging. This review is expected to facilitate harmonization of quantitative PET and to promote the contribution of PET-derived biomarkers to research and development in medicine.
Collapse
Affiliation(s)
- Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. .,Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yuji Tsutsui
- Department of Radiological Science, Faculty of Health Science, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510 Japan
| | - Hiromitsu Daisaki
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052 Japan
| | - Katsuhiko Mitsumoto
- Department of Clinical Radiology Service, Kyoto University Hospital, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shingo Baba
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masayuki Sasaki
- Department of Medical Quantum Science, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
82
|
Byrd CT, Trope WL, Bhandari P, Konsker HB, Moradi F, Lui NS, Liou DZ, Backhus LM, Berry MF, Shrager JB. Positron emission tomography/computed tomography differentiates resectable thymoma from anterior mediastinal lymphoma. J Thorac Cardiovasc Surg 2023; 165:371-381.e1. [PMID: 35568521 DOI: 10.1016/j.jtcvs.2022.02.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Discrete anterior mediastinal masses most often represent thymoma or lymphoma. Lymphoma treatment is nonsurgical and requires biopsy. Noninvasive thymoma is ideally resected without biopsy, which may potentiate pleural metastases. This study sought to determine if clinical criteria or positron emission tomography/computed tomography could accurately differentiate the 2, guiding a direct surgery versus biopsy decision. METHODS A total of 48 subjects with resectable thymoma and 29 subjects with anterior mediastinal lymphoma treated from 2006 to 2019 were retrospectively examined. All had pretreatment positron emission tomography/computed tomography and appeared resectable (solitary, without clear invasion or metastasis). Reliability of clinical criteria (age and B symptoms) and positron emission tomography/computed tomography maximum standardized uptake value were assessed in differentiating thymoma and lymphoma using Wilcoxon rank-sum test, chi-square test, and logistic regression. Receiver operating characteristic analysis identified the maximum standardized uptake value threshold most associated with thymoma. RESULTS There was no association between tumor type and age group (P = .183) between those with thymoma versus anterior mediastinal lymphoma. Patients with thymoma were less likely to report B symptoms (P < .001). The median maximum standardized uptake value of thymoma and lymphoma differed dramatically: 4.35 versus 18.00 (P < .001). Maximum standardized uptake value was independently associated with tumor type on multivariable regression. On receiver operating characteristic analysis, lower maximum standardized uptake value was associated with thymoma. Maximum standardized uptake value less than 12.85 was associated with thymoma with 100.00% sensitivity and 88.89% positive predictive value. Maximum standardized uptake value less than 7.50 demonstrated 100.00% positive predictive value for thymoma. CONCLUSIONS Positron emission tomography/computed tomography maximum standardized uptake value of resectable anterior mediastinal masses may help guide a direct surgery versus biopsy decision. Tumors with maximum standardized uptake value less than 7.50 are likely thymoma and thus perhaps appropriately resected without biopsy. Tumors with maximum standardized uptake value greater than 7.50 should be biopsied to rule out lymphoma. Lymphoma is likely with maximum standardized uptake value greater than 12.85.
Collapse
Affiliation(s)
- Catherine T Byrd
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Winston L Trope
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Prasha Bhandari
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Harrison B Konsker
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Farshad Moradi
- Division of Nuclear Medicine, Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Natalie S Lui
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Douglas Z Liou
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Leah M Backhus
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Mark F Berry
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
83
|
Dalby S, Skallerup S, Baun C, Christensen LG, Rathe M, Palner M, Husby S, Moeller JB. PET/CT imaging detects intestinal inflammation in a mouse model of doxorubicin-induced mucositis. Front Oncol 2022; 12:1061804. [PMID: 36591502 PMCID: PMC9798215 DOI: 10.3389/fonc.2022.1061804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction A severe side effect of cancer chemotherapy is the development of gastrointestinal mucositis, characterised by mucosal inflammation. We investigated if 2-deoxy-2-[18F] fluoro-D-glucose positron emission tomography combined with computed tomography (2-[18F]FDG-PET/CT) could visualise gastrointestinal mucositis in mice treated with the chemotherapeutic agent doxorubicin. Methods In this study, gastrointestinal inflammation was longitudinally evaluated by 2-[18F]FDG-PET/CT scans before and 1, 3, 6, and 10 days after treatment with doxorubicin. Doxorubicin-treated mice were compared to saline-treated littermates using the abdominal standard uptake value of 2-[18F]FDG corrected for body weight (SUVBW). Results Abdominal SUVBW was significantly increased on day 1 (p < 0.0001), day 3 (p < 0.0001), and day 6 (p < 0.05) in the doxorubicin-treated group compared to controls. Abdominal SUVBW returned to baseline levels on day 10. In the doxorubicin group, the largest weight loss was observed on day 3 (control vs doxorubicin, mean percent of baseline weight: (98.5 ± 3.2% vs 87.9 ± 4.6%, p < 0.0001). Moreover, in the doxorubicin-treated group, villus lengths were decreased by 23-28% on days 1 and 3 in the small intestine (p < 0.05), and jejunal levels of tumour necrosis factor and interleukin-1β were significantly increased on day 3 (p < 0.05). Discussion Together, these findings indicate that sequential 2-[18F]FDG-PET/CT scans can objectively quantify and evaluate the development and resolution of intestinal inflammation over time in a mouse model of doxorubicin-induced mucositis.
