51
|
Du B, Chen K, Wang W, Lei P. Targeting Metals in Alzheimer's Disease: An Update. J Alzheimers Dis 2024; 101:S141-S154. [PMID: 39422951 DOI: 10.3233/jad-240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One pathological feature of Alzheimer's disease (AD) is the dysregulated metal ions, e.g., zinc, copper, and iron in the affected brain regions. The dysregulation of metal homeostasis may cause neurotoxicity and directly addressing these dysregulated metals through metal chelation or mitigating the downstream neurotoxicity stands as a pivotal strategy for AD therapy. This review aims to provide an up-to-date comprehensive overview of the application of metal chelators and drugs targeting metal-related neurotoxicity, such as antioxidants (ferroptotic inhibitors), in the context of AD treatment. It encompasses an exploration of their pharmacological effects, clinical research progress, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
52
|
Lamichhane A, Sharma S, Bastola B, Chhusyabaga B, Shrestha N, Poudel P. Unlocking the potential of deferoxamine: a systematic review on its efficacy and safety in alleviating myocardial ischemia-reperfusion injury in adult patients following cardiopulmonary bypass compared to standard care. Ther Adv Cardiovasc Dis 2024; 18:17539447241277382. [PMID: 39291696 PMCID: PMC11418332 DOI: 10.1177/17539447241277382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Reperfusion injury, characterized by oxidative stress and inflammation, poses a significant challenge in cardiac surgery with cardiopulmonary bypass (CPB). Deferoxamine, an iron-chelating compound, has shown promise in mitigating reperfusion injury by inhibiting iron-dependent lipid peroxidation and reactive oxygen species (ROS) production. OBJECTIVES The objective of our study was to analyze and evaluate both the efficacy and safety of a new and promising intervention, that is, deferoxamine for ischemia-reperfusion injury (I/R). DESIGN Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines are used to perform the study. DATA SOURCES AND METHODS We conducted a systematic review following PRISMA guidelines to assess the efficacy and safety of deferoxamine in reducing I/R injury following CPB. A comprehensive search of electronic databases, namely, PubMed, Scopus, and Embase, yielded relevant studies published until August 18, 2023. Included studies evaluated ROS production, lipid peroxidation, cardiac performance, and morbidity outcomes. RESULTS (a) ROS production: Multiple studies demonstrated a statistically significant decrease in ROS production in patients treated with deferoxamine, highlighting its potential to reduce oxidative stress. (b) Lipid peroxidation: Deferoxamine was associated with decreased lipid peroxidation levels, indicating its ability to protect cardiac tissue from oxidative damage during CPB. (c) Cardiac performance: Some studies reported improvements in left ventricular ejection fraction and wall motion score index with deferoxamine. CONCLUSION Our review shows that deferoxamine is an efficacious and safe drug that can be used to prevent myocardial I/R injury following CPB. It also highlights the need for trials on a larger scale to develop potential strategies and guidelines on the use of deferoxamine for I/R injury.
Collapse
|
53
|
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, Calderaro A, Laganà G. Ferroptosis: Emerging Role in Diseases and Potential Implication of Bioactive Compounds. Int J Mol Sci 2023; 24:17279. [PMID: 38139106 PMCID: PMC10744228 DOI: 10.3390/ijms242417279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a form of cell death that is distinguished from other types of death for its peculiar characteristics of death regulated by iron accumulation, increase in ROS, and lipid peroxidation. In the past few years, experimental evidence has correlated ferroptosis with various pathological processes including neurodegenerative and cardiovascular diseases. Ferroptosis also is involved in several types of cancer because it has been shown to induce tumor cell death. In particular, the pharmacological induction of ferroptosis, contributing to the inhibition of the proliferative process, provides new ideas for the pharmacological treatment of cancer. Emerging evidence suggests that certain mechanisms including the Xc- system, GPx4, and iron chelators play a key role in the regulation of ferroptosis and can be used to block the progression of many diseases. This review summarizes current knowledge on the mechanism of ferroptosis and the latest advances in its multiple regulatory pathways, underlining ferroptosis' involvement in the diseases. Finally, we focused on several types of ferroptosis inducers and inhibitors, evaluating their impact on the cell death principal targets to provide new perspectives in the treatment of the diseases and a potential pharmacological development of new clinical therapies.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | | | | | | | | | | |
Collapse
|
54
|
Ng SW, Lee C, Ng A, Ng SK, Arcuri F, House MD, Norwitz ER. Ferroportin expression and regulation in human placenta/fetal membranes: Implications for ferroptosis and adverse pregnancy outcomes. Reprod Biol 2023; 23:100816. [PMID: 37890398 DOI: 10.1016/j.repbio.2023.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Iron overload is associated with pregnancy complications. Ferroportin (FPN) is the only known iron exporter in mammalian cells. We hypothesize that FPN is functionally important in ferrotopsis, a process of iron-dependent non-apoptotic programmed cell death, and may have a critical role to play in pregnancy success. We investigated the expression of FPN in placenta/fetal membranes by immunohistochemistry in tissues collected from pregnancies with/without preeclampsia (PE) and spontaneous preterm birth (SPTB). FPN was highly expressed in both trophoblasts and decidual cells found in placenta/fetal membranes. Staining was significantly reduced in fetal membranes from SPTB versus healthy pregnancies (P = 0.046). FPN expression in immortalized human endometrial stromal cells (HESC) increased with in vitro decidualization induction using 1 μM of medroxyprogesterone acetate and 0.5 mM of dibutyryl-cAMP. In addition, both HESC cells and immortalized extravillous trophoblast SW71 cells with FPN knockdown showed significant sensitivity to ferroptosis inducer, erastin (P < 0.001 and P = 0.009, respectively). The survival of both HESC and SW71 cells was not negatively affected by iron supplementation with ferric ammonium citrate in the medium. However, SW71 cells were more sensitive than HESC cells to physiologic iron in the presence of a non-lethal dose of erastin (P < 0.001). Taken together, our data demonstrating increased sensitivity of FPN knockdown HESC and SW71 cells to erastin and increased sensitivity of trophoblasts to iron overload under ferroptotic stress support the hypothesis that FPN protects against ferroptosis during pregnancy.
Collapse
Affiliation(s)
- Shu-Wing Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA.
| | - Chungyan Lee
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Allen Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Felice Arcuri
- Department of Molecular & Developmental Medicine, University of Siena, Siena, Italy
| | - Michael D House
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | |
Collapse
|
55
|
Chen W, Zhou X, Meng M, Pan X, Huang L, Chen C. Hyperbaric oxygen improves cerebral ischemia-reperfusion injury in rats via inhibition of ferroptosis. J Stroke Cerebrovasc Dis 2023; 32:107395. [PMID: 37839303 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Our previous study found that hyperbaric oxygen (HBO) attenuated cognitive impairment in mice induced by cerebral ischemia-reperfusion injury (CIRI). However, its mechanism of action is not fully understood. In this study, we aimed to establish a rat model of cerebral ischemia-reperfusion, explore the possible role of ferroptosis in the pathogenesis of CIRI, and observe the effect of HBO on ferroptosis-mediated CIRI. METHODS Sprague Dawley (SD) rats were randomly divided into control, model, Ferrostatin-1 (Fer-1), HBO and Fer-1+ HBO groups. Morris water maze, myelin basic protein (MBP) and β-tubulin immunoreactivity were assessed to evaluate the neuroprotective effects of HBO on cerebral ischemia reperfusion injury. Ferroptosis were examined to investigate the mechanism underlying the effects of HBO. RESULTS Our result showed that Fer-1 and HBO improved learning and memory ability in the navigation trail and probe trail of the Morris water maze and increased MBP and β-tubulin immunoreactivity of the cortex in the model rats. The levels of ferritin, malondialdehyde (MDA) and glutathione (GSH) in the serum were also reversed by Fer-1 and HBO treatment. Mitochondrial cristae dissolution and vacuolization were observed in the model group by transmission electron microscopy and these conditions were improved in the Fer-1 and HBO groups. Furthermore, Fer-1 and HBO treatment reversed Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Iron Responsive Element Binding Protein 2 (IREB2), acyl-CoA synthetase long chain family member 4 (ACSL4) and Solute Carrier Family 7 Member 11 (SLC7A11) mRNA levels and Transferrin Receptor 1 (TFR1), ferritin light chain (FTL), ferritin heavy chain 1 (FTH1), glutathione peroxidase 4 (GPX4), Nuclear factor E2-related factor 2 (Nrf2), lysophosphatidylcholine acyltransferase 3 (LPCAT3), c-Jun N-terminal kinase (JNK), phosphorylated c-Jun N-terminal kinase (P-JNK) phosphorylated Extracellular signal-regulated protein kinase (P-ERK) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) protein levels. The above changes were more pronounced in Fer-1+ HBOGroup. DISCUSSION The results of the present study indicated that HBO improves cerebral ischemia-reperfusion injury in rats, which may be related to inhibition of ferroptosis. This also means that ferroptosis may become a new target of HBO against CIRI.
Collapse
Affiliation(s)
- Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Xing Zhou
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Mingyu Meng
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Xiaorong Pan
- Department of Hyperbaric Oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Luying Huang
- Department of Department of Respiratory and Critical Care Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
56
|
Wang Y, Li B, Liu G, Han Q, Diao Y, Liu J. Corilagin attenuates intestinal ischemia/reperfusion injury in mice by inhibiting ferritinophagy-mediated ferroptosis through disrupting NCOA4-ferritin interaction. Life Sci 2023; 334:122176. [PMID: 37858718 DOI: 10.1016/j.lfs.2023.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
AIMS Intestinal ischemia reperfusion (II/R) is a common clinical emergency. Ferroptosis is reported to play a role in II/R injury. Our previous studies revealed that corilagin significantly attenuates intestinal ischemia/reperfusion injuries. However, the underlying molecular mechanism is unclear and requires further study. MATERIALS AND METHODS DAO, GSSG/T-GSH, MDA, and Fe2+ were measured by assay kits, 4-HNE was assessed by IHC, and 15-LOX was measured by ELISA. Mitochondrial damage was observed by TEM and cellular oxidation levels were detected by C11-BODIPY 581/591 and DHE probes. LC3, p62, Beclin1, ACSL4, GPX4, NCOA4, and ferritin expression were examined by WB in vivo and in vitro. IF, co-IF, q-PCR, and constructed NCOA4-knock-down IEC-6 cells were used to evaluate the role of NCOA4 in the effect of corilagin against II/R injury. Temporal and nucleoplasmic variations with or without corilagin were observed by WB. Co-IP and molecular docking were used to investigate the NCOA4-ferritin interaction. KEY FINDINGS Corilagin attenuated II/R-induced ferroptosis both in vitro and in vivo. Further study revealed that the anti-ferroptosis bioactivity of corilagin might be due to the modulation of iron homeostasis via inhibition of ferritinophagy in an NCOA4-dependent manner. SIGNIFICANCE Corilagin might be a potential therapeutic agent for II/R-induced tissue injury.
