51
|
Firdessa Fite R, Bechi Genzano C, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother 2023; 19:2154098. [PMID: 36656048 PMCID: PMC9980607 DOI: 10.1080/21645515.2022.2154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antigen-specific immunotherapies (ASITs) address important clinical needs in treating autoimmune diseases. However, Type 1 diabetes is a heterogeneous disease wherein patient characteristics influence responsiveness to ASITs. Targeting not only disease-relevant T cell populations, but also specific groups of patients using precision medicine is a new goal toward achieving effective treatment. HLA-restricted peptides provide advantages over protein as antigens, however, methods for profiling antigen-specific T cells need to improve in sensitivity, depth, and throughput to facilitate epitope selection. Delivery approaches are highly diverse, illustrating the many ways relevant antigen-presenting cell populations and anatomical locations can be targeted for tolerance induction. The role of persistence of antigen presentation in promoting durable antigen-specific tolerance requires further investigation. Based on the outcome of ASIT trials, the field is moving toward using patient-specific variations to improve efficacy, but challenges still lie on the path to delivering more effective and safer treatment to the T1D patient population.
Collapse
Affiliation(s)
- Rebuma Firdessa Fite
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires de Paris Centre-Université de Paris, Paris, France
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
52
|
Ettinger RA, Buitinga M, Vandamme C, Afonso G, Gomez R, Arribas-Layton D, Bissenova S, Speake C, Reijonen H, Kinnunen T, Overbergh L, Mallone R, Kwok WW, James EA. Technical Validation and Utility of an HLA Class II Tetramer Assay for Type 1 Diabetes: A Multicenter Study. J Clin Endocrinol Metab 2023; 109:183-196. [PMID: 37474341 DOI: 10.1210/clinem/dgad434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023]
Abstract
CONTEXT Validated assays to measure autoantigen-specific T-cell frequency and phenotypes are needed for assessing the risk of developing diabetes, monitoring disease progression, evaluating responses to treatment, and personalizing antigen-based therapies. OBJECTIVE Toward this end, we performed a technical validation of a tetramer assay for HLA-DRA-DRB1*04:01, a class II allele that is strongly associated with susceptibility to type 1 diabetes (T1D). METHODS HLA-DRA-DRB1*04:01-restricted T cells specific for immunodominant epitopes from islet cell antigens GAD65, IGRP, preproinsulin, and ZnT8, and a reference influenza epitope, were enumerated and phenotyped in a single staining tube with a tetramer assay. Single and multicenter testing was performed, using a clone-spiked specimen and replicate samples from T1D patients, with a target coefficient of variation (CV) less than 30%. The same assay was applied to an exploratory cross-sectional sample set with 24 T1D patients to evaluate the utility of the assay. RESULTS Influenza-specific T-cell measurements had mean CVs of 6% for the clone-spiked specimen and 11% for T1D samples in single-center testing, and 20% and 31%, respectively, for multicenter testing. Islet-specific T-cell measurements in these same samples had mean CVs of 14% and 23% for single-center and 23% and 41% for multicenter testing. The cross-sectional study identified relationships between T-cell frequencies and phenotype and disease duration, sex, and autoantibodies. A large fraction of the islet-specific T cells exhibited a naive phenotype. CONCLUSION Our results demonstrate that the assay is reproducible and useful to characterize islet-specific T cells and identify correlations between T-cell measures and clinical traits.
Collapse
Affiliation(s)
- Ruth A Ettinger
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Mijke Buitinga
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| | - Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Georgia Afonso
- Diabetes and Autoimmunity Research Laboratory, Université Paris Cité, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | - Rebecca Gomez
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David Arribas-Layton
- Department of Immunology and Theranostics, City of Hope Medical Center, Beckman Research Institute, Duarte, CA 91010, USA
| | - Samal Bissenova
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Helena Reijonen
- Department of Immunology and Theranostics, City of Hope Medical Center, Beckman Research Institute, Duarte, CA 91010, USA
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Eastern Finland Laboratory Centre (ISLAB), 70210 Kuopio, Finland
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium
| | - Roberto Mallone
- Diabetes and Autoimmunity Research Laboratory, Université Paris Cité, Institut Cochin, CNRS, INSERM, 75014 Paris, France
- Department of Internal Medicine, Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, 75014 Paris, France
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
53
|
James LM, Georgopoulos AP. Positive Association Between the Immunogenetic Human Leukocyte Antigen (HLA) Profiles of Multiple Sclerosis and Brain Cancer. Neurosci Insights 2023; 18:26331055231214543. [PMID: 38046672 PMCID: PMC10693228 DOI: 10.1177/26331055231214543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Previous research has documented elevated risk of brain cancer in patients with multiple sclerosis (MS). Separately, human leukocyte antigen (HLA) has been implicated in protection or susceptibility for both conditions. The aim of the current study was to assess a possible role of shared immunogenetic influence on risk of MS and brain cancer. We first identified an immunogenetic profile for each condition based on the covariance between the population frequency of 127 high-resolution HLA alleles and the population prevalence of each condition in 14 Continental Western European countries and then evaluated the correspondence between MS and brain cancer immunogenetic profiles. Also, since each individual carries 12 HLA alleles (2 × 6 genes), we estimated HLA protection and susceptibility for MS and brain cancer at the individual level. We found that the immunogenetic profiles of MS and brain cancer were highly correlated overall (P < .001) and across all 6 HLA genes with the strongest association observed for DRB1, followed by DQB1 and HLA-A. These findings of immunogenetic overlap between MS and brain cancer are discussed in light of the role of HLA in the immune system response to viruses and other foreign antigens.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
54
|
Jensen ASH, Winther-Sørensen M, Burisch J, Bergquist A, Ytting H, Gluud LL, Wewer Albrechtsen NJ. Autoimmune liver diseases and diabetes: A propensity score matched analysis and a proportional meta-analysis. Liver Int 2023; 43:2479-2491. [PMID: 37752719 DOI: 10.1111/liv.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND AND AIMS Patients with some chronic liver diseases have increased risk of diabetes. Whether this is also the case for patients with autoimmune liver diseases is unknown. The study aimed to calculate risk and worldwide prevalence of diabetes in patients with autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). METHODS We performed a case-control study using data from the United Kingdom Biobank (UKB) and compared frequency of type 1 diabetes (T1D) and type 2 diabetes (T2D) in AIH and PBC with age-, sex-, BMI- and ethnicity-matched controls. Next, we performed a systematic review and proportional meta-analysis searching PubMed, Embase, Cochrane Library and Web of Science (inception to 1 May 2022 [AIH]; 20 August 2022 [PBC]; 11 November 2022 [PSC]). The pooled prevalence of diabetes was calculated using an inverse method random effects model. RESULTS Three hundred twenty-eight AIH patients and 345 PBC patients were identified in UKB and risk of T1D and T2D significantly increased compared with matched controls. Our systematic search identified 6914 records including the UKB study. Of these, 77 studies were eligible for inclusion comprising 36 467, 39 924 and 4877 individuals with AIH, PBC and PSC, respectively. The pooled prevalence of T1D was 3.8% (2.6%-5.7%), 1.7% (0.9%-3.1%), 3.1% (1.9%-4.8%) and of T2D 14.8% (11.1%-19.5%), 18.1% (14.6%-22.2%), 6.3% (2.8%-13.3%) in patients with AIH, PBC and PSC, respectively. CONCLUSIONS Patients with autoimmune liver diseases have increased risk of diabetes. Increased awareness of diabetes risk in patients with autoimmune liver diseases is warranted.
Collapse
Affiliation(s)
- Anne-Sofie H Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Johan Burisch
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Annika Bergquist
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Ytting
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Lise L Gluud
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
55
|
Rustemoglu H, Arslan E, Atasever S, Cevik B, Taspinar F, Turhan AB, Rustemoglu A. Could NCOA5 a novel candidate gene for multiple sclerosis susceptibility? Mol Biol Rep 2023; 50:9335-9341. [PMID: 37817021 DOI: 10.1007/s11033-023-08830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory immune-mediated demyelinating disease that causes a challenging and disabling condition. Environmental and genetic factors play a role in appearing the state of the disease. Recent studies have shown that nuclear cofactor genes may play a role in the pathogenesis of MS. NCOA5 is a nuclear receptor coactivator independent of AF2 that modulates ERa-mediated transcription. This gene is involved in the pathogenesis of diseases such as psoriasis, Behcet's disease, and cancer. METHODS AND RESULTS We investigated the relationship between the rs2903908 polymorphism of the NCOA5 gene and MS among 157 unrelated MS patients and 160 healthy controls by RT-PCR. The frequencies of the CC, CT, and TT genotypes were 19.87%, 37.82%, and 42.31%, respectively, for the MS group and 5.63%, 43.75%, and 50.62%, respectively, for the control group. The CC genotype and the C allele were found to be significantly higher in the patient group (the p values were 0.0002 and 0.003, respectively). CONCLUSIONS The fact that the CC genotype was found to be significantly higher in the patient group compared to the control group (p = 0.0002) and that it had a statistically significantly higher OR value (OR, 95% CI = 4.16, 1.91-9.05) suggests that the C allele may recessively predispose to MS for this polymorphism. These results suggest for the first time that the NCOA5 gene may have an effect on the occurrence of MS through different molecular pathways, which are discussed in the manuscript.
Collapse
Affiliation(s)
- Husniye Rustemoglu
- Faculty of Medicine, Department of Medical Biology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Erdem Arslan
- Faculty of Medicine, Department of Medical Pharmacology, Aksaray University, Aksaray, Turkey
| | - Sema Atasever
- Faculty of Medicine, Department of Medical Biology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Betul Cevik
- Faculty of Medicine, Department of Neurology, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Filiz Taspinar
- Faculty of Medicine, Department of Physiology, Aksaray University, Aksaray, Turkey
| | - Ahmet Bülent Turhan
- Faculty of Medicine, Department of Medical Biology, Aksaray University, Bahcesaray Mah. 170. Cad. No:19, Aksaray, 68100, Turkey
| | - Aydin Rustemoglu
- Faculty of Medicine, Department of Medical Biology, Aksaray University, Bahcesaray Mah. 170. Cad. No:19, Aksaray, 68100, Turkey.
| |
Collapse
|
56
|
Xie QY, Oh S, Wong A, Yau C, Herold KC, Danska JS. Immune responses to gut bacteria associated with time to diagnosis and clinical response to T cell-directed therapy for type 1 diabetes prevention. Sci Transl Med 2023; 15:eadh0353. [PMID: 37878676 DOI: 10.1126/scitranslmed.adh0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Immune-targeted therapies have efficacy for treatment of autoinflammatory diseases. For example, treatment with the T cell-specific anti-CD3 antibody teplizumab delayed disease onset in participants at high risk for type 1 diabetes (T1D) in the TrialNet 10 (TN-10) trial. However, heterogeneity in therapeutic responses in TN-10 and other immunotherapy trials identifies gaps in understanding disease progression and treatment responses. The intestinal microbiome is a potential source of biomarkers associated with future T1D diagnosis and responses to immunotherapy. We previously reported that antibody responses to gut commensal bacteria were associated with T1D diagnosis, suggesting that certain antimicrobial immune responses may help predict disease onset. Here, we investigated anticommensal antibody (ACAb) responses against a panel of taxonomically diverse intestinal bacteria species in sera from TN-10 participants before and after teplizumab or placebo treatment. We identified IgG2 responses to three species that were associated with time to T1D diagnosis and with teplizumab treatment responses that delayed disease onset. These antibody responses link human intestinal bacteria with T1D progression, adding predictive value to known T1D risk factors. ACAb analysis provides a new approach to elucidate heterogeneity in responses to immunotherapy and identify individuals who may benefit from teplizumab, recently approved by the U.S. Food and Drug Administration for delaying T1D onset.
