51
|
Sijm A, Atlasi Y, van der Knaap JA, Wolf van der Meer J, Chalkley GE, Bezstarosti K, Dekkers DHW, Doff WAS, Ozgur Z, van IJcken WFJ, Demmers JAA, Verrijzer CP. USP7 regulates the ncPRC1 Polycomb axis to stimulate genomic H2AK119ub1 deposition uncoupled from H3K27me3. SCIENCE ADVANCES 2022; 8:eabq7598. [PMID: 36332031 PMCID: PMC9635827 DOI: 10.1126/sciadv.abq7598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.
Collapse
Affiliation(s)
- Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Jan A. van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Gillian E. Chalkley
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dick H. W. Dekkers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wouter A. S. Doff
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jeroen A. A. Demmers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - C. Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
52
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
53
|
Comprehensive analyses of prognostic biomarkers and immune infiltrates among histone lysine demethylases (KDMs) in hepatocellular carcinoma. Cancer Immunol Immunother 2022; 71:2449-2467. [DOI: 10.1007/s00262-022-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
54
|
Whitlock NC, White ME, Capaldo BJ, Ku AT, Agarwal S, Fang L, Wilkinson S, Trostel SY, Shi ZD, Basuli F, Wong K, Jagoda EM, Kelly K, Choyke PL, Sowalsky AG. Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discov Oncol 2022; 13:97. [PMID: 36181613 PMCID: PMC9526773 DOI: 10.1007/s12672-022-00565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
55
|
Langouët M, Jolicoeur C, Javed A, Mattar P, Gearhart MD, Daiger SP, Bertelsen M, Tranebjærg L, Rendtorff ND, Grønskov K, Jespersgaard C, Chen R, Sun Z, Li H, Alirezaie N, Majewski J, Bardwell VJ, Sui R, Koenekoop RK, Cayouette M. Mutations in BCOR, a co-repressor of CRX/OTX2, are associated with early-onset retinal degeneration. SCIENCE ADVANCES 2022; 8:eabh2868. [PMID: 36070393 PMCID: PMC9451151 DOI: 10.1126/sciadv.abh2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/21/2022] [Indexed: 06/10/2023]
Abstract
Many transcription factors regulating the production, survival, and function of photoreceptor cells have been identified, but little is known about transcriptional co-regulators in retinal health and disease. Here, we show that BCL6 co-repressor (BCOR), a Polycomb repressive complex 1 factor mutated in various cancers, is involved in photoreceptor degenerative diseases. Using proteomics and transcription assays, we report that BCOR interacts with the transcription factors CRX and OTX2 and reduces their ability to activate the promoters of photoreceptor-specific genes. CUT&RUN sequencing further shows that BCOR shares genome-wide binding profiles with CRX/OTX2, consistent with a general co-repression activity. We also identify missense mutations in human BCOR in five families that have no evidence of cancer but present severe early-onset X-linked retinal degeneration. Last, we show that the human BCOR mutants cause degeneration when expressed in the mouse retina and have enhanced repressive activity on OTX2. These results uncover a role for BCOR in photoreceptors in both health and disease.
Collapse
Affiliation(s)
- Maéva Langouët
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen P. Daiger
- EHGED Department, Human Genetics Center, School of Public Health, University of Texas HSC, Houston, TX 77030, USA
| | - Mette Bertelsen
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, The Kennedy Centre, Glostrup, Denmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Catherine Jespersgaard
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Najmeh Alirezaie
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Robert K. Koenekoop
- Departments of Pediatric Surgery, Human Genetics, Adult Ophthalmology and the McGill Ocular Genetics Laboratory, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
56
|
Thiryayi SA, Ettler H, Goebel EA, Prefontaine M, Paton TA, Wong A, Yee D, Agro E, Mayers J, Lerner-Ellis J, Turashvili G. BCOR Internal Tandem Duplication Associated Uterine Sarcoma: Expanding the Clinicopathologic Spectrum. Int J Gynecol Pathol 2022; 41:503-507. [PMID: 34456278 DOI: 10.1097/pgp.0000000000000822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The diagnosis of high-grade endometrial stromal sarcoma has become more refined following molecular characterization of these tumors. Recently BCOR internal tandem duplications (ITD) have been identified in a small number of high-grade endometrial stromal sarcoma. Here we present an additional case of this rare entity in a young woman in her late teens. She presented with menorrhagia and underwent resection of 2 uterine lesions. The tumor was a spindle cell neoplasm composed of long fascicles with low to moderate cellularity, mild to moderate cytologic atypia, and up to 2 mitotic figures per 10 high power fields. Necrosis was not identified. Immunohistochemical stains showed the tumor to be positive for cyclin D1 in >50% of tumor cells, focally positive for CD10, and negative for SMA, desmin, h-caldesmon, and ALK1. BCOR ITD was confirmed by polymerase chain reaction with subsequent Sanger sequencing. Clues to the diagnosis of BCOR ITD uterine sarcoma include young patient age, uniform nuclear features, and diffuse positivity for cyclin D1. These features should prompt further molecular interrogation for definitive diagnosis, which is important for prognostication.
Collapse
|
57
|
Lim SH, Mansor SB, Kathirvel R, Kuick CH, Lim-Tan SK, McCluggage WG. Description of a Novel ERBB4 -rearranged Uterine Sarcoma. Int J Gynecol Pathol 2022; 41:508-513. [PMID: 34570017 DOI: 10.1097/pgp.0000000000000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High-grade endometrial stromal sarcoma (HGESS) is an uncommon tumor accounting for <1% of all uterine malignancies. Currently this designation is largely reserved for neoplasms harboring YWHAE-NUTM2A/B and ZC3H7B-BCOR translocations. Here, we report a novel CIQTNF1-ERBB4 translocation in a uterine neoplasm arising in a 49-yr-old woman with morphology suggestive of HGESS. Histologic examination of the 5 cm polypoid uterine corpus mass showed a neoplasm composed of a monotonous population of cells with moderately atypical ovoid to spindle shaped nuclei with easily identifiable mitotic activity and prominent vasculature with focal intravascular extension. Immunohistochemistry showed variable positivity with desmin, estrogen receptor, progesterone receptor, AE1/3 and cyclin D1, and molecular testing showed a translocation between CIQTNF1 on chromosome 17 and ERBB4 on chromosome 2. This represents the first report of this translocation in a uterine neoplasm and adds to the growing list of translocations identified in uterine sarcomas. Although the morphology is suggestive of HGESS, this neoplasm is currently best termed an ERBB4 -rearranged uterine sarcoma until additional cases are reported to more fully characterize these neoplasms.
Collapse
|
58
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
59
|
Schubert J, Wu J, Li MM, Cao K. Best Practice for Clinical Somatic Variant Interpretation and Reporting. Clin Lab Med 2022; 42:423-434. [DOI: 10.1016/j.cll.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
60
|
Whittle SB, Fetzko S, Roy A, Venkatramani R. Soft Tissue and Visceral Organ Sarcomas With BCOR Alterations. J Pediatr Hematol Oncol 2022; 44:195-200. [PMID: 35537005 PMCID: PMC10026688 DOI: 10.1097/mph.0000000000002480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Sarcomas with BCOR alteration are a heterogenous group characterized by changes including internal tandem duplications (ITDs) and recurring fusions with CCNB3, ZC3H7B, and other rare partners. With widespread genomic testing, these alterations are now associated with histologies such as Ewing-like sarcoma (BCOR::CCNB3), high-grade endometrial stromal sarcoma (ZC3H7B::BCOR), and clear cell sarcoma of kidney (BCOR-ITD). BCOR altered sarcomas of soft tissues and organs were identified through PubMed using keywords "Sarcoma (AND) BCOR" from 2005 through October 2021. Summary statistics and outcome data were calculated using STATA v12.1. Forty-one publications described 190 patients with BCOR altered soft tissue or organ sarcomas. BCOR-ITD was most common, followed by BCOR::CCNB3, ZC3H7B::BCOR. BCOR-ITD tumors occurred mainly in infants, BCOR::CCNB3 commonly occurred in adolescent young adults, and ZC3H7B::BCOR only in adults. The most common site for BCOR::CCNB3 fused tumors was extremity, BCOR-ITD kidney and ZC3H7B::BCOR uterus. Metastasis was rare in patients with BCOR::CCNB3. While most underwent resection and chemotherapy, few received radiation. Median follow-up of survivors was 24 months. Five year overall survival for patients with BCOR::CCNB3 fusions was 68% (95% confidence interval [CI]: 46%-83%). Patients with BCOR-ITD and ZC3H7B::BCOR had worse prognoses with 5 years overall survival of 35% (95% CI: 15%-56%) and 41% (95% CI: 11%-71%), respectively, demonstrating need for collaborative efforts identifying optimal treatments to improve outcomes.