Collapse
Affiliation(s)
- Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China
| | - Guanting Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qipeng Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China.
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, China.
| |
Collapse
|
57
|
虞 亘, 王 鑫, 骆 金, 苏 萧, 陶 怀, 闻 志, 关 翰. [Role of SPP1 in acute kidney injury induced by renal ischemia-reperfusion in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1947-1954. [PMID: 38081614 PMCID: PMC10713472 DOI: 10.12122/j.issn.1673-4254.2023.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To investigate the role of SPP1 gene in acute kidney injury induced by renal ischemia-reperfusion injury (IRI). METHODS Twelve Sprague-Dawley rats were randomly divided into sham group and IRI group (n=6) and subjected to sham operation and renal ischemia for 30 min induced by penal pedicle clamping using non-traumatic microvascular clamps, respectively.Serum creatinine and blood urea nitrogen levels were detected, and PAS staining was used for pathological examination of the kidneys in the two groups.The renal expressions of SPP1, α-SMA and caspase-3 were detected using immunohistochemistry and immunofluorescent staining.In cultured renal tubular epithelial cells (HK-2 cells), Western blotting was performed to detect the changes in expressions of SPP1, caspase-3, and Kim-1 proteins following hypoxiareoxygenation (H/R) and transfection with si-NC or si-SPP1;flow cytometry was employed to analyze apoptosis of the treated cells. RESULTS Renal IRI caused significant elevations of serum creatinine and blood urea nitrogen levels (P<0.05) and induced severe shedding and necrosis of the renal tubular epithelial cells in the rats, resulting also in significantly up-regulated renal expressions of SPP1, α-SMA and caspase-3(P<0.05).In HK-2 cells, H/R significantly increased the protein expression levels of SPP1, caspase-3, and Kim-1(P<0.05), and compared si-NC transfection, transfection with SPP1 obviously reduced caspase-3 and Kim-1 expressions and lowered apoptosis rate of the cells with H/R exposure (P<0.05). CONCLUSION SPP1 is up-regulated in the kidneys of rats with renal IRI, and down-regulation of SPP1 expression can inhibit H/R-induced apoptosis of renal tubular epithelial cells.
Collapse
Affiliation(s)
- 亘明 虞
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 鑫玮 王
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 金光 骆
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 萧 苏
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 怀祥 陶
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 志远 闻
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 翰 关
- 蚌埠医学院第一附属医院泌尿外科,安徽 蚌埠 233004Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
58
|
Tian X, Wang Y, Yuan M, Zheng W, Zuo H, Zhang X, Song H. Heme Oxygenase-1-Modified BMMSCs Activate AMPK-Nrf2-FTH1 to Reduce Severe Steatotic Liver Ischemia-Reperfusion Injury. Dig Dis Sci 2023; 68:4196-4211. [PMID: 37707747 PMCID: PMC10570260 DOI: 10.1007/s10620-023-08102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important cause of graft dysfunction post-liver transplantation, where donor liver with severe steatosis is more sensitive to IRI. Liver IRI involves ferroptosis and can be alleviated by heme oxygenase-1-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs). AIMS To explore the role and mechanism of HO-1/BMMSCs in severe steatotic liver IRI. METHODS A severe steatotic liver IRI rat model and a hypoxia/reoxygenation (H/R) of severe steatosis hepatocyte model were established. Liver and hepatocyte damage was evaluated via liver histopathology and cell activity. Ferroptosis was evaluated through ferroptosis indexes. Nuclear factor erythroid 2-related factor 2 (Nrf2) was knocked down in severe steatotic hepatocytes. The role of Nrf2 and AMPK in HO-1/BMMSC inhibition of ferroptosis was examined using the AMP-activated protein kinase (AMPK) pathway inhibitor Compound C. RESULTS The HO-1/BMMSCs alleviated severe steatotic liver IRI and ferroptosis. HO-1/BMMSCs promoted ferritin heavy chain 1(FTH1), Nrf2, and phosphorylated (p)-AMPK expression in the H/R severe steatotic hepatocytes. Nrf2 knockdown decreased FTH1 expression levels but did not significantly affect p-AMPK expression levels. The protective effect of HO-1/BMMSCs against H/R injury in severe steatotic hepatocytes and the inhibitory effect on ferroptosis were reduced. Compound C decreased p-AMPK, Nrf2, and FTH1 expression levels, weakened the HO-1/BMMSC protective effect against severe steatotic liver IRI and H/R-injured severe steatotic hepatocytes, and reduced the inhibition of ferroptosis. CONCLUSIONS Ferroptosis was involved in HO-1/BMMSC reduction of severe steatotic liver IRI. HO-1/BMMSCs protected against severe steatotic liver IRI by inhibiting ferroptosis through the AMPK-Nrf2-FTH1 pathway. HO-1/BMMSCs activate AMPK, which activates Nrf2, promotes its nuclear transcription, then promotes the expression of its downstream protein FTH1, thereby inhibiting ferroptosis and attenuating severe steatotic liver IRI in rats. Glu: glutamic acid; Cys: cystine; GSH: glutathione; GPX4: glutathione peroxidase 4; HO-1/BMMSCs: HO-1-modified BMMSCs; Fer-1: ferrostatin-1; DFO: deferoxamine; FTH1: ferritin heavy chain1; p-AMPK: phosphorylated AMP-activated protein kinase; Nrf2: nuclear factor erythroid 2-related factor 2; IRI: ischemia-reperfusion injury; MCD: methionine-choline deficiency.
Collapse
Affiliation(s)
- Xiaorong Tian
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yuxin Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Mengshu Yuan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, People's Republic of China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinru Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, People's Republic of China.
- Tianjin Key Laboratory of Organ Transplantation, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
59
|
Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, Sun X, Li X. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med 2023; 29:137. [PMID: 37858064 PMCID: PMC10588250 DOI: 10.1186/s10020-023-00730-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion injury occurs in acute intestinal obstruction, intussusception, acute mesenteric artery embolism, and other diseases and can lead to local intestinal necrosis, distant organ involvement, or systemic reactions, with high morbidity and mortality. Ferroptosis plays a crucial role in intestinal ischemia-reperfusion injury, and inhibition of ferroptosis may provide new approaches for treating the disease. SIRT3 protects cells from oxidative stress and may be involved in the process of ferroptosis. We hypothesized that resveratrol, an agonist of SIRT3, could ameliorate intestinal ischemia-reperfusion injury by compensating the GSH/GPX4 pathway. METHODS Intestinal ischemia-reperfusion (I/R) and Caco-2 hypoxia-reoxygenation models were established. Transmission electron microscopy was used to assess mitochondrial function; the Chiu's score was used to evaluate the degree of intestinal mucosal injury based on HE staining; and Western blot was used to detect the SIRT3/FoxO3a pathway, tight junction proteins and ferroptosis-related protein expression. Sirt3-/- C57, shSIRT3-Caco-2 cells and siFoxO3a-Caco-2 cells were established. C11-BODIPY was used to detect lipid peroxide in cells; FD4 and IFABP were used to detect intestinal permeability; MitoSOX was used to detect ROS levels; and MitoTracker and immunofluorescence colocalization were used to detect SIRT3 levels. RESULTS In the intestinal I/R model, I/R injury occurs mainly during the reperfusion period and leads to ferroptosis through the GSH/GPX4 pathway. Resveratrol could reduce ferroptosis and ameliorate I/R injury by activating SIRT3. In Sirt3-/- mice, more intestinal mucosal cells underwent ferroptosis, I/R injury was more severe, and resveratrol lost the ability to ameliorate I/R injury. In addition, hypoxia-reoxygenation increased RSL3-induced ferroptosis sensitivity in Caco-2 cells in vitro. In the presence of shSIRT3 or RSL3 alone, resveratrol could ameliorate Caco-2 ferroptosis, but not RSL3-induced shSIRT3-Caco-2 ferroptosis. Furthermore, resveratrol might activate the SIRT3/FoxO3a pathway, increase the expression of SOD2 and catalase, and inhibit ROS generation, thus reducing lipid peroxidation and ferroptosis. CONCLUSION To date, this is the first study to show that resveratrol ameliorates intestinal ischemia-reperfusion injury by activating SIRT3 and reducing ferroptosis. Resveratrol can reduce intestinal ischemia-reperfusion injury by activating the SIRT3/FoxO3a pathway, increasing the expression of SOD2 and catalase, reducing ROS and LPO production, compensating for the GSH/GPX4 pathway and inhibiting ferroptosis. Resveratrol increases the expression of SOD2 and catalase, reduces the production of ROS and LPO, compensates for the GSH/GPX4 pathway and inhibits ferroptosis by activating the SIRT3/FoxO3a pathway.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Deng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chao Qu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Enmeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gan Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yiwei Ren
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zijun Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
60
|
Zheng M, Zhou M, Lu T, Lu Y, Qin P, Liu C. TMT and PRM Based Quantitative Proteomics to Explore the Protective Role and Mechanism of Iristectorin B in Stroke. Int J Mol Sci 2023; 24:15195. [PMID: 37894877 PMCID: PMC10607092 DOI: 10.3390/ijms242015195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Stroke is a serious disease caused by the rupture or blockage of the cerebrovascular system. Its pathogenesis is complex and involves multiple mechanisms. Iristectorin B is a natural isoflavone that has certain anti stroke effects. In this study, an in vitro stroke injury model of glyoxylate deprivation was established using PC12 cells, which was used to evaluate the anti-stroke activity of Iristectorin B in ejecta stem. The results showed that Iristectorin B, a natural isoflavone derived from Dried Shoot, significantly reduced the damage to PC12 cells caused by oxygen glucose deprivation/reoxygenation, decreased apoptosis, enhanced cell survival and reduced Ca2+, LDH and ROS levels. The results showed that Iristectorin B had a significant protective effect on Na2S2O4-injured PC12 cells, and the mechanism may be related to the protective effect of neurons in the brain. After protein extraction and various analyses were performed, a series of cutting-edge technologies were organically combined to study the quantitative proteome of each group. Differential proteins were then analyzed. According to the protein screening principle, ferroptosis-related proteins were most closely associated with stroke. The differential proteins associated with ferroptosis screened were SLC3A2, TFR1 and HMOX1, with HMOX1 being the most significantly elevated and reduced via dosing. Iristectorin B may act as a protective agent against stroke by regulating ferroptosis, and SLC3A2, TFR1 and HMOX1 may serve as potential diagnostic biomarkers for stroke, providing additional evidence to support the importance of ferroptosis in stroke.
