51
|
Abstract
Immune responses depend on the ability of leukocytes to move from the circulation into tissue. This is enabled by mechanisms that guide leukocytes to the right exit sites and allow them to cross the barrier of the blood vessel wall. This process is regulated by a concerted action between endothelial cells and leukocytes, whereby endothelial cells activate leukocytes and direct them to extravasation sites, and leukocytes in turn instruct endothelial cells to open a path for transmigration. This Review focuses on recently described mechanisms that control and open exit routes for leukocytes through the endothelial barrier.
Collapse
|
52
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
53
|
Park SJ, Jun YJ, Lee KJ, Hwang SM, Kim TH, Lee SH, Lee SH. Chronic rhinosinusitis with nasal polyps and without nasal polyps is associated with increased expression of lysophosphatidic acid-related molecules. Am J Rhinol Allergy 2015; 28:199-207. [PMID: 24980231 DOI: 10.2500/ajra.2014.28.4032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic sinusitis with nasal polyps (CRSwNPs) or CRS without NPs (CRSsNPs) is associated with expression of various cytokines. Lysophosphatidic acid (LPA) generated by autotaxin (ATX), LPA-producing enzyme, initiates signaling cascade involved in the inflammatory responses and participates in diverse biological processes through LPA receptors, including cytokine production. We analyzed the expression and distribution patterns of LPA-related molecules in nasal secretion and sinus mucosa of normal controls and patients with CRSwNPs and CRSsNPs, to evaluate the possible effects of the ATX-LPA receptor axis on the pathogenesis of CRS. METHODS LPA levels in nasal secretion and the expression and distribution patterns of ATX and LPA receptors 1-3 (LPA1-3) in sinus mucosa were investigated using ELISA, real-time polymerase chain reaction, Western blot, and immunohistochemistry. We elucidated the effect of CRS-relevant cytokines on the expression of ATX and LPA receptors, using cultured sinus epithelial cells, and investigated the effect of LPA on the expression of CRS-relevant cytokines, using sinus mucosa explant culture. RESULTS LPA, ATX, and LPA1-3 levels are increased in CRSwNPs and CRSsNPs. ATX and LPA1-3 were localized to superficial epithelium, submucosal glands in normal and inflammatory mucosa, but in inflammatory mucosa, they were found in inflammatory cells. LPA1-3 were noted in endothelium. Sinus mucosa explant stimulated with LPA increasingly produced IL-4, IL-5, interferon gamma, and TNF-alpha, and in cultured epithelial cells stimulated with CRS-relevant cytokines, ATX, and LPA1-3 were differentially induced. CONCLUSION LPA in human sinus mucosa may play important roles in the pathogenesis of CRS, contributing to produce CRS-related cytokines. LPA-related molecules were increased in CRS, which may attribute to CRS-related cytokines.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | |
Collapse
|
54
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
55
|
Tang X, Benesch MGK, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 2015; 56:2048-60. [PMID: 25814022 DOI: 10.1194/jlr.r058362] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|
56
|
Udomsinprasert W, Honsawek S, Anomasiri W, Chongsrisawat V, Vejchapipat P, Poovorawan Y. Serum autotaxin levels correlate with hepatic dysfunction and severity in postoperative biliary atresia. Biomarkers 2015; 20:89-94. [PMID: 25536867 DOI: 10.3109/1354750x.2014.994564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate correlation of serum autotaxin and disease severity in biliary atresia (BA). METHODS Eighty postoperative BA patients and 15 controls were recruited. Serum autotaxin levels were determined by enzyme-linked immunosorbent assay. RESULTS BA patients had greater serum autotaxin and liver stiffness than controls. Serum autotaxin and liver stiffness were markedly elevated in BA patients with jaundice compared to those without jaundice. Furthermore, serum autotaxin was correlated with liver stiffness and biochemical parameters in BA. CONCLUSIONS Elevated serum autotaxin was correlated with hepatic dysfunction in BA. Accordingly, serum autotaxin is a promising biomarker reflecting the severity in BA.
Collapse
Affiliation(s)
- Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | | | | | | | | | | |
Collapse
|
57
|
Chang JE, Turley SJ. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol 2014; 36:30-9. [PMID: 25499856 DOI: 10.1016/j.it.2014.11.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
Abstract
The initiation of adaptive immune responses depends upon the careful maneuvering of lymphocytes and antigen into and within strategically placed lymph nodes (LNs). Non-hematopoietic stromal cells form the cellular infrastructure that directs this process. Once regarded as merely structural features of lymphoid tissues, these cells are now appreciated as essential regulators of immune cell trafficking, fluid flow, and LN homeostasis. Recent advances in the identification and in vivo targeting of specific stromal populations have resulted in striking new insights to the function of stromal cells and reveal a level of complexity previously unrealized. We discuss here recent discoveries that highlight the pivotal role that stromal cells play in orchestrating immune cell homeostasis and adaptive immunity.