Collapse
Affiliation(s)
- Quin Yuhui Xie
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Sean Oh
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Anthony Wong
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Christopher Yau
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Jayne S Danska
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| |
Collapse
|
57
|
Gatta E, Anelli V, Cimino E, Di Lodovico E, Piovani E, Zammarchi I, Gozzoli G, Maltese V, Cavadini M, Agosti B, Delbarba A, Pirola I, Girelli A, Buoso C, Bambini F, Alfieri D, Bremi W, Facondo P, Lupo R, Bezzi F, Fredi M, Mazzola AM, Gandossi E, Saullo M, Marini F, Licini M, Pezzaioli LC, Pini L, Franceschini F, Ricci C, Cappelli C. Autoimmune polyglandular syndrome type 4: experience from a single reference center. Front Endocrinol (Lausanne) 2023; 14:1236878. [PMID: 37937054 PMCID: PMC10627240 DOI: 10.3389/fendo.2023.1236878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Purpose To characterize patients with APS type 4 among those affected by APS diagnosed and monitored at our local Reference Center for Autoimmune Polyglandular Syndromes. Methods Monocentric observational retrospective study enrolling patients affected by APS diagnosed and monitored in a Reference Center. Clinical records were retrieved and analyzed. Results 111 subjects (51 males) were affected by APS type 4, mean age at the onset was 23.1 ± 15.1 years. In 15 patients the diagnosis of APS was performed during the first clinical evaluation, in the other 96 after a latency of 11 years (range 1-46). The most frequent diseases were type I diabetes mellitus and celiac disease, equally distributed among sexes. Conclusions The prevalence of APS type 4 is 9:100,000 people. Type I diabetes mellitus was the leading indicator of APS type 4 in 78% subjects and in 9% permitted the diagnosis occurring as second manifestation of the syndrome. Our data, showing that 50% of patients developed APS type 4 within the first ten years, don't suggest any particular follow-up time and, more importantly, don't specify any particular disease. It is important to emphasize that 5% of women developed premature ovarian failure.
Collapse
Affiliation(s)
- Elisa Gatta
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Anelli
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elena Cimino
- UOC Medicina Generale ad indirizzo Metabolico e Diabetologico, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elena Di Lodovico
- Sindacato Unico Medicina Ambulatoriale Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy
| | - Elda Piovani
- Department of Clinical and Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Irene Zammarchi
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giorgia Gozzoli
- Department of Clinical and Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Virginia Maltese
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria Cavadini
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Barbara Agosti
- Sindacato Unico Medicina Ambulatoriale Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy
| | - Andrea Delbarba
- Sindacato Unico Medicina Ambulatoriale Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy
| | - Ilenia Pirola
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Angela Girelli
- UOC Medicina Generale ad indirizzo Metabolico e Diabetologico, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Caterina Buoso
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Francesca Bambini
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Daniele Alfieri
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Walter Bremi
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Facondo
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Roberto Lupo
- Department of Clinical and Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Francesco Bezzi
- Department of Clinical and Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Micaela Fredi
- Department of Clinical and Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Anna Maria Mazzola
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elena Gandossi
- Sindacato Unico Medicina Ambulatoriale Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy
| | - Maura Saullo
- Sindacato Unico Medicina Ambulatoriale Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy
| | - Fiorella Marini
- Sindacato Unico Medicina Ambulatoriale Italiana e Professionalità dell’Area Sanitaria – SUMAI, Brescia, Italy
| | - Massimo Licini
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Letizia Chiara Pezzaioli
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Laura Pini
- Department of Clinical and Experimental Sciences, Respiratory Medicine Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Franco Franceschini
- Department of Clinical and Experimental Sciences, Rheumatology and Clinical Immunology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Chiara Ricci
- Department of Clinical and Experimental Sciences, Gastroenterology Unit, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, SSD Endocrinologia, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
58
|
Urrutia I, Martínez R, Calvo B, Saso-Jiménez L, González P, Fernández-Rubio E, Martín-Nieto A, Aguayo A, Rica I, Gaztambide S, Castano L. Autoimmune Diabetes From Childhood to Adulthood: The Role of Pancreatic Autoantibodies and HLA-DRB1 Genotype. J Clin Endocrinol Metab 2023; 108:e1341-e1346. [PMID: 37207452 DOI: 10.1210/clinem/dgad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
CONTEXT Autoimmune diabetes can develop at any age, but unlike early-onset diabetes, adult onset is less well documented. We aimed to compare, over a wide age range, the most reliable predictive biomarkers for this pathology: pancreatic-autoantibodies and HLA-DRB1 genotype. METHODS A retrospective study of 802 patients with diabetes (aged 11 months to 66 years) was conducted. Pancreatic autoantibodies at diagnosis: insulin autoantibodies (IAA), glutamate decarboxylase autoantibodies (GADA), islet tyrosine phosphatase 2 autoantibodies (IA2A), and zinc transporter-8 autoantibodies (ZnT8A) and HLA-DRB1 genotype were analyzed. RESULTS Compared with early-onset patients, adults had a lower frequency of multiple autoantibodies, with GADA being the most common. At early onset, IAA was the most frequent in those younger than 6 years and correlated inversely with age; GADA and ZnT8A correlated directly and IA2A remained stable.The absence of HLA-DRB1 risk genotype was associated with higher age at diabetes onset (27.5 years; interquartile range [IQR], 14.3-35.7), whereas the high-risk HLA-DR3/DR4 was significantly more common at lower age (11.9 years; IQR, 7.1-21.6). ZnT8A was associated with DR4/non-DR3 (odds ratio [OR], 1.91; 95% CI, 1.15-3.17), GADA with DR3/non-DR4 (OR, 2.97; 95% CI, 1.55-5.71), and IA2A with DR4/non-DR3 and DR3/DR4 (OR, 3.89; 95% CI, 2.28-6.64, and OR, 3.08; 95% CI, 1.83-5.18, respectively). No association of IAA with HLA-DRB1 was found. CONCLUSION Autoimmunity and HLA-DRB1 genotype are age-dependent biomarkers. Adult-onset autoimmune diabetes is associated with lower genetic risk and lower immune response to pancreatic islet cells compared with early-onset diabetes.
Collapse
Affiliation(s)
- Inés Urrutia
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Begona Calvo
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Medical Oncology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Laura Saso-Jiménez
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Pedro González
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Elsa Fernández-Rubio
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Alicia Martín-Nieto
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
- Department of Pediatric Endocrinology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Luis Castano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERDEM, CIBERER, UPV-EHU, Endo-ERN, 48903 Barakaldo, Spain
| |
Collapse
|
59
|
You L, Ferrat LA, Oram RA, Parikh HM, Steck AK, Krischer J, Redondo MJ. Type 1 Diabetes Risk Phenotypes Using Cluster Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.10.23296375. [PMID: 37873281 PMCID: PMC10593014 DOI: 10.1101/2023.10.10.23296375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal clinically meaningful clusters in the at-risk population and allow for non-linear relationships between predictors are lacking. We aimed to identify and characterize clusters of islet autoantibody-positive individuals that share similar characteristics and type 1 diabetes risk. Methods We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention (PTP) study data (n=1127). The outcome of the analysis was time to type 1 diabetes and variables in the model included demographics, genetics, metabolic factors and islet autoantibodies. An independent dataset (Diabetes Prevention Trial of Type 1 Diabetes, DPT-1 study) (n=704) was used for validation. Findings The analysis revealed 8 clusters with varying type 1 diabetes risks, categorized into three groups. Group A had three clusters with high glucose levels and high risk. Group B included four clusters with elevated autoantibody titers. Group C had three lower-risk clusters with lower autoantibody titers and glucose levels. Within the groups, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels, age, and genetic risk. A decision rule for assigning individuals to clusters was developed. The validation dataset confirms that the clusters can identify individuals with similar characteristics. Interpretation Demographic, metabolic, immunological, and genetic markers can be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.
Collapse
Affiliation(s)
- Lu You
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
60
|
Kumar S, Gupta MK, Gupta SK, Katara P. Investigation of molecular interaction and conformational stability of disease concomitant to HLA-DRβ3. J Biomol Struct Dyn 2023; 41:8417-8431. [PMID: 36245311 DOI: 10.1080/07391102.2022.2134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Human leucocyte antigen DRβ3 is associated with specific autoimmune thyroid disease and plays a vital role in the progression of Grave's disease. The available crystallographic structure of the HLA DRA, DRβ3*0101, was selected and used to generate mutation at position 57 from valine amino acid to Aspartic acid (D), Glutamic acid (E), Alanine (A), and Serine (S) amino acids by computational modeling approach. Mutant models were minimized, and stable conformation was chosen based on the lowest root mean square deviation value. Molecular docking assessed the best binding affinity of ligands C1, C2, C3, and C4 with wild-type and mutant HLA-DRβ3 models. Molecular dynamics simulation studies were executed to evaluate the stability of selected hits with wild-type and mutant dock complexes. The C3 has shown good binding affinity with wild-type and selected mutants; V57A, V57E, and V57D. Structural and molecular dynamics insights reveal the differences between wild-type and mutant-type HLA-DRβ3, which could help design novel antagonist molecules against autoimmune thyroid disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University Kanpur, Kanpur, Uttar Pradesh, India
| | - Manish Kumar Gupta
- Department of Biotechnology, Faculty of Science, Veer Bahadur Singh Purvanchal University Jaunpur, Jaunpur, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pramod Katara
- Centre of Bioinformatics, IIDS, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
61
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
62
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut. Front Immunol 2023; 14:1270488. [PMID: 37828987 PMCID: PMC10566625 DOI: 10.3389/fimmu.2023.1270488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human leukocyte antigen (HLA) genes are associated with more diseases than any other region of the genome. Highly polymorphic HLA genes produce variable haplotypes that are specifically correlated with pathogenically different autoimmunities. Despite differing etiologies, however, many autoimmune disorders share the same risk-associated HLA haplotypes often resulting in comorbidity. This shared risk remains an unanswered question in the field. Yet, several groups have revealed links between gut microbial community composition and autoimmune diseases. Autoimmunity is frequently associated with dysbiosis, resulting in loss of barrier function and permeability of tight junctions, which increases HLA class II expression levels and thus further influences the composition of the gut microbiome. However, autoimmune-risk-associated HLA haplotypes are connected to gut dysbiosis long before autoimmunity even begins. This review evaluates current research on the HLA-microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial dysbiosis in the gut is an important determinant between autoimmune comorbidities with systemic inflammation as a common denominator.