Collapse
Affiliation(s)
- Meizhu Zheng
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| | - Mi Zhou
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Tingting Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Yao Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Peng Qin
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Chunming Liu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| |
Collapse
|
61
|
Bi M, Qin Y, Zhao L, Zhang X. Edaravone promotes viability of random skin flaps via activating PI3K/Akt/mTOR signalling pathway-mediated enhancement of autophagy. Int Wound J 2023; 20:3088-3104. [PMID: 37042039 PMCID: PMC10502271 DOI: 10.1111/iwj.14184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Random skin flap transplantation is a commonly used technique. However, ischemia and ischemia-reperfusion injury always impair its therapeutic effectiveness through acclerating oxidative stress, apoptosis and suppressing angiogenesis. To survive, cells rely on mediating autophagy, DNA repair, immunoregulation to resist these cellular injuries. Thus, mediating autophagy may affect the survival of random skin flaps. The edaravone (EDA), a oxygen radicals scavenger, also possesses autophagy mediator potential, we investigated the effects of EDA on skin flap survival and its autophagy-related mechanisms. In vivo, mice were administered EDA or saline intraperitoneally for 7 days postoperatively. We found that EDA ameliorated the viability of random skin flaps, promoted autophagy and angiogenesis, attenuated apoptosis and oxidative stress. In vitro, mouse umbilical vascular endothelial cells (MUVECs) were administered EDA or 3-methyladenine (3-MA, an autophagy inhibitor) or rapacymin (Rapa, an autophagy activator) at the beginning of oxygen glucose deprivation (OGD). We found that EDA promoted cell viability, activated autophagy, enhanced angiogenesis, alleviated apoptosis and oxidative stress. On one hand, 3-MA reversed the effects of EDA on cell viability, oxidative stress and apoptosis via inhibiting autophagy. On the other hand, Rapa had the similar effects of EDA. Furthermore, EDA-induced autophagy was mediated through downregulating PI3K/Akt/mTOR signalling pathway. The findings showed that EDA ameliorated viability of random skin flaps by promoting angiogenesis, suppressing oxidative stress and apoptosis, which may be mediated by autophagic activation through downregulating PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| | - Yonghong Qin
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| | | | - Xuanfen Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
62
|
Liu L, Zhang Y, Wang L, Liu Y, Chen H, Hu Q, Xie C, Meng X, Shen X. Scutellarein alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis by chelating iron and interacting with arachidonate 15-lipoxygenase. Phytother Res 2023; 37:4587-4606. [PMID: 37353982 DOI: 10.1002/ptr.7928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yue Liu
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
63
|
Guo L, Zhang D, Ren X, Liu D. SYVN1 attenuates ferroptosis and alleviates spinal cord ischemia-reperfusion injury in rats by regulating the HMGB1/NRF2/HO-1 axis. Int Immunopharmacol 2023; 123:110802. [PMID: 37591122 DOI: 10.1016/j.intimp.2023.110802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The ferroptosis of neurons is an important pathological mechanism of spinal cord ischemia reperfusion injury (SCIRI). Previous studies showed that synoviolin 1 (SYVN1) is a good prognostic marker of neurodegenerative diseases, but its mechanism is still unclear. This study aims to explore the role of SYVN1 in the ferroptosis of neurons and to clarify its internal mechanism. METHODS Rat primary spinal cord neurons were treated with oxygen-glucose deprivation (OGD) for 1, 4 or 8 h, and then cell viability, ROS and MDA levels, glutathione peroxidase (GSH-Px) activity, and the expression of ferroptosis-related proteins GPX4, FTH1 and PTGS2 were detected. OGD/R-induced neurons were transfected with pcDNA-SYVN1 or si-HMGB1, and then cell functions were detected. Transmission electron microscope (TEM) was used to detect cell ferroptosis. The interplay between SYVN1 and high mobility group box 1 (HMGB1) was confirmed with Co-immunoprecipitation (Co-IP) assay. The stability of HMGB1 was measured by ubiquitination assay. Also, cells were treated with pcDNA-SYVN1 or together with ubiquitination inhibitor MG132, as well as treated with pcDNA-SYVN1 and pcDNA-HMGB1 or together with NRF2 activator dimethyl fumarate (DMF), and then Western blotting was used to detect the expression of HMGB1, nuclear NRF2 and HO-1 proteins. In addition, SD rats were occluded left common carotid artery and aortic arch to establish a SCIRI rat model. And rats were injected intrathecal with adenovirus-mediated SYVN1 overexpression vector (Ad-SYVN1, 2 μL, virus titer 5 × 1013 transduction unit [TU]/mL) to overexpress SYVN1. The motion function of rats was quantified using the Basso Rat Scale (BMS) for Locomotion. The ferroptosis and the number of neurons in the spinal cord tissue of rats were detected. RESULTS SYVN1 overexpression inhibited ferroptosis of SCIRI rats and OGD/R-treated primary spinal cord neurons, and down-regulated the expression of HMGB1. In terms of mechanism, the binding of SYVN1 and HMGB1 promoted the ubiquitination and degradation of HMGB1, and negatively regulated the expression of HMGB1. Moreover, under OGD/R conditions, MG132 treatment or HMGB1 overexpression eliminated the inhibitory effect of SYVN1 overexpression on the ferroptosis of neurons and the activation of the NRF2/HO-1 pathway, and DMF treatment abolished the inhibition of HMGB1 overexpression on the NRF2/HO-1 pathway. Finally, in vivo experiments showed that SYVN1 overexpression could alleviate the spinal cord ischemia-reperfusion injury in rats by down-regulating HMGB1 and promoting the activation of the NRF2/HO-1 pathway. CONCLUSION SYVN1 regulates ferroptosis through the HMGB1/NRF2/HO-1 axis to prevent spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoyan Ren
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
64
|
Sun N, Xing Y, Jiang J, Wu P, Qing L, Tang J. Knowledge mapping and emerging trends of ferroptosis in ischemia reperfusion injury research: A bibliometric analysis (2013-2022). Heliyon 2023; 9:e20363. [PMID: 37767486 PMCID: PMC10520329 DOI: 10.1016/j.heliyon.2023.e20363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Ischemia/reperfusion (I/R) injury is an inevitable dilemma when previously ischemic multiple organs and tissues are returned to a state of blood flow, with confirming a critical role of ferroptosis in molecular, pathway mechanisms, subcellular structure. Discovering the potential relationship may provide useful approaches for the clinical treatment and prognosis of the pathophysiological status of IRI. Therefore, a comprehensive visualization and scientometric analysis were conducted to systematically summarize and discuss the "ferroptosis in ischemia reperfusion injury" research to demonstrate directions for scholars in this field. METHODS We retrieved all publications focusing on I/R injury and ferroptosis from the Web of Science Core Collection (WoSCC), published from 2013 to October 2022. Next, scientometric analysis of different items was performed using various bibliometrics softwares to explore the annual trends, countries/regions, institutions, journals, authors and their multi-dimensional relationship pointing to current hotspots and future advancement in this field. RESULTS We included a total of 421 English articles in set timespan. The number of publications increased steadily annually. China produced the highest number of publications, followed by the United States. Most publications were from Central South University, followed by Sichuan University and Wuhan University. The most authoritative academic journal was Oxidative Medicine and Cellular Longevity. Cell occupied the first rank of co-cited journal list. Andreas Linkermann and Scott J Dixon may have the highest influence in this intersected field with the highest number of citations and co-cited references respectively. The essential biological reactions such as oxidative stress response, lipid peroxidation metabolism, anti-inflammmatory and pro-inflammatory procedure, and related molecular pathways were knowledge base and current hotspots. Molecules pathways exploration, effective inhibition of I/R injury and promising strategy of improving allografts may become future trends and focuses. CONCLUSIONS Research on ferroptosis in I/R injury had aroused great interest recently. This first bibliometric study comprehensively analyzed the research landscape of ferroptosis and I/R injury, and also provided a reliable reference for related scholars to facilitate further advancement in this field.
Collapse
Affiliation(s)
- Nianzhe Sun
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yixuan Xing
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
65
|
Du YX, Zhao YT, Sun YX, Xu AH. Acid sphingomyelinase mediates ferroptosis induced by high glucose via autophagic degradation of GPX4 in type 2 diabetic osteoporosis. Mol Med 2023; 29:125. [PMID: 37710183 PMCID: PMC10500928 DOI: 10.1186/s10020-023-00724-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Ferroptosis has been implicated in the pathological process of type 2 diabetic osteoporosis (T2DOP), although the specific underlying mechanisms remain largely unknown. This study aimed to clarify the role and possible mechanism of acid sphingomyelinase (ASM)-mediated osteoblast ferroptosis in T2DOP. METHODS We treated hFob1.19 cells with normal glucose (NG) and different concentrations of high glucose (HG, 26.25 mM, 35 mM, or 43.75 mM) for 48 h. We then measured cell viability and osteogenic function, quantified ferroptosis and autophagy levels, and measured the levels of ASM and ceramide in the cells. To further investigate the specific mechanism, we examined these indicators by knocking down ASM expression, hydroxychloroquine (HCQ) treatment, or N-acetylcysteine (NAC) treatment. Moreover, a T2DOP rat model was induced and microcomputed tomography was used to observe the bone microstructure. We also evaluated the serum levels of iron metabolism-associated factors, ceramide and lipid peroxidation (LPO) and measured the expression of ASM, LC3 and GPX4 in bone tissues. RESULTS HG inhibited the viability and osteogenic function of osteoblasts by inducing ferroptosis in a concentration-dependent manner. Furthermore, the expression of ASM and ceramide and autophagy levels were increased by HG treatment, and these factors were required for the HG-induced reactive oxygen species (ROS) generation and LPO. Similarly, inhibiting intracellular ROS also reduced HG-induced ASM activation and autophagy. ASM-mediated activation of autophagy was crucial for HG-induced degradation of GPX4, and inhibiting ASM improved osteogenic function by decreasing HG-induced autophagy, GPX4 degradation, LPO and subsequent ferroptosis. We also found that inhibiting ASM could alleviated ferroptosis and autophagy and improved osteogenic function in a T2DOP rat model. CONCLUSION ASM-mediated autophagy activation induces osteoblast ferroptosis under HG conditions through the degradation of GPX4, providing a novel mechanistic insight into the treatment and prevention of T2DOP.