Collapse
Affiliation(s)
- Sarah B. Whittle
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
| | - Stephanie Fetzko
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
| | - Angshumoy Roy
- Departments of Pathology and Immunology, Texas Children’s Hospital, Houston, TX
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
61
|
Liu D, Benzaquen J, Morris LGT, Ilié M, Hofman P. Mutations in KMT2C, BCOR and KDM5C Predict Response to Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112816. [PMID: 35681795 PMCID: PMC9179442 DOI: 10.3390/cancers14112816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Efficient biomarkers are urgently needed to predict response to immune checkpoint blockade (ICB) therapy for non-small cell lung cancer (NSCLC), particularly NSCLC with low tumor mutational burden (TMB). Here, we show that mutations of three chromatin remodeling-related genes, including KMT2C, BCOR and KDM5C, are associated with the ICB response in NSCLC, including NSCLC with low TMB level. Furthermore, this association is further improved by a combined use of KMT2C/BCOR/KDM5C mutations with TMB or PD-L1 expression. These data suggest that KMT2C/BCOR/KDM5C mutation status has the potential to serve as a predictive biomarker for ICB therapy in NSCLC. Abstract Efficient predictive biomarkers are urgently needed to identify non-small cell lung cancer (NSCLC) patients who could benefit from immune checkpoint blockade (ICB) therapy. Since chromatin remodeling is required for DNA repair process, we asked whether mutations in chromatin remodeling genes could increase tumor mutational burden (TMB) and predict response to ICB therapy in NSCLC. Analysis of seven ICB-treated NSCLC cohorts revealed that mutations of three chromatin remodeling-related genes, including KMT2C, BCOR and KDM5C, were significantly associated with ICB response, and combined mutations of these three genes further enhance this association. NSCLC patients with KMT2C/BCOR/KDM5C mutations had comparable clinical outcomes to TMB-high patients in terms of objective response rate, durable clinical benefit and overall survival. Although KMT2C/BCOR/KDM5C mutations were positively correlated with TMB levels in NSCLC, the association of this mutation with better ICB response was independent of tumor TMB and programmed death-ligand 1 (PD-L1) level, and combination of KMT2C/BCOR/KDM5C mutations with TMB or PD-L1 further improve the prediction of ICB response in NSCLC patients. Cancer Genome Atlas (TCGA) pan-cancer analysis suggested that the association of KMT2C/BCOR/KDM5C mutations with ICB response observed here might not result from DNA repair defects. In conclusion, our data indicate that KMT2C/BCOR/KDM5C mutation has the potential to serve as a predictive biomarker, alone or combined with PD-L1 expression or TMB, for ICB therapy in NSCLC.
Collapse
Affiliation(s)
- Dingxie Liu
- Bluewater Biotech LLC, New Providence, NJ 07974, USA
- Correspondence: (D.L.); (P.H.)
| | - Jonathan Benzaquen
- Department of Pneumology, Pasteur Hospital, FHU OncoAge, 06000 Nice, France; (J.B.); (M.I.)
| | - Luc G. T. Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Marius Ilié
- Department of Pneumology, Pasteur Hospital, FHU OncoAge, 06000 Nice, France; (J.B.); (M.I.)
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, CHU Nice, FHU OncoAge, University Côte d’Azur, 06100 Nice, France
- Team 4, IRCAN, UMR 7284/U10181, FHU OncoAge, University Côte d’Azur, 06107 Nice, France
- Hospital-Integrated Biobank (BB-0033-00025), CHU of Nice, FHU OncoAge, University Côte d’Azur, 06100 Nice, France
- Correspondence: (D.L.); (P.H.)
| |
Collapse
|
62
|
Wang R, Guan W, Qiao M, Zhang Y, Zhang M, Wang K, Wang Y, Wang L. CNS tumor with BCOR internal tandem duplication: clinicopathologic, molecular characteristics and prognosis factors. Pathol Res Pract 2022; 236:153995. [DOI: 10.1016/j.prp.2022.153995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
|
63
|
Abstract
This review focuses on recent advances in epithelioid and myxoid uterine mesenchymal neoplasms, a category of tumors whereby diagnostic criteria have been rapidly evolving due to advances in molecular testing. Pertinent clinicopathological and molecular features are highlighted for perivascular epithelioid cell tumors, uterine tumors resembling ovarian sex cord tumors, BCOR/BCORL1-altered high-grade endometrial stromal sarcomas, and inflammatory myofibroblastic tumors. Novel developments in epithelioid and myxoid leiomyosarcomas are briefly discussed, and differential diagnoses with key diagnostic criteria are provided for morphologic mimickers.
Collapse
Affiliation(s)
- Elizabeth C Kertowidjojo
- Department of Pathology, University of Chicago Medicine, 5837 South Maryland Avenue, MC 6101, Chicago, IL 60637, USA
| | - Jennifer A Bennett
- Department of Pathology, University of Chicago Medicine, 5837 South Maryland Avenue, MC 6101, Chicago, IL 60637, USA.
| |
Collapse
|
64
|
BCOR-CCNB3 sarcoma with concurrent RNF213-SLC26A11 gene fusion: a rare sarcoma with altered histopathological features after chemotherapy. World J Surg Oncol 2022; 20:156. [PMID: 35568949 PMCID: PMC9107253 DOI: 10.1186/s12957-022-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chemotherapy is a common approach for cancer treatment, but intrinsic genetic mutations in different individuals may cause different responses to chemotherapy, resulting in unique histopathological changes. The genetic mutation along with the distinct histopathological features may indicate new tumor entities. BCOR-CCNB3 sarcomas is a kind of Ewing-like sarcomas (ELS) occurring mostly in bone and soft tissues. No gene fusion other than BCOR-CCNB3 has been found in this type of tumor. Case presentation We herein report a case of 17-year-old male patient, presented with a mass on his left shoulder that was diagnosed as undifferentiated small round cell sarcoma according to core biopsy. The patient received 5 courses of preoperational chemotherapy, and the tumor was resected and analyzed. Primitive small round cells and larger myoid cells in the resected tumor tissue but not in biopsy were observed, and arterioles stenosis and occlusion were also detected, indicating a dramatic change of histopathological features of this tumor. In addition, the immunohistochemical results showed the altered staining patterns of BCOR, bcl2, CyclinD1, TLE1, AR, SMA, CD117, STAB2, CD56, and CD99 in tumor tissues after chemotherapy. Notably, RNA sequencing revealed a RNF213-SLC26A11 fusion in the tumor sample. Conclusions The BCOR-CCNB3 sarcoma with RNF213-SLC26A11 fusion may indicate a subset of tumors that undergo histopathological changes in response to chemotherapy. More similar cases in the future may help to clarify the clinical meanings of RNF213-SLC26A11 fusion in BCOR-CCNB3 sarcomas and the underlying mechanisms.
Collapse
|
65
|
Kim Y, Kim D, Sung WJ, Hong J. High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Front Immunol 2022; 13:837004. [PMID: 35242139 PMCID: PMC8886164 DOI: 10.3389/fimmu.2022.837004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial stromal tumor (EST) is an uncommon and unusual mesenchymal tumor of the uterus characterized by multicolored histopathological, immunohistochemical, and molecular features. The morphology of ESTs is similar to normal endometrial stromal cells during the proliferative phase of the menstrual cycle. ESTs were first classified into benign and malignant based on the number of mitotic cells. However, recently WHO has divided ESTs into four categories: endometrial stromal nodules (ESN), undifferentiated uterine sarcoma (UUS), low-grade endometrial stromal sarcoma (LG-ESS), and high-grade endometrial stromal sarcoma (HG-ESS). HG-ESS is the most malignant of these categories, with poor clinical outcomes compared to other types. With advances in molecular biology, ESTs have been further classified with morphological identification. ESTs, including HG-ESS, is a relatively rare type of cancer, and the therapeutics are not being developed compared to other cancers. However, considering the tumor microenvironment of usual stromal cancers, the advance of immunotherapy shows auspicious outcomes reported in many different stromal tumors and non-identified uterine cancers. These studies show the high possibility of successful immunotherapy in HG-ESS patients in the future. In this review, we are discussing the background of ESTs and the BCOR and the development of HG-ESS by mutations of BCOR or other related genes. Among the gene mutations of HG-ESSs, BCOR shows the most common mutations in different ways. In current tumor therapies, immunotherapy is one of the most effective therapeutic approaches. In order to connect immunotherapy with HG-ESS, the understanding of tumor microenvironment (TME) is required. The TME of HG-ESS shows the mixture of tumor cells, vessels, immune cells and non-malignant stromal cells. Macrophages, neutrophils, dendritic cells and natural killer cells lose their expected functions, but rather show pro-tumoral functions by the matricellular proteins, extracellular matrix and other complicated environment in TME. In order to overcome the current therapeutic limitations of HG-ESS, immunotherapies should be considered in addition to the current surgical strategies. Checkpoint inhibitors, cytokine-based immunotherapies, immune cell therapies are good candidates to be considered as they show promising results in other stromal cancers and uterine cancers, while less studied because of the rarity of ESTs. Based on the advance of knowledge of immune therapies in HG-ESS, the new strategies can also be applied to the current therapies and also in other ESTs.