Collapse
Affiliation(s)
- Jonathan E Chang
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
58
|
Pleli T, Martin D, Kronenberger B, Brunner F, Köberle V, Grammatikos G, Farnik H, Martinez Y, Finkelmeier F, Labocha S, Ferreirós N, Zeuzem S, Piiper A, Waidmann O. Serum autotaxin is a parameter for the severity of liver cirrhosis and overall survival in patients with liver cirrhosis--a prospective cohort study. PLoS One 2014; 9:e103532. [PMID: 25062038 PMCID: PMC4111595 DOI: 10.1371/journal.pone.0103532] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/29/2014] [Indexed: 12/25/2022] Open
Abstract
Background Autotaxin (ATX) and its product lysophosphatidic acid (LPA) are considered to be involved in the development of liver fibrosis and elevated levels of serum ATX have been found in patients with hepatitis C virus associated liver fibrosis. However, the clinical role of systemic ATX in the stages of liver cirrhosis was unknown. Here we investigated the relation of ATX serum levels and severity of cirrhosis as well as prognosis of cirrhotic patients. Methods Patients with liver cirrhosis were prospectively enrolled and followed until death, liver transplantation or last contact. Blood samples drawn at the day of inclusion in the study were assessed for ATX content by an enzyme-linked immunosorbent assay. ATX levels were correlated with the stage as well as complications of cirrhosis. The prognostic value of ATX was investigated by uni- and multivariate Cox regression analyses. LPA concentration was determined by liquid chromatography-tandem mass spectrometry. Results 270 patients were enrolled. Subjects with liver cirrhosis showed elevated serum levels of ATX as compared to healthy subjects (0.814±0.42 mg/l vs. 0.258±0.40 mg/l, P<0.001). Serum ATX levels correlated with the Child-Pugh stage and the MELD (model of end stage liver disease) score and LPA levels (r = 0.493, P = 0.027). Patients with hepatic encephalopathy (P = 0.006), esophageal varices (P = 0.002) and portal hypertensive gastropathy (P = 0.008) had higher ATX levels than patients without these complications. Low ATX levels were a parameter independently associated with longer overall survival (hazard ratio 0.575, 95% confidence interval 0.365–0.905, P = 0.017). Conclusion Serum ATX is an indicator for the severity of liver disease and the prognosis of cirrhotic patients.
Collapse
Affiliation(s)
- Thomas Pleli
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Daniel Martin
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Bernd Kronenberger
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Friederike Brunner
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Verena Köberle
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Georgios Grammatikos
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Harald Farnik
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Yolanda Martinez
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Fabian Finkelmeier
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Sandra Labocha
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
- * E-mail: (AP); (OW)
| | - Oliver Waidmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt, Germany
- * E-mail: (AP); (OW)
| |
Collapse
|
59
|
Knowlden SA, Capece T, Popovic M, Chapman TJ, Rezaee F, Kim M, Georas SN. Regulation of T cell motility in vitro and in vivo by LPA and LPA2. PLoS One 2014; 9:e101655. [PMID: 25003200 PMCID: PMC4086949 DOI: 10.1371/journal.pone.0101655] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/10/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidic acid (LPA) and the LPA-generating enzyme autotaxin (ATX) have been implicated in lymphocyte trafficking and the regulation of lymphocyte entry into lymph nodes. High local concentrations of LPA are thought to be present in lymph node high endothelial venules, suggesting a direct influence of LPA on cell migration. However, little is known about the mechanism of action of LPA, and more work is needed to define the expression and function of the six known G protein-coupled receptors (LPA 1-6) in T cells. We studied the effects of 18∶1 and 16∶0 LPA on naïve CD4+ T cell migration and show that LPA induces CD4+ T cell chemorepulsion in a Transwell system, and also improves the quality of non-directed migration on ICAM-1 and CCL21 coated plates. Using intravital two-photon microscopy, lpa2-/- CD4+ T cells display a striking defect in early migratory behavior at HEVs and in lymph nodes. However, later homeostatic recirculation and LPA-directed migration in vitro were unaffected by loss of lpa2. Taken together, these data highlight a previously unsuspected and non-redundant role for LPA2 in intranodal T cell motility, and suggest that specific functions of LPA may be manipulated by targeting T cell LPA receptors.