Collapse
Affiliation(s)
- Yun-Xia Du
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yan-Tao Zhao
- Department of Joint Surgery, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Yong-Xin Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ai-Hua Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
66
|
Wang Y, Li Y, Ding H, Li D, Shen W, Zhang X. The Current State of Research on Sirtuin-Mediated Autophagy in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:382. [PMID: 37754811 PMCID: PMC10531599 DOI: 10.3390/jcdd10090382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Sirtuins belong to the class III histone deacetylases and possess nicotinamide adenine dinucleotide-dependent deacetylase activity. They are involved in the regulation of multiple signaling pathways implicated in cardiovascular diseases. Autophagy is a crucial adaptive cellular response to stress stimuli. Mounting evidence suggests a strong correlation between Sirtuins and autophagy, potentially involving cross-regulation and crosstalk. Sirtuin-mediated autophagy plays a crucial regulatory role in some cardiovascular diseases, including atherosclerosis, ischemia/reperfusion injury, hypertension, heart failure, diabetic cardiomyopathy, and drug-induced myocardial damage. In this context, we summarize the research advancements pertaining to various Sirtuins involved in autophagy and the molecular mechanisms regulating autophagy. We also elucidate the biological function of Sirtuins across diverse cardiovascular diseases and further discuss the development of novel drugs that regulate Sirtuin-mediated autophagy.
Collapse
Affiliation(s)
- Yuqin Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Dan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Wanxi Shen
- Qinghai Provincial People’s Hospital, Qinghai University, Xining 810007, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| |
Collapse
|
67
|
Qi Y, Hu M, Wang Z, Shang W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem Pharmacol 2023; 215:115725. [PMID: 37524207 DOI: 10.1016/j.bcp.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The injury caused by ischemia and subsequent reperfusion (I/R) is inevitable during kidney transplantation and its current management remains unsatisfactory. Iron is considered to play a remarkable pathologic role in the initiation or progression of tissue damage induced by I/R, whereas the effects of iron-related therapy remain controversial owing to the complicated nature of iron's involvement in multiple biological processes. A significant portion of the cellular iron is located in the mitochondria, which exerts a central role in the development and progression of I/R injury. Recent studies of iron regulation associated with mitochondrial function represents a unique opportunity to improve our knowledge on the pathophysiology of I/R injury. However, the molecular mechanisms linking mitochondria to the iron homeostasis remain unclear. In this review, we provide a comprehensive analysis of the alterations to iron metabolism in I/R injury during kidney transplantation, analyze the current understanding of mitochondrial regulation of iron homeostasis and discussed its potential application in I/R injury. The elucidation of regulatory mechanisms regulating mitochondrial iron homeostasis will offer valuable insights into potential therapeutic targets for alleviating I/R injury with the ultimate aim of improving kidney graft outcomes, with potential implications that could also extend to acute kidney injury or other I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
68
|
Ding C, Wang B, Zheng J, Zhang M, Li Y, Shen HH, Guo Y, Zheng B, Tian P, Ding X, Xue W. Neutrophil Membrane-Inspired Nanorobots Act as Antioxidants Ameliorate Ischemia Reperfusion-Induced Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40292-40303. [PMID: 37603686 DOI: 10.1021/acsami.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Ischemia/reperfusion (I/R) injury causes excessive oxidative events and initiates destructive inflammatory responses, and it is an important promoter to the pathology of various pathema states. Ferroptosis is an iron-dependent type of nonapoptotic cell death accompanied by the accumulation of membrane lipid peroxide and consumption of polyunsaturated fatty acid, and it plays a key role in I/R injury diseases. Moreover, the excessive production of inflammatory cytokines contributes to the development of acute kidney injury. Here, we reported neutrophil membrane-coated copper-based nanoparticles (N-Cu5.4O@DFO NPs) for I/R kidney injury treatment. The highly biocompatible and stable N-Cu5.4O@DFO NPs showed excellent antioxidant and iron ion scavenging abilities in vitro. Our finding showed that the N-Cu5.4O@DFO NPs strategy could significantly accumulate in the inflammatory kidney, reduce oxidative damage events and inflammatory response, and finally achieve synergistic therapy against renal I/R injury. This work promotes the development of nanoantioxidant agents with multiple antioxidant properties for the therapy of other I/R injury diseases.
Collapse
Affiliation(s)
- Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
- Organ Procurement and Allocation Organization, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Material Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hsin-Hui Shen
- Department of Material Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yingcong Guo
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
69
|
Laukaitiene J, Gujyte G, Kadusevicius E. Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options. Int J Mol Sci 2023; 24:12846. [PMID: 37629039 PMCID: PMC10454599 DOI: 10.3390/ijms241612846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that "time is muscle", which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.
Collapse
Affiliation(s)
- Jolanta Laukaitiene
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania;
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Greta Gujyte
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Edmundas Kadusevicius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
70
|
Lu JD, Sun ML, Pei-Li, Wang XP. Butylphthalide protects against ischemia-reperfusion injury in rats via reducing neuron ferroptosis and oxidative stress. J Investig Med 2023; 71:623-633. [PMID: 37073509 DOI: 10.1177/10815589231167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Local ischemia in the cerebra leads to vascular injury and necrosis. Ferroptosis is involved in the pathophysiological process of many diseases and widely exists when ischemia-reperfusion injury occurs in many organs. The aim of this study was to evaluate the effect of Butylphthalide (NBP) on middle cerebral artery occlusion (MCAO) rats model-caused neuron injury. Sprague Dawley Rats were randomly allocated to receive sham and MCAO operation. NBP low-dose (40 mg/kg b.w), and high-dose (80 mg/kg b.w) were administrated in MACO rats. Results showed NBP improves infarct volume, attenuates neuronal apoptosis in the brain tissue of MCAO rats. The tumor necrosis factor (TNF-α), IL-6, and malondialdehyde (MDA) levels decreased after NBP administration, while the activity of superoxide dismutase (SOD) and the ratio of GSH/GSSG in MACO rats increased. MACO caused non-heme iron accumulation in the brain tissue and Perl's staining confirmed NBP attenuates ferroptosis in MACO rats. The protein expressions of SCL7A11 and glutathione peroxidase 4 (GPX4) decreased following MCAO, and NBP treatment subsequently increased the expression of SCL7A11 and GPX4. In vitro analysis in cortical neuron cells indicated that the GPX4 inhibitor reverses the inhibition of ferroptosis by NBP, which suggested that the SCL7A11/GPX4 pathway majorly contributed to the NBP ferroptosis protection effect.
Collapse
Affiliation(s)
- Jun-Dong Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mei-Lin Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pei-Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Peng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
71
|
Lee S, Hwang N, Seok BG, Lee S, Lee SJ, Chung SW. Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis 2023; 14:464. [PMID: 37491375 PMCID: PMC10368698 DOI: 10.1038/s41419-023-05978-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis, a programmed cell death, has been identified and associated with cancer and various other diseases. Ferroptosis is defined as a reactive oxygen species (ROS)-dependent cell death related to iron accumulation and lipid peroxidation, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. However, accumulating evidence has revealed a link between autophagy and ferroptosis at the molecular level and has suggested that autophagy is involved in regulating the accumulation of iron-dependent lipid peroxidation and ROS during ferroptosis. Understanding the roles and pathophysiological processes of autophagy during ferroptosis may provide effective strategies for the treatment of ferroptosis-related diseases. In this review, we summarize the current knowledge regarding the regulatory mechanisms underlying ferroptosis, including iron and lipid metabolism, and its association with the autophagy pathway. In addition, we discuss the contribution of autophagy to ferroptosis and elucidate the role of autophagy as a ferroptosis enhancer during ROS-dependent ferroptosis.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, VA Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Byeong Geun Seok
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Sangguk Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, 34141, South Korea
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
72
|
Feng Q, Yang Y, Ren K, Qiao Y, Sun Z, Pan S, Liu F, Liu Y, Huo J, Liu D, Liu Z. Broadening horizons: the multifaceted functions of ferroptosis in kidney diseases. Int J Biol Sci 2023; 19:3726-3743. [PMID: 37564215 PMCID: PMC10411478 DOI: 10.7150/ijbs.85674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed. Herein, we aim to discuss the features, key regulators and complicated network mechanisms associated with ferroptosis, explore the emerging roles of organelles in ferroptosis, gather its pharmacological progress, and systematically summarize the most recent discoveries about the crosstalk between ferroptosis and kidney diseases, including renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), autosomal dominant polycystic kidney disease (ADPKD), renal fibrosis, lupus nephritis (LN) and IgA nephropathy. We further conclude the potential therapeutic strategies by targeting ferroptosis for the prevention and treatment of kidney diseases and hope that this work will provide insight for the further study of ferroptosis in the pathogenesis of kidney-related diseases.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Fengxun Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jinling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
73
|
Li J, Zhang W, Ma X, Wei Y, Zhou F, Li J, Zhang C, Yang Z. Cuproptosis/ferroptosis-related gene signature is correlated with immune infiltration and predict the prognosis for patients with breast cancer. Front Pharmacol 2023; 14:1192434. [PMID: 37521466 PMCID: PMC10374203 DOI: 10.3389/fphar.2023.1192434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Breast invasive carcinoma (BRCA) is a malignant tumor with high morbidity and mortality, and the prognosis is still unsatisfactory. Both ferroptosis and cuproptosis are apoptosis-independent cell deaths caused by the imbalance of corresponding metal components in cells and can affect the proliferation rate of cancer cells. The aim in this study was to develop a prognostic model of cuproptosis/ferroptosis-related genes (CFRGs) to predict survival in BRCA patients. Methods: Transcriptomic and clinical data for breast cancer patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cuproptosis and ferroptosis scores were determined for the BRCA samples from the TCGA cohort using Gene Set Variation Analysis (GSVA), followed by weighted gene coexpression network analysis (WGCNA) to screen out the CFRGs. The intersection of the differentially expressed genes grouped by high and low was determined using X-tile. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) were used in the TGCA cohort to identify the CFRG-related signature. In addition, the relationship between risk scores and immune infiltration levels was investigated using various algorithms, and model genes were analyzed in terms of single-cell sequencing. Finally, the expression of the signature genes was validated with quantitative real-time PCR (qRT‒PCR) and immunohistochemistry (IHC). Results: A total of 5 CFRGs (ANKRD52, HOXC10, KNOP1, SGPP1, TRIM45) were identified and were used to construct proportional hazards regression models. The high-risk groups in the training and validation sets had significantly worse survival rates. Tumor mutational burden (TMB) was positively correlated with the risk score. Conversely, Tumor Immune Dysfunction and Exclusion (TIDE) and tumor purity were inversely associated with risk scores. In addition, the infiltration degree of antitumor immune cells and the expression of immune checkpoints were lower in the high-risk group. In addition, risk scores and mTOR, Hif-1, ErbB, MAPK, PI3K/AKT, TGF-β and other pathway signals were correlated with progression. Conclusion: We can accurately predict the survival of patients through the constructed CFRG-related prognostic model. In addition, we can also predict patient immunotherapy and immune cell infiltration.