Collapse
Affiliation(s)
- Youngah Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea.,Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| |
Collapse
|
66
|
Guarnera L, Ottone T, Fabiani E, Divona M, Savi A, Travaglini S, Falconi G, Panetta P, Rapanotti MC, Voso MT. Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis. Front Oncol 2022; 12:871590. [PMID: 35494081 PMCID: PMC9039303 DOI: 10.3389/fonc.2022.871590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Acute promyelocytic leukemia (APL) accounts for 10–15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor α (RARA) gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve RARA or other members of retinoic acid receptors (RARB or RARG). The diagnosis of these forms is difficult, and clinical management is still a challenge for the physician due to variable response rates to ATRA and ATO. Herein we review variant APL cases reported in literature, including genetic landscape, incidence of coagulopathy and differentiation syndrome, frequent causes of morbidity and mortality in these patients, sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR rearrangements, complex rearrangements (involving more than two chromosomes), and NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Biomedicine and Prevention, UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Arianna Savi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Paola Panetta
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Cristina Rapanotti
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
67
|
Therapy-related myeloid neoplasms with different latencies: a detailed clinicopathologic analysis. Mod Pathol 2022; 35:625-631. [PMID: 34873304 DOI: 10.1038/s41379-021-00958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
Therapy-related myeloid neoplasm (t-MN) arising in patients with prior cytotoxic treatments is considered a distinct entity due to its unfavorable prognosis. Latencies between the initial cytotoxic therapy and the occurrence of t-MNs vary but usually fall between 1 and 10 years. t-MNs with unusually short or long latencies are not well characterized. It is unclear if they are biologically similar to the ones with ordinary latencies and should be kept in the t-MN entity. We compiled a cohort of t-MN cases including short (<1 year), ordinary (1-10 years), and extended (>10 years) latencies from two tertiary medical centers. Both the t-MNs with ordinary and extended latencies showed high likelihood of high-risk genetic abnormalities and demonstrated no significant survival differences. But the t-MNs with extended latencies were more likely associated with history of multiple cancers (p = 0.007) and were younger at the time of cytotoxic treatments (p < 0.001) when compared to the t-MNs with ordinary latencies. The t-MN with short latencies appears to be a very rare and highly heterogeneous group. In summary, the genetic composition appears similar in the t-MNs with ordinary and extended latencies. However, the association between the t-MN with extended latencies and history of multiple cancers raises a possibility that cancer predisposition may contribute to the accumulation of genetic abnormalities in these patients. Investigation into potential germline mutations in the t-MN patients with extended latencies may provide important information for related family members.
Collapse
|
68
|
Sun L, Zhao W, Zhao Z, Zhu Y. JAZF1, YWHAE and BCOR gene translocation in primary extrauterine low-grade and high-grade endometrial stromal sarcomas. Histopathology 2022; 80:809-819. [PMID: 34843125 DOI: 10.1111/his.14608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
AIMS JAZF1 translocation is the most common genetic change in low-grade (LG) endometrial stromal sarcoma (ESS), and YWHAE and BCOR translocations are common in high-grade (HG) ESS. Primary extrauterine ESS is rare, and there are limited data on molecular alterations in these tumours. METHODS AND RESULTS Cases of primary extrauterine ESS, comprising eight LG-ESS cases and five HG-ESS cases were collected. Haematoxylin and eosin and immunohistochemical staining were used to observe the histomorphology and analyse related protein expression. JAZF1, YWHAE and BCOR rearrangements were explored with fluorescence in-situ hybridisation (FISH). In LG-ESS, the tumour cells resembled normal proliferative-phase endometrial stromal cells; CD10, oestrogen receptor and progesterone receptor were expressed in all eight cases. In HG-ESS, the tumour cells had uniform HG round and/or spindle morphology, sometimes with an LG component; CD10 was fully expressed in one case and focally expressed in four cases; BCOR was expressed in all five cases, and cyclin D1 in four of five cases. FISH analysis showed JAZF1 translocation in one of eight LG-ESS cases (12.5%). YWHAE translocation occurred in four of five HG-ESS cases, with a positivity rate of 80%. BCOR translocation was absent in all five cases. CONCLUSIONS In extrauterine LG-ESS, the rate of JAZF1 rearrangement was significantly lower than in uterine LG-ESS. This result limited the value of JAZF1 translocation for diagnosis. YWHAE rearrangement is a common genetic change in extrauterine HG-ESS. Further studies are required to confirm these findings, especially in LG-ESS.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wei Zhao
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zehua Zhao
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
69
|
Ongoing Response in a Multiply Relapsed Metastatic Posterior Fossa Ependymoma A After Vorinostat and Concomitant Irradiation. J Pediatr Hematol Oncol 2022; 44:e576-e579. [PMID: 33930008 DOI: 10.1097/mph.0000000000002175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
Posterior fossa ependymomas A confer the worst prognosis among all subtypes. They demonstrate distinct epigenetic changes, which can be targeted with epigenetic modifiers like histone deacetylase inhibitors (Vorinostat). We describe a 3-year-old male diagnosed with a posterior fossa ependymoma who had a number of recurrences requiring multimodal therapy. Molecular analysis demonstrated a BCL-6 corepressor mutation, and methylation profiling matched with posterior fossa ependymomas A. He received craniospinal irradiation and focal boost with Vorinostat. Serial imaging after irradiation revealed a progressively decreasing tumor burden with nearly complete resolution of disease at 15 months. Histone deacetylase inhibitors demonstrate promise in treatment of carefully selected cases of ependymoma.
Collapse
|
70
|
Cording S, Lhermitte L, Malamut G, Berrabah S, Trinquand A, Guegan N, Villarese P, Kaltenbach S, Meresse B, Khater S, Dussiot M, Bras M, Cheminant M, Tesson B, Bole-Feysot C, Bruneau J, Molina TJ, Sibon D, Macintyre E, Hermine O, Cellier C, Asnafi V, Cerf-Bensussan N. Oncogenetic landscape of lymphomagenesis in coeliac disease. Gut 2022; 71:497-508. [PMID: 33579790 PMCID: PMC8862029 DOI: 10.1136/gutjnl-2020-322935] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Enteropathy-associated T-cell lymphoma (EATL) is a rare but severe complication of coeliac disease (CeD), often preceded by low-grade clonal intraepithelial lymphoproliferation, referred to as type II refractory CeD (RCDII). Knowledge on underlying oncogenic mechanisms remains scarce. Here, we analysed and compared the mutational landscape of RCDII and EATL in order to identify genetic drivers of CeD-associated lymphomagenesis. DESIGN Pure populations of RCDII-cells derived from intestinal biopsies (n=9) or sorted from blood (n=2) were analysed by whole exome sequencing, comparative genomic hybridisation and RNA sequencing. Biopsies from RCDII (n=50), EATL (n=19), type I refractory CeD (n=7) and uncomplicated CeD (n=18) were analysed by targeted next-generation sequencing. Moreover, functional in vitro studies and drug testing were performed in RCDII-derived cell lines. RESULTS 80% of RCDII and 90% of EATL displayed somatic gain-of-functions mutations in the JAK1-STAT3 pathway, including a remarkable p.G1097 hotspot mutation in the JAK1 kinase domain in approximately 50% of cases. Other recurrent somatic events were deleterious mutations in nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) regulators TNFAIP3 and TNIP3 and potentially oncogenic mutations in TET2, KMT2D and DDX3X. JAK1 inhibitors, and the proteasome inhibitor bortezomib could block survival and proliferation of malignant RCDII-cell lines. CONCLUSION Mutations activating the JAK1-STAT3 pathway appear to be the main drivers of CeD-associated lymphomagenesis. In concert with mutations in negative regulators of NF-κB, they may favour the clonal emergence of malignant lymphocytes in the cytokine-rich coeliac intestine. The identified mutations are attractive therapeutic targets to treat RCDII and block progression towards EATL.
Collapse
Affiliation(s)
- Sascha Cording
- Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France
| | - Ludovic Lhermitte
- Université de Paris, Institut Necker-Enfants Malades, INSERM UMR 1151, Paris, France,Laboratory of Onco-Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Georgia Malamut
- Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France,Department of Gastroenterology, AP-HP, Hôpital Cochin, Paris, France
| | - Sofia Berrabah
- Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France
| | - Amélie Trinquand
- Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France,Haematology Department, National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Nicolas Guegan
- Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France
| | - Patrick Villarese
- Université de Paris, Institut Necker-Enfants Malades, INSERM UMR 1151, Paris, France,Laboratory of Onco-Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Sophie Kaltenbach
- Department of Cytogenetics, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Bertrand Meresse
- Université de Lille, CHU Lille, INSERM UMR 1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
| | - Sherine Khater
- Department of Gastroenterology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Michael Dussiot
- Université de Paris, Imagine Institute, Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France
| | - Marc Bras
- Université de Paris, Imagine Institute, Bioinformatics Platform, Paris, France
| | - Morgane Cheminant
- Université de Paris, Imagine Institute, Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France,Clinical Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | | | | | - Julie Bruneau
- Department of Pathology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Thierry Jo Molina
- Université de Paris, Imagine Institute, Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France,Department of Pathology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - David Sibon
- Clinical Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Elizabeth Macintyre
- Université de Paris, Institut Necker-Enfants Malades, INSERM UMR 1151, Paris, France,Laboratory of Onco-Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Olivier Hermine
- Université de Paris, Imagine Institute, Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France,Clinical Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Christophe Cellier
- Department of Gastroenterology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Vahid Asnafi
- Université de Paris, Institut Necker-Enfants Malades, INSERM UMR 1151, Paris, France,Laboratory of Onco-Haematology, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
| | - Nadine Cerf-Bensussan
- Université de Paris, Imagine Institute, Laboratory of Intestinal Immunity, INSERM UMR 1163, Paris, France
| | | |
Collapse
|
71
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
72
|
Landowski M, Bhute VJ, Takimoto T, Grindel S, Shahi PK, Pattnaik BR, Ikeda S, Ikeda A. A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci Rep 2022; 12:756. [PMID: 35031662 PMCID: PMC8760256 DOI: 10.1038/s41598-021-04644-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Tetsuya Takimoto
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Pawan K Shahi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
73
|
Cotter JA, Judkins AR. Evaluation and Diagnosis of Central Nervous System Embryonal Tumors (Non-Medulloblastoma). Pediatr Dev Pathol 2022; 25:34-45. [PMID: 35168419 DOI: 10.1177/10935266211018554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since the 1990s, the sheer number of defined central nervous system (CNS) embryonal tumor entities has continuously increased, with the trend accelerating in the most recent editions of the World Health Organization (WHO) Classification of Tumours of the CNS. The introduction of increasingly specific tumor groups is an effort to create more internally homogeneous categories, to allow more precise prognostication, and potentially to develop targeted therapies. However, these ever-smaller categories within an already rare group of tumors pose a challenge for pediatric pathologists. In this article we review the current categorization of non-medulloblastoma CNS embryonal tumors (including atypical teratoid/rhabdoid tumor, cribriform neuroepithelial tumor, embryonal tumor with multilayered rosettes, CNS neuroblastoma, FOXR2-activated, and CNS tumor with BCOR internal tandem duplication) and provide an overview of available ancillary techniques to characterize these tumors. We provide a practical approach to workup and development of an integrated diagnosis for CNS embryonal tumors.
