51
|
Duchemin C, Ramos JP, Stora T, Ahmed E, Aubert E, Audouin N, Barbero E, Barozier V, Bernardes AP, Bertreix P, Boscher A, Bruchertseifer F, Catherall R, Chevallay E, Christodoulou P, Chrysalidis K, Cocolios TE, Comte J, Crepieux B, Deschamps M, Dockx K, Dorsival A, Fedosseev VN, Fernier P, Formento-Cavaier R, El Idrissi S, Ivanov P, Gadelshin VM, Gilardoni S, Grenard JL, Haddad F, Heinke R, Juif B, Khalid U, Khan M, Köster U, Lambert L, Lilli G, Lunghi G, Marsh BA, Palenzuela YM, Martins R, Marzari S, Menaa N, Michel N, Munos M, Pozzi F, Riccardi F, Riegert J, Riggaz N, Rinchet JY, Rothe S, Russell B, Saury C, Schneider T, Stegemann S, Talip Z, Theis C, Thiboud J, van der Meulen NP, van Stenis M, Vincke H, Vollaire J, Vuong NT, Webster B, Wendt K, Wilkins SG, the CERN-MEDICIS collaboration. CERN-MEDICIS: A Review Since Commissioning in 2017. Front Med (Lausanne) 2021; 8:693682. [PMID: 34336898 PMCID: PMC8319400 DOI: 10.3389/fmed.2021.693682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to its Radiological Controlled Area and laboratory. Targets are being irradiated by the 1.4 GeV proton beam delivered by the CERN Proton Synchrotron Booster (PSB) on a station placed between the High Resolution Separator (HRS) ISOLDE target station and its beam dump. Irradiated target materials are also received from external institutes to undergo mass separation at CERN-MEDICIS. All targets are handled via a remote handling system and exploited on a dedicated isotope separator beamline. To allow for the release and collection of a specific radionuclide of medical interest, each target is heated to temperatures of up to 2,300°C. The created ions are extracted and accelerated to an energy up to 60 kV, and the beam steered through an off-line sector field magnet mass separator. This is followed by the extraction of the radionuclide of interest through mass separation and its subsequent implantation into a collection foil. In addition, the MELISSA (MEDICIS Laser Ion Source Setup At CERN) laser laboratory, in service since April 2019, helps to increase the separation efficiency and the selectivity. After collection, the implanted radionuclides are dispatched to the biomedical research centers, participating in the CERN-MEDICIS collaboration, for Research & Development in imaging or treatment. Since its commissioning, the CERN-MEDICIS facility has provided its partner institutes with non-conventional medical radionuclides such as Tb-149, Tb-152, Tb-155, Sm-153, Tm-165, Tm-167, Er-169, Yb-175, and Ac-225 with a high specific activity. This article provides a review of the achievements and milestones of CERN-MEDICIS since it has produced its first radioactive isotope in December 2017, with a special focus on its most recent operation in 2020.