Collapse
Affiliation(s)
- Meghan A. Berryman
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W. Triplett
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
63
|
Infante M, Vitiello L, Fabbri A, Ricordi C, Padilla N, Pacifici F, Perna PD, Passeri M, Della-Morte D, Caprio M, Uccioli L. Prolonged clinical remission of type 1 diabetes sustained by calcifediol and low-dose basal insulin: a case report. Immunotherapy 2023; 15:1009-1019. [PMID: 37401348 DOI: 10.2217/imt-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Herein, we describe an unusually prolonged duration (31 months) of the clinical remission phase in a 22-year-old Italian man with new-onset type 1 diabetes. Shortly after the disease diagnosis, the patient was treated with calcifediol (also known as 25-hydroxyvitamin D3 or calcidiol), coupled with low-dose basal insulin, to correct hypovitaminosis D and to exploit the anti-inflammatory and immunomodulatory properties of vitamin D. During the follow-up period, the patient retained a substantial residual β-cell function and remained within the clinical remission phase, as evidenced by an insulin dose-adjusted glycated hemoglobin value <9. At 24 months, we detected a peculiar immunoregulatory profile of peripheral blood cells, which may explain the prolonged duration of the clinical remission sustained by calcifediol as add-on treatment to insulin.
Collapse
Affiliation(s)
- Marco Infante
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Via Cola di Rienzo 28, Rome, 00192, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Camillo Ricordi
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
| | - Nathalia Padilla
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Colonia Centroamérica L-823, Managua, 14048, Nicaragua
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Pasquale Di Perna
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - Marina Passeri
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA
| | - Massimiliano Caprio
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| |
Collapse
|
64
|
Jensen ASH, Ytting H, Winther-Sørensen M, Burisch J, Bergquist A, Gluud LL, Wewer Albrechtsen NJ. Autoimmune liver diseases and diabetes. Eur J Gastroenterol Hepatol 2023; 35:938-947. [PMID: 37505973 DOI: 10.1097/meg.0000000000002594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Autoimmune liver diseases include autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. They are chronic, heterogenous diseases affecting the liver which is a key metabolic organ that ensures glucose homeostasis. It is well known that patients with other chronic liver diseases such as cirrhosis and nonalcoholic fatty liver disease (NAFLD) display glucose disturbances like insulin resistance and have an increased risk of diabetes. Previous evidence on glucose disturbances in patients with autoimmune liver disease is scarce but does point towards a potentially increased risk of type 1 diabetes and type 2 diabetes. The underlying mechanisms are unknown but may reflect genetic predisposition, concurrent NAFLD and or cirrhosis development, and treatment (steroid) related impairment of glucose homeostasis. Therefore, increased awareness and surveillance of diabetes development in patients with autoimmune liver disease may be important. Overall, detection and treatment of diabetes generally follow the usual diabetes guidelines; however, in patients with advanced liver cirrhosis, HbA1c may not be a reliable marker of average glucose levels, and treatment with insulin is generally recommended. In addition, it has recently been suggested that sodium-glucose cotransporter 2 inhibitors may be beneficial in treating refractory ascites. Further research on diabetes risk in autoimmune liver disease is warranted.
Collapse
Affiliation(s)
- Anne-Sofie H Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre
| | - Henriette Ytting
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Rigshospitalet
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - Johan Burisch
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre
| | - Annika Bergquist
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre
- Department of Upper GI Diseases, Karolinska University Hospital, Department of Medicine, Karolinska Institutet, Stockholm
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
65
|
Dashti M, Nizam R, Jacob S, Al-Kandari H, Al Ozairi E, Thanaraj TA, Al-Mulla F. Association between alleles, haplotypes, and amino acid variations in HLA class II genes and type 1 diabetes in Kuwaiti children. Front Immunol 2023; 14:1238269. [PMID: 37638053 PMCID: PMC10457110 DOI: 10.3389/fimmu.2023.1238269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder that is highly prevalent globally. The interactions between genetic and environmental factors may trigger T1D in susceptible individuals. HLA genes play a significant role in T1D pathogenesis, and specific haplotypes are associated with an increased risk of developing the disease. Identifying risk haplotypes can greatly improve the genetic scoring for early diagnosis of T1D in difficult to rank subgroups. This study employed next-generation sequencing to evaluate the association between HLA class II alleles, haplotypes, and amino acids and T1D, by recruiting 95 children with T1D and 150 controls in the Kuwaiti population. Significant associations were identified for alleles at the HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci, including DRB1*03:01:01, DQA1*05:01:01, and DQB1*02:01:01, which conferred high risk, and DRB1*11:04:01, DQA1*05:05:01, and DQB1*03:01:01, which were protective. The DRB1*03:01:01~DQA1*05:01:01~DQB1*02:01:01 haplotype was most strongly associated with the risk of developing T1D, while DRB1*11:04-DQA1*05:05-DQB1*03:01 was the only haplotype that rendered protection against T1D. We also identified 66 amino acid positions across the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes that were significantly associated with T1D, including novel associations. These results validate and extend our knowledge on the associations between HLA genes and T1D in Kuwaiti children. The identified risk alleles, haplotypes, and amino acid variations may influence disease development through effects on HLA structure and function and may allow early intervention via population-based screening efforts.
Collapse
Affiliation(s)
- Mohammed Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Hessa Al-Kandari
- Department of Population Health, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al Nasser, Kuwait
| | - Ebaa Al Ozairi
- Clinical Care Research and Trials, Dasman Diabetes Institute, Dasman, Kuwait
- Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
66
|
Ohto H, Ito S, Srivastava K, Ogiyama Y, Uchikawa M, Nollet KE, Flegel WA. Asian-type DEL (RHD*DEL1) with an allo-anti-D: A paradoxical observation in a healthy multiparous woman. Transfusion 2023; 63:1601-1611. [PMID: 37465939 PMCID: PMC10528739 DOI: 10.1111/trf.17465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND The DEL phenotype is the D variant expressing the least amounts of D antigen per red cell. Asian-type DEL (RHD:c:1227G > A) is the most prevalent DEL in East Asia without any anti-D alloimmunization reported before. We investigated the first observation of an anti-D in any DEL phenotype, reported in the Japanese language at a 1987 conference, only 3 years after the discovery of DEL. METHODS We contacted the proband 35 years after the initial report. Standard hemagglutination, adsorption/elution, and flow cytometry tests were performed, as was nucleotide sequencing for the RHD, RHCE, and HLA class I and class II genes. RESULTS The healthy multiparous Japanese woman, a regular blood donor, still had the anti-D of titer 8 representing an alloantibody by standard serologic methods. Unexpectedly, she carried an Asian-type DEL without any additional RHD gene variation. All 12 HLA alleles identified were known in the Japanese population. Interestingly, one of her HLA-DRB1 and a variant of her HLA-DQB1 alleles had previously been associated with anti-D immunization. CONCLUSION We described an allo-anti-D, maintained for more than three decades, in an Asian-type DEL. The combination of two implicated HLA alleles were rare and could have contributed to the anti-D immunization. Continued monitoring of anti-D immunization events in patients with DEL is warranted, and we discuss possible mechanisms for further study. As only this single observation has been recognized in the last 35 years, the current recommendation is affirmed: Individuals with Asian-type DEL should be treated as Rh D-positive for transfusion and Rh immune prophylaxis purposes.
Collapse
Affiliation(s)
- Hitoshi Ohto
- Department of Mesenchymal Stem Cell Research, Fukushima Medical University, Fukushima, Japan
| | - Shoichi Ito
- Tohoku Block Blood Center, Japanese Red Cross Society, Sendai, Japan
| | - Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshiko Ogiyama
- Tohoku Block Blood Center, Japanese Red Cross Society, Sendai, Japan
| | - Makoto Uchikawa
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Kenneth Eric Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Willy Albert Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
67
|
Obarorakpor N, Patel D, Boyarov R, Amarsaikhan N, Cepeda JR, Eastes D, Robertson S, Johnson T, Yang K, Tang Q, Zhang L. Regulatory T cells targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Front Immunol 2023; 14:1207108. [PMID: 37593744 PMCID: PMC10428008 DOI: 10.3389/fimmu.2023.1207108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction In spontaneous type 1 diabetes (T1D) non-obese diabetic (NOD) mice, the insulin B chain peptide 9-23 (B:9-23) can bind to the MHC class II molecule (IAg7) in register 3 (R3), creating a bimolecular IAg7/InsulinB:9-23 register 3 conformational epitope (InsB:R3). Previously, we showed that the InsB:R3-specific chimeric antigen receptor (CAR), constructed using an InsB:R3-monoclonal antibody, could guide CAR-expressing CD8 T cells to migrate to the islets and pancreatic lymph nodes. Regulatory T cells (Tregs) specific for an islet antigen can broadly suppress various pathogenic immune cells in the islets and effectively halt the progression of islet destruction. Therefore, we hypothesized that InsB:R3 specific Tregs would suppress autoimmune reactivity in islets and efficiently protect against T1D. Methods To test our hypothesis, we produced InsB:R3-Tregs and tested their disease-protective effects in spontaneous T1D NOD.CD28-/- mice. Results InsB:R3-CAR expressing Tregs secrete IL-10 dominated cytokines upon engagement with InsB:R3 antigens. A single infusion of InsB:R3 Tregs delayed the onset of T1D in 95% of treated mice, with 35% maintaining euglycemia for two healthy lifespans, readily home to the relevant target whereas control Tregs did not. Our data demonstrate that Tregs specific for MHC class II: Insulin peptide epitope (MHCII/Insulin) protect mice against T1D more efficiently than polyclonal Tregs lacking islet antigen specificity, suggesting that the MHC II/insulin-specific Treg approach is a promising immune therapy for safely preventing T1D.
Collapse
Affiliation(s)
- Nyerhovwo Obarorakpor
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Deep Patel
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Reni Boyarov
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Nansalmaa Amarsaikhan
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Joseph Ray Cepeda
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Doreen Eastes
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Sylvia Robertson
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Travis Johnson
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Experimental and Developmental Therapeutics, School of Medicine, Indiana University, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kai Yang
- Herman B Wells Center for Pediatric Research and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, United States
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, United States
| | - Li Zhang
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
68
|
Xia Y, Chen Y, Li X, Luo S, Lin J, Huang G, Xiao Y, Chen Z, Xie Z, Zhou Z. HLA Class I Association With Autoimmune Diabetes in Chinese People: Distinct Implications in Classic Type 1 Diabetes and LADA. J Clin Endocrinol Metab 2023; 108:e404-e414. [PMID: 36652403 DOI: 10.1210/clinem/dgad006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
CONTEXT We aimed to investigate whether human leukocyte antigen (HLA) Class I loci differentially modulated the risk for and clinical features of Chinese people with classic type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). METHODS In this case-control study, genotypes of HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 loci were obtained from 1067 cases with classic T1D, 1062 cases with LADA, and 1107 normal controls using next-generation sequencing. RESULTS Despite 4 alleles shared between classic T1D and LADA (protective: A*02:07 and B*46:01; susceptible: B*54:01 and C*08:01), 7 Class I alleles conferred risk exclusively for classic T1D (A*24:02, B*15:02, B*15:18, B*39:01, B*40:06, B*48:01, and C*07:02) whereas only A*02:01 was an additional risk factor for LADA. Class I alleles affected a wide spectrum of T1D clinical features, including positive rate of protein tyrosine phosphatase autoantibody and zinc transporter 8 autoantibody (A*24:02), C-peptide levels (A*24:02), and age at diagnosis (B*46:01, C*01:02, B*15:02, C*07:02, and C*08:01). By contrast, except for the detrimental effect of C*08:01 on C-peptide concentrations in LADA, no other Class I associations with clinical characteristics of LADA could be reported. The addition of Class I alleles refined the risk model consisting only of DR-DQ data in classic T1D while the overall predictive value of the LADA risk model comprising both Class I and II information was relatively low. CONCLUSION The attenuated HLA Class I susceptibility to LADA was indicative of a less deleterious immunogenetic nature compared with classic T1D. These autoimmune diabetes-related Class I variants might serve as additional markers in future screening among Chinese people.