Collapse
Affiliation(s)
- Sara A. Knowlden
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tara Capece
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Milan Popovic
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Timothy J. Chapman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Fariba Rezaee
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Steve N. Georas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
60
|
Zahednasab H, Balood M, Harirchian MH, Mesbah-Namin SA, Rahimian N, Siroos B. Increased autotaxin activity in multiple sclerosis. J Neuroimmunol 2014; 273:120-3. [PMID: 24984830 DOI: 10.1016/j.jneuroim.2014.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022]
Abstract
Autotaxin (ATX) is an enzyme producing lysophosphatidic acid (LPA) from lysophosphatidyl choline (LPC) and it is up-regulated in inflammatory conditions such as various cancers, arthritis and multiple sclerosis (MS). Numerous studies have shown that the LPA signaling gives rise to angiogenesis, mitosis, cell proliferation and cytokine secretion. On the one hand, an increasing body of evidence suggests that blockade of ATX has anti-inflammatory properties in a variety of diseases. The aim of this study was to measure the enzyme activity of ATX in cerebrospinal fluid (CSF) and serum of patients with MS using an enzymatic photometric method. Twenty definite relapsing remitting MS patients along with 20 patients with other neurological diseases (OND) were recruited. The results showed that ATX activity was significantly higher (p value<0.0001) in MS patients than those patients diagnosed with OND. It is possible that inhibition of the ATX may decrease the rate of MS relapses/progression.
Collapse
Affiliation(s)
- Hamid Zahednasab
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Balood
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Rahimian
- Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahaadin Siroos
- Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
61
|
Katakai T, Kondo N, Ueda Y, Kinashi T. Autotaxin produced by stromal cells promotes LFA-1-independent and Rho-dependent interstitial T cell motility in the lymph node paracortex. THE JOURNAL OF IMMUNOLOGY 2014; 193:617-26. [PMID: 24935929 DOI: 10.4049/jimmunol.1400565] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells exhibit high-speed migration within the paracortical T zone of lymph nodes (LNs) as they scan cognate Ags displayed by dendritic cells in the tissue microenvironment supported by the network of stromal cells. Although intranodal T cell migration is controlled in part by chemokines and LFA-1/ICAM-1, the mechanisms underlying their migratory activity independent of these factors remain to be elucidated. In this study, we show that LN stromal cells constitutively express autotaxin (ATX), an ectoenzyme that is important for the generation of lysophosphatidic acid (LPA). Importantly, CCL21(+) stromal cells in the T zone produced and immobilized ATX on their cell surface. Two-photon imaging using LN tissue slices revealed that pharmacological inhibition of ATX or LPA receptors significantly reduced T cell migration, and this was further exacerbated by blockage of Gαi signaling or LFA-1. Therefore, T cell motility mediated by the ATX-LPA axis was independent of Gαi and LFA-1. LPA induced slow intermittent movement of T cells in vitro in a LFA-1-independent manner and enhanced CCL21-induced migration. Moreover, LPA and CCL21 cooperatively augmented RhoA activity in T cells, which was necessary for efficient intranodal T cell migration via the downstream ROCK-myosin II pathway. Taken together, T zone stromal cells control optimal migratory behavior of T cells via multiple signaling cues mediated by chemokines and ATX/LPA.
Collapse
Affiliation(s)
- Tomoya Katakai
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
62
|
Potentials of the Circulating Pruritogenic Mediator Lysophosphatidic Acid in Development of Allergic Skin Inflammation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1593-603. [DOI: 10.1016/j.ajpath.2014.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/05/2014] [Accepted: 01/16/2014] [Indexed: 01/03/2023]
|
63
|
Motiejūnaitė R, Aranda J, Kazlauskas A. Pericytes prevent regression of endothelial cell tubes by accelerating metabolism of lysophosphatidic acid. Microvasc Res 2014; 93:62-71. [DOI: 10.1016/j.mvr.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/16/2014] [Accepted: 03/19/2014] [Indexed: 01/10/2023]
|
64
|
Knowlden S, Georas SN. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:851-7. [PMID: 24443508 DOI: 10.4049/jimmunol.1302831] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid molecule with potent effects on cell growth and motility. Major progress has been made in recent years in deciphering the mechanisms of LPA generation and how it acts on target cells. Most research has been conducted in other disciplines, but emerging data indicate that LPA has an important role to play in immunity. A key discovery was that autotaxin (ATX), an enzyme previously implicated in cancer cell motility, generates extracellular LPA from the precursor lysophosphatidylcholine. Steady-state ATX is expressed by only a few tissues, including high endothelial venules in lymph nodes, but inflammatory signals can upregulate ATX expression in different tissues. In this article, we review current thinking about the ATX/LPA axis in lymphocyte homing, as well as in models of allergic airway inflammation and asthma. New insights into the role of LPA in regulating immune responses should be forthcoming in the near future.