Collapse
Affiliation(s)
- Sina Dalby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sofie Skallerup
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Mathias Rathe
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mikael Palner
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Bonnet Moeller
- Department of Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
84
|
Assessment of Cardiac Sarcoidosis: FDG PET and BMIPP SPECT. Curr Cardiol Rep 2022; 24:1873-1882. [PMID: 36282434 DOI: 10.1007/s11886-022-01803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Cardiac sarcoidosis (CS) is an inflammatory disease of unknown etiology that can lead to life-threatening arrhythmias, heart failure, and death. Advanced cardiac imaging modalities have improved the clinician's ability to detect this disease. The purpose of this review is to discuss the recent evidence of cardiac metabolic imaging as assessed by [18F]FDG PET and [123I]BMIPP SPECT in the evaluation of CS patients. RECENT FINDINGS [18F]FDG PET is the gold standard to identify myocardial inflammation. [123I]BMIPP SPECT can uncover early myocardial damage as well as advanced stages of CS when fibrosis prevails. In presence of inflammation, myocardial [18F]FDG uptake is increased, but in contrast, BMIPP myocardial uptake is reduced or even suppressed. Thus, a complementary role of cardiac metabolic imaging by [18F]FDG PET and BMIPP SPECT has been proposed to detect the whole spectrum of CS. [18F]FDG PET is considered an important tool to improve the diagnosis and optimize the management of CS. The role of [123I]BMIPP SPECT in diagnosing CS is still under investigation. Further studies are needed to evaluate the clinical utility of combined cardiac metabolic imaging in the diagnosis, prognosis, and for selecting treatments in CS patients.
Collapse
|
85
|
Parametric Imaging of Biologic Activity of Atherosclerosis Using Dynamic Whole-Body Positron Emission Tomography. JACC. CARDIOVASCULAR IMAGING 2022; 15:2098-2108. [PMID: 36481078 DOI: 10.1016/j.jcmg.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND For molecular imaging of atherosclerotic vessel wall activity, tracer kinetic analysis may yield improved contrast versus blood, more robust quantitative parameters, and more reliable characterization of systems biology. OBJECTIVES The authors introduce a novel dynamic whole-body positron emission tomography (PET) protocol that is enabled by rapid continuous camera table motion, followed by reconstruction of parametric data sets using voxel-based Patlak graphical analysis. METHODS Twenty-five subjects were prospectively enrolled and underwent dynamic PET up to 90 minutes after injection of 2-[18F]fluoro-2-deoxy-D-glucose (FDG). Two sets of images were generated: 1) the established standard of static standardized uptake value (SUV) images; and 2) parametric images of the metabolic rate of FDG (MRFDG) using the Patlak plot-derived influx rate. Arterial wall signal was measured and compared using the volume-of-interest technique, and its association with hematopoietic and lymphoid organ signal and atherosclerotic risk factors was explored. RESULTS Parametric MRFDG images provided excellent arterial wall visualization, with elimination of blood-pool activity, and enhanced focus detectability and reader confidence. Target-to-background ratio (TBR) from MRFDG images was significantly higher compared with SUV images (2.6 ± 0.8 vs 1.4 ± 0.2; P < 0.0001), confirming improved arterial wall contrast. On MRFDG images, arterial wall signal showed improved correlation with hematopoietic and lymphoid organ activity (spleen P = 0.0009; lymph nodes P = 0.0055; and bone marrow P = 0.0202) and increased with the number of atherosclerotic risk factors (r = 0.49; P = 0.0138), where signal from SUV images (SUVmaxP = 0.9754; TBRmaxP = 0.8760) did not. CONCLUSIONS Absolute quantification of MRFDG is feasible for arterial wall using dynamic whole-body PET imaging. Parametric images provide superior arterial wall contrast, and they might be better suited to explore the relationship between arterial wall activity, systemic organ networks, and cardiovascular risk. This novel methodology may serve as a platform for future diagnostic and therapeutic clinical studies targeting the biology of arterial wall disease.