Collapse
Affiliation(s)
- Jixian Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Wentao Zhang
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoqing Ma
- Radiotherapy and Minimally Invasive Group I, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yanjun Wei
- Department of Radiation Oncology, Weifang People’s Hospital, Weifang, China
| | - Fengge Zhou
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianan Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chenggui Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhe Yang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
74
|
He Y, Huang G, Hong S, Zuo X, Zhao Z, Hong L. Ferrostatin-1 alleviates the damage of C2C12 myoblast and mouse pelvic floor muscle induced by mechanical trauma. Cell Death Discov 2023; 9:232. [PMID: 37419877 DOI: 10.1038/s41420-023-01482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023] Open
Abstract
Ferroptosis is a special form of regulated cell death, which is reported to play an important role in a variety of traumatic diseases by promoting lipid peroxidation and devastating cell membrane structure. Pelvic floor dysfunction (PFD) is a kind of disease affecting the quality and health of many women's lives, which is closely related to the injury of the pelvic floor muscle. Clinical findings have discovered that there is anomalous oxidative damage to the pelvic floor muscle in women with PFD caused by mechanical trauma, but the specific mechanism is still unclear. In this study, we explored the role of ferroptosis-associated oxidative mechanisms in mechanical stretching-induced pelvic floor muscle injury, and whether obesity predisposed pelvic floor muscle to ferroptosis from mechanical injury. Our results, in vitro, showed that mechanical stretch could induce oxidative damage to myoblasts and trigger ferroptosis. In addition, glutathione peroxidase 4 (GPX4) down-regulation and 15-lipoxygenase 1(15LOX-1) up-regulation exhibited the same variational characteristics as ferroptosis, which was much more pronounced in palmitic acid (PA)-treated myoblasts. Furthermore, ferroptosis induced by mechanical stretch could be rescued by ferroptosis inhibitor (ferrostatin-1). More importantly, in vivo, we found that the mitochondria of pelvic floor muscle shrank, which were consistent with the mitochondrial morphology of ferroptosis, and GPX4 and 15LOX-1 showed the same change observed in cells. In conclusion, our data suggest ferroptosis is involved in the injury of the pelvic floor muscle caused by mechanical stretching, and provide a novel insight for PFD therapy.
Collapse
Affiliation(s)
- Yong He
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Guotao Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Xiaohu Zuo
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Zhihan Zhao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| |
Collapse
|
75
|
Lan ZQ, Ge ZY, Lv SK, Zhao B, Li CX. The regulatory role of lipophagy in central nervous system diseases. Cell Death Discov 2023; 9:229. [PMID: 37414782 DOI: 10.1038/s41420-023-01504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets (LDs) are the organelles for storing neutral lipids, which are broken down when energy is insufficient. It has been suggested that excessive accumulation of LDs can affect cellular function, which is important to coordinate homeostasis of lipids in vivo. Lysosomes play an important role in the degradation of lipids, and the process of selective autophagy of LDs through lysosomes is known as lipophagy. Dysregulation of lipid metabolism has recently been associated with a variety of central nervous system (CNS) diseases, but the specific regulatory mechanisms of lipophagy in these diseases remain to be elucidated. This review summarizes various forms of lipophagy and discusses the role that lipophagy plays in the development of CNS diseases in order to reveal the related mechanisms and potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhuo-Qing Lan
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Zi-Yi Ge
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Shu-Kai Lv
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Bing Zhao
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Cai-Xia Li
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China.
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
76
|
Tang F, Zhou LY, Li P, Jiao LL, Chen K, Guo YJ, Ding XL, He SY, Dong B, Xu RX, Xiong H, Lei P. Inhibition of ACSL4 Alleviates Parkinsonism Phenotypes by Reduction of Lipid Reactive Oxygen Species. Neurotherapeutics 2023; 20:1154-1166. [PMID: 37133631 PMCID: PMC10457271 DOI: 10.1007/s13311-023-01382-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
Ferroptosis is a programmed cell death pathway that is recently linked to Parkinson's disease (PD), where the key genes and molecules involved are still yet to be defined. Acyl-CoA synthetase long-chain family member 4 (ACSL4) esterifies polyunsaturated fatty acids (PUFAs) which is essential to trigger ferroptosis, and is suggested as a key gene in the pathogenesis of several neurological diseases including ischemic stroke and multiple sclerosis. Here, we report that ACSL4 expression in the substantia nigra (SN) was increased in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated model of PD and in dopaminergic neurons in PD patients. Knockdown of ACSL4 in the SN protected against dopaminergic neuronal death and motor deficits in the MPTP mice, while inhibition of ACSL4 activity with Triacsin C similarly ameliorated the parkinsonism phenotypes. Similar effects of ACSL4 reduction were observed in cells treated with 1-methyl-4-phenylpyridinium (MPP+) and it specifically prevented the lipid ROS elevation without affecting the mitochondrial ROS changes. These data support ACSL4 as a therapeutic target associated with lipid peroxidation in PD.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Liu-Yao Zhou
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ping Li
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ling-Ling Jiao
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Kang Chen
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Yu-Jie Guo
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xu-Long Ding
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Si-Yu He
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Biao Dong
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Huan Xiong
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China.
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Peng Lei
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
77
|
Guo S, Zhong A, Zhang D, Gao J, Ni Y, Zhao R, Ma W. ATP2B3 Inhibition Alleviates Erastin-Induced Ferroptosis in HT-22 Cells through the P62-KEAP1-NRF2-HO-1 Pathway. Int J Mol Sci 2023; 24:ijms24119199. [PMID: 37298147 DOI: 10.3390/ijms24119199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ferroptosis participates in the occurrence and development of neurological disorders. Modulating ferroptosis may have therapeutic potential in nervous system diseases. Therefore, TMTbased proteomic analysis in HT-22 cells was performed to identify erastin-induced differentially expressed proteins. The calcium-transporting ATP2B3 (ATP2B3) was screened as a target protein. ATP2B3 knockdown markedly alleviated the erastin-induced decrease in cell viability and elevated ROS (p < 0.01) and reversed the up-regulation of oxidative stress-related proteins polyubiquitin-binding protein p62 (P62), nuclear factor erythroid 2-related factor2 (NRF2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase-1 (NQO1) protein expression (p < 0.05 or p < 0.01) and the down-regulation of Kelch-like ECH-associated protein 1(KEAP1) protein expression (p < 0.01). Moreover, NRF2 knockdown, P62 inhibition, or KEAP1 overexpression rescued the erastin-induced decrease in cell viability (p < 0.05) and increase in ROS production (p < 0.01) in HT-22 cells, while simultaneous overexpression of NRF2 and P62 and knockdown of KEAP1 partially offset the relief effect of ATP2B3 inhibition. In addition, knockdown of ATP2B3, NRF2, and P62 and overexpression of KEAP1 significantly down-regulated erastin-induced high expression of the HO-1 protein, while HO-1 overexpression reversed the alleviating effects of ATP2B3 inhibition on the erastin-induced decrease in cell viability (p < 0.01) and increase in ROS production (p < 0.01) in HT-22 cells. Taken together, ATP2B3 inhibition mediates the alleviation of erastin-induced ferroptosis in HT-22 cells through the P62-KEAP1-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiying Zhong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiang Gao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
78
|
Shi Y, Shi X, Zhao M, Chang M, Ma S, Zhang Y. Ferroptosis: A new mechanism of traditional Chinese medicine compounds for treating acute kidney injury. Biomed Pharmacother 2023; 163:114849. [PMID: 37172334 DOI: 10.1016/j.biopha.2023.114849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Acute kidney injury (AKI) is a major health concern owing to its high morbidity and mortality rates, to which there are no drugs or treatment methods, except for renal replacement therapy. Therefore, identifying novel therapeutic targets and drugs for treating AKI is urgent. Ferroptosis is an iron-dependent and lipid-peroxidation-driven regulatory form of cell death and is closely associated with the occurrence and development of AKI. Traditional Chinese medicine (TCM) has unique advantages in treating AKI due to its natural origin and efficacy. In this review, we summarize the mechanisms underlying ferroptosis and its role in AKI, and TCM compounds that play essential roles in the prevention and treatment of AKI by inhibiting ferroptosis. This review suggests ferroptosis as a potential therapeutic target for AKI, and that TCM compounds show broad prospects in the treatment of AKI by targeting ferroptosis.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Sijia Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
79
|
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, Liu Z. Novel Insight into Ferroptosis in Kidney Diseases. Am J Nephrol 2023; 54:184-199. [PMID: 37231767 DOI: 10.1159/000530882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Various kidney diseases such as acute kidney injury, chronic kidney disease, polycystic kidney disease, renal cancer, and kidney stones, are an important part of the global burden, bringing a huge economic burden to people around the world. Ferroptosis is a type of nonapoptotic iron-dependent cell death caused by the excess of iron-dependent lipid peroxides and accompanied by abnormal iron metabolism and oxidative stress. Over the past few decades, several studies have shown that ferroptosis is associated with many types of kidney diseases. Studying the mechanism of ferroptosis and related agonists and inhibitors may provide new ideas and directions for the treatment of various kidney diseases. SUMMARY In this review, we discuss the differences between ferroptosis and other types of cell death such as apoptosis, necroptosis, pyroptosis, cuprotosis, pathophysiological features of the kidney, and ferroptosis-induced kidney injury. We also provide an overview of the molecular mechanisms involved in ferroptosis and events that lead to ferroptosis. Furthermore, we summarize the possible clinical applications of this mechanism among various kidney diseases. KEY MESSAGE The current research suggests that future therapeutic efforts to treat kidney ailments would benefit from a focus on ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China,
- Henan Province Research Center for Kidney Disease, Zhengzhou, China,
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
80
|
Huang Z, Chen G, Wu H, Huang X, Xu R, Deng F, Li Y. Ebselen restores peri-implantitis-induced osteogenic inhibition via suppressing BMSCs ferroptosis. Exp Cell Res 2023; 427:113612. [PMID: 37116735 DOI: 10.1016/j.yexcr.2023.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
It is hard to reconstruct bone defects in peri-implantitis due to osteogenesis inhibited by excessive ROS. Ferroptosis, a recently identified regulated cell death characterized by iron- and reactive oxygen species- (ROS-) dependent lipid peroxidation, provides us with a new explanation. Our study aims to explore whether ferroptosis is involved in peri-implantitis-inhibited osteogenesis and confirm ebselen, an antioxidant with glutathione peroxidase (GPx)-like activity, could inhibit ferroptosis and promote osteogenesis in peri-implantitis. In this study, we used LPS to mimic the microenvironment of peri-implantitis. The osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) was assessed by alkaline phosphatase (ALP), Alizarin Red S, and mRNA and protein expression of osteogenic-related markers. Ferroptosis index analysis included iron metabolism, ROS production, lipid peroxidation and mitochondrial morphological changes. Iron overload, reduced antioxidant capability, excessive ROS, lipid peroxidation and the characteristic mitochondrial morphological changes of ferroptosis were observed in LPS-treated BMSCs, and adding Ferrostatin-1 (Fer-1) restored the inhibitory effect of ferroptosis on osteogenic differentiation of BMSCs. Furthermore, ebselen ameliorated LPS-induced ferroptosis and osteogenic inhibition, which was reversed by erastin. Our results demonstrated that ferroptosis is involved in osteogenic inhibition in peri-implantitis and ebselen could attenuate osteogenic dysfunction of BMSCs via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hiokuan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
81
|
Ning K, Gao R. Icariin protects cerebral neural cells from ischemia‑reperfusion injury in an in vitro model by lowering ROS production and intracellular calcium concentration. Exp Ther Med 2023; 25:151. [PMID: 36911386 PMCID: PMC9995791 DOI: 10.3892/etm.2023.11849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Ischemia is one of the major causes of stroke. The present study investigated the protection of cultured neural cells by icariin (ICA) against ischemia-reperfusion (I/R) injury and possible mechanisms underlying the protection. Neural cells were isolated from neonatal rats and cultured in vitro. The cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD-R) as an I/R mimic to generate I/R injury, and were post-OGD-R treated with ICA. Following the treatments, cell viability, apoptosis, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and Ca2+ concentration were assessed using Cell Counting Kit-8 assay, flow cytometry, CyQUANT™ LDH Cytotoxicity Assay, H2DCFDA and SOD colorimetric activity kit. After OGD-R, considerable I/R injury was observed in the neural cells, as indicated by reduced cell viability, increased apoptosis and increased production of ROS and LDH (P<0.05). Cellular Ca2+ concentration was also increased, while SOD activity remained unchanged. Post-OGD-R ICA treatments increased cell viability up to 87.1% (P<0.05) and reduced apoptosis as low as 6.6% (P<0.05) in a concentration-dependent manner. The treatments also resulted in fewer ROS (P<0.05), lower extracellular LDH content (440.5 vs. 230.3 U/l; P<0.05) and reduced Ca2+ increase (P<0.05). These data suggest that ICA protects the neural cells from I/R injury in an in vitro model through antioxidation activity and maintaining cellular Ca2+ homeostasis. This function may be explored as a potential therapeutic strategy for ischemia-related diseases after further in vivo studies.