Collapse
Affiliation(s)
- Sara Knowlden
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | | |
Collapse
|
65
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 556] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
66
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
67
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|
68
|
Su SC, Hu X, Kenney PA, Merrill MM, Babaian KN, Zhang XY, Maity T, Yang SF, Lin X, Wood CG. Autotaxin-lysophosphatidic acid signaling axis mediates tumorigenesis and development of acquired resistance to sunitinib in renal cell carcinoma. Clin Cancer Res 2013; 19:6461-72. [PMID: 24122794 DOI: 10.1158/1078-0432.ccr-13-1284] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Sunitinib is currently considered as the standard treatment for advanced renal cell carcinoma (RCC). We aimed to better understand the mechanisms of sunitinib action in kidney cancer treatment and in the development of acquired resistance. EXPERIMENTAL DESIGN Gene expression profiles of RCC tumor endothelium in sunitinib-treated and -untreated patients were analyzed and verified by quantitative PCR and immunohistochemistry. The functional role of the target gene identified was investigated in RCC cell lines and primary cultures in vitro and in preclinical animal models in vivo. RESULTS Altered expression of autotaxin, an extracellular lysophospholipase D, was detected in sunitinib-treated tumor vasculature of human RCC and in the tumor endothelial cells of RCC xenograft models when adapting to sunitinib. ATX and its catalytic product, lysophosphatidic acid (LPA), regulated the signaling pathways and cell motility of RCC in vitro. However, no marked in vitro effect of ATX-LPA signaling on endothelial cells was observed. Functional blockage of LPA receptor 1 (LPA1) using an LPA1 antagonist, Ki16425, or gene silencing of LPA1 in RCC cells attenuated LPA-mediated intracellular signaling and invasion responses in vitro. Ki16425 treatment also dampened RCC tumorigenesis in vivo. In addition, coadministration of Ki16425 with sunitinib prolonged the sensitivity of RCC to sunitinib in xenograft models, suggesting that ATX-LPA signaling in part mediates the acquired resistance against sunitinib in RCC. CONCLUSIONS Our results reveal that endothelial ATX acts through LPA signaling to promote renal tumorigenesis and is functionally involved in the acquired resistance of RCC to sunitinib.
Collapse
Affiliation(s)
- Shih-Chi Su
- Authors' Affiliations: Departments of Urology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and Institue of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bai Z, Cai L, Umemoto E, Takeda A, Tohya K, Komai Y, Veeraveedu PT, Hata E, Sugiura Y, Kubo A, Suematsu M, Hayasaka H, Okudaira S, Aoki J, Tanaka T, Albers HMHG, Ovaa H, Miyasaka M. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. THE JOURNAL OF IMMUNOLOGY 2013; 190:2036-48. [PMID: 23365076 DOI: 10.4049/jimmunol.1202025] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lymphocyte extravasation from the high endothelial venules (HEVs) of lymph nodes is crucial for the maintenance of immune homeostasis, but its molecular mechanism remains largely unknown. In this article, we report that lymphocyte transmigration across the basal lamina of the HEVs is regulated, at least in part, by autotaxin (ATX) and its end-product, lysophosphatidic acid (LPA). ATX is an HEV-associated ectoenzyme that produces LPA from lysophosphatidylcholine (LPC), which is abundant in the systemic circulation. In agreement with selective expression of ATX in HEVs, LPA was constitutively and specifically detected on HEVs. In vivo, inhibition of ATX impaired the lymphocyte extravasation from HEVs, inducing lymphocyte accumulation within the endothelial cells (ECs) and sub-EC compartment; this impairment was abrogated by LPA. In vitro, both LPA and LPC induced a marked increase in the motility of HEV ECs; LPC's effect was abrogated by ATX inhibition, whereas LPA's effect was abrogated by ATX/LPA receptor inhibition. In an in vitro transmigration assay, ATX inhibition impaired the release of lymphocytes that had migrated underneath HEV ECs, and these defects were abrogated by LPA. This effect of LPA was dependent on myosin II activity in the HEV ECs. Collectively, these results strongly suggest that HEV-associated ATX generates LPA locally; LPA, in turn, acts on HEV ECs to increase their motility, promoting dynamic lymphocyte-HEV interactions and subsequent lymphocyte transmigration across the basal lamina of HEVs at steady state.