Collapse
Affiliation(s)
- Charlotte Duchemin
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | - Joao P. Ramos
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | - Thierry Stora
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Essraa Ahmed
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | - Elodie Aubert
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | - Ermanno Barbero
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Vincent Barozier
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Ana-Paula Bernardes
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Philippe Bertreix
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Aurore Boscher
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Nuclear Safety and Security, Karlsruhe, Germany
| | - Richard Catherall
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Eric Chevallay
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | | | - Thomas E. Cocolios
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | - Jeremie Comte
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Bernard Crepieux
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Matthieu Deschamps
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Kristof Dockx
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | - Alexandre Dorsival
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | - Pascal Fernier
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Robert Formento-Cavaier
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Groupement d'Intérêt Public ARRONAX, Nantes, France
| | - Safouane El Idrissi
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Peter Ivanov
- National Physical Laboratory, Teddington, United Kingdom
| | - Vadim M. Gadelshin
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Johannes Gutenberg University, Mainz, Germany
| | - Simone Gilardoni
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Jean-Louis Grenard
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Ferid Haddad
- Groupement d'Intérêt Public ARRONAX, Nantes, France
| | - Reinhard Heinke
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | - Benjamin Juif
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Umair Khalid
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
| | - Moazam Khan
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
| | | | - Laura Lambert
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - G. Lilli
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Giacomo Lunghi
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Bruce A. Marsh
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | - Renata Martins
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Stefano Marzari
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Nabil Menaa
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | - Maxime Munos
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Fabio Pozzi
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Francesco Riccardi
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Julien Riegert
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Nicolas Riggaz
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Jean-Yves Rinchet
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Sebastian Rothe
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Ben Russell
- National Physical Laboratory, Teddington, United Kingdom
| | - Christelle Saury
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Thomas Schneider
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Simon Stegemann
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
- Katholieke Universiteit (KU) Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium
| | | | - Christian Theis
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Julien Thiboud
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | - Miranda van Stenis
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Heinz Vincke
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Joachim Vollaire
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | - Nhat-Tan Vuong
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | | - Klaus Wendt
- Johannes Gutenberg University, Mainz, Germany
| | - Shane G. Wilkins
- Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva, Switzerland
| | | |
Collapse
|
52
|
Deberle LM, Benešová M, Becker AE, Ratz M, Guzik P, Schibli R, Müller C. Novel Synthetic Strategies Enable the Efficient Development of Folate Conjugates for Cancer Radiotheranostics. Bioconjug Chem 2021; 32:1617-1628. [PMID: 34251183 DOI: 10.1021/acs.bioconjchem.1c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folate receptor (FR) is an interesting target for radiotheranostics due to its overexpression in several tumor types. The progress in developing novel folate radioconjugates is, however, slow due to the synthetic challenges that folate chemistry presents. The goal of this study was, thus, to establish versatile solid-phase synthetic strategies for a convenient preparation of novel folate conjugates. Two approaches were established based on an orthogonal fluorenylmethyloxycarbonyl (Fmoc)-protection strategy to enable a modular buildup of an albumin-binding DOTA conjugate (known as OxFol-1) using folic acid (oxidized folate version) as a targeting agent. The main difference between the two approaches was the sequence of conjugating the single structural units. The approach that introduced the folate entity as the last unit appeared particularly useful for the preparation of conjugates based on 6R- or 6S-5-methyltetrahydrofolic acid (5-MTHF; a reduced folate version) as targeting entity. Three types of folate conjugates were synthesized either with a p-iodophenyl-based albumin binder (OxFol-1, 6R-RedFol-1, and 6S-RedFol-1) or without an albumin-binding entity (OxFol-14, 6R-RedFol-14, and 6S-RedFol-14). All six conjugates were obtained with high chemical purity (>98%) after 9-13 synthesis steps and a single final HPLC purification. Radiolabeling with lutetium-177 was feasible at high molar activity, and the resulting radioconjugates were stable over at least 24 h. Biodistribution and SPECT/CT imaging studies confirmed the favorable effect of an albumin-binding entity to increase the tumor uptake and reduce kidney retention of folate radioconjugates. The increased tumor-to-kidney ratios obtained with [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 as compared to [177Lu]Lu-OxFol-1 indicated that 5-MTHF is the preferred FR-targeting agent for albumin-binding radioconjugates. This was, however, not the case for folate radioconjugates without an albumin binder. Thanks to the established synthesis strategy, the preparation of further folate radioconjugates will be facilitated, potentially enabling the optimization of the tissue distribution characteristics even more.