Collapse
|
86
|
Cherk MH, Khor R, Barber TW, Yap KSK, Patil S, Walker P, Avery S, Roberts S, Kemp W, Pham A, Bailey M, Kalff V. Noninvasive Assessment of Acute Graft-Versus-Host Disease of the Gastrointestinal Tract After Allogeneic Hemopoietic Stem Cell Transplantation Using 18F-FDG PET. J Nucl Med 2022; 63:1899-1905. [PMID: 35450959 DOI: 10.2967/jnumed.121.263688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Acute graft-versus-host disease of the gastrointestinal tract (acute GIT-GVHD) often complicates allogeneic hemopoietic stem cell transplantation (AHSCT). 18F-FDG PET/CT is known to detect active inflammation and may be a useful noninvasive test for acute GIT-GVHD. The objective of this study was to evaluate the diagnostic utility of 18F-FDG PET/CT to noninvasively assess patients with clinically suspected acute GIT-GVHD. Fifty-one AHSCT patients with clinically suspected acute GIT-GVHD prospectively underwent 18F-FDG PET/CT scanning followed by upper and lower GIT endoscopy within 7 d. Endoscopic biopsies of 4 upper GIT and 4 colonic segments were obtained for histology to compare with corresponding quantitative segmental 18F-FDG PET/CT SUVmax Receiver-operating-characteristic curve (ROC) analysis was performed to determine predictive capacity of 18F-FDG PET/CT SUVmax for acute GIT-GVHD. A separate qualitative visual 18F-FDG PET/CT analysis was also performed for comparison. Results: Twenty-three of 51 (45.1%) patients had biopsy-confirmed acute GIT-GVHD, with 19 of 23 (82.6%) having upper GIT and 22 of 22 (100%) colonic involvement. One of 23 patients did not undergo a colonoscopy. GVHD involved the entire colon contiguously in 21 of 22 patients. For quantitative analysis, histology from 4 upper GIT and 4 colonic segments were compared with 18F-FDG PET/CT SUVmax Colonic segments positive for GVHD had a higher SUVmax (4.1 [95% CI, 3.6-4.5]) than did normal colonic segments (2.3 [1.9-2.7], P = 0.006). No difference was demonstrated in upper GIT segments. Quantitative 18F-FDG PET/CT yielded a 69% sensitivity, 57% specificity, 73% negative predictive value, and 59% positive predictive value for the detection of GVHD compared with 70%, 76%, 76%, and 68%, respectively, for qualitative analysis. Conclusion: 18F-FDG PET is a useful noninvasive diagnostic test for acute GIT-GVHD, which when present always involves the colon and usually in its entirety, suggesting colonic biopsy obtained by sigmoidoscopy is adequate for histologic confirmation when acute GIT-GVHD is suspected. Of note, 18F-FDG PET cannot distinguish acute GIT-GVHD from non-GVHD inflammatory changes in the colon.
Collapse
Affiliation(s)
- Martin H Cherk
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia; .,Monash University, Melbourne, Australia
| | - Robert Khor
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia
| | - Thomas W Barber
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia.,Monash University, Melbourne, Australia
| | - Kenneth S K Yap
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia.,Monash University, Melbourne, Australia
| | - Sushrut Patil
- Monash University, Melbourne, Australia.,Department of Haematology, Alfred Hospital, Melbourne, Australia
| | - Patricia Walker
- Department of Haematology, Alfred Hospital, Melbourne, Australia
| | - Sharon Avery
- Monash University, Melbourne, Australia.,Department of Haematology, Alfred Hospital, Melbourne, Australia
| | - Stuart Roberts
- Monash University, Melbourne, Australia.,Department of Gastroenterology, Alfred Hospital, Melbourne, Australia
| | - William Kemp
- Monash University, Melbourne, Australia.,Department of Gastroenterology, Alfred Hospital, Melbourne, Australia
| | - Alan Pham
- Monash University, Melbourne, Australia.,Department of Anatomical Pathology, Alfred Hospital, Melbourne, Australia; and
| | - Michael Bailey
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Victor Kalff
- Department of Nuclear Medicine & PET, Alfred Hospital, Melbourne Australia.,Monash University, Melbourne, Australia
| |
Collapse
|
87
|
Salem AE, Shah HR, Covington MF, Koppula BR, Fine GC, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: I. Hematologic Malignancies. Cancers (Basel) 2022; 14:cancers14235941. [PMID: 36497423 PMCID: PMC9738711 DOI: 10.3390/cancers14235941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
PET-CT is an advanced imaging modality with many oncologic applications, including staging, assessment of response to therapy, restaging and evaluation of suspected recurrence. The goal of this 6-part series of review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for the more common adult malignancies. In the first article of this series, hematologic malignancies are addressed. The classification of these malignancies will be outlined, with the disclaimer that the classification of lymphomas is constantly evolving. Critical applications, potential pitfalls, and nuances of PET-CT imaging in hematologic malignancies and imaging features of the major categories of these tumors are addressed. Issues of clinical importance that must be reported by the imaging professionals are outlined. The focus of this article is on [18F] fluorodeoxyglucose (FDG), rather that research tracers or those requiring a local cyclotron. This information will serve as a resource for the appropriate role and limitations of PET-CT in the clinical management of patients with hematological malignancy for health care professionals caring for adult patients with hematologic malignancies. It also serves as a practical guide for imaging providers, including radiologists, nuclear medicine physicians and their trainees.