Collapse
Affiliation(s)
- Zhongbin Bai
- Laboratory of Immunodynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Lysoglycerophospholipids in chronic inflammatory disorders: The PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:42-60. [DOI: 10.1016/j.bbalip.2012.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
|
71
|
Zhang Y, Chen YCM, Krummel MF, Rosen SD. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3914-24. [PMID: 22962684 PMCID: PMC3509168 DOI: 10.4049/jimmunol.1201604] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood-borne lymphocytes home to lymph nodes by interacting with and crossing high endothelial venules (HEVs). The transendothelial migration (TEM) step is poorly understood. Autotaxin (ATX) is an ectoenzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid and a close relative of sphingosine 1-phosphate. HEVs produce and secrete ATX into the blood. A prior study implicated ATX in the overall homing process, but the step in which it functions and its mechanism of action have not been defined. In this article, we show that HA130, an inhibitor of the enzymatic activity of ATX, slows T cell migration across lymph node HEVs in vivo. Ex vivo, ATX plus LPC or LPA itself induces the polarization of mouse naive T cells and stimulates their motility on an ICAM-1 substratum. Under physiologic shear conditions in a flow chamber, LPA or ATX/LPC strongly enhances TEM of integrin-arrested T cells across an endothelial monolayer. HA130 blunts the TEM-promoting activity of ATX, paralleling its in vivo effects. T cells possess Mn(+2)-activatable receptors for ATX, which are localized at the leading edge of polarized cells. ATX must bind to these receptors to elicit a maximal TEM response, providing a mechanism to focus the action of LPA onto arrested lymphocytes in flowing blood. Our results indicate that LPA produced via ATX facilitates T cell entry into lymph nodes by stimulating TEM, substantiating an additional step in the homing cascade. This entry role for LPA complements the efflux function of sphingosine 1-phosphate.
Collapse
Affiliation(s)
- Yafeng Zhang
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
72
|
Sumida H, Nakamura K, Yanagida K, Ohkawa R, Asano Y, Kadono T, Tamaki K, Igarashi K, Aoki J, Sato S, Ishii S, Shimizu T, Yatomi Y. Decrease in circulating autotaxin by oral administration of prednisolone. Clin Chim Acta 2012; 415:74-80. [PMID: 23063960 DOI: 10.1016/j.cca.2012.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autotaxin (ATX), secreted mainly from adipose tissue, functions as a lysophospholipase D (lysoPLD) to hydrolyze lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). ATX-LPA signaling is implicated in a wide range of physiological and pathophysiological processes including immune response. METHODS The present study measured serum ATX antigen levels in patients with various autoimmune diseases using a recently developed automated enzyme immunoassay. In addition, serum lysoPLD activity was assessed by measuring choline liberation from the substrate LPC. Moreover, the effect of prednisolone (PSL) on mRNA expression of ATX was evaluated using cultured adipose tissue from mice. RESULTS Decreased serum ATX antigen levels were observed after the initiation of treatment with PSL. The decreased levels recovered during tapering of PSL dose in a dose-dependent manner without exacerbation of disease activity. Moreover, decreased ATX mRNA expression in PSL-treated cultured murine adipose tissue suggested that the effect of PSL on serum ATX may have resulted from changes in adipose tissue ATX expression. CONCLUSIONS Our results suggest that measurement of serum ATX antigen level may be clinically useful for the assessment of steroid treatment effect and drug compliance with steroids. Furthermore, our findings provide many novel insights into the biosynthesis, physiological functions, pathological roles, and clinical significance of circulating ATX.
Collapse
Affiliation(s)
- Hayakazu Sumida
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Girard JP, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 2012; 12:762-73. [DOI: 10.1038/nri3298] [Citation(s) in RCA: 455] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
|
75
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
76
|
Moolenaar WH, Perrakis A. Insights into autotaxin: how to produce and present a lipid mediator. Nat Rev Mol Cell Biol 2011; 12:674-9. [PMID: 21915140 DOI: 10.1038/nrm3188] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autotaxin (ATX) is a secreted phosphodiesterase that produces the lipid mediator lysophosphatidic acid (LPA). LPA acts through specific guanine-nucleotide-binding protein (G protein)-coupled receptors to stimulate migration, proliferation, survival and other functions in many cell types. ATX is important in vivo for processes as diverse as vasculogenesis, lymphocyte trafficking and tumour progression. However, the inner workings of ATX have long been elusive, in terms of both its substrate specificity and how localized LPA signalling is achieved. Structural studies have shown how ATX recognizes its substrates and may interact with the cell surface to promote specificity in LPA signalling.