Collapse
Affiliation(s)
- Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
74
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
75
|
Hagoel TJ, Cortez Gomez E, Gupta A, Twist CJ, Kozielski R, Martin JC, Gao L, Kuechle J, Singh PK, Lynch M, Wei L, Liu S, Wang J, Ohm JE. CLINICOPATHOLOGIC AND MOLECULAR ANALYSIS OF A SINGLE BCOR-CCNB3+ UNDIFFERENTIATED SARCOMA OF THE KIDNEY CONFERS SIGNIFICANT EPIGENETIC ALTERATIONS. Cold Spring Harb Mol Case Stud 2021; 8:mcs.a005942. [PMID: 34819304 PMCID: PMC8744494 DOI: 10.1101/mcs.a005942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Undifferentiated soft tissue sarcomas (UDSTSs) are a group of mesenchymal tumors that remain a diagnostic challenge because of their morphologic heterogeneity and unclear histologic origin (Peters et al., Mod Pathol28: 575 [2015]). In this case report, we present the first multiomics molecular signature for a BCOR–CCNB3 sarcoma (BCS) that includes mutation analysis, gene expression, DNA methylation, and micro RNA (miRNA) expression. We identify a paucity of additional mutations in this tumor and detail that there is significant dysregulation of gene expression of epigenetic remodeling agents including key members of the PRC, Sin3A/3b, NuRD, and NcoR/SMRT complexes and the DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. This is accompanied by significant DNA methylation changes and dysregulation of multiple miRNAs with known links to tumorigenesis. This study significantly increases our understanding of the BCOR effects on fusion-positive undifferentiated sarcomas at both the genomic and epigenomic level and suggests that as better-tailored and more refined treatment algorithms continue to evolve, epigenetic modifying agents should be further evaluated for their efficacy against these tumors.
Collapse
Affiliation(s)
| | | | - Ajay Gupta
- Roswell Park Comprehensive Cancer Center
| | | | | | | | - Lingui Gao
- Roswell Park Comprehensive Cancer Center
| | | | | | | | - Lei Wei
- Roswell Park Comprehensive Cancer Center
| | - Song Liu
- Roswell Park Comprehensive Cancer Center
| | | | | |
Collapse
|
76
|
Tauziède-Espariat A, Pierron G, Guillemot D, Bochaton D, Watson S, Masliah-Planchon J, Vasiljevic A, Meurgey A, Chotard G, Hasty L, Wahler E, Lechapt E, Chrétien F, Grill J, Bourdeaut F, Bouchoucha Y, Puget S, Icher-de-Bouyn C, Jecko V, Cardoen L, Dangouloff-Ros V, Boddaert N, Varlet P. CNS tumors with YWHAE:NUTM2 and KDM2B-fusions present molecular similarities to extra-CNS tumors having BCOR internal tandem duplication or alternative fusions. Acta Neuropathol Commun 2021; 9:176. [PMID: 34717763 PMCID: PMC8557563 DOI: 10.1186/s40478-021-01279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/17/2021] [Indexed: 05/31/2023] Open
|
77
|
Fiore M, Sambri A, Spinnato P, Zucchini R, Giannini C, Caldari E, Pirini MG, De Paolis M. The Biology of Synovial Sarcoma: State-of-the-Art and Future Perspectives. Curr Treat Options Oncol 2021; 22:109. [PMID: 34687366 PMCID: PMC8541977 DOI: 10.1007/s11864-021-00914-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
New molecular insights are being achieved in synovial sarcoma (SS) that can provide new potential diagnostic and prognostic markers as well as therapeutic targets. In particular, the advancement of research on epigenomics and gene regulation is promising. The concrete hypothesis that the pathogenesis of SS might mainly depend on the disruption of the balance of the complex interaction between epigenomic regulatory complexes and the consequences on gene expression opens interesting new perspectives. The standard of care for primary SS is wide surgical resection combined with radiation in selected cases. The role of chemotherapy is still under refinement and can be considered in patients at high risk of metastasis or in those with advanced disease. Cytotoxic chemotherapy (anthracyclines, ifosfamide, trabectedin, and pazopanib) is the treatment of choice, despite several possible side effects. Many possible drug-able targets have been identified. However, the impact of these strategies in improving SS outcome is still limited, thus making current and future research strongly needed to improve the survival of patients with SS.
Collapse
Affiliation(s)
- Michele Fiore
- Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Andrea Sambri
- Alma Mater Studiorum - University of Bologna, Bologna, Italy. .,IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy.
| | | | | | | | - Emilia Caldari
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Giulia Pirini
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Massimiliano De Paolis
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
78
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
79
|
Diffuse leptomeningeal glioneuronal tumour (DLGNT) in children: the emerging role of genomic analysis. Acta Neuropathol Commun 2021; 9:147. [PMID: 34493325 PMCID: PMC8422739 DOI: 10.1186/s40478-021-01248-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
Diffuse leptomeningeal glioneuronal tumours (DLGNT) represent rare enigmatic CNS tumours of childhood. Most patients with this disease share common radiological and histopathological features but the clinical course of this disease is variable. A radiological hallmark of this disease is widespread leptomeningeal enhancement that may involve the entire neuroaxis with predilection for the posterior fossa and spine. The classic pathologic features include low- to moderate-density cellular lesions with OLIG2 expression and evidence of ‘oligodendroglioma-like’ appearance. The MAPK/ERK signaling pathway has recently been reported as a potential driver of tumourigenesis in up to 80% of DLGNT with KIAA1549:BRAF fusions being the most common event seen. Until now, limited analysis of the biological drivers of tumourigenesis has been undertaken via targeted profiling, chromosomal analysis and immunohistochemistry. Our study represents the first examples of comprehensive genomic sequencing in DLGNT and shows that it is not only feasible but crucial to our understanding of this rare disease. Moreover, we demonstrate that DLGNT may be more genomically complex than single-event MAPK/ERK signaling pathway tumours.