Collapse
Affiliation(s)
- Luisa M Deberle
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Anna E Becker
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Magdalena Ratz
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Patrycja Guzik
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
53
|
She X, Qin S, Jing B, Jin X, Sun X, Lan X, An R. Radiotheranostic Targeting Cancer Stem Cells in Human Colorectal Cancer Xenografts. Mol Imaging Biol 2021; 22:1043-1053. [PMID: 32125599 DOI: 10.1007/s11307-019-01467-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study was to perform radiotheranostics with radioiodinated monoclonal antibodies (mAbs) for targeting cancer stem cells (CSCs) in human colorectal cancer xenografts and evaluate the relative advantage of a cocktail containing both [131I]CD133 mAb and [131I]CD44 mAb. PROCEDURES Tumor-bearing mice were randomly divided into eight groups: [131I]CD133mAb, [131I]CD44 mAb, [131I]IgG isotype control, radioiodinated mAb cocktail, CD133 mAb, CD44 mAb, unradioiodinated mAb cocktail, and saline groups. In vivo single photon emission computed tomography (SPECT) imaging was used to monitor dynamically changes in the CSC population after treatment. The radioactivity uptake of tumors was quantified ex vivo. The expression of CD133 and CD44 after treatment was also assessed by immunohistochemistry and western blot. Tumor growth curves and survival curves were generated to assess treatment efficacy. Cell apoptosis and proliferation in xenografts 30 days after treatment were measured by TdT-mediated dUTP-biotin nick end labeling (aka, TUNEL) and Ki67 staining. The expression levels of biomarkers in xenografts 30 days after treatment were measured by flow cytometry. RESULTS The radioimmunoimaging (RII) with in vivo SPECT showed that the CSC-targeting radioimmunotherapy (RIT) groups ([131I]CD133 mAb, [131I]CD44 mAb, and radioiodinated mAb cocktail groups) had intense accumulations of radiolabeled agents in the tumor areas. The ex vivo biodistribution confirmed these findings. In the CSC-targeting RIT groups, immunohistochemistry and western blot indicated significant reduction of specific target expression in the xenografts. The tumor growth curves and survival curves showed that the CSC-targeting RIT significantly inhibited tumor growth and prolonged mean survival, respectively. Significantly increased apoptosis and decreased proliferation in xenografts further confirmed the therapeutic efficacy of CSC-targeting RIT. Flow cytometry showed that the decreases in CSCs correlated with the presence of the corresponding antibodies. CONCLUSIONS Our results suggest that the CSC-targeting RIT can effectively reduce CSCs which consequently inhibits tumor development. The radioiodinated mAb cocktail may generate enhanced CSC-targeting specificity.
Collapse
Affiliation(s)
- Xianliang She
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Saimei Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xueyan Jin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Ave., Wuhan, 430022, Hubei Province, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
54
|
Gizawy MA, Shamsel-Din HA, Attallah MF. Purification development of carrier-free 47Sc produced from natTi(n,p) reaction for radiotheranostic applications. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, Garnuszek P. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharm Chem 2021; 6:19. [PMID: 34036449 PMCID: PMC8149571 DOI: 10.1186/s41181-021-00131-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023] Open
Abstract
In the frame of "precision medicine", the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.
Collapse
Affiliation(s)
- R Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - S Huclier-Markai
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France.
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France.
| | - C Alliot
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
- CRCINA, Inserm / CNRS / Université de Nantes, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - F Haddad
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
| | - D Szikra
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - V Forgacs
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - P Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| |
Collapse
|
56
|
Kazakov AG, Ekatova TY, Babenya JS. Photonuclear production of medical radiometals: a review of experimental studies. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07683-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
57
|
Theoretical and experimental investigations of Sc-47 production at Egyptian Second Research Reactor (ETRR-2). J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
Vaughn BA, Koller AJ, Boros E. Aqueous chemistry of the smallest rare earth: Comprehensive characterization of radioactive and non-radioactive scandium complexes for biological applications. Methods Enzymol 2021; 651:343-371. [PMID: 33888209 DOI: 10.1016/bs.mie.2021.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aqueous chemistry of scandium(III) is of emerging interest for biological applications, specifically in nuclear medicine, as radioactive isotopes of scandium are becoming more readily accessible. In contrast to other rare earths, Sc3+ has no d or f electrons, limiting characterization of corresponding coordination complexes to spectroscopic techniques that do not rely on the characteristic electronic transitions of f-elements or transition metal ions. Herein, we provide a comprehensive overview on characterization techniques suitable to elucidate the solution behavior of small and macromolecular complexes of the smallest rare earth.