Collapse
|
77
|
Kawaguchi M, Okabe T, Okudaira S, Hanaoka K, Fujikawa Y, Terai T, Komatsu T, Kojima H, Aoki J, Nagano T. Fluorescence probe for lysophospholipase C/NPP6 activity and a potent NPP6 inhibitor. J Am Chem Soc 2011; 133:12021-30. [PMID: 21721554 DOI: 10.1021/ja201028t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) are ubiquitous membrane-associated or secreted ectoenzymes that have a role in regulating extracellular nucleotide and phospholipid metabolism. Among the members of the NPP family, NPP1 and -3 act on nucleotides such as ATP, while NPP2, -6, and -7 act on phospholipids such as lysophosphatidylcholine and sphingomyelin. NPP6, a recently characterized NPP family member, is a choline-specific glycerophosphodiester phosphodiesterase, but its functions remain to be analyzed, partly due to the lack of highly sensitive activity assay systems and practical inhibitors. Here we report synthesis of novel NPP6 fluorescence probes, TG-mPC and its analogues TG-mPC(3)C, TG-mPC(5)C, TG-mPENE, TG-mPEA, TG-mPhos, TG-mPA, TG-mPMe, and TG-mPPr. Among the seven NPPs, only NPP6 hydrolyzed TG-mPC, TG-mPC(3)C, and TG-mPENE. TG-mPC was hydrolyzed in the cell lysate from NPP6-transfected cells, but not control cells, showing that it is suitable for use in cell-based NPP6 assays. We also examined the usefulness of TG-mPC as a fluorescence imaging probe. We further applied TG-mPC to carry out high-throughput NPP6 inhibitor screening and found several NPP6-selective inhibitors in a library of about 80,000 compounds. Through structure-activity relationship (SAR) analysis, we identified a potent and selective NPP6 inhibitor with an IC(50) value of 0.21 μM. Our NPP6-selective fluorescence probe, TG-mPC, and the inhibitor are expected to be useful to elucidate the biological function of NPP6.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Zhou Z, Subramanian P, Sevilmis G, Globke B, Soehnlein O, Karshovska E, Megens R, Heyll K, Chun J, Saulnier-Blache JS, Reinholz M, van Zandvoort M, Weber C, Schober A. Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab 2011; 13:592-600. [PMID: 21531341 DOI: 10.1016/j.cmet.2011.02.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/19/2010] [Accepted: 02/28/2011] [Indexed: 11/16/2022]
Abstract
Oxidatively modified low-density lipoprotein (oxLDL) plays a key role in the initiation of atherosclerosis by increasing monocyte adhesion. The mechanism that is responsible for the oxLDL-induced atherogenic monocyte recruitment in vivo, however, still remains unknown. Oxidation of LDL generates lysophosphatidylcholine, which is the main substrate for the lysophosphatidic acid (LPA) generating enzyme autotaxin. We show that oxLDL requires endothelial LPA receptors and autotaxin to elicit CXCL1-dependent arterial monocyte adhesion. Unsaturated LPA releases endothelial CXCL1, which is subsequently immobilized on the cell surface and mediates LPA-induced monocyte adhesion. Local and systemic application of LPA accelerates the progression of atherosclerosis in mice. Blocking the LPA receptors LPA(1) and LPA(3) reduced hyperlipidemia-induced arterial leukocyte arrest and atherosclerosis in the presence of functional CXCL1. Thus, atherogenic monocyte recruitment mediated by hyperlipidemia and modified LDL crucially depends on LPA, which triggers endothelial deposition of CXCL1, revealing LPA signaling as a target for cardiovascular disease treatments.
Collapse
Affiliation(s)
- Zhe Zhou
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhao C, Sardella A, Chun J, Poubelle PE, Fernandes MJ, Bourgoin SG. TNF-alpha promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines. J Lipid Res 2011; 52:1307-18. [PMID: 21521824 DOI: 10.1194/jlr.m008045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid present in low concentrations in serum and biological fluids but in high concentrations at sites of inflammation. LPA evokes a variety of cellular responses via binding to and activation of its specific G protein-coupled receptors (GPCR), namely LPA(1-6). Even though LPA is a chemoattractant for inflammatory cells in vitro, such a role for LPA in vivo remains largely unexplored. In the present study, we used the murine air pouch model to study LPA-mediated leukocyte recruitment in vivo using selective LPA receptor agonist/antagonist and LPA(3)-deficient mice. We report that 1) LPA injection into the air pouch induced leukocyte recruitment and that both LPA(1) and LPA(3) were involved in this process; 2) LPA stimulated the release of the pro-inflammatory chemokines keratinocyte-derived chemokine (KC) and interferon-inducible protein-10 (IP-10) in the air pouch; 3) tumor necrosis factor-α (TNF-α) injected into the air pouch prior to LPA strongly potentiated LPA-mediated secretion of cytokines/chemokines, including KC, IL-6, and IP-10, which preceded the enhanced leukocyte influx; and 4) blocking CXCR2 significantly reduced leukocyte infiltration. We suggest that LPA, via LPA(1) and LPA(3) receptors, may play a significant role in inducing and/or sustaining the massive infiltration of leukocytes during inflammation.