Collapse
Affiliation(s)
- Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Harsh R. Shah
- Department of Medicine, Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Intermountain Healthcare Hospitals, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-1801-581-7553
| |
Collapse
|
88
|
Kaida H, Yasuda T, Shiraishi O, Kato H, Kimura Y, Hanaoka K, Yamada M, Matsukubo Y, Tsurusaki M, Kitajima K, Hattori S, Ishii K. The usefulness of the total metabolic tumor volume for predicting the postoperative recurrence of thoracic esophageal squamous cell carcinoma. BMC Cancer 2022; 22:1176. [PMID: 36376801 PMCID: PMC9664655 DOI: 10.1186/s12885-022-10281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Induction or adjuvant therapies are not always beneficial for thoracic esophageal squamous cell carcinoma (ESCC) patients, and it is thus important to identify patients at high risk for postoperative ESCC recurrence. We investigated the usefulness of the total metabolic tumor volume (TMTV) for predicting the postoperative recurrence of thoracic ESCC.
Methods
We retrospectively analyzed the cases of 163 thoracic ESCC patients (135 men, 28 women; median age of 66 [range 34–82] years) treated at our hospital in 2007–2012. The TMTV was calculated from the fluorine-18 fluorodeoxyglucose (18F-FDG) uptake in the primary lesion and lymph node metastases. The optimal cut-off values for relapse and non-relapse were obtained by the time-dependent receiver operating curve analyses. Relapse-free survival (RFS) was evaluated by the Kaplan-Meier method, and between-subgroup differences in survival were analyzed by log-rank test. The prognostic significance of metabolic parameters and clinicopathological variables was assessed by a Cox proportional hazard regression analysis. The difference in the failure patterns after surgical resection was evaluated using the χ2-test.
Results
The optimal cut-off value of TMTV for discriminating relapse from non-relapse was 3.82. The patients with a TMTV ≥3.82 showed significantly worse prognoses than those with low values (p < 0.001). The TMTV was significantly related to RFS (model 1 for preoperative risk factors: TMTV: hazard ratio [HR] =2.574, p = 0.004; model 2 for preoperative and postoperative risk factors: HR = 1.989, p = 0.044). The combination of the TMTV and cN0–1 or pN0–1 stage significantly stratified the patients into low-and high-risk recurrence groups (TMTV cN0–1, p < 0.001; TMTV pN0–1, p = 0.004). The rates of hematogenous and regional lymph node metastasis were significantly higher in the patients with TMTV ≥3.82 than those with low values (hematogenous metastasis, p < 0.001, regional lymph node metastasis, p = 0.011).
Conclusions
The TMTV was a more significantly independent prognostic factor for RFS than any other PET parameter in patients with resectable thoracic ESCC. The TMTV may be useful for the identifying thoracic ESCC patients at high risk for postoperative recurrence and for deciding the patient management.
Collapse
|
89
|
Prognostic value of PERCIST and PET/CT metabolic parameters after neoadjuvant treatment in patients with esophageal cancer. Rev Esp Med Nucl Imagen Mol 2022; 41:360-367. [DOI: 10.1016/j.remnie.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
|
90
|
Miao J, Sise ME, Herrmann SM. Immune checkpoint inhibitor related nephrotoxicity: Advances in clinicopathologic features, noninvasive approaches, and therapeutic strategy and rechallenge. FRONTIERS IN NEPHROLOGY 2022; 2:1017921. [PMID: 37674988 PMCID: PMC10479679 DOI: 10.3389/fneph.2022.1017921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are used increasingly to treat more than 17 cancers and have shown promising therapeutic results. However, ICI use can result in a variety of immune-related adverse events (IRAEs) which can occur in any organ, including the kidneys. Acute kidney injury (AKI) is the most common nephrotoxicity, classically related to acute interstitial nephritis. Much more diverse patterns and presentations of ICI-related kidney injury can occur, and have implications for diagnostic and therapeutic management approaches. In this review, we summarize the recently approved ICIs for cancer, the incidence and risk factors for nephrotoxicity, our current understanding of the pathophysiological mechanisms and the key clinicopathological features of ICI-related AKI, and therapeutic strategies. We also explore important knowledge that require further investigation, such as the risks/benefits of ICI rechallenge in patients who recover from an episode of ICI-related AKI, and the application of liquid biopsy and microbiome to identify noninvasive biomarkers to diagnose and predict kidney injury and guide ICI therapy.