Collapse
Affiliation(s)
- Brett A Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
59
|
Nardo LD, Pupillo G, Mou L, Furlanetto D, Rosato A, Esposito J, Meléndez-Alafort L. Preliminary dosimetric analysis of DOTA-folate radiopharmaceutical radiolabelled with 47Sc produced through natV(p,x) 47Sc cyclotron irradiation. Phys Med Biol 2021; 66:025003. [PMID: 33480361 DOI: 10.1088/1361-6560/abc811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
47Sc is one of the most promising theranostic radionuclides, thanks to its low energy γ-ray emission (159 keV), suitable for single photon emission computed tomography imaging and its intense β - emission, useful for tumour treatment. Despite promising preclinical results, the translation of 47Sc-therapeutic agents to the clinic is hampered by its limited availability. Among different 47Sc-production routes currently being investigated, the natV(p,x)47Sc reaction has proved to be of particular interest, thanks to the low-cost and easy availability on the market of natV material and the diffusion of medium energy proton cyclotrons. However, the cross section of this specific nuclear reaction is quite low and small amounts of Sc-contaminants are co-produced at energies E P ≤ 45 MeV, namely 48Sc and 46Sc. The main concern with these Sc-contaminants is their contribution to the patient absorbed dose. For such a reason, the absorbed dose contributions to healthy organs and the effective dose contributions by the three radioisotopes, 48Sc, 47Sc and 46Sc, were evaluated using DOTA-folate conjugate (cm10) as an example of radiopharmaceutical product. Considering as acceptable the limits of 99% for the radionuclidic purity and 10% for the contribution of radioactive Sc-contaminants to the total effective dose after 47Sc-cm10 injection, it was obtained that proton beam energies below 35 MeV must be used to produce 47Sc through irradiation of a natV target.
Collapse
Affiliation(s)
- L De Nardo
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, Padova 35131, Italy. INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Padova, Via Marzolo 8, Padova 35131, Italy
| | | | | | | | | | | | | |
Collapse
|
60
|
Vaughn BA, Koller AJ, Chen Z, Ahn SH, Loveless CS, Cingoranelli SJ, Yang Y, Cirri A, Johnson CJ, Lapi SE, Chapman KW, Boros E. Homologous Structural, Chemical, and Biological Behavior of Sc and Lu Complexes of the Picaga Bifunctional Chelator: Toward Development of Matched Theranostic Pairs for Radiopharmaceutical Applications. Bioconjug Chem 2020; 32:1232-1241. [PMID: 33284001 DOI: 10.1021/acs.bioconjchem.0c00574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radioactive isotopes scandium-44/47 and lutetium-177 are gaining relevance for radioimaging and radiotherapy, resulting in a surge of studies on their coordination chemistry and subsequent applications. Although the trivalent ions of these elements are considered close homologues, dissimilar chemical behavior is observed when they are complexed by large ligand architectures due to discrepancies between Lu(III) and Sc(III) ions with respect to size, chemical hardness, and Lewis acidity. Here, we demonstrate that Lu and Sc complexes of 1,4-bis(methoxycarbonyl)-7-[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane (H3mpatcn) and its corresponding bioconjugate picaga-DUPA can be employed to promote analogous structural features and, subsequently, biological properties for coordination complexes of these ions. The close homology was evidenced using potentiometric methods, computational modeling, variable temperature mass spectrometry, and pair distribution function analysis of X-ray scattering data. Radiochemical labeling, in vitro stability, and biodistribution studies with Sc-47 and Lu-177 indicate that the 7-coordinate ligand environment of the bifunctional picaga ligand is compatible with biological applications and the future investigation of β-emitting, picaga-chelated Sc and Lu isotopes for radiotherapy.