Collapse
Affiliation(s)
- Ke Ning
- Department of International Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Rong Gao
- Surgical Intensive Care Unit, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
82
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|
83
|
Zhou C, Li M, Chu Y, Zheng L, Zhang S, Gao X, Gao P. Stellate ganglion block suppresses hippocampal ferroptosis to attenuate cerebral ischemia-reperfusion injury via the Hippo pathway. Metab Brain Dis 2023; 38:1633-1642. [PMID: 36922458 DOI: 10.1007/s11011-023-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
Ischemic stroke is a disabling and fatal disease caused by the insufficient blood supply to the brain. Stellate ganglion block (SGB) is a type of anesthesia commonly used to relieve pain. Here, we sought to identify the effects of SGB on cerebral ischemia-reperfusion (I/R) injury. The middle cerebral artery occlusion (MCAO) model was established in rats. The brain injury was assessed using the 2,3,5-triphenyl-tetrazolium-chloride (TTC) staining assay and neurological score. Ferroptosis was analyzed by detecting cell death, Fe2+ content, glutathione (GSH), malonic dialdehyde (MDA), superoxide dismutase (SOD), and ferroptosis-related factors. The mechanisms of SGB were assessed using the western blot. The results showed that I/R increased brain infarction and damaged neurological function. SGB decreased I/R-induced infarction and improved neurological function. Meantime, SGB inhibited ferroptosis of the hippocampus induced by I/R via the Hippo pathway. and the Yes1 associated transcriptional regulator (YAP) of this pathway was positively correlated with the ferroptosis-related solute carrier family 7 member 11 (SLC7A11). Inhibition of the Hippo pathway reversed the effects of SGB on brain injury and ferroptosis. In conclusion, SGB inhibited ferroptosis of hippocampal neurons via activating the Hippo pathway and thereby alleviated I/R injury. The data provide a novel insight into the treatment of ischemic stroke and even other ischemic encephalopathies.
Collapse
Affiliation(s)
- Chunwang Zhou
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, No.73, Jianshe South Road, Lubei District, Tangshan, Hebei, China.
| | - Mengyuan Li
- Tangshan Gongren Hospital, No.27,wenhua Road, Lubei District, Tangshan, Hebei, China
| | - Yingxin Chu
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, No.73, Jianshe South Road, Lubei District, Tangshan, Hebei, China
| | - Liyan Zheng
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, No.73, Jianshe South Road, Lubei District, Tangshan, Hebei, China
| | - Shubo Zhang
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, No.73, Jianshe South Road, Lubei District, Tangshan, Hebei, China
| | - Xiujiang Gao
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, No.73, Jianshe South Road, Lubei District, Tangshan, Hebei, China
| | - Ping Gao
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, No.73, Jianshe South Road, Lubei District, Tangshan, Hebei, China
| |
Collapse
|
84
|
Song CY, Feng MX, Li L, Wang P, Lu X, Lu YQ. Tripterygium wilfordii Hook.f. ameliorates paraquat-induced lung injury by reducing oxidative stress and ferroptosis via Nrf2/HO-1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114575. [PMID: 36706526 DOI: 10.1016/j.ecoenv.2023.114575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) poisoning can induce acute lung injury and fibrosis and has an extremely high mortality rate. However, no effective treatments for PQ poisoning have been established. In this study, the potential efficacy of Tripterygium wilfordii Hook.f. (TwHF) in alleviating PQ-induced lung injury and fibrosis was investigated in a mouse model. Mice were randomly assigned to the control, PQ, PQ + TwHF1 (pretreatment before inducing poisoning), and PQ + TwHF2 (treatment after poisoning) groups. The mice in the PQ + TwHF1 group were pretreated with TwHF for 5 days before receiving one dose of PQ (120 mg/kg) and then received a daily oral gavage of the indicated dosages of TwHF until sacrifice. The mice in the PQ + TwHF2 group were treated with TwHF 2 h after PQ exposure until sacrifice. The pathological analysis and Fapi PET/CT showed that treatment with TwHF attenuated lung injury. And TwHF reduced pulmonary oxidative stress, as indicated by the reduction in, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels, as well as by the increase in superoxide dismutase (SOD) levels. Accordingly, the Perls DAB staining showed increased iron concentrations and western blotting revealed a decreased GPX4 expression after PQ exposure, as well as the mitigation of the overexpression of Nrf2 and HO-1 induced by PQ. In conclusion, our study demonstrated the potential of TwHF as a treatment for PQ-induced lung injury and fibrosis. The protective mechanism of this medicinal herb may involve the regulation of ferroptosis.
Collapse
Affiliation(s)
- Cong-Ying Song
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Meng-Xiao Feng
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Li Li
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Ping Wang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Xuan Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China.
| |
Collapse
|
85
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
86
|
Ma X, Xu J, Gao N, Tian J, Song T. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes 2023; 68:101899. [PMID: 36775106 DOI: 10.1016/j.mcp.2023.101899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
This study is to investigate the effects of dexmedetomidine on myocardial ischemia-reperfusion (I/R) injury and its molecular mechanisms. H9c2 cell injury model was constructed by the hypoxia/normoxia (H/R) conditions. Besides, cAMP response element-binding protein (CREB) overexpression and knockdown cell lines were constructed. Cell viability was determined by cell-counting kit 8. Biochemical assays were used to detect oxidative stress-related biomarkers, cell apoptosis, and ferroptosis-related markers. Our results showed that dexmedetomidine's protective effects on H/R-induced cell damage were reversed by the inhibition of protein kinase A (PKA), CREB, and extracellular signal regulated kinase 1/2 (ERK1/2). Treatment of dexmedetomidine ameliorated oxidative stress in the cardiomyocytes induced by H/R, whereas inhibition of PKA, CREB, or ERK1/2 reversed these protective effects. Cell death including cell necrosis, apoptosis, and ferroptosis was found in the cells under H/R insult. Interestingly, targeting CREB ameliorated ferroptosis and oxidative stress in these cells. In conclusion, dexmedetomidine attenuates myocardial I/R injury by suppressing ferroptosis through the cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Xiaojing Ma
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China.