Collapse
Affiliation(s)
- Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Meghan E. Sise
- Department of Internal Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, United States
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
91
|
Badawe EM, Abdel Gawad H, El-Nagdy MS, Khalil MM. Variations induced by body weight and background lesion normalization in standardized uptake value estimated by F18-FDG PET/CT. Eur J Hybrid Imaging 2022; 6:22. [PMID: 36224438 PMCID: PMC9556683 DOI: 10.1186/s41824-022-00142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
AIM This work aims to study the impact of different SUV variants in terms of mean and maximum measures as well as various normalization methods with respect to body weight, body mass index, body surface area, and lean body mass in patients with lymphoma. METHODS Sixty-nine patients (34 male-35 female) were retrospectively selected. All patients had undergone F18-FDG PET/CT using the standard imaging protocol. In the first part of this study, SUVmean and SUVmax of patients' lesions and three background sites including liver, aorta, and muscle were determined. Then, the normalization of lesion SUV to body weight and body background sites was performed. The ratio of lesion SUVmax to body background sites (muscle, aorta, and liver) SUVmax was determined in addition to the ratio of lesion SUVmean to body background sites SUVmean. The second part of the study included the calculations of the body mass index (BMI), body surface area (BSA), and lean body mass (LBM). The normalization of lesion, liver, aorta, and muscle SUV to BMI, BSA, and LBM was calculated and compared to each other. RESULTS After performing the appropriate statistical calculations, the results showed that there is a significant difference in SUV measurements between the three background sites. Lesions normalized to the liver were significantly lower than those normalized to aorta and muscle and the results also showed a higher magnitude of lesions normalized to muscle in comparison to the aorta. The SUVmax and SUVmean normalized to different body weight indices showed the lowest variation with BSA and BMI while being increasingly higher with lean body mass using the two methods James and Janmahasatian, respectively, and then highest with body weight. CONCLUSION The SUVmax and SUVmean showed lower variance in comparison to other background regions. Less variation was also remarkable in SUVmean normalized to BSA and Janma lean mass and also when SUVmax is normalized to James lean body mass. The SUVmax normalized to lean (i.e., James) as well as SUVmean normalized to lean (i.e., Janma) and BSA showed a significant independence with body weight.
Collapse
Affiliation(s)
- Eman M. Badawe
- grid.412093.d0000 0000 9853 2750Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hesham Abdel Gawad
- grid.7776.10000 0004 0639 9286Faculty of Medicine, Kasr Al-Aini Center for Nuclear Medicine and Oncology (NEMROK), Cairo University Hospitals, Cairo University, Giza, Egypt
| | - Mohamed S. El-Nagdy
- grid.412093.d0000 0000 9853 2750Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Magdy M. Khalil
- grid.412093.d0000 0000 9853 2750Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt ,grid.507995.70000 0004 6073 8904School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo Egypt
| |
Collapse
|
92
|
Bekki M, Tahara N, Tahara A, Sugiyama Y, Maeda-Ogata S, Honda A, Igata S, Enomoto M, Kakuma T, Kaida H, Abe T, Fukumoto Y. Localization of myocardial FDG uptake for prognostic risk stratification in corticosteroid-naïve cardiac sarcoidosis. J Nucl Cardiol 2022; 29:2132-2144. [PMID: 34228338 DOI: 10.1007/s12350-021-02684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The localization of myocardial 18F-fluorodeoxyglucose (FDG) uptake affecting long-term clinical outcomes has not been elucidated in patients with corticosteroid-naïve cardiac sarcoidosis (CS). OBJECTIVES This study sought to investigate the localization of myocardial FDG uptake on positron emission tomography (PET) and myocardial perfusion abnormality to predict adverse events (AEs) for a long-term follow-up in patients with corticosteroid-naïve CS. METHODS Consecutive 90 patients with clinical suspicion of CS who underwent FDG-PET imaging to assess for inflammation were enrolled. AEs were defined as a composite of sustained ventricular tachycardia (VT), heart transplantation, and all-cause death, which were ascertained by medical records, defibrillator interrogation, and telephone interviews. RESULTS Of 90 patients, 42 patients (mean age 62.9 ± 12.0 years; 76.2% females) were confirmed active cardiac involvement. Over a median follow-up of 4.9 years, 15 patients with CS experienced AEs including 6 sustained ventricular tachycardias (VT) and 9 deaths. Cox proportional-hazards model after adjustment for left ventricular systolic dysfunction revealed that FDG uptake in the right ventricle (RV) or basal anterolateral area of the left ventricle (LV) with myocardial perfusion abnormality was predictive of AEs. CONCLUSIONS FDG uptake in the RV or basal anterolateral area of the LV with myocardial perfusion abnormality provides long-term prognostic risk stratification in patients with corticosteroid-naïve CS.