Collapse
Affiliation(s)
- Brett A Vaughn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Angus J Koller
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Shin Hye Ahn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - C Shaun Loveless
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Yi Yang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Anthony Cirri
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
61
|
Mousa AM, Abdel Aziz OA, Al-Hagar OE, Gizawy MA, Allan KF, Attallah MF. Biosynthetic new composite material containing CuO nanoparticles produced by Aspergillus terreus for 47Sc separation of cancer theranostics application from irradiated Ca target. Appl Radiat Isot 2020; 166:109389. [DOI: 10.1016/j.apradiso.2020.109389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022]
|
62
|
Abel EP, Domnanich K, Clause HK, Kalman C, Walker W, Shusterman JA, Greene J, Gott M, Severin GW. Production, Collection, and Purification of 47Ca for the Generation of 47Sc through Isotope Harvesting at the National Superconducting Cyclotron Laboratory. ACS OMEGA 2020; 5:27864-27872. [PMID: 33163769 PMCID: PMC7643120 DOI: 10.1021/acsomega.0c03020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
An experiment was performed at the National Superconducting Cyclotron Laboratory using a 140 MeV/nucleon 48Ca beam and a flowing-water target to produce 47Ca for the first time with this production route. A production rate of 0.020 ± 0.004 47Ca nuclei per incoming beam particle was measured. An isotope harvesting system attached to the target was used to collect radioactive cationic products, including 47Ca, from the water on a cation-exchange resin. The 47Ca collected was purified using three separation methods optimized for this work: (1) DGA extraction chromatography resin with HNO3 and HCl, (2) AG MP-50 cation-exchange resin with an increasing concentration gradient of HCl, and (3) AG MP-50 cation-exchange resin with a methanolic HCl gradient. These methods resulted in ≥99 ± 2% separation yield of 47Ca with 100% radionuclidic purity within the limits of detection for HPGe measurements. Inductively coupled plasma-optical emission spectrometry (ICP-OES) was used to identify low levels of stable ions in the water of the isotope harvesting system during the irradiation and in the final purified solution of 47Ca. For the first time, this experiment demonstrated the feasibility of the production, collection, and purification of 47Ca through isotope harvesting for the generation of 47Sc for nuclear medicine applications.
Collapse
Affiliation(s)
- E. Paige Abel
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- National
Superconducting Cyclotron Laboratory, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Katharina Domnanich
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- National
Superconducting Cyclotron Laboratory, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Hannah K. Clause
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- National
Superconducting Cyclotron Laboratory, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Colton Kalman
- National
Superconducting Cyclotron Laboratory, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Wes Walker
- National
Superconducting Cyclotron Laboratory, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jennifer A. Shusterman
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
- Ph.
D. Program in Chemistry, The Graduate Center
of the City of New York, New York, New York 10016, United States
| | - John Greene
- Physics
Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew Gott
- Physics
Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gregory W. Severin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- National
Superconducting Cyclotron Laboratory, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
63
|