Collapse
Affiliation(s)
- Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiying Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
69
|
Liu YC, Liu H, Zhao SL, Chen K, Jin P. Clinical and HLA genotype analysis of immune checkpoint inhibitor-associated diabetes mellitus: a single-center case series from China. Front Immunol 2023; 14:1164120. [PMID: 37359544 PMCID: PMC10288983 DOI: 10.3389/fimmu.2023.1164120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To investigate the clinical characteristics and HLA genotypes of patients with immune checkpoint inhibitor-associated diabetes mellitus (ICI-DM) in China. Methods We enrolled 23 patients with ICI-DM and 51 patients with type 1 diabetes (T1D). Clinical characteristics of the patients were collected. HLA-DRB1, HLA-DQA1, and HLA-DQB1 genotyping was conducted via next-generation sequencing. Results The ICI-DM patients had a male predominance (70.6%), a mean body mass index (BMI) of 21.2 ± 3.5 kg/m2, and a mean onset of ICI-DM in 5 (IQR, 3-9) cycles after ICI therapy. Most (78.3%) ICI-DM patients were treated with anti-PD-1, 78.3% presented with diabetic ketoacidosis, and all had low C-peptide levels and received multiple insulin injections. Compared to T1D patients, ICI-DM patients were significantly older (57.2 ± 12.4 vs 34.1 ± 15.7 years) and had higher blood glucose but lower HbA1c levels (P<0.05). Only two (8.7%) ICI-DM patients were positive for islet autoantibodies, which was lower than that in T1D patients (66.7%, P<0.001). A total of 59.1% (13/22) of ICI-DM patients were heterozygous for an HLA T1D risk haplotype, and DRB1*0901-DQA1*03-DQB1*0303 (DR9) and DRB1*0405-DQA1*03-DQB1*0401 were the major susceptible haplotypes. Compared to T1D, the susceptible DR3-DQA1*0501-DQB1*0201 (DR3) and DR9 haplotypes were less frequent (17.7% vs 2.3%; P=0.011 and 34.4% vs 15.9%; P=0.025), whereas the protective haplotypes (DRB1*1101-DQA1*05-DQB1*0301 and DRB1*1202-DQA1*0601-DQB1*0301) were more frequent in ICI-DM patients (2.1% vs 13.6%; P=0.006 and 4.2% vs 15.9%; P=0.017). None of the ICI-DM patients had T1D-associated high-risk genotypes DR3/DR3, DR3/DR9, and DR9/DR9. Among the 23 ICI-DM patients, 7 (30.4%) presented with ICI-associated fulminant type 1 diabetes (IFD), and 16 (69.6%) presented with ICI-associated type 1 diabetes (IT1D). Compared to IT1D patients, IFD patients exhibited marked hyperglycemia and low C-peptide and HbA1c levels (P<0.05). Up to 66.7% (4/6) of IFD patients were heterozygous for reported fulminant type 1 diabetes susceptibility HLA haplotypes (DRB1*0405-DQB1*0401 or DRB1*0901-DQB1*0303). Conclusion ICI-DM shares similar clinical features with T1D, such as acute onset, poor islet function and insulin dependence. However, the lack of islet autoantibodies, the low frequencies of T1D susceptibility and high frequencies of protective HLA haplotypes indicate that ICI-DM represents a new model distinct from classical T1D.
Collapse
|
70
|
Krishnamurthy B, Lacorcia M, Kay TWH, Thomas HE, Mannering SI. Monitoring immunomodulation strategies in type 1 diabetes. Front Immunol 2023; 14:1206874. [PMID: 37346035 PMCID: PMC10279879 DOI: 10.3389/fimmu.2023.1206874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term treatment with agents targeting T cells, B cells and inflammatory cytokines to modify the disease course resulted in a short-term pause in disease activity. Lessons learnt from these trials will be discussed in this review. It is expected that effective disease-modifying agents will become available for use in earlier stages of T1D. Progress has been made to analyze antigen-specific T cells with standardization of T cell assay and discovery of antigen epitopes but there are many challenges. High-dimensional profiling of gene, protein and TCR expression at single cell level with innovative computational tools should lead to novel biomarker discovery. With this, assays to detect, quantify and characterize the phenotype and function of antigen-specific T cells will continuously evolve. An improved understanding of T cell responses will help researchers and clinicians to better predict disease onset, and progression, and the therapeutic efficacy of interventions to prevent or arrest T1D.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
71
|
Wu L, Tsang V, Menzies AM, Sasson SC, Carlino MS, Brown DA, Clifton-Bligh R, Gunton JE. Risk Factors and Characteristics of Checkpoint Inhibitor-Associated Autoimmune Diabetes Mellitus (CIADM): A Systematic Review and Delineation From Type 1 Diabetes. Diabetes Care 2023; 46:1292-1299. [PMID: 37220262 DOI: 10.2337/dc22-2202] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Checkpoint inhibitor-associated autoimmune diabetes mellitus (CIADM) is a distinct form of autoimmune diabetes that is a rare complication of immune checkpoint inhibitor therapy. Data regarding CIADM are limited. PURPOSE To systematically review available evidence to identify presentation characteristics and risk factors for early or severe presentations of adult patients with CIADM. DATA SOURCES MEDLINE and PubMed databases were reviewed. STUDY SELECTION English full text articles from 2014 to April 2022 were identified with a predefined search strategy. Patients meeting diagnostic criteria for CIADM with evidence of hyperglycemia (blood glucose level >11 mmol/L or HbA1c ≥6.5%) and insulin deficiency (C-peptide <0.4 nmol/L and/or diabetic ketoacidosis [DKA]) were included for analysis. DATA EXTRACTION With the search strategy we identified 1,206 articles. From 146 articles, 278 patients were labeled with "CIADM," with 192 patients meeting our diagnostic criteria and included in analysis. DATA SYNTHESIS Mean ± SD age was 63.4 ± 12.4 years. All but one patient (99.5%) had prior exposure to either anti-PD1 or anti-PD-L1 therapy. Of the 91 patients tested (47.3%), 59.3% had susceptibility haplotypes for type 1 diabetes (T1D). Median time to CIADM onset was 12 weeks (interquartile range 6-24). DKA occurred in 69.7%, and initial C-peptide was low in 91.6%. T1D autoantibodies were present in 40.4% (73 of 179) and were significantly associated with DKA (P = 0.0009) and earlier time to CIADM onset (P = 0.02). LIMITATIONS Reporting of follow-up data, lipase, and HLA haplotyping was limited. CONCLUSIONS CIADM commonly presents in DKA. While T1D autoantibodies are only positive in 40.4%, they associate with earlier, more severe presentations.
Collapse
Affiliation(s)
- Linda Wu
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Venessa Tsang
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
| | - Alexander M Menzies
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
| | - Sarah C Sasson
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Matteo S Carlino
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Mater Hospital, Sydney, New South Wales, Australia
| | - David A Brown
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Roderick Clifton-Bligh
- University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia Sydney, New South Wales, Australia
| | - Jenny E Gunton
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
72
|
Fichna M, Małecki PP, Żurawek M, Furman K, Gębarski B, Fichna P, Ruchała M. Genetic variants and risk of endocrine autoimmunity in relatives of patients with Addison's disease. Endocr Connect 2023; 12:e230008. [PMID: 37010089 PMCID: PMC10235924 DOI: 10.1530/ec-23-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/04/2023]
Abstract
Since individuals with Addison's disease (AD) present considerable co-occurrence of additional autoimmune conditions, clustering of autoimmunity was also predicted among their relatives. The study was aimed to assess circulating autoantibodies in first-degree relatives of patients with AD and to correlate them with the established genetic risk factors (PTPN22 rs2476601, CTLA4 rs231775, and BACH2 rs3757247). Antibodies were evaluated using validated commercial assays, and genotyping was performed using TaqMan chemistry. The studied cohort comprised 112 female and 75 male relatives. Circulating autoantibodies were found in 69 relatives (36.9%). Thyroid autoantibodies, that is antibodies to thyroid peroxidase (aTPO) and thyroglobulin (aTg), were detectable in 25.1 and 17.1% relatives, respectively. Antibodies to 21-hydroxylase (a21OH) were found in 5.8% individuals, and beta cell-specific antibodies to ZnT8, GAD, and IA2 were found in 7.5, 8.0, and 2.7%, respectively. The prevalence of a21OH (P = 0.0075; odds ratio (OR) 7.68; 95% CI 1.903-36.0), aTPO (P < 0.0001; OR 3.85; 95% CI 1.873-7.495), and aTg (P < 0.0001; OR 7.73; 95% CI 3.112-19.65), as well as aGAD (P = 0.0303; OR 3.38; 95% CI 1.180-9.123) and aZnT8 (P = 0.032; OR 6.40; 95% CI 1.846-21.91), was significantly increased in carriers of rs2476601 T allele. Moreover, T allele appeared to be a risk factor for multiple circulating autoantibody specificities (P = 0.0009; OR 5.79; 95% CI 1.962-15.81). None of the studied autoantibodies demonstrated significant association with rs231775 in CTLA4 (P > 0.05), and only weak association was detected between BACH2 rs3757247 and circulating aTPO (P = 0.0336; OR 2.12; 95%CI 1.019-4.228). In conclusion, first-degree relatives of patients with AD, carriers of the PTPN22 rs2476601 T allele, are at particular risk of developing autoantibodies to endocrine antigens.