| | - Jia Xu
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| | - Nan Gao
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| | - Jun Tian
- Second Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| | - Tieying Song
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| |
Collapse
|
87
|
Coradduzza D, Congiargiu A, Chen Z, Zinellu A, Carru C, Medici S. Ferroptosis and Senescence: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043658. [PMID: 36835065 PMCID: PMC9963234 DOI: 10.3390/ijms24043658] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decay in cellular functions and proliferation, resulting in increased cellular damage and death. This condition plays an essential role in the aging process and significantly contributes to the development of age-related complications. On the other hand, ferroptosis is a systemic cell death pathway characterized by excessive iron accumulation followed by the generation of reactive oxygen species (ROS). Oxidative stress is a common trigger of this condition and may be induced by various factors such as toxins, drugs, and inflammation. Ferroptosis is linked to numerous disorders, including cardiovascular disease, neurodegeneration, and cancer. Senescence is believed to contribute to the decay in tissue and organ functions occurring with aging. It has also been linked to the development of age-related pathologies, such as cardiovascular diseases, diabetes, and cancer. In particular, senescent cells have been shown to produce inflammatory cytokines and other pro-inflammatory molecules that can contribute to these conditions. In turn, ferroptosis has been linked to the development of various health disorders, including neurodegeneration, cardiovascular disease, and cancer. Ferroptosis is known to play a role in the development of these pathologies by promoting the death of damaged or diseased cells and contributing to the inflammation often associated. Both senescence and ferroptosis are complex pathways that are still not fully understood. Further research is needed to thoroughly investigate the role of these processes in aging and disease, and to identify potential interventions to target such processes in order to prevent or treat age-related conditions. This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, ferroptosis, aging, and disease, and whether they can be exploited to block or limit the decay of the physiological functions in elderly people for a healthy longevity.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
- Correspondence:
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
88
|
Wang Y, Chen Z, Luo J, Zhang J, Sang AM, Cheng ZS, Li XY. Salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis. Int Immunopharmacol 2023; 115:109731. [PMID: 36907990 DOI: 10.1016/j.intimp.2023.109731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ferroptosis, an iron-dependent programmed necrosis, is linked to lung ischemia-reperfusion injury. Salidroside is a glycoside derived from the Rhodiola rosea plant that exhibits anti-inflammatory and antioxidant properties. However, it is uncertain whether salidroside alleviates lung ischemia-reperfusion injury. This investigation explored the function of salidroside in ferroptosis in lung ischemia-reperfusion injury. METHODS A lung ischemia-reperfusion model was established in wild-type and Nrf2-/- mice, and pulmonary epithelial cells were exposed to hypoxia/regeneration in vitro. We evaluated ferroptosis-related factors by western blotting, transmission electron microscopy, and fluorescence microscopy. To investigate the regulation of Nrf2 by salidroside, coimmunoprecipitation and luciferase reporter assays were used. Transwell assays were used to detect macrophage migration. RESULTS The data indicated that salidroside postconditioning significantly reduced ferroptosis and alleviated lung ischemia-reperfusion injury in wild-type mice, as evidenced by improved histology and inflammation, reduced lipid peroxides and iron overload, and the induction of Nrf2, SLC7A11, and GPX4 expression. Salidroside activated Nrf2 signaling, resulting in Keap1-Nrf2 dissociation, nuclear translocation, and increased antioxidant-response element reporter activity. Sal consistently inhibited hypoxia/regeneration-induced pulmonary epithelial cell ferroptosis by activating the Nrf2 signaling pathway. Furthermore, ferroptotic cells recruited macrophages via CCL2, whereas salidroside lowered CCL2 expression and inhibited ferroptosis-induced macrophage chemotaxis in lung ischemia-reperfusion injury. Additionally, the antiferroptotic effects of salidroside against lung ischemia-reperfusion injury were eliminated in Nrf2-/- mice. CONCLUSIONS This study clearly shows that salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Zhe Chen
- Department of Otolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Jing Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - A-Ming Sang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Zhen-Shun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei 430071, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China.
| | - Xin-Yi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
89
|
Xu S, Li X, Wang Y. Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review). Exp Ther Med 2023; 25:113. [PMID: 36793330 PMCID: PMC9922943 DOI: 10.3892/etm.2023.11812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.
Collapse
Affiliation(s)
- Shuangli Xu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xuewei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China,Correspondence to: Dr Yanqiang Wang, Department of Neurology, Affiliated Hospital of Weifang Medical University, 2,428 Yuhe Road, Kuiwen, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
90
|
Xu S, Li X, Li Y, Li X, Lv E, Zhang X, Shi Y, Wang Y. Neuroprotective effect of Dl-3-n-butylphthalide against ischemia-reperfusion injury is mediated by ferroptosis regulation via the SLC7A11/GSH/GPX4 pathway and the attenuation of blood-brain barrier disruption. Front Aging Neurosci 2023; 15:1028178. [PMID: 36909944 PMCID: PMC9995665 DOI: 10.3389/fnagi.2023.1028178] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background Stroke is one of the most severe diseases worldwide, resulting in physical and mental problems. Dl-3-n-butylphthalide, a compound derived from celery seed, has been approved for treating ischemic stroke in China. No study has evaluated how Dl-3-n-butylphthalide affects the ferroptosis SLC7A11/GSH/GPX4 signal pathway and blood-brain barrier (BBB) PDGFRβ/PI3K/Akt signal pathways in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model of ischemic stroke. Methods Sprague-Dawley rats were used to develop the MCAO/R model. Our study used three incremental doses (10, 20, and 30) of Dl-3-n-butylphthalide injected intraperitoneally 24 h after MCAO/R surgery. The neuroprotective effect and success of the model were evaluated using the neurofunction score, brain water content determination, and triphenyl-tetrazolium chloride-determined infarction area changes. Pathological changes in the brain tissue and the degree of apoptosis were examined by hematoxylin and eosin, Nissl, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, pathway proteins and RNA expression levels were studied to verify the effects of Dl-3-n-butyphthalide on both pathways. At the same time, commercial kits were used to detect glutathione, reactive oxygen species, and malondialdehyde, to detect oxidative stress in brain tissues. Results The middle dose of Dl-3-n-butylphthalide not only improved MCAO-induced brain dysfunction and alleviated pathological damage, brain inflammatory response, oxidative stress, and apoptosis but also protected against ferroptosis and reduced BBB damage. These changes resulted in improved neurological function in the cerebral cortex. Conclusion We speculate that Dl-3-n-butylphthalide has a neuroprotective effect on focal cerebral ischemia/reperfusion, which may be mediated through ferroptosis-dependent SLC7A11/GSH/GPX4 signal pathway and PDGFRβ/PI3/Akt signal pathway.
Collapse
Affiliation(s)
- Shuangli Xu
- Emergency Department, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xuewei Li
- Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yutian Li
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Xiaojun Zhang
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Youkui Shi
- Emergency Department, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanqiang Wang
- Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
91
|
Li B, Wang W, Li Y, Wang S, Liu H, Xia Z, Gao W, Zhao B. cGAS-STING pathway aggravates early cerebral ischemia-reperfusion injury in mice by activating NCOA4-mediated ferritinophagy. Exp Neurol 2023; 359:114269. [PMID: 36343680 DOI: 10.1016/j.expneurol.2022.114269] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Stroke patients are often complicated by cerebral ischemia-reperfusion injury (CIRI) after the restoration of cerebral perfusion, and how to prevent CIRI at an early stage has received close attention. The imbalance of iron metabolism is one of the essential factors in the aggravation of CIRI, and NCOA4-mediated ferritinophagy, as a critical pathway to regulate iron metabolism, is expected to be an effective intervention target. We established a mouse model of cerebral ischemia-reperfusion (CIR) with NCOA4 silencing. We found that activation of NCOA4-mediated ferritinophagy atthe early stage of CIR mediated the onset of oxidative stress and contributed to autophagy and apoptosis, and eventually resulted in increased brain injury. This suggests that NCOA4-mediated ferritinophagy plays a vital role in early CIR and can be an effective target to prevent and treat CIRI. We next explored the upstream regulatory targets of NCOA4-mediated ferritinophagy. The previous evidence for the cGAS-STING pathway's importance during CIR and its strong relationship with autophagy attracted our attention. To investigate whether the cGAS-STING pathway regulates NCOA4-mediated ferritinophagy, we further administered a cGAS inhibitor to mice with CIR and overexpressed NCOA4. Along with the inhibition of the cGAS-STING pathway, ferritinophagy, oxidative stress, autophagy, and apoptosis were inhibited, and CIRI was ameliorated, which was attenuated by NCOA4 overexpression. In conclusion, our results suggest that activation of the cGAS-STING pathway exacerbates CIRI at the early stage of CIR, which may be achieved by mediating NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Su Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hengjuan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
92
|
Hou Z, Lin Y, Yang X, Chen J, Li G. Therapeutics of Extracellular Vesicles in Cardiocerebrovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:187-205. [PMID: 37603281 DOI: 10.1007/978-981-99-1443-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membranous vesicles containing DNA, RNA, lipids, and proteins, which play versatile roles in intercellular communications. EVs are increasingly being recognized as the promising therapeutic agents for many diseases, including cardiocerebrovascular and metabolic diseases, due to their ability to deliver functional and therapeutical molecules. In this chapter, the biological characteristics and functions of EVs are briefly summarized. Importantly, the current state of applying EVs in the prevention and treatment of cardiocerebrovascular and metabolic diseases, including myocardial infarction, atrial fibrillation, myocardial hypertrophy, stroke, diabetes, Alzheimer's disease, fatty liver, obesity, thyroid diseases, and osteoporosis, is discussed. Lastly, the challenges and prospects related to the preclinical and clinical application of EVs receive a particular focus.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yiyan Lin
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, China
- Fangshan Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
93
|
Scarpellini C, Ramos Llorca A, Lanthier C, Klejborowska G, Augustyns K. The Potential Role of Regulated Cell Death in Dry Eye Diseases and Ocular Surface Dysfunction. Int J Mol Sci 2023; 24:731. [PMID: 36614174 PMCID: PMC9820812 DOI: 10.3390/ijms24010731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The research on new treatments for dry eye diseases (DED) has exponentially grown over the past decades. The increased prevalence of dry eye conditions, particularly in the younger population, has received much attention. Therefore, it is of utmost importance to identify novel therapeutical targets. Regulated cell death (RCD) is an essential process to control the biological homeostasis of tissues and organisms. The identification of different mechanisms of RCD stimulated the research on their involvement in different human pathologies. Whereas apoptosis has been widely studied in DED and included in the DED vicious cycle, the role of RCD still needs to be completely elucidated. In this review, we will explore the potential roles of different types of RCD in DED and ocular surface dysfunction. Starting from the evidence of oxidative stress and inflammation in dry eye pathology, we will analyse the potential therapeutic applications of the following principal RCD mechanisms: ferroptosis, necroptosis, and pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2160 Antwerp, Belgium
| |
Collapse
|
94
|
Zhao Y, Liu Y, Xu Y, Li K, Zhou L, Qiao H, Xu Q, Zhao J. The Role of Ferroptosis in Blood-Brain Barrier Injury. Cell Mol Neurobiol 2023; 43:223-236. [PMID: 35106665 PMCID: PMC11415168 DOI: 10.1007/s10571-022-01197-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
95
|
Yang K, Bao T, Zeng J, Wang S, Yuan X, Xiang W, Xu H, Zeng L, Ge J. Research progress on pyroptosis-mediated immune-inflammatory response in ischemic stroke and the role of natural plant components as regulator of pyroptosis: A review. Biomed Pharmacother 2023; 157:113999. [PMID: 36455455 DOI: 10.1016/j.biopha.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Its pathogenesis is not completely clear, and inflammatory cascade is one of its main pathological processes. The current clinical practice of IS is to restore the blood supply to the ischemic area after IS as soon as possible through thrombolytic therapy to protect the vitality and function of neurons. However, blood reperfusion further accelerates ischemic damage and cause ischemia-reperfusion injury. The pathological process of cerebral ischemia-reperfusion injury involves multiple mechanisms, and the exact mechanism has not been fully elucidated. Pyroptosis, a newly discovered form of inflammatory programmed cell death, plays an important role in the initiation and progression of inflammation. It is a pro-inflammatory programmed death mediated by caspase Caspase-1/4/5/11, which can lead to cell swelling and rupture, release inflammatory factors IL-1β and IL-18, and induce an inflammatory cascade. Recent studies have shown that pyroptosis and its mediated inflammatory response are important factors in aggravating ischemic brain injury, and inhibition of pyroptosis may alleviate the ischemic brain injury. Furthermore, studies have found that natural plant components may have a regulatory effect on pyroptosis. Therefore, this review not only summarizes the molecular mechanism of pyroptosis and its role in ischemic stroke, but also the role of natural plant components as regulator of pyroptosis, in order to provide reference information on pyroptosis for the treatment of IS in the future.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Tingting Bao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, Hunan Province, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
96
|
Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ 2023; 30:69-81. [PMID: 35933500 PMCID: PMC9883496 DOI: 10.1038/s41418-022-01046-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Glaucoma can result in retinal ganglion cell (RGC) death and permanently damaged vision. Pathologically high intraocular pressure (ph-IOP) is the leading cause of damaged vision during glaucoma; however, controlling ph-IOP alone does not entirely prevent the loss of glaucomatous RGCs, and the underlying mechanism remains elusive. In this study, we reported an increase in ferric iron in patients with acute primary angle-closure glaucoma (the most typical glaucoma with ph-IOP damage) compared with the average population by analyzing free iron levels in peripheral serum. Thus, iron metabolism might be involved in regulating the injury of RGCs under ph-IOP. In vitro and in vivo studies confirmed that ph-IOP led to abnormal accumulation of ferrous iron in cells and retinas at 1-8 h post-injury and elevation of ferric iron in serum at 8 h post-injury. Nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin heavy polypeptide 1(FTH1) is essential to disrupt iron metabolism in the retina after ph-IOP injury. Furthermore, knockdown of Ncoa4 in vivo inhibited FTH1 degradation and reduced the retinal ferrous iron level. Elevated ferrous iron induced by ph-IOP led to a marked accumulation of pro-ferroptotic factors (lipid peroxidation and acyl CoA synthetase long-chain family member 4) and a depletion of anti-ferroptotic factors (glutathione, glutathione peroxidase 4, and nicotinamide adenine dinucleotide phosphate). These biochemical changes resulted in RGC ferroptosis. Deferiprone can pass through the blood-retinal barrier after oral administration and chelated abnormally elevated ferrous iron in the retina after ph-IOP injury, thus inhibiting RGC ferroptosis and protecting visual function. In conclusion, this study revealed the role of NCOA4-FTH1-mediated disturbance of iron metabolism and ferroptosis in RGCs during glaucoma. We demonstrate the protective effect of Deferiprone on RGCs via inhibition of ferroptosis, providing a research direction to understand and treat glaucoma via the iron homeostasis and ferroptosis pathways.