Ferguson S, Wuest M, Richter S, Bergman C, Dufour J, Krys D, Simone J, Jans HS, Riauka T, Wuest F. A comparative PET imaging study of 44gSc- and 68Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol 2020; 90-91:74-83. [PMID: 33189947 DOI: 10.1016/j.nucmedbio.2020.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Radiolabeled peptides play a central role in nuclear medicine as radiotheranostics for targeted imaging and therapy of cancer. We have recently proposed the use of metabolically stabilized GRPR antagonist BBN2 for radiolabeling with 18F and 68Ga and subsequent PET imaging of GRPRs in prostate cancer. The present work studied the impact of 44gSc- and 68Ga-labeled DOTA complexes attached to GRPR antagonist BBN2 on the in vitro GRPR binding affinity, and their biodistribution and tumor uptake profiles in MCF7 breast and PC3 prostate cancer models. METHODS DOTA-Ava-BBN2 was radiolabeled with radiometals 68Ga and 44gSc. Gastrin-releasing peptide receptor (GRPR) affinities of peptides were assessed in PC3 prostate cancer cells. GRPR expression profiles were studied in human breast cancer tissue samples and MCF7 breast cancer cells. PET imaging of 68Ga- and 44gSc-labeled peptides was performed in MCF7 and PC3 xenografts as breast and prostate cancer models. RESULTS Radiopeptides [68Ga]Ga-DOTA-Ava-BBN2 and [44gSc]Sc-DOTA-Ava BBN2 were prepared in radiochemical yields of 70-80% (decay-corrected), respectively. High binding affinities were found for both peptides (IC50 = 15 nM (natGa) and 5 nM (natSc)). Gene expression microarray analysis revealed high GRPR mRNA expression levels in estrogen receptor (ER)-positive breast cancer, which was further confirmed with Western blot and immunohistochemistry. However, PET imaging showed only low tumor uptake of both radiotracers in MCF7 xenografts ([68Ga]Ga-DOTA-BBN2 (SUV60min 0.27 ± 0.06); [44gSc]Sc-DOTA-BBN2 (SUV60min 0.20 ± 0.03)). In contrast, high tumor uptake and retention were found for both radiopeptides in PC3 tumors ([68Ga]Ga-DOTA-BBN2 (SUV60min 0.46 ± 0.07); [44gSc]Sc-DOTA-BBN2 (SUV60min 0.51 ± 0.11)). CONCLUSIONS Comparison of 68Ga- and 44gSc-labeled DOTA-Ava-BBN2 peptides revealed slight but noticeable differences of the radiometal with an impact on the in vitro GRPR receptor binding properties in PC3 cells. No differences were found in their in vivo biodistribution profiles in MCF7 and PC3 xenografts. Radiopeptides [68Ga]Ga-DOTA-Ava-BBN2 and [44gSc]Sc-DOTA-Ava-BBN2 displayed comparable tumor uptake and retention profiles with rapid blood and renal clearance profiles in both tumor models. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE The favorable PET imaging performance of [44gSc]Sc-DOTA-Ava-BBN2 in prostate cancer should warrant the development of an [43Sc]Sc-DOTA-Ava-BBN2 analog for clinical translation which comes with a main γ-line of much lower energy and intensity compared to 44gSc.
Collapse
Affiliation(s)
- Simon Ferguson
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Susan Richter
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Daniel Krys
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Simone
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Hans-Sonke Jans
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Terence Riauka
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
64
|
Guzik P, Benešová M, Ratz M, Monné Rodríguez JM, Deberle LM, Schibli R, Müller C. Preclinical evaluation of 5-methyltetrahydrofolate-based radioconjugates-new perspectives for folate receptor-targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 2020; 48:972-983. [PMID: 33063250 PMCID: PMC8041685 DOI: 10.1007/s00259-020-04980-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Purpose The folate receptor (FR) is frequently overexpressed in a variety of tumor types and, hence, an interesting target for radionuclide therapy. The aim of this study was to evaluate a new class of albumin-binding radioconjugates comprising 5-methyltetrahydrofolate (5-MTHF) as a targeting agent and to compare their properties with those of the previously established folic acid-based [177Lu]Lu-OxFol-1. Methods [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 were investigated in vitro using FR-positive KB tumor cells. Biodistribution studies were performed in KB tumor-bearing mice, and the areas under the curve (AUC0 → 120h) were determined for the uptake in tumors and kidneys. [177Lu]Lu-6R-RedFol-1 was compared with [177Lu]Lu-OxFol-1 in a therapy study over 8 weeks using KB tumor-bearing mice. Results Both radioconjugates demonstrated similar in vitro properties as [177Lu]Lu-OxFol-1; however, the tumor uptake of [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 was significantly increased in comparison with [177Lu]Lu-OxFol-1. In the case of [177Lu]Lu-6S-RedFol-1, also the kidney uptake was increased; however, renal retention of [177Lu]Lu-6R-RedFol-1 was similar to that of [177Lu]Lu-OxFol-1. This led to an almost 4-fold increased tumor-to-kidney AUC0 → 120h ratio