Collapse
Affiliation(s)
- Munehisa Bekki
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Nobuhiro Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Atsuko Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yoichi Sugiyama
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Shoko Maeda-Ogata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Akihiro Honda
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sachiyo Igata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Mika Enomoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | | | - Hayato Kaida
- Department of Radiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
93
|
Zhang Q, Wang K, Zhou Z, Qin G, Wang L, Li P, Sher D, Jiang S, Wang J. Predicting local persistence/recurrence after radiation therapy for head and neck cancer from PET/CT using a multi-objective, multi-classifier radiomics model. Front Oncol 2022; 12:955712. [PMID: 36248979 PMCID: PMC9557184 DOI: 10.3389/fonc.2022.955712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Accurate identifying head and neck squamous cell cancer (HNSCC) patients at high risk of local persistence/recurrence (P/R) is of importance for personalized patient management. Here we developed a multi-objective, multi-classifier radiomics model for early HNSCC local P/R prediction based on post-treatment PET/CT scans and clinical data. Materials and methods We retrospectively identified 328 individuals (69 patients have local P/R) with HNSCC treated with definitive radiation therapy at our institution. The median follow-up from treatment completion to the first surveillance PET/CT imaging was 114 days (range: 82-159 days). Post-treatment PET/CT scans were reviewed and contoured for all patients. For each imaging modality, we extracted 257 radiomic features to build a multi-objective radiomics model with sensitivity, specificity, and feature sparsity as objectives for model training. Multiple representative classifiers were combined to construct the predictive model. The output probabilities of models built with features from various modalities were fused together to make the final prediction. Results We built and evaluated three single-modality models and two multi-modality models. The combination of PET, CT, and clinical data in the multi-objective, multi-classifier radiomics model trended towards the best prediction performance, with a sensitivity of 93%, specificity of 83%, accuracy of 85%, and AUC of 0.94. Conclusion Our study demonstrates the feasibility of employing a multi-objective, multi-classifier radiomics model with PET/CT radiomic features and clinical data to predict outcomes for patients with HNSCC after radiation therapy. The proposed prediction model shows the potential to detect cancer local P/R early after radiation therapy.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Kai Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiguo Zhou
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Genggeng Qin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lei Wang
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ping Li
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - David Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
94
|
Perrin S, Kiser JW, Knowland J, Bowen SL. Development of a classifier for [18F]fluorodeoxyglucose extravasation severity using semi-quantitative readings from topically applied detectors. EJNMMI Phys 2022; 9:61. [PMID: 36104581 PMCID: PMC9474785 DOI: 10.1186/s40658-022-00488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Radiotracer extravasations, caused largely by faulty tracer injections, can occur in up to 23% of 18F-fluorodeoxyglucose (FDG) PET/CT scans and negatively impact radiological review and tracer quantification. Conventional radiological assessment of extravasation severity on PET has limited performance (e.g., extravasations frequently resolve before scanning) and practical drawbacks. In this study, we develop a new topical detector-based FDG extravasation severity classifier, calibrated from semi-quantitative PET measurements, and assess its performance on human subjects. Methods A retrospective study examined patients whose FDG injections had been monitored as part of their standard workup for PET/CT imaging. Topical uncollimated gamma ray detectors were applied proximal to the injection site and on the same location on the opposing arm, and readings were acquired continuously during radiotracer uptake. Patients were imaged with their arms in the PET field of view and total extravasation activity quantified from static PET images through a volume of interest approach. The image-derived activities were considered ground truth and used to calibrate and assess quantification of topical detector readings extrapolated to the start of PET imaging. The classifier utilizes the calibrated detector readings to produce four extravasation severity classes: none, minor, moderate, and severe. In a blinded study, a radiologist qualitatively labeled PET images for extravasation severity using the same classifications. The radiologist’s interpretations and topical detector classifications were compared to the ground truth PET results. Results Linear regression of log-transformed image-derived versus topical detector tracer extravasation activity estimates showed a strong correlation (R2 = 0.75). A total of 24 subject scans were cross-validated with the quantitatively based classifier through a leave-one-out methodology. For binary classification (none vs. extravasated), the topical detector classifier had the highest overall diagnostic performance for identifying extravasations. Specificity, sensitivity, accuracy, and positive predictive value were 100.0%, 80.0%, 95.8%, and 100.0%, respectively, for the topical detector classifier and 31.6%, 100.0%, 45.8%, and 27.8%, respectively, for the radiological analysis. The topical detector classifier, with an optimal detection threshold, produced a significantly higher Matthews correlation coefficient (MCC) than the radiological analysis (0.87 vs. 0.30). Conclusions The topical detector binary classifier, calibrated using quantitative static PET measurements, significantly improves extravasation detection compared to qualitative image analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00488-6.