Collapse
|
97
|
Sun Y, Li Q, Guo H, He Q. Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells 2022; 12:cells12010090. [PMID: 36611883 PMCID: PMC9818318 DOI: 10.3390/cells12010090] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The method of iron-dependent cell death known as ferroptosis is distinct from apoptosis. The suppression of ferroptosis after intracerebral hemorrhage (ICH) will effectively treat ICH and improve prognosis. This paper primarily summarizes the mechanism of ferroptosis after ICH, with an emphasis on lipid peroxidation, the antioxidant system, iron metabolism, and other pathways. In addition, regulatory targets and drug molecules were described. Although there has been some progress in the field of study, there are still numerous gaps. The mechanism by which non-heme iron enters neurons through the blood-brain barrier (BBB), the mitochondrial role in ferroptosis, and the specific mechanism by which lipid peroxidation induces ferroptosis remain unclear and require further study. In addition, the inhibitory effect of many drugs on ferroptosis after ICH has only been demonstrated in basic experiments and must be translated into clinical trials. In summary, research on ferroptosis following ICH will play an important role in the treatment of ICH.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
98
|
Englisch CN, Paulsen F, Tschernig T. TRPC Channels in the Physiology and Pathophysiology of the Renal Tubular System: What Do We Know? Int J Mol Sci 2022; 24:ijms24010181. [PMID: 36613622 PMCID: PMC9820145 DOI: 10.3390/ijms24010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The study of transient receptor potential (TRP) channels has dramatically increased during the past few years. TRP channels function as sensors and effectors in the cellular adaptation to environmental changes. Here, we review literature investigating the physiological and pathophysiological roles of TRPC channels in the renal tubular system with a focus on TRPC3 and TRPC6. TRPC3 plays a key role in Ca2+ homeostasis and is involved in transcellular Ca2+ reabsorption in the proximal tubule and the collecting duct. TRPC3 also conveys the osmosensitivity of principal cells of the collecting duct and is implicated in vasopressin-induced membrane translocation of AQP-2. Autosomal dominant polycystic kidney disease (ADPKD) can often be attributed to mutations of the PKD2 gene. TRPC3 is supposed to have a detrimental role in ADPKD-like conditions. The tubule-specific physiological functions of TRPC6 have not yet been entirely elucidated. Its pathophysiological role in ischemia-reperfusion injuries is a subject of debate. However, TRPC6 seems to be involved in tumorigenesis of renal cell carcinoma. In summary, TRPC channels are relevant in multiples conditions of the renal tubular system. There is a need to further elucidate their pathophysiology to better understand certain renal disorders and ultimately create new therapeutic targets to improve patient care.
Collapse
Affiliation(s)
- Colya N. Englisch
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
- Correspondence: ; Tel.: +49-6841-1626-100
| |
Collapse
|
99
|
Dai Y, Hu L. HSPB1 overexpression improves hypoxic-ischemic brain damage by attenuating ferroptosis in rats through promoting G6PD expression. J Neurophysiol 2022; 128:1507-1517. [PMID: 36321738 DOI: 10.1152/jn.00306.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Heat-shock protein B (HSPB1) has a neuroprotective effect on brain injury and is a negative regulator of ferroptosis. Therefore, we infer that HSPB1 plays a protective role in hypoxic-ischemic (HI) brain damage by inhibiting ferroptosis. A neonatal rat model of hypoxic-ischemic (HI) brain damage was established. HSPB1 overexpression plasmid and the negative control were injected into the lateral ventricle of rats 48 h before HI brain damage surgery. HSPB1 and glucose-6-phosphate dehydrogenase (G6PD) levels, infarction rate, iron accumulation, apoptosis, and ferroptosis-related markers were estimated with the assistance of qRT-PCR, 2,3,5-triphenyl tetrazolium chloride (TTC) staining, Prussian blue staining, iron assay kit, TUNEL staining, and Western blot. In vitro, after transfection, HSPB1 and G6PD levels, oxygen-glucose deprivation (OGD)-mediated hippocampal neuron cell viability, apoptosis, iron content, and ferroptosis-related markers were assessed using qRT-PCR, MTT, flow cytometry, iron assay kit, and Western blot. HSPB1 and G6PD were overexpressed in the hippocampus tissues of HI rats. High expression of HSPB1 in HI rats lessened infarction rate and ferritin level, hindered iron accumulation and apoptosis, and promoted GPX4, SLC7A11, and TFR1 levels. In OGD-mediated hippocampal neuron cells, HSPB1 upregulation intensified the viability and repressed apoptosis and ferroptosis, whereas G6PD silencing reversed the effects of HSPB1 upregulation. We documented that HSPB1 overexpression unleashes neuroprotective effects via modulating G6PD expression, which offers a novel target for the prevention and treatment of HI brain damage.NEW & NOTEWORTHY HSPB1 and G6PD were overexpressed in the hippocampus tissues of HI rats. High expression of HSPB1 in HI rats mitigated infarction rate and iron accumulation. HSPB1 overexpression reduced ferritin level, attenuated apoptosis, yet augmented GPX4, SLC7A11, and TFR1 levels in the hippocampus tissues of HI rats. G6PD deletion impaired the protective role of HSPB1 overexpression against HI brain damage-induced ferroptosis.
Collapse
Affiliation(s)
- Yi Dai
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Lan Hu
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| |
Collapse
|
100
|
Jung C, Rezar R, Wischmann P, Masyuk M, Datz C, Bruno RR, Kelm M, Wernly B. The role of anemia on admission in acute coronary syndrome - An umbrella review of systematic reviews and meta-analyses. Int J Cardiol 2022; 367:1-10. [PMID: 36055474 DOI: 10.1016/j.ijcard.2022.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The role of erythrocytes in the acute coronary syndrome (ACS) is complex. The aim of this review in terms of PICO (P: patients; I: intervention; C: comparison; O: outcome) was to summarize systematic reviews in patients (P) with acute coronary syndrome, evaluating the effects of (I) 1) iron deficiency, 2) administration of an erythropoiesis-stimulating agent (ESA), 3) anemia on admission, 4) red blood cell transfusion, 5) a restrictive transfusion strategy in comparison (C) to 1) no iron deficiency, 2) no ESA 3) no anemia on admission, 4) no red blood cell transfusion, 5) a liberal transfusion strategy on mortality (O). METHODS We used AMSTAR2 to assess the methodological quality of systematic reviews and grade the available research. The primary endpoint was all-cause mortality. RESULTS Using the data from 2,787,005 patients, the following conditions were associated with worse outcome in patients with ACS: anemia on admission (RR 2.08 95%CI 1.70-2.55) and transfusion (1.93 95%CI 1.12-3.34) of red blood cells. A liberal transfusion (RR 0.86 95%CI 0.70-1-05), administration of ESA (RR 0.55 95%CI 0.22-1.33) and iron deficiency (OR 1.24 95%CI 0.12-13.13) were not associated with altered all-cause mortality. CONCLUSION Patients suffering from ACS and anemia on admission are at particular risk for adverse outcome. There is evidence of associations between adverse outcomes and receiving red blood cell transfusions.
Collapse
Affiliation(s)
- Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Duesseldorf, Germany.
| | - Richard Rezar
- Department of Cardiology and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria.
| | - Patricia Wischmann
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Maryna Masyuk
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Christian Datz
- Department of Internal Medicine, Teaching Hospital of the Paracelsus Medical University Salzburg, General Hospital Oberndorf, Paracelsus Medical University Salzburg, Oberndorf, Austria.
| | - Raphael Romano Bruno
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Bernhard Wernly
- Department of Internal Medicine, Teaching Hospital of the Paracelsus Medical University Salzburg, General Hospital Oberndorf, Paracelsus Medical University Salzburg, Oberndorf, Austria; Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|