of [177Lu]Lu-6R-RedFol-1 as compared with [177Lu]Lu-6S-RedFol-1 and [177Lu]Lu-OxFol-1. At equal activity, the therapeutic effect of [177Lu]Lu-6R-RedFol-1 was better than that of [177Lu]Lu-OxFol-1, reflected by a slower tumor growth and, consequently, an increased median survival time (49 days vs. 34 days). Conclusion This study demonstrated the promising potential of 5-MTHF-based radioconjugates for FR-targeting. Application of [177Lu]Lu-6R-RedFol-1 resulted in unprecedentedly high tumor-to-kidney ratios and, as a consequence, a superior therapeutic effect as compared with [177Lu]Lu-OxFol-1. These findings, together with the absence of early side effects, make [177Lu]Lu-6R-RedFol-1 attractive in view of a future clinical translation. Electronic supplementary material The online version of this article (10.1007/s00259-020-04980-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrycja Guzik
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute - PSI, 5232 Villigen-PSI, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute - PSI, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Magdalena Ratz
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute - PSI, 5232 Villigen-PSI, Switzerland
| | - Josep M. Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Luisa M. Deberle
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute - PSI, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute - PSI, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
65
|
van der Meulen NP, Hasler R, Talip Z, Grundler PV, Favaretto C, Umbricht CA, Müller C, Dellepiane G, Carzaniga TS, Braccini S. Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules 2020; 25:molecules25204706. [PMID: 33066650 PMCID: PMC7587374 DOI: 10.3390/molecules25204706] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
44Sc has favorable properties for cancer diagnosis using Positron Emission Tomography (PET) making it a promising candidate for application in nuclear medicine. The implementation of its production with existing compact medical cyclotrons would mean the next essential milestone in the development of this radionuclide. While the production and application of 44Sc has been comprehensively investigated, the development of specific targetry and irradiation methods is of paramount importance. As a result, the target was optimized for the 44Ca(p,n)44Sc nuclear reaction using CaO instead of CaCO3, ensuring decrease in target radioactive degassing during irradiation and increased radionuclidic yield. Irradiations were performed at the research cyclotron at the Paul Scherrer Institute (~11 MeV, 50 µA, 90 min) and the medical cyclotron at the University of Bern (~13 MeV, 10 µA, 240 min), with yields varying from 200 MBq to 16 GBq. The development of targetry, chemical separation as well as the practical issues and implications of irradiations, are analyzed and discussed. As a proof-of-concept study, the 44Sc produced at the medical cyclotron was used for a preclinical study using a previously developed albumin-binding prostate-specific membrane antigen (PSMA) ligand. This work demonstrates the feasibility to produce 44Sc with high yields and radionuclidic purity using a medical cyclotron, equipped with a commercial solid target station.
Collapse
Affiliation(s)
- Nicholas P. van der Meulen
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
- Correspondence:
| | - Roger Hasler
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
| | - Zeynep Talip
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
| | - Pascal V. Grundler
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
| | - Chiara Favaretto
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
| | - Christoph A. Umbricht
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
| | - Cristina Müller
- Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.H.); (Z.T.); (P.V.G.); (C.F.); (C.A.U.); (C.M.)
| | - Gaia Dellepiane
- Albert Einstein Center for Fundamental Physics, Laboratory of High Energy Physics, University of Bern, 3012 Bern, Switzerland; (G.D.); (T.S.C.); (S.B.)
| | - Tommaso S. Carzaniga
- Albert Einstein Center for Fundamental Physics, Laboratory of High Energy Physics, University of Bern, 3012 Bern, Switzerland; (G.D.); (T.S.C.); (S.B.)
| | - Saverio Braccini
- Albert Einstein Center for Fundamental Physics, Laboratory of High Energy Physics, University of Bern, 3012 Bern, Switzerland; (G.D.); (T.S.C.); (S.B.)