Collapse
|
80
|
Li X, Xu F, Zhang Z, Guo J, He Q, Song LX, Wu D, Zhou LY, Su JY, Xiao C, Chang CK, Wu LY. Dynamics of epigenetic regulator gene BCOR mutation and response predictive value for hypomethylating agents in patients with myelodysplastic syndrome. Clin Epigenetics 2021; 13:169. [PMID: 34461985 PMCID: PMC8404357 DOI: 10.1186/s13148-021-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background BCOR (BCL6 corepressor) is an epigenetic regulator gene involved in the specification of cell differentiation and body structure development. Recurrent somatic BCOR mutations have been identified in myelodysplastic syndrome (MDS). However, the clinical impact of BCOR mutations on MDS prognosis is controversial and the response of hypomethylating agents in MDS with BCOR mutations (BCORMUT) remains unknown. Results Among 676 MDS patients, 43 patients (6.4%) harbored BCOR mutations. A higher frequency of BCOR mutations (8.7%) was investigated in patients with normal chromosome, compared to 4.2% in patients with abnormal karyotype (p = 0.040). Compared to the BCORWT patients, the BCORMUT patients showed a higher ratio of refractory anemia with excess blasts subset (p = 0.008). The most common comutations with BCOR genes were ASXL1 (p = 0.002), DNMT3A (p = 0.114) and TET2 (p = 0.148). When the hierarchy of somatic mutations was analyzed, BCOR mutations were below the known initial mutations (ASXL1 or TET2) but were above U2AF1 mutations. Transformation-free survival was significantly shorter in BCORMUT patients than that in BCORWT patients (16 vs. 35 months; p = 0.035). RNA-sequencing was performed in bone marrow mononuclear cells from BCORMUT and BCORWT patients and revealed 2030 upregulated and 772 downregulated genes. Importantly, HOXA6, HOXB7, and HOXB9 were significantly over-expressed in BCORMUT patients, compared to BCORWT patients. Eight of 14 BCORMUT patients (57.1%) achieved complete remission (CR) with decitabine treatment, which was much higher than that in BCORWT patients (28.7%, p = 0.036). Paired sequencing results (before and after decitabine) showed three of 6 CR patients lost the mutated BCOR. The median survival of CR patients with a BCORMUT was 40 months, which was significantly longer than that in patients with BCORWT (20 months, p = 0.036). Notably, prolonged survival was observed in three BCORMUT CR patients even without any subsequent therapies. Conclusions BCOR mutations occur more frequently in CN MDS patients, predicting higher risk of leukemia transformation. BCORMUT patients showed a better response to decitabine and achieved longer post-CR survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01157-8.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
81
|
Li C, Wang C. LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies. J Zhejiang Univ Sci B 2021; 22:633-646. [PMID: 34414699 PMCID: PMC8377580 DOI: 10.1631/jzus.b2000797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
Endometrial stromal tumors (ESTs) include endometrial stromal nodule (ESN), low-grade endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-ESS), and undifferentiated uterine sarcoma (UUS). Since these are rare tumor types, there is an unmet clinical need for the systematic therapy of advanced LG-ESS or HG-ESS. Cytogenetic and molecular advances in ESTs have shown that multiple recurrent gene fusions are present in a large proportion of LG-ESSs, and HG-ESSs are identified by the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE)-family with sequence similarity 22 (FAM22) fusion. Recently, a group of ESSs harboring both zinc finger CCCH domain-containing protein 7B (ZC3H7B)-B-cell lymphoma 6 corepressor(BCOR) fusion and internal tandem duplication (ITD) of the BCOR gene have been provisionally classified as HG-ESSs. In this review, we firstly describe current knowledge about the molecular characteristics of recurrent aberrant proteins and their roles in the tumorigenesis of LG-ESSs and HG-ESSs. Next, we summarize the possibly shared signal pathways in the tumorigenesis of LG-ESSs and HG-ESSs, and list potentially actionable targets. Finally, based on the above discussion, we propose a few promising therapeutic strategies for LG-ESSs and HG-ESSs with recurrent gene alterations.
Collapse
Affiliation(s)
- Chunhui Li
- Quality Management Office, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
82
|
Lu B, Jiang R, Xie B, Wu W, Zhao Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis 2021; 12:783. [PMID: 34381020 PMCID: PMC8357806 DOI: 10.1038/s41419-021-04065-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Gene fusions are thought to be driver mutations in multiple cancers and are an important factor for poor patient prognosis. Most of them appear in specific cancers, thus satisfactory strategies can be developed for the precise treatment of these types of cancer. Currently, there are few targeted drugs to treat gynecologic tumors, and patients with gynecologic cancer often have a poor prognosis because of tumor progression or recurrence. With the application of massively parallel sequencing, a large number of fusion genes have been discovered in gynecologic tumors, and some fusions have been confirmed to be involved in the biological process of tumor progression. To this end, the present article reviews the current research status of all confirmed fusion genes in gynecologic tumors, including their rearrangement mechanism and frequency in ovarian cancer, endometrial cancer, endometrial stromal sarcoma, and other types of uterine tumors. We also describe the mechanisms by which fusion genes are generated and their oncogenic mechanism. Finally, we discuss the prospect of fusion genes as therapeutic targets in gynecologic tumors.
Collapse
Affiliation(s)
- Bingfeng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruqi Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bumin Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
83
|
Honda A, Koya J, Yoshimi A, Miyauchi M, Taoka K, Kataoka K, Arai S, Kurokawa M. Loss-of-function mutations in BCOR contribute to chemotherapy resistance in acute myeloid leukemia. Exp Hematol 2021; 101-102:42-48.e11. [PMID: 34333045 DOI: 10.1016/j.exphem.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Primary refractory acute myeloid leukemia (AML) is unresponsive to conventional chemotherapy and has a poor prognosis. Despite the recent identification of novel driver mutations and advances in the understanding of the molecular pathogenesis, little is known about the relationship between genetic abnormalities and chemoresistance in AML. In this study, we subjected 39 samples from patients with primary refractory AML to whole-exome and targeted sequencing analyses to identify somatic mutations contributing to chemoresistance in AML. First, we identified 49 genes that might contribute to chemotherapy resistance through the whole-exome sequencing of samples from 6 patients with primary refractory AML. We then identified a significantly higher frequency of mutations in the gene encoding BCL-6 co-repressor (BCOR) in patients with primary refractory AML through the targeted sequencing of all coding sequence of 49 genes. Notably, the presence of BCOR mutations appeared to have a negative impact on prognosis in our cohort and previous larger studies. Subsequently, to investigate the biological effect of BCOR mutations on sensitivity to anticancer drugs, we established BCOR knockout human leukemic cell lines using the CRISPR/Cas9 system. Here, BCOR knockout cell lines exhibited statistically significant reductions in sensitivity to anticancer drugs, compared with the wild-type controls both in vitro and in vivo in xenograft mouse models. In conclusion, loss-of-function BCOR mutations appear to contribute to chemotherapy resistance and may be a promising therapeutic target in primary refractory AML.
Collapse
Affiliation(s)
- Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Miyauchi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuki Taoka
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
84
|
Kyriazoglou A, Tourkantoni N, Liontos M, Zagouri F, Mahaira L, Papakosta A, Michali D, Patereli A, Stefanaki K, Tzotzola V, Skoura E, Baka M, Polychronopoulou S, Kattamis A, Dimitriadis E. A Case Series of BCOR Sarcomas With a New Splice Variant of BCOR/CCNB3 Fusion Gene. In Vivo 2021; 34:2947-2954. [PMID: 32871837 DOI: 10.21873/invivo.12125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Undifferentiated round cell sarcomas are a heterogeneous group of sarcomas. Identification of BCOR alterations, such as BCOR/CCNB3 and BCOR/MAML3 fusion genes and BCOR ITD has recently contributed in the precise diagnosis of these neoplasms, defining a new entity of the current classification of soft tissue and bone sarcomas. BCOR sarcomas share both morphological and genetic characteristics distinct from Ewing sarcomas. The scope of our study was to retrospectively identify BCOR sarcomas and find the correlations with the clinical outcome of these patients. PATIENTS AND METHODS Histopathology and immunohistochemistry of pediatric tumor samples were combined with molecular testing (PCR) and fluorescent in situ hybridization to find BCOR sarcomas. RESULTS We, herein, present our experience with BCOR sarcomas in a referral center of Greece. Moreover, we report in one case the detection of a variant BCOR/CCNB3 fusion not previously described. CONCLUSION We are the first to report a splice variant of BCOR/CCNB3 which reveals the central position of BCOR in the oncogenesis of these tumors, furthermore we highlight the importance of molecular diagnostics in Ewing-like sarcomas and discuss the current treatment options for this rare entity.
Collapse
Affiliation(s)
| | - Natalia Tourkantoni
- Division of Pediatric Oncology, First Department of Pediatrics, Aghia Sofia Children's Hospital, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Louisa Mahaira
- Department of Genetics, Aghios Savvas Hospital, Athens, Greece
| | | | - Dimitra Michali
- Department of Genetics, Aghios Savvas Hospital, Athens, Greece
| | - Amalia Patereli
- Department of Pathology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Kalliopi Stefanaki
- Department of Pathology, Aghia Sofia Children's Hospital, Athens, Greece
| | - Vasiliki Tzotzola
- Department of Pediatric Oncology, Aghia Sofia Children's Hospital, Athens, Greece
| | | | - Margarita Baka
- Department of Pediatric Oncology, Panagiotis and Aglaia Kyriakou Children's Hospital, Athens, Greece
| | | | - Antonis Kattamis
- Division of Pediatric Oncology, First Department of Pediatrics, Aghia Sofia Children's Hospital, Athens, Greece
| | | |
Collapse
|
85
|
Kyriazoglou A, Bagos P. Meta-analysis of BCOR rearranged sarcomas: challenging the therapeutic approach. Acta Oncol 2021; 60:721-726. [PMID: 33630701 DOI: 10.1080/0284186x.2021.1890818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION BCOR rearranged sarcomas comprise a group of malignant mesenchymal tumors that until recently were classified as Ewing sarcomas or as undifferentiated round cell sarcomas. The identification of alterations involving BCOR gene such as BCOR-CCNB3, BCOR-MAML3, ZC3H7B-BCOR fusion genes and BCOR internal tandem duplication (ITD) is characteristic for the differential diagnosis of BCOR rearranged sarcomas. Due to the rarity of these tumors there is no consensus or guidelines regarding the optimal therapeutic algorithm, that clinicians should follow. PATIENTS AND METHODS Herein we have conducted a meta-analysis of the current reports dealing with the therapeutic approach of BCOR rearranged sarcomas. RESULTS Meta-analysis of the 57 eligible cases from 10 studies resulted to similar Incidence Rate Ratio (IRR) and overall survival (OS) for patients who received Ewing protocols and non-Ewing oriented treatment. Further similar death rate was reported for both strategies (non-Ewing 20% Vs Ewing 21.8%). CONCLUSION Our data support that non-Ewing treatment strategy can be considered a safe option, being at least equal to Ewing protocols. The current study provides a hint toward the optimal therapeutic approach of BCOR rearranged sarcomas. Further, the present study challenges the use of the term Ewing-like sarcomas, since the current literature supports that BCOR rearranged sarcomas deserve their own distinct classification in terms of genetics, pathology and therapy.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Second Propaedeutic Department of Medicine, Attikon University Hospital, Chaidari, Athens, Greece
| | - Pantelis Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| |
Collapse
|
86
|
BCOR gene alterations in hematological diseases. Blood 2021; 138:2455-2468. [PMID: 33945606 DOI: 10.1182/blood.2021010958] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The BCL6 co-repressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homologue BCORL1 have been detected in several hematological malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR. BCOR and BCORL1 mutations are similar to those causing two rare X-linked diseases: the oculo-facio-cardio-dental (OFCD) and the Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and non-malignant hematological diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (e.g. Dnmt3a and Tet2), in promoting hematological malignancies and in providing a useful platform for the development of new targeted therapies.