Collapse
|
95
|
Ma D, Zhang Y, Shao X, Wu C, Wu J. PET/CT for Predicting Occult Lymph Node Metastasis in Gastric Cancer. Curr Oncol 2022; 29:6523-6539. [PMID: 36135082 PMCID: PMC9497704 DOI: 10.3390/curroncol29090513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
A portion of gastric cancer patients with negative lymph node metastasis at an early stage eventually die from tumor recurrence or advanced metastasis. Occult lymph node metastasis (OLNM] is a potential risk factor for the recurrence and metastasis in these patients, and it is highly important for clinical prognosis. Positron emission tomography (PET)/computed tomography (CT) is used to assess lymph node metastasis in gastric cancer due to its advantages in anatomical and functional imaging and non-invasive nature. Among the major metabolic parameters of PET, the maximum standardized uptake value (SUVmax) is commonly used for examining lymph node status. However, SUVmax is susceptible to interference by a variety of factors. In recent years, the exploration of new PET metabolic parameters, new PET imaging agents and radiomics, has become an active research topic. This paper aims to explore the feasibility and predict the effectiveness of using PET/CT to detect OLNM. The current landscape and future trends of primary metabolic parameters and new imaging agents of PET are reviewed. For gastric cancer patients, the possibility to detect OLNM non-invasively will help guide surgeons to choose the appropriate lymph node dissection area, thereby reducing unnecessary dissections and providing more reasonable, personalized and comprehensive treatments.
Collapse
Affiliation(s)
- Danyu Ma
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ying Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou 213003, China
- Correspondence: (C.W.); (J.W.)
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Correspondence: (C.W.); (J.W.)
| |
Collapse
|
96
|
Sundaraiya S, T R, Nangia S, Sirohi B, Patil S. Role of dynamic and parametric whole-body FDG PET/CT imaging in molecular characterization of primary breast cancer: a single institution experience. Nucl Med Commun 2022; 43:1015-1025. [PMID: 35950356 DOI: 10.1097/mnm.0000000000001596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM The aim of this pilot study was to assess the role of dynamic whole-body PET and parametric imaging in the biological characterization of primary breast cancer. MATERIALS AND METHOD In total 24 histologically proven primary breast cancer lesions in 21 consecutive patients were retrospectively analyzed. Each patient underwent 18F-fluoro-deoxyglucose whole-body dynamic PET-CT before any treatment. Dynamic PET images were acquired in the list mode for a total duration of 70 min. The reconstructed parametric imaging generated Patlak plot-based 'Slope' and 'Intercept' images, from which parametric indices ki and DV were obtained. The standard uptake value (SUV) metric was also obtained by summing the last few frames of the dynamic study. ki, distribution volume (DV) and SUV were correlated with the histological tumor grade, biomarkers [hormone receptors and human epidermal growth factor receptor 2 (HER-2) neu expression] and molecular subtypes (A, B and C) as well as with tumor size, regional nodal metastases and distant metastases. RESULTS The mean ki was found to be significantly higher in grade III than II lesions (P = 0.005), HER-2 neu positive status (P = 0.04) and molecular subtype B (P = 0.04) as well as in greater than T1 lesions(P = 0.0003 and P = 0.04, respectively) and node-positive lesions (P = 0.009). Though mean ki was not found to be significant for the hormone receptors status (P = 0.08), it showed the best correlation compared to the other parameters (P = 0.8 for DV and P = 0.1 for SUV). Spearman's correlation test, area under the curve (AUC) and mismatch percentage also revealed ki to predict tumor grade (AUC, 0.95; r = 0.7; P = 0.0001), HER-2 neu status and molecular subtypes (AUC, 0.81; r = 0.49 and P = 0.01) along with the hormone receptors status (AUC, 0.83; r = 0.32; P = 0.1). The mean DV failed to show any association with any of the biological or anatomical staging parameters. Though ki was found to be comparable to that of SUV in almost all the assessed parameters, it appeared to be better for predicting hormone receptors status even though both parameters were not statistically significant. CONCLUSION Our initial observation in a small cohort of breast cancer patients suggests that ki is promising in stratifying primary breast cancer lesions according to the tumor grade and biological characteristics.