Collapse
Affiliation(s)
- Chenqi Zhao
- Rheumatology and Immunology Research Center, CHUQ-CHUL Research Center and Faculty of Medicine, Laval University, Québec City, Québec, Canada
| | | | | | | | | | | |
Collapse
|
80
|
Cavalli S, Houben AJS, Albers HMHG, van Tilburg EW, de Ru A, Aoki J, van Veelen P, Moolenaar WH, Ovaa H. Development of an activity-based probe for autotaxin. Chembiochem 2011; 11:2311-7. [PMID: 20941725 DOI: 10.1002/cbic.201000349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D that hydrolyses lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX has been implicated in tumour progression and inflammation, and might serve as a biomarker. Here we describe the development of a fluorescent activity-based probe that covalently binds to the active site of ATX. The probe consists of a lysophospholipid-based backbone linked to a trapping moiety that becomes reactive after phosphate ester hydrolysis, and a Cy5 fluorescent dye to allow visualisation of active ATX. The probe reacts specifically with the three known isoforms of ATX, it competes with small-molecule inhibitors for binding to ATX and allows ATX activity in plasma to be determined. Our activity-based reporter will be useful for monitoring ATX activity in biological fluids and for inhibitor screening.
Collapse
Affiliation(s)
- Silvia Cavalli
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hayasaka H, Taniguchi K, Fukai S, Miyasaka M. Neogenesis and development of the high endothelial venules that mediate lymphocyte trafficking. Cancer Sci 2010; 101:2302-8. [PMID: 20726857 PMCID: PMC11158135 DOI: 10.1111/j.1349-7006.2010.01687.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physiological recruitment of lymphocytes from the blood into lymph nodes and Peyer's patches is mediated by high endothelial venules (HEV), specialized blood vessels found in secondary lymphoid tissues except for the spleen. The HEV are distinguished from other types of blood vessels by their tall and plump endothelial cells, and by their expression of specific chemokines and adhesion molecules, which all contribute to the selective lymphocyte trafficking across these blood vessels. The development of HEV is ontogenically regulated, and they appear perinatally in the mouse. High endothelial venules can appear ectopically, for instance in chronically inflamed tissues. Given that HEV enable the efficient trafficking of lymphocytes into tissues, the induction of HEV at a tumor site could potentiate tumor-specific immune responses, and the artificial manipulation of HEV neogenesis might thus provide a new tool for cancer immunotherapy. However, the process of HEV development and the mechanisms by which the unique features of HEV are maintained are incompletely understood. In this review, we discuss the process of HEV neogenesis and development during ontogeny, and their molecular requirements for maintaining their unique characteristics under physiological conditions.
Collapse
Affiliation(s)
- Haruko Hayasaka
- Department of Microbiology and Immunology, Laboratory of Immunodynamics, Osaka University Graduate School of Medicine Laboratory of Immunodynamics, WPI Immunology Frontier Center, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
82
|
Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 2010; 161:241-70. [PMID: 20735414 PMCID: PMC2989581 DOI: 10.1111/j.1476-5381.2010.00815.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/12/2010] [Accepted: 03/20/2010] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is the prototype member of a family of lipid mediators and second messengers. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell surface and a nuclear hormone receptor within the cell. In addition, there are several enzymes that utilize LPA as a substrate or generate it as a product and are under its regulatory control. LPA is present in biological fluids, and attempts have been made to link changes in its concentration and molecular composition to specific disease conditions. Through their many targets, members of the LPA family regulate cell survival, apoptosis, motility, shape, differentiation, gene transcription, malignant transformation and more. The present review depicts arbitrary aspects of the physiological and pathophysiological actions of LPA and attempts to link them with select targets. Many of us are now convinced that therapies targeting LPA biosynthesis and signalling are feasible for the treatment of devastating human diseases such as cancer, fibrosis and degenerative conditions. However, successful targeting of the pathways associated with this pleiotropic lipid will depend on the future development of as yet undeveloped pharmacons.
Collapse
Affiliation(s)
- Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
83
|
Nakanaga K, Hama K, Aoki J. Autotaxin--an LPA producing enzyme with diverse functions. J Biochem 2010; 148:13-24. [PMID: 20495010 DOI: 10.1093/jb/mvq052] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autotaxin (ATX) is an ecto-enzyme responsible for lysophosphatidic acid (LPA) production in blood. ATX is present in various biological fluids such as cerebrospinal and seminal fluids and accounts for bulk LPA production in these fluids. ATX is a member of the nucleotide pyrophosphatase/phosphodiesterase (NPP) family and was originally isolated from conditioned medium of melanoma cells as an autocrine motility stimulating factor. LPA, a second-generation lipid mediator, binds to its cognate G protein-coupled receptors through which it exerts a number of biological functions including influencing cell motility and proliferation stimulating activity. Some of the biological roles of LPA can be mediated by ATX. However, there are other LPA-producing pathways independent of ATX. The accumulating evidences for physiological and pathological functions of ATX strongly support that ATX is an important therapeutic target. This review summarizes the historical aspects, structural basis, pathophysiological functions identified in mice studies and clinical relevance discovered by measuring the blood ATX level in human. The general features and functions of each NPP family member will be also briefly reviewed. The presence of the ATX gene in other model organisms and recently developed ATX inhibitors, both of which will be definitely useful for further functional analysis of ATX, will also be mentioned.