Collapse
|
87
|
Targeted RNA expression profiling identifies high-grade endometrial stromal sarcoma as a clinically relevant molecular subtype of uterine sarcoma. Mod Pathol 2021; 34:1008-1016. [PMID: 33077922 DOI: 10.1038/s41379-020-00705-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
High-grade endometrial stromal sarcoma (HGESS) may harbor YWHAE-NUTM2A/B fusion, ZC3H7B-BCOR fusion, and BCOR internal tandem duplication (ITD). NTRK3 upregulation and pan-Trk expression were reported in soft tissue lesions that share similar morphology and genetic abnormalities. To confirm these findings in HGESS, differential expression analysis was performed at gene level comparing 11 HGESS with 48 other uterine sarcomas, including 9 low-grade endometrial stromal sarcomas, 23 undifferentiated uterine sarcomas, and 16 leiomyosarcomas, using targeted RNA sequencing data. Pan-Trk immunohistochemistry was performed on 35 HGESS, including 10 tumors with RNA expression data, with genotypes previously confirmed by targeted RNA sequencing, fluorescence in situ hybridization, and/or genomic PCR. Unsupervised hierarchical clustering of the top 25% of differentially expressed probes identified three molecular groups: (1) high NTRK3, FGFR3, RET, BCOR, GLI1, and PTCH1 and low ESR1 expression; (2) low NTRK3, FGFR3, RET, BCOR, GLI1, and PTCH1 and high ESR1 expression; and (3) low NTRK3, FGFR3, RET, BCOR, GLI1, PTCH1, and ESR1 expression. Among HGESS, 64% of tumors clustered in group 1, while 27% clustered in group 2. Cytoplasmic and/or nuclear pan-Trk staining of variable extent and intensity was seen in 91% of HGESS regardless of cyclin D1 and/or BCOR positivity. ER and PR expression was seen in 44% of HGESS despite ESR1 downregulation. Two patients with ER and PR positive but ESR1 downregulated stage I HGESS were treated with endocrine therapy, and both recurred at 12 and 36 months after primary resection. By RNA expression, HGESS appear homogenous and distinct from other uterine sarcomas by activation of kinases, including NTRK3, and sonic hedgehog pathway genes along with downregulation of ESR1. Most HGESS demonstrate pan-Trk staining which may serve as a diagnostic biomarker. ESR1 downregulation is seen in some HGESS that express ER and PR which raises implications in the utility of endocrine therapy in these patients.
Collapse
|
88
|
Cai Z, Duncan D, Li R, Thomas J, Zhu H. BCOR-CCNB3 Sarcoma with Prominent Rhabdoid Cells Mimicking Rhabdomyoblasts: Expanding the Morphologic spectrum of BCOR-CCNB3 Sarcoma. Int J Surg Pathol 2021; 29:915-919. [PMID: 33909519 DOI: 10.1177/10668969211013891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BCOR-CCNB3 sarcoma (BCS) is a rare recently defined undifferentiated sarcoma that predominantly affects children and young adults. The diagnosis of this tumor is difficult due to the highly variable morphology and nonspecific immunophenotype. Emerging data suggest that patients with BCS show response to Ewing sarcoma-based treatment regimen, thus correct diagnosis is of clinical relevance. In this study, we report a case of BCS arising from the big toe of a 15-year-old male patient. The tumor had a prominent population of rhabdoid cells with bright eosinophilic cytoplasm mimicking rhabdomyosarcoma. The tumor cells were focally positive for desmin and myogenin, and negative for CD99. Next-generation sequencing showed the presence of BCOR-CCNB3 gene fusion. BCS with prominent rhabdoid cells has not been described before. This study further expands the morphologic spectrum of BCS.
Collapse
Affiliation(s)
- Zhenjian Cai
- 12340University of Texas Health Science Center, McGovern Medical Center, Houston, TX, USA
| | - Darryl Duncan
- 12340University of Texas Health Science Center, McGovern Medical Center, Houston, TX, USA
| | - Rongying Li
- 12340University of Texas Health Science Center, McGovern Medical Center, Houston, TX, USA
| | - Jaiyeola Thomas
- 12340University of Texas Health Science Center, McGovern Medical Center, Houston, TX, USA
| | - Hui Zhu
- 12340University of Texas Health Science Center, McGovern Medical Center, Houston, TX, USA
| |
Collapse
|
89
|
Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13092095. [PMID: 33926021 PMCID: PMC8123716 DOI: 10.3390/cancers13092095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.
Collapse
|
90
|
Jean-Quartier C, Jeanquartier F, Ridvan A, Kargl M, Mirza T, Stangl T, Markaĉ R, Jurada M, Holzinger A. Mutation-based clustering and classification analysis reveals distinctive age groups and age-related biomarkers for glioma. BMC Med Inform Decis Mak 2021; 21:77. [PMID: 33639927 PMCID: PMC7913451 DOI: 10.1186/s12911-021-01420-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malignant brain tumor diseases exhibit differences within molecular features depending on the patient's age. METHODS In this work, we use gene mutation data from public resources to explore age specifics about glioma. We use both an explainable clustering as well as classification approach to find and interpret age-based differences in brain tumor diseases. We estimate age clusters and correlate age specific biomarkers. RESULTS Age group classification shows known age specifics but also points out several genes which, so far, have not been associated with glioma classification. CONCLUSIONS We highlight mutated genes to be characteristic for certain age groups and suggest novel age-based biomarkers and targets.
Collapse
Affiliation(s)
- Claire Jean-Quartier
- Human-Centered AI Lab (Holzinger Group), Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria
| | - Fleur Jeanquartier
- Human-Centered AI Lab (Holzinger Group), Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Aydin Ridvan
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Matthias Kargl
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Tica Mirza
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Tobias Stangl
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Robi Markaĉ
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Mauro Jurada
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Andreas Holzinger
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| |
Collapse
|
91
|
Barets D, Appay R, Heinisch M, Battistella M, Bouvier C, Chotard G, Le Loarer F, Macagno N, Perbet R, Pissaloux D, Rousseau A, Tauziède-Espariat A, Varlet P, Vasiljevic A, Colin C, Fina F, Figarella-Branger D. Specific and Sensitive Diagnosis of BCOR-ITD in Various Cancers by Digital PCR. Front Oncol 2021; 11:645512. [PMID: 33718245 PMCID: PMC7948083 DOI: 10.3389/fonc.2021.645512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
BCOR is an epigenetic regulator altered by various mechanisms including BCOR-internal tandem duplication (BCOR-ITD) in a wide range of cancers. Six different BCOR-ITD in the 3’-part of the coding sequence of exon 15 have been reported ranging from 89 to 114 bp in length. BCOR-ITD is a common genetic alteration found in clear cell sarcoma of the kidney and primitive myxoid mesenchymal tumor of infancy (PMMTI) and it characterizes a new type of central nervous system tumor: “CNS tumor with BCOR-ITD”. It can also be detected in undifferentiated round cell sarcoma (URCS) and in high-grade endometrial stromal sarcoma (HGESS). Therefore, it is of utmost importance to search for this genetic alteration in these cancers with the most frequent technique being RNA-sequencing. Here, we developed a new droplet PCR assay (dPCR) to detect the six sequences characterizing BCOR-ITD. To achieve this goal, we used a single colored probe to detect both the duplicated region and the normal sequence that acts as a reference. We first generated seven synthetic DNA sequences: ITD0 (the normal sequence) and ITD1 to ITD6 (the duplicated sequences described in the literature) and then we set up the optima dPCR conditions. We validated our assay on 19 samples from a representative panel of human tumors (9 HGNET-BCOR, 5 URCS, 3 HGESS, and 2 PMMTI) in which BCOR-ITD status was known using at least one other method including RNA sequencing, RT-PCR or DNA-methylation profiling for CNS tumors. Our results showed that our technique was 100% sensitive and specific. DPCR detected BCOR-ITD in 13/19 of the cases; in the remaining 6 cases additional RNA-sequencing revealed BCOR gene fusions. To conclude, in the era of histomolecular classification of human tumors, our modified dPCR assay is of particular interest to detect BCOR-ITD since it is a robust and less expensive test that can be applied to a broad spectrum of cancers that share this alteration.