Collapse
Affiliation(s)
- Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr P Małecki
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Piotr Fichna
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
73
|
Perry DJ, Shapiro MR, Chamberlain SW, Kusmartseva I, Chamala S, Balzano-Nogueira L, Yang M, Brant JO, Brusko M, Williams MD, McGrail KM, McNichols J, Peters LD, Posgai AL, Kaddis JS, Mathews CE, Wasserfall CH, Webb-Robertson BJM, Campbell-Thompson M, Schatz D, Evans-Molina C, Pugliese A, Concannon P, Anderson MS, German MS, Chamberlain CE, Atkinson MA, Brusko TM. A genomic data archive from the Network for Pancreatic Organ donors with Diabetes. Sci Data 2023; 10:323. [PMID: 37237059 PMCID: PMC10219990 DOI: 10.1038/s41597-023-02244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Sonya W Chamberlain
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Srikar Chamala
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Leandro Balzano-Nogueira
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Mingder Yang
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jason O Brant
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - MacKenzie D Williams
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Kieran M McGrail
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - James McNichols
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Leeana D Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Bobbie-Jo M Webb-Robertson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Desmond Schatz
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33021, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Mark S Anderson
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Michael S German
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Chester E Chamberlain
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
74
|
Moustakas AK, Nguyen H, James EA, Papadopoulos GK. Autoimmune susceptible HLA class II motifs facilitate the presentation of modified neoepitopes to potentially autoreactive T cells. Cell Immunol 2023; 390:104729. [PMID: 37301094 DOI: 10.1016/j.cellimm.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), and celiac disease (CD), are strongly associated with susceptible HLA class II haplotypes. The peptide-binding pockets of these molecules are polymorphic, thus each HLA class II protein presents a distinct set of peptides to CD4+ T cells. Peptide diversity is increased through post-translational modifications, generating non-templated sequences that enhance HLA binding and/or T cell recognition. The high-risk HLA-DR alleles that confer susceptibility to RA are notable for their ability to accommodate citrulline, promoting responses to citrullinated self-antigens. Likewise, HLA-DQ alleles associated with T1D and CD favor the binding of deamidated peptides. In this review, we discuss structural features that promote modified self-epitope presentation, provide evidence supporting the relevance of T cell recognition of such antigens in disease processes, and make a case that interrupting the pathways that generate such epitopes and reprogramming neoepitope-specific T cells are key strategies for effective therapeutic intervention.
Collapse
Affiliation(s)
- Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, GR26100 Argostoli, Cephalonia, Greece
| | - Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| |
Collapse
|
75
|
Mameli C, Triolo TM, Chiarelli F, Rewers M, Zuccotti G, Simmons KM. Lessons and Gaps in the Prediction and Prevention of Type 1 Diabetes. Pharmacol Res 2023; 193:106792. [PMID: 37201589 DOI: 10.1016/j.phrs.2023.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Type 1 diabetes (T1D) is a serious chronic autoimmune condition. Even though the root cause of T1D development has yet to be determined, enough is known about the natural history of T1D pathogenesis to allow study of interventions that may delay or even prevent the onset of hyperglycemia and clinical T1D. Primary prevention aims to prevent the onset of beta cell autoimmunity in asymptomatic people at high genetic risk for T1D. Secondary prevention strategies aim to preserve functional beta cells once autoimmunity is present, and tertiary prevention aims to initiate and extend partial remission of beta cell destruction after the clinical onset of T1D. The approval of teplizumab in the United States to delay the onset of clinical T1D marks an impressive milestone in diabetes care. This treatment opens the door to a paradigm shift in T1D care. People with T1D risk need to be identified early by measuring T1D related islet autoantibodies. Identifying people with T1D before they have symptoms will facilitate better understanding of pre-symptomatic T1D progression and T1D prevention strategies that may be effective.
Collapse
Affiliation(s)
- Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Taylor M Triolo
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | | | - Marian Rewers
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
76
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
77
|
Nilsson JB, Kaabinejadian S, Yari H, Peters B, Barra C, Gragert L, Hildebrand W, Nielsen M. Machine learning reveals limited contribution of trans-only encoded variants to the HLA-DQ immunopeptidome. Commun Biol 2023; 6:442. [PMID: 37085710 PMCID: PMC10121683 DOI: 10.1038/s42003-023-04749-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Human leukocyte antigen (HLA) class II antigen presentation is key for controlling and triggering T cell immune responses. HLA-DQ molecules, which are believed to play a major role in autoimmune diseases, are heterodimers that can be formed as both cis and trans variants depending on whether the α- and β-chains are encoded on the same (cis) or opposite (trans) chromosomes. So far, limited progress has been made for predicting HLA-DQ antigen presentation. In addition, the contribution of trans-only variants (i.e. variants not observed in the population as cis) in shaping the HLA-DQ immunopeptidome remains largely unresolved. Here, we seek to address these issues by integrating state-of-the-art immunoinformatics data mining models with large volumes of high-quality HLA-DQ specific mass spectrometry immunopeptidomics data. The analysis demonstrates highly improved predictive power and molecular coverage for models trained including these novel HLA-DQ data. More importantly, investigating the role of trans-only HLA-DQ variants reveals a limited to no contribution to the overall HLA-DQ immunopeptidome. In conclusion, this study furthers our understanding of HLA-DQ specificities and casts light on the relative role of cis versus trans-only HLA-DQ variants in the HLA class II antigen presentation space. The developed method, NetMHCIIpan-4.2, is available at https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2 .
Collapse
Affiliation(s)
| | - Saghar Kaabinejadian
- Pure MHC, LLC, Oklahoma City, OK, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hooman Yari
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, California, USA
| | - Carolina Barra
- Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
78
|
Chmayssem A, Nadolska M, Tubbs E, Sadowska K, Vadgma P, Shitanda I, Tsujimura S, Lattach Y, Peacock M, Tingry S, Marinesco S, Mailley P, Lablanche S, Benhamou PY, Zebda A. Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochim Acta 2023; 190:177. [PMID: 37022500 DOI: 10.1007/s00604-023-05743-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.
Collapse
Affiliation(s)
- Ayman Chmayssem
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France
| | - Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, 38000, Grenoble, Biomics, France
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Pankaj Vadgma
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Seiya Tsujimura
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-5358, Japan
| | | | - Martin Peacock
- Zimmer and Peacock, Nedre Vei 8, Bldg 24, 3187, Horten, Norway
| | - Sophie Tingry
- Institut Européen Des Membranes, UMR 5635, IEM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, UMR5292, Inserm U1028, CNRS, Univ. Claude-Bernard-Lyon I, 69675, Lyon 08, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, DTBS, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Pierre Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Abdelkader Zebda
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France.
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| |
Collapse
|
79
|
Rudman N, Kaur S, Simunović V, Kifer D, Šoić D, Keser T, Štambuk T, Klarić L, Pociot F, Morahan G, Gornik O. Integrated glycomics and genetics analyses reveal a potential role for N-glycosylation of plasma proteins and IgGs, as well as the complement system, in the development of type 1 diabetes. Diabetologia 2023; 66:1071-1083. [PMID: 36907892 PMCID: PMC10163086 DOI: 10.1007/s00125-023-05881-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 03/14/2023]
Abstract
AIMS/HYPOTHESIS We previously demonstrated that N-glycosylation of plasma proteins and IgGs is different in children with recent-onset type 1 diabetes compared with their healthy siblings. To search for genetic variants contributing to these changes, we undertook a genetic association study of the plasma protein and IgG N-glycome in type 1 diabetes. METHODS A total of 1105 recent-onset type 1 diabetes patients from the Danish Registry of Childhood and Adolescent Diabetes were genotyped at 183,546 genetic markers, testing these for genetic association with variable levels of 24 IgG and 39 plasma protein N-glycan traits. In the follow-up study, significant associations were validated in 455 samples. RESULTS This study confirmed previously known plasma protein and/or IgG N-glycosylation loci (candidate genes MGAT3, MGAT5 and ST6GAL1, encoding beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 gene, respectively) and identified novel associations that were not previously reported for the general European population. First, novel genetic associations of IgG-bound glycans were found with SNPs on chromosome 22 residing in two genomic intervals close to candidate gene MGAT3; these include core fucosylated digalactosylated disialylated IgG N-glycan with bisecting N-acetylglucosamine (GlcNAc) (pdiscovery=7.65 × 10-12, preplication=8.33 × 10-6 for the top associated SNP rs5757680) and core fucosylated digalactosylated glycan with bisecting GlcNAc (pdiscovery=2.88 × 10-10, preplication=3.03 × 10-3 for the top associated SNP rs137702). The most significant genetic associations of IgG-bound glycans were those with MGAT3. Second, two SNPs in high linkage disequilibrium (missense rs1047286 and synonymous rs2230203) located on chromosome 19 within the protein coding region of the complement C3 gene (C3) showed association with the oligomannose plasma protein N-glycan (pdiscovery=2.43 × 10-11, preplication=8.66 × 10-4 for the top associated SNP rs1047286). CONCLUSIONS/INTERPRETATION This study identified novel genetic associations driving the distinct N-glycosylation of plasma proteins and IgGs identified previously at type 1 diabetes onset. Our results highlight the importance of further exploring the potential role of N-glycosylation and its influence on complement activation and type 1 diabetes susceptibility.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Dinko Šoić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Lucija Klarić
- Institute of Genetics and Cancer, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, University of Western Australia, Perth, WA, Australia.
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
80
|
Michalek DA, Onengut-Gumuscu S, Repaske DR, Rich SS. Precision Medicine in Type 1 Diabetes. J Indian Inst Sci 2023; 103:335-351. [PMID: 37538198 PMCID: PMC10393845 DOI: 10.1007/s41745-023-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Type 1 diabetes is a complex, chronic disease in which the insulin-producing beta cells in the pancreas are sufficiently altered or impaired to result in requirement of exogenous insulin for survival. The development of type 1 diabetes is thought to be an autoimmune process, in which an environmental (unknown) trigger initiates a T cell-mediated immune response in genetically susceptible individuals. The presence of islet autoantibodies in the blood are signs of type 1 diabetes development, and risk of progressing to clinical type 1 diabetes is correlated with the presence of multiple islet autoantibodies. Currently, a "staging" model of type 1 diabetes proposes discrete components consisting of normal blood glucose but at least two islet autoantibodies (Stage 1), abnormal blood glucose with at least two islet autoantibodies (Stage 2), and clinical diagnosis (Stage 3). While these stages may, in fact, not be discrete and vary by individual, the format suggests important applications of precision medicine to diagnosis, prevention, prognosis, treatment and monitoring. In this paper, applications of precision medicine in type 1 diabetes are discussed, with both opportunities and barriers to global implementation highlighted. Several groups have implemented components of precision medicine, yet the integration of the necessary steps to achieve both short- and long-term solutions will need to involve researchers, patients, families, and healthcare providers to fully impact and reduce the burden of type 1 diabetes.
Collapse
Affiliation(s)
- Dominika A. Michalek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA USA
| | - David R. Repaske
- Division of Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, VA USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
81
|
Goff CB, Plaxe SC, White W, Dasanu CA. Nivolumab-induced autoimmune diabetes mellitus presenting as diabetic ketoacidosis in a patient with metastatic mucosal melanoma. J Oncol Pharm Pract 2023:10781552221148973. [PMID: 36734125 DOI: 10.1177/10781552221148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Nivolumab is an immune checkpoint inhibitor used in the treatment of several malignancies. A number of immune-related endocrinopathies have been linked to its use. CASE REPORT We report a unique case of a 74-year-old man with well-controlled diabetes mellitus type 2 and metastatic mucosal anorectal melanoma who presented with diabetic ketoacidosis after receiving his third cycle of nivolumab 240 mg intravenous (IV) every 2 weeks. He was found to have autoantibodies against glutamic acid decarboxylase 65. Genotyping for human leukocyte antigens showed the presence of DQB1*02:01 and DRB1*03:01. MANAGEMENT AND OUTCOME His presentation was complicated by acute renal failure. He required aggressive fluid resuscitation and insulin supplementation to reverse severe acid-base disturbance and multiple electrolyte abnormalities. After an 8-week interruption, the patient restarted nivolumab without any further evidence of adverse events over the next 12 weeks. He continues to require insulin replacement therapy. DISCUSSION AND CONCLUSION Development of type 1 diabetes with the use of immune checkpoint inhibitors has been increasingly reported in the literature. The exact mechanism for autoimmune diabetes precipitated by nivolumab is yet to be elucidated. Patient education about the symptoms of diabetes and regular glucose monitoring cannot be overemphasized. Testing for antibodies against glutamic acid decarboxylase 65, insulin receptors, and islet cells may also prove useful. Human leukocyte antigen DQ and DR haplotyping prior to immune checkpoint inhibitor treatment might help determine susceptibility toward developing type 1 diabetes, and provide opportunities for earlier recognition, intervention, and possibly prevention.