Collapse
Affiliation(s)
- Keita Nakanaga
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | |
Collapse
|
84
|
Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 2010; 92:698-706. [PMID: 20417246 DOI: 10.1016/j.biochi.2010.04.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/19/2010] [Indexed: 12/20/2022]
Abstract
Lysophosphatidic acid (LPA) exhibits a wide variety of biological functions as a bio-active lysophospholipid through G-protein-coupled receptors specific to LPA. Currently at least six LPA receptors are identified, named LPA(1) to LPA(6), while the existence of other LPA receptors has been suggested. From studies on knockout mice and hereditary diseases of these LPA receptors, it is now clear that LPA is involved in various biological processes including brain development and embryo implantation, as well as patho-physiological conditions including neuropathic pain and pulmonary and renal fibrosis. Unlike sphingosine 1-phosphate, a structurally similar bio-active lysophospholipid to LPA and produced intracellularly, LPA is produced by multiple extracellular degradative routes. A plasma enzyme called autotaxin (ATX) is responsible for the most of LPA production in our bodies. ATX converts lysophospholipids such as lysophosphatidylcholine to LPA by its lysophospholipase D activity. Recent studies on ATX have revealed new aspects of LPA. In this review, we highlight recent advances in our understanding of LPA functions and several aspects of ATX, including its activity, expression, structure, biochemical properties, the mechanism by which it stimulates cell motility and its pahto-physiological function through LPA production.
Collapse
|
85
|
Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc Natl Acad Sci U S A 2010; 107:7257-62. [PMID: 20360563 DOI: 10.1073/pnas.1001529107] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC(50) approximately 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX.
Collapse
|
86
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
87
|
Abstract
Autotaxin is a protein of approximately 900 amino acids discovered in the early 1990s. Over the past 15 years, a strong association between cancer cells and autotaxin production has been observed. Recent publications indicate that autotaxin and the capacity of cancer to metastasise are intimately linked. The discovery of new molecular targets in pharmacology is a mixture of pure luck, hard work and industrial strategy. Despite a crucial and desperate need for new therapeutic tools, many targets are approached in oncology, but only a few are validated and end up at the patient bed. Outside the busy domain of kinases, few targets have been discovered that can be useful in treating cancer, particularly metastatic processes. The fortuitous relationship between autotaxin and lysophosphatidic acid renders the results of observations made in the diabetes/obesity context considerably important. The literature provides observations that may aid in redesigning experiments to validate autotaxin as a potential oncology target.
Collapse
Affiliation(s)
- Jean A Boutin
- Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER, Croissy-sur-Seine, France.
| | | |
Collapse
|
88
|
Jansen S, Andries M, Derua R, Waelkens E, Bollen M. Domain interplay mediated by an essential disulfide linkage is critical for the activity and secretion of the metastasis-promoting enzyme autotaxin. J Biol Chem 2009; 284:14296-302. [PMID: 19329427 DOI: 10.1074/jbc.m900790200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autotaxin or NPP2 (nucleotide pyrophosphatase/phosphodiesterase 2) is a secreted lysophospholipase-D that promotes metastasis and tumor growth by its ability to generate lysophosphatidic acid. Considerable evidence suggests that inhibitors of NPP2 can be used as a novel therapy for the treatment of cancer. Although most attention is currently directed toward the development of inhibitors of the catalytic site, we have explored whether NPP2 can also be targeted through its non-catalytic nuclease-like domain. We demonstrate here that the catalytic and nuclease-like domains are covalently linked by an essential disulfide bridge between Cys(413) and Cys(805). Within the nuclease-like domain, residues 829-850 are involved in the secretion of NPP2, and Lys(852) is required for the expression of catalytic activity. These data show that the nuclease-like domain is crucial for catalysis by NPP2 and is a possible target to generate inhibitors.
Collapse
Affiliation(s)
- Silvia Jansen
- Laboratory of Biosignalling and Therapeutics ,University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
89
|
Abstract
Lysophosphatidic acid (LPA) can affect the growth, migration, and activation of many different cell types. Research in this field has recently accelerated due to the molecular cloning of LPA receptors as well as advances in our understanding of LPA metabolism. A major pathway for LPA generation is the hydrolysis of lysophosphatidylcholine by the enzyme autotaxin (ATX). Although most research to-date has been conducted in other disciplines (e.g., neurobiology and cardiovascular diseases), emerging data point to an important role for LPA and ATX in regulating immune responses. Here we review current understanding of LPA and ATX in immunity with an emphasis on migration and activation of lymphocytes and dendritic cells. New gene-targeted and transgenic mice, receptor-specific antibodies, and pathway antagonists should rapidly enhance our understanding of this versatile lysolipid in immune responses in the near future.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, NY 14610, USA.
| |
Collapse
|