Collapse
Affiliation(s)
- Doriane Barets
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Romain Appay
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Marie Heinisch
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Inserm U976, Paris, France
| | - Corinne Bouvier
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Guillaume Chotard
- Service de Pathologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, Bordeaux, France
| | | | - Nicolas Macagno
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Romain Perbet
- Institute of Pathology, CHU Lille, Lille, France.,LilNCog, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, U1172, Lille, France
| | - Daniel Pissaloux
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France.,Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Audrey Rousseau
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Arnaud Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Alexandre Vasiljevic
- Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Carole Colin
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Frédéric Fina
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,ID Solutions, Research and Development, Grabels, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
92
|
Wang XQ, Xu SW, Wang W, Piao SZ, Mao XL, Zhou XB, Wang Y, Wu WD, Ye LP, Li SW. Identification and Validation of a Novel DNA Damage and DNA Repair Related Genes Based Signature for Colon Cancer Prognosis. Front Genet 2021; 12:635863. [PMID: 33719345 PMCID: PMC7943631 DOI: 10.3389/fgene.2021.635863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Backgrounds: Colorectal cancer (CRC) with high incidence, has the third highest mortality of tumors. DNA damage and repair influence a variety of tumors. However, the role of these genes in colon cancer prognosis has been less systematically investigated. Here, we aim to establish a corresponding prognostic signature providing new therapeutic opportunities for CRC. Method: After related genes were collected from GSEA, univariate Cox regression was performed to evaluate each gene's prognostic relevance through the TCGA-COAD dataset. Stepwise COX regression was used to establish a risk prediction model through the training sets randomly separated from the TCGA cohort and validated in the remaining testing sets and two GEO datasets (GSE17538 and GSE38832). A 12-DNA-damage-and-repair-related gene-based signature able to classify COAD patients into high and low-risk groups was developed. The predictive ability of the risk model or nomogram were evaluated by different bioinformatics- methods. Gene functional enrichment analysis was performed to analyze the co-expressed genes of the risk-based genes. Result: A 12-gene based prognostic signature established within 160 significant survival-related genes from DNA damage and repair related gene sets performed well with an AUC of ROC 0.80 for 5 years in the TCGA-CODA dataset. The signature includes CCNB3, ISY1, CDC25C, SMC1B, MC1R, LSP1P4, RIN2, TPM1, ELL3, POLG, CD36, and NEK4. Kaplan-Meier survival curves showed that the prognosis of the risk status owns more significant differences than T, M, N, and stage prognostic parameters. A nomogram was constructed by LASSO regression analysis with T, M, N, age, and risk as prognostic parameters. ROC curve, C-index, Calibration analysis, and Decision Curve Analysis showed the risk module and nomogram performed best in years 1, 3, and 5. KEGG, GO, and GSEA enrichment analyses suggest the risk involved in a variety of important biological processes and well-known cancer-related pathways. These differences may be the key factors affecting the final prognosis. Conclusion: The established gene signature for CRC prognosis provides a new molecular tool for clinical evaluation of prognosis, individualized diagnosis, and treatment. Therapies based on targeted DNA damage and repair mechanisms may formulate more sensitive and potential chemotherapy regimens, thereby expanding treatment options and potentially improving the clinical outcome of CRC patients.
Collapse
Affiliation(s)
- Xue-quan Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Shi-wen Xu
- Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Wenzhou Medical University, Wenzhou, China
| | - Song-zhe Piao
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yi Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wei-dan Wu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-ping Ye
- Wenzhou Medical University, Wenzhou, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
93
|
Molecular Changes in Retinoblastoma beyond RB1: Findings from Next-Generation Sequencing. Cancers (Basel) 2021; 13:cancers13010149. [PMID: 33466343 PMCID: PMC7796332 DOI: 10.3390/cancers13010149] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The gene causing retinoblastoma was the first tumor suppressor cloned (1986) and because retinoblastoma is the classic example of autosomal dominant inheritance, there has been little research on non-RB1 alterations in tumors and the impact these alterations have on growth patterns in the eye, metastases and predilection for non-ocular cancers. This study interrogated enucleated retinoblastoma specimens using a MSK-IMPACT clinical next-generation sequencing panel with the aim to correlate them with clinicopathologic characteristics. We found that vitreous seeding (the main reason for eye removal) correlates with copy number variations, specifically 1q gains and 16q loss. We also found that somatic BCOR mutations correlate with propensity for metastasis and this offers a molecular pathway for monitoring high risk tumors. In addition, the finding that 11% of these retinoblastoma patients have additional germline mutations (on other chromosomes) that predispose them to a different host of cancers throughout their lives enables more targeted and specific screening strategies. Abstract This investigation uses hybridization capture-based next-generation sequencing to deepen our understanding of genetics that underlie retinoblastoma. Eighty-three enucleated retinoblastoma specimens were evaluated using a MSK-IMPACT clinical next-generation sequencing panel to evaluate both somatic and germline alterations. Somatic copy number variations (CNVs) were also identified. Genetic profiles were correlated to clinicopathologic characteristics. RB1 inactivation was found in 79 (97.5%) patients. All specimens had additional molecular alterations. The most common non-RB1 gene alteration was BCOR in 19 (22.9%). Five (11.0%) had pathogenic germline mutations in other non-RB1 cancer predisposition genes. Significant clinicopathologic correlations included: vitreous seeds associated with 1q gains and 16q loss of heterozygosity (BH-corrected p-value = 0.008, 0.004; OR = 12.6, 26.7, respectively). BCOR mutations were associated with poor prognosis, specifically metastases-free survival (MFS) (nominal p-value 0.03). Furthermore, retinoblastoma patients can have non-RB1 germline mutations in other cancer-associated genes. No two specimens had the identical genetic profile, emphasizing the individuality of tumors with the same clinical diagnosis.
Collapse
|
94
|
Wouters HJCM, Mulder R, van Zeventer IA, Schuringa JJ, van der Klauw MM, van der Harst P, Diepstra A, Mulder AB, Huls G. Erythrocytosis in the general population: clinical characteristics and association with clonal hematopoiesis. Blood Adv 2020; 4:6353-6363. [PMID: 33351130 PMCID: PMC7757002 DOI: 10.1182/bloodadvances.2020003323] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Erythrocytosis is a common reason for referral to hematology services and is usually secondary in origin. The aim of this study was to assess clinical characteristics and clonal hematopoiesis (CH) in individuals with erythrocytosis in the population-based Lifelines cohort (n = 147 167). Erythrocytosis was defined using strict (World Health Organization [WHO] 2008/British Committee for Standards in Hematology) and wide (WHO 2016) criteria. Individuals with erythrocytosis (strict criteria) and concurrent leukocytosis and/or thrombocytosis were 1:2 matched with individuals with isolated erythrocytosis and analyzed for somatic mutations indicative of CH (≥5% variant allele frequency). One hundred eighty five males (0.3%) and 223 females (0.3%) met the strict criteria, whereas 4868 males (7.6%) and 309 females (0.4%) met the wide criteria. Erythrocytosis, only when defined using strict criteria, was associated with cardiovascular morbidity (odds ratio [OR], 1.8; 95% confidence interval [CI], 1.2-2.6), cardiovascular mortality (hazard ratio [HR], 2.2; 95% CI, 1.0-4.6), and all-cause mortality (HR, 1.7; 95% CI, 1.2-2.6), independent of conventional risk factors. Mutations were detected in 51 of 133 (38%) evaluable individuals, with comparable frequencies between individuals with and without concurrent cytosis. The JAK2 V617F mutation was observed in 7 of 133 (5.3%) individuals, all having concurrent cytosis. The prevalence of mutations in BCOR/BCORL1 (16%) was high, suggesting aberrant epigenetic regulation. Erythrocytosis with CH was associated with cardiovascular morbidity (OR, 9.1; 95% CI, 1.2-68.4) in a multivariable model. Our data indicate that only when defined using strict criteria erythrocytosis is associated with cardiovascular morbidity (especially in the presence of CH), cardiovascular mortality, and all-cause mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
95
|
Micci F, Heim S, Panagopoulos I. Molecular pathogenesis and prognostication of "low-grade'' and "high-grade" endometrial stromal sarcoma. Genes Chromosomes Cancer 2020; 60:160-167. [PMID: 33099834 PMCID: PMC7894482 DOI: 10.1002/gcc.22907] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are a heterogeneous group of rare mesenchymal cancers. Considerable knowledge has been gained in recent years about the molecular characteristics of these cancers, which helps to classify them in a more meaningful manner leading to improved diagnosis, prognostication, and treatment. According to this classification, ESS is now grouped as low‐ or high‐grade. ESS may have overlapping clinical presentation, morphology, and immunohistochemical profile. Their genetic characteristics allow subdivision of many of them depending on which pathogenetically important fusion genes they carry, but clearly much more needs to be unraveled in this regard. We here provide an overview of the molecular pathogenetic knowledge gained so far on low‐ and high‐grade ESS.