Collapse
Affiliation(s)
- Catherine B Goff
- Department of Internal Medicine, 541618Eisenhower Health, Rancho Mirage, CA, USA
| | - Steven C Plaxe
- Lucy Curci Cancer Center, 541618Eisenhower Health, Rancho Mirage, CA, USA.,Department of Medical Oncology and Hematology, 8784University of California in San Diego Health System, San Diego, CA, USA
| | - Wendy White
- Department of Internal Medicine, 541618Eisenhower Health, Rancho Mirage, CA, USA
| | - Constantin A Dasanu
- Lucy Curci Cancer Center, 541618Eisenhower Health, Rancho Mirage, CA, USA.,Department of Medical Oncology and Hematology, 8784University of California in San Diego Health System, San Diego, CA, USA
| |
Collapse
|
82
|
Marshall G, Cserny J, Wang CW, Looney B, Posgai AL, Bacher R, Keselowsky B, Brusko TM. Biomaterials-based nanoparticles conjugated to regulatory T cells provide a modular system for localized delivery of pharmacotherapeutic agents. J Biomed Mater Res A 2023; 111:185-197. [PMID: 36082558 PMCID: PMC9742177 DOI: 10.1002/jbm.a.37442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) presents with two therapeutic challenges: the need to correct underlying autoimmunity and restore β-cell mass. We harnessed the unique capacity of regulatory T cells (Tregs) and the T cell receptor (TCR) to direct tolerance induction along with tissue-localized delivery of therapeutic agents to restore endogenous β-cell function. Specifically, we designed a combinatorial therapy involving biomaterials-based poly(lactic-co-glycolic acid) nanoparticles co-loaded with the Treg growth factor, IL-2, and the β-cell regenerative agent, harmine (a tyrosine-regulated kinase 1A [DYRK1A] inhibitor), conjugated to the surface of Tregs. We observed continuous elution of IL-2 and harmine from nanoparticles for at least 7 days in vitro. When conjugated to primary human Tregs, IL-2 nanoparticles provided sufficient IL-2 receptor signaling to support STAT5 phosphorylation for sustained phenotypic stability and viability in culture. Inclusion of poly-L-lysine (PLL) during nanoparticle-cell coupling dramatically increased conjugation efficiency, providing sufficient IL-2 to support in vitro proliferation of IL-2-dependent CTLL-2 cells and primary murine Tregs. In 12-week-old female non-obese diabetic mice, adoptive transfer of IL-2/harmine nanoparticle-conjugated NOD.BDC2.5 Tregs, which express an islet antigen-specific TCR, significantly prevented diabetes demonstrating preserved in vivo viability. These data provide the preclinical basis to develop a biomaterials-optimized cellular therapy to restore immune tolerance and promote β-cell proliferation in T1D through receptor-targeted drug delivery within pancreatic islets.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | | | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Rhonda Bacher
- Department of Biostatistics, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL 32601, USA
| | - Todd M. Brusko
- Inspira Therapeutics, Inc., Alachua, FL 32615, USA,Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Correspondence to: Todd M. Brusko, PhD, Department of Pathology, University of Florida, College of Medicine, Box 100275, 1600 SW Archer Road, Gainesville, FL 32610; (352) 273-9255; Fax (352) 273-9339;
| |
Collapse
|
83
|
In vitro and in vivo immunogenicity assessment of protein aggregate characteristics. Int J Pharm 2023; 631:122490. [PMID: 36521637 DOI: 10.1016/j.ijpharm.2022.122490] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The immunogenicity risk of therapeutic protein aggregates has been extensively investigated over the past decades. While it is established that not all aggregates are equally immunogenic, the specific aggregate characteristics, which are most likely to induce an immune response, remain ambiguous. The aim of this study was to perform comprehensive in vitro and in vivo immunogenicity assessment of human insulin aggregates varying in size, structure and chemical modifications, while keeping other morphological characteristics constant. We found that flexible aggregates with highly altered secondary structure were most immunogenic in all setups, while compact aggregates with native-like structure were found to be immunogenic primarily in vivo. Moreover, sub-visible (1-100 µm) aggregates were found to be more immunogenic than sub-micron (0.1-1 µm) aggregates, while chemical modifications (deamidation, ethylation and covalent dimers) were not found to have any measurable impact on immunogenicity. The findings highlight the importance of utilizing aggregates varying in few characteristics for assessment of immunogenicity risk of specific morphological features and may provide a workflow for reliable particle analysis in biotherapeutics.
Collapse
|
84
|
Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet 2023; 14:1004138. [PMID: 36911412 PMCID: PMC9995861 DOI: 10.3389/fgene.2023.1004138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronald A. Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jenna R. Wasserman
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amalia Dinou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah A. Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy L. Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Albert C. Yan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Section of Dermatology, Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
85
|
Halliez C, Ibrahim H, Otonkoski T, Mallone R. In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front Endocrinol (Lausanne) 2023; 13:1076683. [PMID: 36726462 PMCID: PMC9885197 DOI: 10.3389/fendo.2022.1076683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.
Collapse
Affiliation(s)
- Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
86
|
Nguyen H, Arribas-Layton D, Chow IT, Speake C, Kwok WW, Hessner MJ, Greenbaum CJ, James EA. Characterizing T cell responses to enzymatically modified beta cell neo-epitopes. Front Immunol 2023; 13:1015855. [PMID: 36703975 PMCID: PMC9871889 DOI: 10.3389/fimmu.2022.1015855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Previous studies verify the formation of enzymatically post-translationally modified (PTM) self-peptides and their preferred recognition by T cells in subjects with type 1 diabetes (T1D). However, questions remain about the relative prevalence of T cells that recognize PTM self-peptides derived from different antigens, their functional phenotypes, and whether their presence correlates with a specific disease endotype. Methods To address this question, we identified a cohort of subjects with T1D who had diverse levels of residual beta cell function. Using previously developed HLA class II tetramer reagents, we enumerated T cells that recognize PTM GAD epitopes in the context of DRB1*04:01 or PTM IA2 epitopes in the context of DQB1*03:02 (DQ8). Results Consistent with prior studies, we observed higher overall frequencies and a greater proportion of memory T cells in subjects with T1D than in HLA matched controls. There were significantly higher numbers of GAD specific T cells than IA2 specific T cells in subjects with T1D. T cells specific for both groups of epitopes could be expanded from the peripheral blood of subjects with established T1D and at-risk subjects. Expanded neo-epitope specific T cells primarily produced interferon gamma in both groups, but a greater proportion of T cells were interferon gamma positive in subjects with T1D, including some poly-functional cells that also produced IL-4. Based on direct surface phenotyping, neo-epitope specific T cells exhibited diverse combinations of chemokine receptors. However, the largest proportion had markers associated with a Th1-like phenotype. Notably, DQ8 restricted responses to PTM IA2 were over-represented in subjects with lower residual beta cell function. Neo-epitope specific T cells were present in at-risk subjects, and those with multiple autoantibodies have higher interferon gamma to IL-4 ratios than those with single autoantibodies, suggesting a shift in polarization during progression. Discussion These results reinforce the relevance of PTM neo-epitopes in human disease and suggest that distinct responses to neo-antigens promote a more rapid decline in beta cell function.
Collapse
Affiliation(s)
- Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - I-Ting Chow
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Cate Speake
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - William W. Kwok
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Martin J. Hessner
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carla J. Greenbaum
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States,*Correspondence: Eddie A. James,
| |
Collapse
|
87
|
Wang Y, Xia Y, Chen Y, Xu L, Sun X, Li J, Huang G, Li X, Xie Z, Zhou Z. Association analysis between the TLR9 gene polymorphism rs352140 and type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1030736. [PMID: 37139337 PMCID: PMC10150994 DOI: 10.3389/fendo.2023.1030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Background To a great extent, genetic factors contribute to the susceptibility to type 1 diabetes (T1D) development, and by triggering immune imbalance, Toll-like receptor (TLR) 9 is involved in the development of T1D. However, there is a lack of evidence supporting a genetic association between polymorphisms in the TLR9 gene and T1D. Methods In total, 1513 individuals, including T1D patients (n=738) and healthy control individuals (n=775), from the Han Chinese population were recruited for an association analysis of the rs352140 polymorphism of the TLR9 gene and T1D. rs352140 was genotyped by MassARRAY. The allele and genotype distributions of rs352140 in the T1D and healthy groups and those in different T1D subgroups were analyzed by the chi-squared test and binary logistic regression model. The chi-square test and Kruskal-Wallis H test were performed to explore the association between genotype and phenotype in T1D patients. Results The allele and genotype distributions of rs352140 were significantly different in T1D patients and healthy control individuals (p=0.019, p=0.035). Specifically, the T allele and TT genotype of rs352140 conferred a higher risk of T1D (OR=1.194, 95% CI=1.029-1.385, p=0.019, OR=1.535, 95% CI=1.108-2.126, p=0.010). The allele and genotype distributions of rs352140 were not significantly different between childhood-onset and adult-onset T1D and between T1D with a single islet autoantibody and T1D with multiple islet autoantibodies (p=0.603, p=0.743). rs352140 was associated with T1D susceptibility according to the recessive and additive models (p=0.015, p=0.019) but was not associated with T1D susceptibility in the dominant and overdominant models (p=0.117, p=0.928). Moreover, genotype-phenotype association analysis showed that the TT genotype of rs352140 was associated with higher fasting C-peptide levels (p=0.017). Conclusion In the Han Chinese population, the TLR9 polymorphism rs352140 is associated with T1D and is a risk factor for susceptibility to T1D.
Collapse
|
88
|
Guyer P, Arribas-Layton D, Manganaro A, Speake C, Lord S, Eizirik DL, Kent SC, Mallone R, James EA. Recognition of mRNA Splice Variant and Secretory Granule Epitopes by CD4+ T Cells in Type 1 Diabetes. Diabetes 2023; 72:85-96. [PMID: 36201618 PMCID: PMC9797322 DOI: 10.2337/db22-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/02/2022] [Indexed: 01/19/2023]
Abstract
A recent discovery effort resulted in identification of novel splice variant and secretory granule antigens within the HLA class I peptidome of human islets and documentation of their recognition by CD8+ T cells from peripheral blood and human islets. In the current study, we applied a systematic discovery process to identify novel CD4+ T cell epitopes derived from these candidate antigens. We predicted 145 potential epitopes spanning unique splice junctions and within conventional secretory granule antigens and measured their in vitro binding to DRB1*04:01. We generated HLA class II tetramers for the 35 peptides with detectable binding and used these to assess immunogenicity and isolate T cell clones. Tetramers corresponding to peptides with verified immunogenicity were then used to label T cells specific for these putative epitopes in peripheral blood. T cells that recognize distinct epitopes derived from a cyclin I splice variant, neuroendocrine convertase 2, and urocortin-3 were detected at frequencies that were similar to those of an immunodominant proinsulin epitope. Cells specific for these novel epitopes predominantly exhibited a Th1-like surface phenotype. Among the three epitopes, responses to the cyclin I peptide exhibited a distinct memory profile. Responses to neuroendocrine convertase 2 were detected among pancreatic infiltrating T cells. These results further establish the contribution of unconventional antigens to the loss of tolerance in autoimmune diabetes.