Collapse
Affiliation(s)
| | - Raja T
- Department of Medical Oncology, Apollo cancer hospitals
| | - Sapna Nangia
- Department of Radiation Oncology, Apollo Proton Cancer Centre
| | - Bhawna Sirohi
- Department of Medical Oncology, Apollo Proton Cancer Centre
| | - Sushama Patil
- Department of Pathology, Apollo Proton Cancer Centre, Chennai, Tamilnadu, India
| |
Collapse
|
97
|
Wilson CM, Selwyn RG, Elojeimy S. Comparison of PET/CT SUV metrics across different clinical software platforms. Clin Imaging 2022; 89:104-108. [DOI: 10.1016/j.clinimag.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
|
98
|
Skawran S, Messerli M, Kotasidis F, Trinckauf J, Weyermann C, Kudura K, Ferraro DA, Pitteloud J, Treyer V, Maurer A, Huellner MW, Burger IA. Can Dynamic Whole-Body FDG PET Imaging Differentiate between Malignant and Inflammatory Lesions? Life (Basel) 2022; 12:life12091350. [PMID: 36143386 PMCID: PMC9501027 DOI: 10.3390/life12091350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Investigation of the clinical feasibility of dynamic whole-body (WB) [18F]FDG PET, including standardized uptake value (SUV), rate of irreversible uptake (Ki), and apparent distribution volume (Vd) in physiologic tissues, and comparison between inflammatory/infectious and cancer lesions. Methods: Twenty-four patients were prospectively included to undergo dynamic WB [18F]FDG PET/CT for clinically indicated re-/staging of oncological diseases. Parametric maps of Ki and Vd were generated using Patlak analysis alongside SUV images. Maximum parameter values (SUVmax, Kimax, and Vdmax) were measured in liver parenchyma and in malignant or inflammatory/infectious lesions. Lesion-to-background ratios (LBRs) were calculated by dividing the measurements by their respective mean in the liver tissue. Results: Seventy-seven clinical target lesions were identified, 60 malignant and 17 inflammatory/infectious. Kimax was significantly higher in cancer than in inflammatory/infections lesions (3.0 vs. 2.0, p = 0.002) while LBRs of SUVmax, Kimax, and Vdmax did not differ significantly between the etiologies: LBR (SUVmax) 3.3 vs. 2.9, p = 0.06; LBR (Kimax) 5.0 vs. 4.4, p = 0.05, LBR (Vdmax) 1.1 vs. 1.0, p = 0.18). LBR of inflammatory/infectious and cancer lesions was higher in Kimax than in SUVmax (4.5 vs. 3.2, p < 0.001). LBRs of Kimax and SUVmax showed a strong correlation (Spearman’s rho = 0.83, p < 0.001). Conclusions: Dynamic WB [18F]FDG PET/CT is feasible in a clinical setting. LBRs of Kimax were higher than SUVmax. Kimax was higher in malignant than in inflammatory/infectious lesions but demonstrated a large overlap between the etiologies.
Collapse
Affiliation(s)
- Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | | | - Josephine Trinckauf
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Weyermann
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Claraspital, 4058 Basel, Switzerland
| | - Daniela A. Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Janique Pitteloud
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, 5404 Baden, Switzerland
- Correspondence:
| |
Collapse
|
99
|
|
100
|
Sayed MHM, Abdelnaim AKM, Mohamadien NRA. Intrapatient variability of 18F-FDG uptake in normal tissues. J Clin Imaging Sci 2022; 12:37. [PMID: 36128350 PMCID: PMC9479622 DOI: 10.25259/jcis_23_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Objectives To investigate the effect of serum glucose level and other confounding factors on the variability of maximum standardized uptake value (SUVmax) in normal tissues within the same patient on two separate occasions and to suggest an ideal reference tissue. Materials and Methods We retrospectively reviewed 334 18F-FDG PET/CT scans of 167 cancer patients including 38 diabetics. All patients had two studies, on average 152 ± 68 days apart. Ten matched volumes of interest were drawn on the brain, right tonsil, blood pool, heart, lung, liver, spleen, bone marrow, fat, and iliopsoas muscle opposite third lumber vertebra away from any pathological 18F-FDG uptake to calculate SUVmax. Results SUVmax of the lungs and heart were significantly different in the two studies (P = 0.003 and P = 0.024 respectively). Only the brain uptake showed a significant moderate negative correlation with the level of blood glucose in diabetic patients (r = −0.537, P = 0.001) in the first study, while the SUVmax of other tissues showed negligible or weak correlation with the level of blood glucose in both studies. The liver showed significant moderate positive correlation with body mass index (BMI) in both studies (r = .416, P = <0.001 versus r = 0.453, P = <0.001, respectively), and blood pool activity showed significant moderate positive correlation with BMI in the first study only (r = 0.414, P = <0.001). The liver and blood pool activities showed significant moderate negative correlation with 18F-FDG uptake time in first study only (r = −0.405, P-value = <0.001; and r = −0.409, P-value = <0.001, respectively). In the multivariate analysis, the liver showed a consistent effect of the injected 18F-FDG dose and uptake duration on its SUVmax on the two occasions. In comparison, spleen and muscle showed consistent effect only of the injected dose on the two occasions. Conclusion The liver, muscle, and splenic activities showed satisfactory test/retest stability and can be used as reference activities. The spleen and muscle appear to be more optimal reference than the liver, as it is only associated with the injected dose of 18F-FDG.
Collapse
Affiliation(s)
- Mohamed Hosny Mohamed Sayed
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt,
| | - Aya KM Abdelnaim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt,
| | - Nsreen RA Mohamadien
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt,
| |
Collapse
|