Collapse
Affiliation(s)
- Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway
| |
Collapse
|
96
|
Sportoletti P, Sorcini D, Guzman AG, Reyes JM, Stella A, Marra A, Sartori S, Brunetti L, Rossi R, Papa BD, Adamo FM, Pianigiani G, Betti C, Scialdone A, Guarente V, Spinozzi G, Tini V, Martelli MP, Goodell MA, Falini B. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia 2020; 35:1949-1963. [PMID: 33159179 PMCID: PMC8257496 DOI: 10.1038/s41375-020-01075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Recurrent loss-of-function mutations of BCL6 co-repressor (BCOR) gene are found in about 4% of AML patients with normal karyotype and are associated with DNMT3a mutations and poor prognosis. Therefore, new anti-leukemia treatments and mouse models are needed for this combinatorial AML genotype. For this purpose, we first generated a Bcor-/- knockout mouse model characterized by impaired erythroid development (macrocytosis and anemia) and enhanced thrombopoiesis, which are both features of myelodysplasia/myeloproliferative neoplasms. We then created and characterized double Bcor-/-/Dnmt3a-/- knockout mice. Interestingly, these animals developed a fully penetrant acute erythroid leukemia (AEL) characterized by leukocytosis secondary to the expansion of blasts expressing c-Kit+ and the erythroid marker Ter119, macrocytic anemia and progressive reduction of the thrombocytosis associated with loss of Bcor alone. Transcriptomic analysis of double knockout bone marrow progenitors revealed that aberrant erythroid skewing was induced by epigenetic changes affecting specific transcriptional factors (GATA1-2) and cell-cycle regulators (Mdm2, Tp53). These findings prompted us to investigate the efficacy of demethylating agents in AEL, with significant impact on progressive leukemic burden and mice overall survival. Information gained from our model expands the knowledge on the biology of AEL and may help designing new rational treatments for patients suffering from this high-risk leukemia.
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| | - Daniele Sorcini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Anna G Guzman
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jaime M Reyes
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arianna Stella
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Sara Sartori
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Lorenzo Brunetti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Roberta Rossi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulia Pianigiani
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Camilla Betti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Annarita Scialdone
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Giulio Spinozzi
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Valentina Tini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Maria Paola Martelli
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy
| | - Margaret A Goodell
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brunangelo Falini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
97
|
Salgado CM, Zin A, Garrido M, Kletskaya I, DeVito R, Reyes-Múgica M, Bisogno G, Donofrio V, Alaggio R. Pediatric Soft Tissue Tumors With BCOR ITD Express EGFR but Not OLIG2. Pediatr Dev Pathol 2020; 23:424-430. [PMID: 32790583 DOI: 10.1177/1093526620945528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Somatic internal tandem duplication of 3' of BCOR (BCOR ITD) has been found in clear cell sarcomas of the kidney (CCSK), soft tissue undifferentiated round cell sarcomas/primitive myxoid mesenchymal tumors of infancy (URCS/PMMTI), and a subgroup of central nervous system high-grade neuroepithelial tumors (CNS-HGNET). BCOR ITD+ tumors share morphologic features. Expression of OLIG2 and epidermal growth factor receptor (EGFR) has been reported in CNS-HGNET with BCOR ITD. Here, we characterize OLIG2 and EGFR expression in URCS/PMMTI with BCOR ITD. METHODS Paraffin blocks of 9 polymerase chain reaction-confirmed soft tissue BCOR ITD+ tumors (URCS/PMMTI) were immunophenotyped for OLIG2 and EGFR expression and scored semiquantitatively by percentage of positive cells and intensity of staining as negative, 1+, 2+, and 3+. Fluorescence in situ hybridization (FISH) for EGFR amplification was performed (amplification EGFR/CEP7 ratio ≥2.0). RESULTS All 9 tumors showed membrane/cytoplasmic expression of EGFR, strong and diffuse (3+) in 8 cases; weak (+2) in 1. FISH detected no EGFR amplification. OLIG2 was negative in all. CONCLUSIONS EGFR is overexpressed in pediatric URCS/PMMTI with BCOR ITD and may be related to transcriptional upregulation of EGFR by BCOR ITD. OLIG2 negative staining differentiates URCS/PMMTI from CNS-HGNET. This finding may further support the possibility that these tumors have a different stem cell of origin.
Collapse
Affiliation(s)
- Claudia M Salgado
- Department of Pathology, UPMC Children's Hospital of Pittsburgh. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angelica Zin
- Clinica di Oncoematologia Pediatrica Azienda Ospedaliera, Università di Padova, Padua, Italy
| | - Marta Garrido
- Unidad de Anatomía Patológica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Irina Kletskaya
- Russian Children's Clinical Hospital of Pirogov Russian National Research Medical University of the Ministry of Healthcare, Russian Federation, Moscow, Russia
| | - Rita DeVito
- Ospedale Pediatrico Bambino Gesu, Istituto Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Miguel Reyes-Múgica
- Department of Pathology, UPMC Children's Hospital of Pittsburgh. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gianni Bisogno
- Dipartimento Salute della Donna e Del Bambino, Università di Padova, Padua, Italy
| | - Vittoria Donofrio
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children's Hospital, Via Posillipo, Naples, Italy
| | - Rita Alaggio
- Ospedale Pediatrico Bambino Gesu, Istituto Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
98
|
Abstract
Molecular characterization has led to advances in the understanding of pediatric renal tumors, including the association of pediatric cystic nephromas with DICER1 tumor syndrome, the metanephric family of tumors with somatic BRAF mutations, the characterization of ETV6-NTRK3-negative congenital mesoblastic nephromas, the expanded spectrum of gene fusions in translocation renal cell carcinoma, the relationship of clear cell sarcoma of the kidney with other BCOR-altered tumors, and the pathways affected by SMARCB1 alterations in rhabdoid tumors of the kidney. These advances have implications for diagnosis, classification, and treatment of pediatric renal tumors.
Collapse
|
99
|
Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M, Nielsen TO. The epigenomics of sarcoma. Nat Rev Cancer 2020; 20:608-623. [PMID: 32782366 PMCID: PMC8380451 DOI: 10.1038/s41568-020-0288-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic regulation is critical to physiological control of development, cell fate, cell proliferation, genomic integrity and, fundamentally, transcriptional regulation. This epigenetic control occurs at multiple levels including through DNA methylation, histone modification, nucleosome remodelling and modulation of the 3D chromatin structure. Alterations in genes that encode chromatin regulators are common among mesenchymal neoplasms, a collection of more than 160 tumour types including over 60 malignant variants (sarcomas) that have unique and varied genetic, biological and clinical characteristics. Herein, we review those sarcomas in which chromatin pathway alterations drive disease biology. Specifically, we emphasize examples of dysregulation of each level of epigenetic control though mechanisms that include alterations in metabolic enzymes that regulate DNA methylation and histone post-translational modifications, mutations in histone genes, subunit loss or fusions in chromatin remodelling and modifying complexes, and disruption of higher-order chromatin structure. Epigenetic mechanisms of tumorigenesis have been implicated in mesenchymal tumours ranging from chondroblastoma and giant cell tumour of bone to chondrosarcoma, malignant peripheral nerve sheath tumour, synovial sarcoma, epithelioid sarcoma and Ewing sarcoma - all diseases that present in a younger patient population than most cancers. Finally, we review current and potential future approaches for the development of sarcoma therapies based on this emerging understanding of chromatin dysregulation.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Kevin B Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew M Intlekofer
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie S E Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C David Allis
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
100
|
Chi-Fung Chan G, Matias Chan C. Genotypes versus phenotypes: The potential paradigm shift in the diagnosis and management of pediatric neoplasms. Pediatr Investig 2020; 4:204-210. [PMID: 33150315 PMCID: PMC7520104 DOI: 10.1002/ped4.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/19/2020] [Indexed: 11/30/2022] Open
Abstract
The gold standard of cancer diagnosis has long been based on histological characteristics. With the rapid advancement of genetic medicine, such standard algorithm of diagnostic approach is facing a challenge. The genetic findings have been changed from being a “supporting character” into the role of a “main character”. More and more disease diagnosis and classification has to be defined by genetic basis. In this article, we focus on the challenges in the field of pediatric oncology. We cited 2 scenarios where genetic information plays a pivotal role in identifying the underlying pathology. The first scenario is that same genetic mutation can lead to variable clinical phenotypes, this includes EWSR1‐PATZ1 fusion related neoplasms; BCOR neoplasms; and GATA‐2 deficiency related immunodeficiency and myelodysplastic syndrome. Another scenario is relatively more common that is the same clinical and histopathological phenotype with different underlying genotypes. The genotypes actually impact on the treatment response and outcome. We used medulloblastoma as an example. In fact, we can also find similar scenario in many pediatric cancers such as Ewing sarcoma, ependymoma, etc. The essence of this article is to remind clinicians of the rapid development in genetic medicine and it has been reshaping the landscape of the modern disease classification and therapeutic approach. In the near future, it may even lead to a paradigm shift in our disease diagnostic algorithm.
Collapse
Affiliation(s)
- Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine Hong Kong Children's Hospital & Hong Kong University Shenzhen Hospital The University of Hong Kong Hong Kong China
| | | |
Collapse
|