Collapse
Affiliation(s)
- Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Anthony Manganaro
- Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Cate Speake
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Sandra Lord
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sally C. Kent
- Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Roberto Mallone
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France
- Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires Paris Centre, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| |
Collapse
|
89
|
Yue T, Tan H, Wang C, Liu Z, Yang D, Ding Y, Xu W, Yan J, Zheng X, Weng J, Luo S. High-risk genotypes for type 1 diabetes are associated with the imbalance of gut microbiome and serum metabolites. Front Immunol 2022; 13:1033393. [PMID: 36582242 PMCID: PMC9794034 DOI: 10.3389/fimmu.2022.1033393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The profile of gut microbiota, serum metabolites, and lipids of type 1 diabetes (T1D) patients with different human leukocyte antigen (HLA) genotypes remains unknown. We aimed to explore gut microbiota, serum metabolites, and lipids signatures in individuals with T1D typed by HLA genotypes. Methods We did a cross-sectional study that included 73 T1D adult patients. Patients were categorized into two groups according to the HLA haplotypes they carried: those with any two of three susceptibility haplotypes (DR3, DR4, DR9) and without any of the protective haplotypes (DR8, DR11, DR12, DR15, DR16) were defined as high-risk HLA genotypes group (HR, n=30); those with just one or without susceptibility haplotypes as the non-high-risk HLA genotypes group (NHR, n=43). We characterized the gut microbiome profile with 16S rRNA gene amplicon sequencing and analyzed serum metabolites with liquid chromatography-mass spectrometry. Results Study individuals were 32.5 (8.18) years old, and 60.3% were female. Compared to NHR, the gut microbiota of HR patients were characterized by elevated abundances of Prevotella copri and lowered abundances of Parabacteroides distasonis. Differential serum metabolites (hypoxanthine, inosine, and guanine) which increased in HR were involved in purine metabolism. Different lipids, phosphatidylcholines and phosphatidylethanolamines, decreased in HR group. Notably, Parabacteroides distasonis was negatively associated (p ≤ 0.01) with hypoxanthine involved in purine metabolic pathways. Conclusions The present findings enabled a better understanding of the changes in gut microbiome and serum metabolome in T1D patients with HLA risk genotypes. Alterations of the gut microbiota and serum metabolites may provide some information for distinguishing T1D patients with different HLA risk genotypes.
Collapse
Affiliation(s)
- Tong Yue
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiling Tan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chaofan Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueying Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Jianping Weng, ; Sihui Luo,
| | - Sihui Luo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Jianping Weng, ; Sihui Luo,
| |
Collapse
|
90
|
Berryman MA, Milletich PL, Petrone JR, Roesch LF, Ilonen J, Triplett EW, Ludvigsson J. Autoimmune-associated genetics impact probiotic colonization of the infant gut. J Autoimmun 2022; 133:102943. [PMID: 36356550 DOI: 10.1016/j.jaut.2022.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
To exemplify autoimmune-associated genetic influence on the colonization of bacteria frequently used in probiotics, microbial composition of stool from 1326 one-year-old infants was analyzed in a prospective general-population cohort, All Babies In Southeast Sweden (ABIS). We show that an individual's HLA haplotype composition has a significant impact on which common Bifidobacterium strains thrive in colonizing the gut. The effect HLA has on the gut microbiome can be more clearly observed when considered in terms of allelic dosage. HLA DR1-DQ5 showed the most significant and most prominent effect on increased Bifidobacterium relative abundance. Therefore, HLA DR1-DQ5 is proposed to act as a protective haplotype in many individuals. Protection-associated HLA haplotypes are more likely to influence the promotion of specific bifidobacteria. In addition, strain-level differences are correlated with colonization proficiency in the gut depending on HLA haplotype makeup. These results demonstrate that HLA genetics should be considered when designing effective probiotics, particularly for those at high genetic risk for autoimmune diseases.
Collapse
Affiliation(s)
- Meghan A Berryman
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Patricia L Milletich
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Luiz Fw Roesch
- Roesch Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
91
|
Libman I, Haynes A, Lyons S, Pradeep P, Rwagasor E, Tung JYL, Jefferies CA, Oram RA, Dabelea D, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1160-1174. [PMID: 36537527 DOI: 10.1111/pedi.13454] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ingrid Libman
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aveni Haynes
- Children's Diabetes Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Sarah Lyons
- Pediatric Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Praveen Pradeep
- Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
| | - Edson Rwagasor
- Rwanda Biomedical Center, Rwanda Ministry of Health, Kigali, Rwanda
| | - Joanna Yuet-Ling Tung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Craig A Jefferies
- Starship Children's Health, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Dana Dabelea
- Department of Epidemiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maria E Craig
- The Children's Hospital at Westmead, Sydney, New South Wales (NSW), Australia.,University of Sydney Children's Hospital Westmead Clinical School, Sydney, NEW, Australia.,Discipline of Paediatrics & Child Health, School of Clinical Medicine, University of NSW Medicine & Health, Sydney, NSW, Australia
| |
Collapse
|
92
|
Besser REJ, Bell KJ, Couper JJ, Ziegler AG, Wherrett DK, Knip M, Speake C, Casteels K, Driscoll KA, Jacobsen L, Craig ME, Haller MJ. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1175-1187. [PMID: 36177823 DOI: 10.1111/pedi.13410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rachel E J Besser
- Wellcome Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, Australia
| | - Jenny J Couper
- Department of Pediatrics, University of Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Maria E Craig
- Department of Pediatrics, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
93
|
Akturk HK, Couts KL, Baschal EE, Karakus KE, Van Gulick RJ, Turner JA, Pyle L, Robinson WA, Michels AW. Analysis of Human Leukocyte Antigen DR Alleles, Immune-Related Adverse Events, and Survival Associated With Immune Checkpoint Inhibitor Use Among Patients With Advanced Malignant Melanoma. JAMA Netw Open 2022; 5:e2246400. [PMID: 36512357 PMCID: PMC9856415 DOI: 10.1001/jamanetworkopen.2022.46400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Importance Treatment with immune checkpoint inhibitors (ICIs) has increased survival in patients with advanced malignant melanoma but can be associated with a wide range of immune-related adverse events (irAEs). The role of human leukocyte antigen (HLA)-DR alleles in conferring irAE risk has not been well studied. Objective To evaluate the association between irAEs and treatment response, survival, and the presence of HLA-DR alleles after ICI therapy in advanced melanoma. Design, Setting, and Participants This case-control study used the patient registry and biobanked samples from the tertiary referral University of Colorado Cancer Center. Specimens and clinical data were collected between January 1, 2010, and December 31, 2021. Patients with advanced (stage III unresectable and stage IV) melanoma who received ICI therapy (n = 132) were included in the analysis. Exposures Immune checkpoint inhibitors (anti-cytotoxic T-lymphocyte antigen 4, anti-programmed cell death protein 1 or its ligand, or the combination) for the treatment of advanced melanoma. Main Outcomes and Measures The association between irAEs and response to therapy, survival, and HLA-DR alleles. Results Among the cohort of 132 patients with advanced melanoma (mean [SD] age, 63.4 [7.2] years; 85 men [64%] and 47 women [36%]) treated with ICIs, 73 patients had at least 1 irAE and 59 did not have an irAE. Compared with patients without an irAE, patients with an irAE had higher treatment response rates (50 of 72 [69%] vs 28 of 57 [49%]; P = .02) and increased survival (median, 4.8 [IQR, 0.2-9.6] vs 3.2 [IQR, 0.1-9.2] years; P = .02). Specific HLA-DR alleles were associated with the type of irAE that developed: 7 of 10 patients (70%) who developed type 1 diabetes had DR4; 6 of 12 (50%) who developed hypothyroidism had DR8; 5 of 8 (63%) who developed hypophysitis had DR15; 3 of 5 (60%) who developed pneumonitis had DR1; and 8 of 15 (53%) who developed hepatitis had DR4. Conclusions and Relevance These findings suggest that IrAEs are associated with treatment response rates and increased survival after ICI therapy for advanced melanoma. Because distinct HLA-DR alleles are associated with given adverse events, HLA genotyping before ICI therapy may aid in identifying risk for specific irAEs that could develop with such treatment.
Collapse
Affiliation(s)
- Halis Kaan Akturk
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Medicine, University of Colorado School of Medicine, Aurora
| | - Kasey L. Couts
- Department of Medicine, University of Colorado School of Medicine, Aurora
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora
| | - Erin E. Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora
| | - Kagan E. Karakus
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora
| | | | | | - Laura Pyle
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - William A. Robinson
- Department of Medicine, University of Colorado School of Medicine, Aurora
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora
- Department of Pediatrics, University of Colorado School of Medicine, Aurora
- Department of Medicine, University of Colorado School of Medicine, Aurora
- Department of Immunology, University of Colorado School of Medicine, Aurora
| |
Collapse
|
94
|
Ricci S, Perugia F, Piccini B, Lodi L, Pegoraro F, Giovannini M, Rombolà G, Perferi G, Toni S, Azzari C. DR4/DQ2 haplotype confers susceptibility to T1DM with early clinical disease onset: A retrospective analysis in a tertiary-care hospital in Italy. PLoS One 2022; 17:e0276896. [PMID: 36409706 PMCID: PMC9678300 DOI: 10.1371/journal.pone.0276896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION T1DM is the most frequent form of diabetes in children. It has a multifactorial pathogenesis in which genetic, environmental and immunological factors are involved. Among genetic explanations a major role is attributed to second class HLA genes, with the greatest risk associated with the simultaneous presence of the haplotypes DR3DQ2 and DR4DQ8. Based on results obtained in other countries, the aim of this research is to verify a possible association between the haplotype DRB1 * 04: 05-DQA1 * 03-DQB1 * 02 and the onset of T1DM among Italian children with possible genotype-phenotype correlations. Greater knowledge of genes which increase or decrease susceptibility is important for genome analysis. MATERIALS AND METHODS 165 patients with type 1 diabetes treated at the Diabetology Unit of the Meyer Children's University Hospital, were clinically analyzed. Data relating to age at diagnosis, pancreatic anti-beta cell autoimmunity, comorbidities with date of diagnosis and family history were retrospectively collected from medical data. A case-control study was conducted to investigate the HLA types of the patients compared to a control group of 819 Tuscan donors enrolled in the National Bone Marrow Donor Register. Typing was carried out using the Eurospital "DIABEGEN" kit, currently in use at the immunology laboratory of the Meyer Children's University Hospital. RESULTS Mean age at diagnosis was 9.3 years; most children (97%) had anti-pancreatic beta cell autoimmunity; the anti-insulin antibody (IAA) was more frequent among children with early clinical disease onset (0-5 years of age). From the case control comparison performed on HLA typing, it emerged that the greatest risk for the development of type 1 diabetes is conferred by the haplotypes DR3DQ2 and DR4DQ8, but in addition to these haplotypes, already known in other countries, we identified another haplotype, DR4DQ2 (DRB1 * 04: 05-DQA1 * 03-DQB1 * 02) which appears to predispose children to type 1 diabetes (p value 2.80E-08) and it is associated with early clinical disease onset (p-value = 0.002). CONCLUSIONS We report a new haplotype which increases susceptibility to type 1 diabetes among Italian children and which is associated with early clinical disease onset. Given the central role attributed to genetic factors in the pathogenesis of T1DM and to the II class HLA genes, this new haplotype ought to be recognized as a risk factor and included in tests routinely carried out to identify patients with a genetic predisposition to type I diabetes in Italy. These findings could have practical implications in research and prevention programs.
Collapse
Affiliation(s)
- Silvia Ricci
- Section of Pediatrics, Meyer Children’s Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Francesca Perugia
- Department of Translational Research and the New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Barbara Piccini
- Diabetology Unit, Meyer University Children’s Hospital, Florence, Italy
| | - Lorenzo Lodi
- Section of Pediatrics, Meyer Children’s Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Mattia Giovannini
- Section of Pediatrics, Meyer Children’s Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni Rombolà
- Genetics Diagnostics—Laboratory of Immunogenetics and Transplant Biology, Careggi Hospital, Florence, Italy
| | | | - Sonia Toni
- Diabetology Unit, Meyer University Children’s Hospital, Florence, Italy
| | - Chiara Azzari
- Section of Pediatrics, Meyer Children’s Hospital, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
95
|
Jarrar W, Khdair SI, Khudeir FA. MICA Polymorphism and Genetic Predisposition to T1D in Jordanian Patients: A Case-Control Study. Life (Basel) 2022; 12:life12111813. [PMID: 36362968 PMCID: PMC9693396 DOI: 10.3390/life12111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder whose etiology includes genetic and environmental factors. The non-classical Major Histocompatibility Complex (MHC) class I chain-related gene A (MICA) gene has been associated with increased susceptibility to T1D as the interaction of MICA to the Natural Killer Group 2D (NK2GD) receptors found on the cell surface of natural killer (NK) cells and T cells is responsible for inducing immune responses. MICA polymorphisms were reported in association with T1D among different ethnic groups. However, data from different populations revealed conflicting results, so the association of MICA polymorphisms with predisposition to T1D remains uncertain. The aim of this sequencing-based study was to identify, for the first time, the possible MICA alleles and/or genotypes that could be associated with T1D susceptibility in the Jordanian population. Polymorphisms in exons 2–4 and the short tandem repeats (STR) in exon 5 of the highly polymorphic MICA gene were analyzed. No evidence for association between T1D and MICA alleles/genotypes was found in this study, except for the MICA*011 allele which was found to be negatively associated with T1D (p = 0.023, OR = 0.125). In conclusion, MICA polymorphisms seem not to be associated with increasing T1D susceptibility in Jordanian patients.
Collapse
Affiliation(s)
- Wassan Jarrar
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence:
| | - Sawsan I. Khdair
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | |
Collapse
|
96
|
Selvaraj MS, Paruchuri K, Haidermota S, Bernardo R, Rich SS, Peloso GM, Natarajan P. Genome-wide discovery for diabetes-dependent triglycerides-associated loci. PLoS One 2022; 17:e0275934. [PMID: 36269708 PMCID: PMC9586367 DOI: 10.1371/journal.pone.0275934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We aimed to discover loci associated with triglyceride (TG) levels in the context of type 2 diabetes (T2D). We conducted a genome-wide association study (GWAS) in 424,120 genotyped participants of the UK Biobank (UKB) with T2D status and TG levels. METHODS We stratified the cohort based on T2D status and conducted association analyses of TG levels for genetic variants with minor allele count (MAC) at least 20 in each stratum. Effect differences of genetic variants by T2D status were determined by Cochran's Q-test and we validated the significantly associated variants in the Mass General Brigham Biobank (MGBB). RESULTS Among 21,176 T2D and 402,944 non-T2D samples from UKB, stratified GWAS identified 19 and 315 genomic risk loci significantly associated with TG levels, respectively. Only chr6p21.32 exhibited genome-wide significant heterogeneity (I2 = 98.4%; pheterogeneity = 2.1x10-15), with log(TG) effect estimates of -0.066 (95%CI: -0.082, -0.050) and 0.002 (95%CI: -0.002, 0.006) for T2D and non-T2D, respectively. The lead variant rs9274619:A (allele frequency 0.095) is located 2Kb upstream of the HLA-DQB1 gene, between HLA-DQB1 and HLA-DQA2 genes. We replicated this finding among 25,137 participants (6,951 T2D cases) of MGBB (pheterogeneity = 9.5x10-3). Phenome-wide interaction association analyses showed that the lead variant was strongly associated with a concomitant diagnosis of type 1 diabetes (T1D) as well as diabetes-associated complications. CONCLUSION In conclusion, we identified an intergenic variant near HLA-DQB1/DQA2 significantly associates with decreased triglycerides only among those with T2D and highlights an immune overlap with T1D.
Collapse
Affiliation(s)
- Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kaavya Paruchuri
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Sara Haidermota
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Rachel Bernardo
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
97
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
98
|
Zubkiewicz-Kucharska A, Jamer T, Chrzanowska J, Akutko K, Pytrus T, Stawarski A, Noczyńska A. Prevalence of haplotype DQ2/DQ8 and celiac disease in children with type 1 diabetes. Diabetol Metab Syndr 2022; 14:128. [PMID: 36096955 PMCID: PMC9465882 DOI: 10.1186/s13098-022-00897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Type 1 diabetes (T1D) and celiac disease (CD) coexist very often. Identification of the human leukocyte antigen (HLA) DQ2/DQ8 can confirm the genetic predisposition to CD. Negative result of this test allows to exclude CD with a high probability. It was suggested that in individuals with higher risk of CD, including T1D patients, the implementation of genetic testing should reduce the number of patients requiring systematic immunological screening. The aim of this study was to analyze the prevalence of different haplotypes predisposing to CD in children and adolescents with previously diagnosed T1D. MATERIAL AND METHODS A retrospective analysis was performed on 166 T1D children (91 girls) in whom HLA DQ2/DQ8 alleles were tested. In 9.6% CD was also diagnosed. RESULTS In 12.7% both HLA DQ2/DQ8 were negative. In 87.3% patients HLA DQ2 and/or DQ8 was positive, including 27.7% patients with both haplotypes DQ2.5 and DQ8 positive. In all CD patients the disease predisposing alleles were positive, while none of the HLA DQ2/DQ8 negative children were diagnosed with CD. CONCLUSIONS The prevalence of HLA DQ2.5 and the HLA DQ2.5 / HLA DQ8 configuration is higher in patients with T1D, and CD compared to children with T1D alone. The combination of HLA DQ2 and HLA DQ8 most significantly increases the risk of developing CD. The group of HLA DQ2/DQ8 negative patients with improbable CD diagnosis, is relatively small. Most of T1D patients HLA DQ2/DQ8 positive need further regular antibody assessment. In patients with T1D, who are at high risk of developing CD, genetic testing may be considered to select those who require further systematic serological evaluation. Due to its retrospective nature, the study was not registered in the database of clinical trials and the Clinical trial registration number is not available.
Collapse
Affiliation(s)
- Agnieszka Zubkiewicz-Kucharska
- Department of Pediatric Endocrinology and Diabetology for Children and Adolescents, Wroclaw Medical University, Wroclaw, Poland
| | - Tatiana Jamer
- Department of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland.
| | - Joanna Chrzanowska
- Department of Pediatric Endocrinology and Diabetology for Children and Adolescents, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Akutko
- Department of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Pytrus
- Department of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Stawarski
- Department of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Noczyńska
- Department of Pediatric Endocrinology and Diabetology for Children and Adolescents, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
99
|
Lin C, Li X, Qiu Y, Chen Z, Liu J. PD-1 inhibitor-associated type 1 diabetes: A case report and systematic review. Front Public Health 2022; 10:885001. [PMID: 35991054 PMCID: PMC9389003 DOI: 10.3389/fpubh.2022.885001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
Objective This study aimed to summarize the clinical characteristics of programmed death receptor 1 (PD-1) inhibitor-associated type 1 diabetes so as to improve the ability of clinicians to correctly diagnose and treat it. Methods We reported a case of a 70-year-old woman with gastric cancer who developed hyperosmolar hyperglycemic coma during camrelizumab (a PD-1 inhibitor) treatment and was diagnosed with PD-1 inhibitor-associated type 1 diabetes. We conducted a systematic review of 74 case reports of type 1 diabetes associated with PD-1 inhibitor therapy published before June 2022. Results The patient developed type 1 diabetes with hyperosmolar hyperglycemic coma after receiving camrelizumab chemotherapy for 6 months (9 cycles). We searched 69 English articles comprising 75 patients, all of whom had been treated with a PD-1 inhibitor (nivolumab or pembrolizumab) and progressed to diabetes after an average of 6.11 (1–28) cycles. Nivolumab combined with ipilimumab (a cytotoxic T lymphocyte-associated protein 4 inhibitor) had the shortest onset (4.47 cycles on average). A total of 76% (57/75) of patients developed diabetic ketoacidosis (DKA) at onset, and 50.67% (38/75) of patients had C-peptide <0.1 ng/mL. Most of the patients were tested for insulin autoantibodies, with a positive rate of 33.33% (23/69); of these, 86.96% (20/23) were tested for glutamate decarboxylase antibody and 46.67% (35/75) were tested for human leukocyte antigen (HLA). HLA-DR4 was the most common type. Conclusions The progression of type 1 diabetes induced by PD-1 inhibitors is relatively rapid. Islet failure often occurs when detected, seriously endangering patients' lives. Patients treated with PD-1 inhibitors should closely monitor their plasma glucose level during treatment to detect, diagnose, and treat diabetes on time.
Collapse
|
100
|
Cheng W, Ramachandran S, Crawford L. Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks. iScience 2022; 25:104553. [PMID: 35769876 PMCID: PMC9234235 DOI: 10.1016/j.isci.2022.104553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we propose a new approach for variable selection using a collection of Bayesian neural networks with a focus on quantifying uncertainty over which variables are selected. Motivated by fine-mapping applications in statistical genetics, we refer to our framework as an "ensemble of single-effect neural networks" (ESNN) which generalizes the "sum of single effects" regression framework by both accounting for nonlinear structure in genotypic data (e.g., dominance effects) and having the capability to model discrete phenotypes (e.g., case-control studies). Through extensive simulations, we demonstrate our method's ability to produce calibrated posterior summaries such as credible sets and posterior inclusion probabilities, particularly for traits with genetic architectures that have significant proportions of non-additive variation driven by correlated variants. Lastly, we use real data to demonstrate that the ESNN framework improves upon the state of the art for identifying true effect variables underlying various complex traits.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Sohini Ramachandran
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research New England, Cambridge, MA, USA
| |
Collapse
|