| |
Collapse
|
66
|
Aliev RA, Belyshev SS, Furkina EB, Khankin VV, Kuznetsov AA, Dzhilavyan LZ, Priselkova AB, Ishkhanov BS. Photonuclear production of medically relevant radionuclide 47Sc. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07400-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin 2020; 15:439-452. [DOI: 10.1016/j.cpet.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
68
|
Li L, de Guadalupe Jaraquemada-Peláez M, Aluicio-Sarduy E, Wang X, Barnhart TE, Cai W, Radchenko V, Schaffer P, Engle JW, Orvig C. Coordination chemistry of [Y(pypa)] - and comparison immuno-PET imaging of [ 44Sc]Sc- and [ 86Y]Y-pypa-phenyl-TRC105. Dalton Trans 2020; 49:5547-5562. [PMID: 32270167 PMCID: PMC7222037 DOI: 10.1039/d0dt00437e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both scandium-44 and yttrium-86 are popular PET isotopes with appropriate half-lives for immuno-positron emission tomography (immuno-PET) imaging. Herein, a new bifunctional H4pypa ligand, H4pypa-phenyl-NCS, is synthesized, conjugated to a monoclonal antibody, TRC105, and labeled with both radionuclides to investigate the long-term in vivo stability of each complex. While the 44Sc-labeled radiotracer exhibited promising pharmacokinetics and stability in 4T1-xenograft mice (n = 3) even upon prolonged interactions with blood serum proteins, the progressive bone uptake of the 86Y-counterpart indicated in vivo demetallation, obviating H4pypa as a suitable chelator for Y3+ ion in vivo. The solution chemistry of [natY(pypa)]- was studied in detail and the complex found to be thermodynamically stable in solution with a pM value 22.0, ≥3 units higher than those of the analogous DOTA- and CHX-A''-DTPA-complexes; the 86Y-result in vivo was therefore most unexpected. To explore further this in vivo lability, Density Functional Theory (DFT) calculation was performed to predict the geometry of [Y(pypa)]- and the results were compared with those for the analogous Sc- and Lu-complexes; all three adopted the same coordination geometry (i.e. distorted capped square antiprism), but the metal-ligand bonds were much longer in [Y(pypa)]- than in [Lu(pypa)]- and [Sc(pypa)]-, which could indicate that the size of the binding cavity is too small for the Y3+ ion, but suitable for both the Lu3+ and Sc3+ ions. Considered along with results from [86Y][Y(pypa-phenyl-TRC105)], it is noted that when matching chelators with radionuclides, chemical data such as the thermodynamic stability and in vitro inertness, albeit useful and necessary, do not always translate to in vivo inertness, especially with the prolonged blood circulation of the radiotracer bound to a monoclonal antibody. Although H4pypa is a nonadentate chelator, which theoretically matches the coordination number of the Y3+ ion, we show herein that its binding cavity, in fact, favors smaller metal ions such as Sc3+ and Lu3+ and further exploitation of the Sc-pypa combination is desired.
Collapse
Affiliation(s)
- Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kelly JM, Ponnala S, Amor-Coarasa A, Zia NA, Nikolopoulou A, Williams C, Schlyer DJ, DiMagno SG, Donnelly PS, Babich JW. Preclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for 64Cu/ 67Cu-Based Theranostics in Prostate Cancer. Mol Pharm 2020; 17:1954-1962. [PMID: 32286841 DOI: 10.1021/acs.molpharmaceut.0c00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The application of small molecules targeting prostate-specific membrane antigen (PSMA) has emerged as a highly promising clinical strategy for visualization and treatment of prostate cancer. Ligands that integrate the ability to both quantify the distribution of radioactivity and treat disease through the use of a matched pair of radionuclides have particular value in clinical and regulatory settings. In this study, we describe the development and preclinical evaluation of RPS-085, a ligand that binds PSMA and serum albumin and exploits the 64/67Cu radionuclide pair for prostate cancer theranostics. RPS-085 was synthesized by conjugation of a PSMA-targeting moiety, an Nε-(2-(4-iodophenyl)acetyl)lysine albumin binding group, and a bifunctionalized MeCOSar chelator. The IC50 of the metal-free RPS-085 was determined in a competitive binding assay. The affinity for human serum albumin of the radiolabeled compound was determined by high-performance affinity chromatography. Radiolabeling was performed in NH4OAc buffer at 25 °C. The stability of the radiolabeled compounds was assessed in vitro and in vivo. The biodistribution of [64/67Cu]Cu-RPS-085 was determined following intravenous administration to male BALB/c mice bearing LNCaP tumor xenografts. The radiochemical yields of [64/67Cu]Cu-RPS-085 were nearly quantitative after 20 min. The metal-free complex is a potent inhibitor of PSMA (IC50 = 29 ± 2 nM), and the radiolabeled compound has moderate affinity for human serum albumin (Kd = 9.9 ± 1.7 μM). Accumulation of the tracer in mice was primarily evident in tumor and kidneys. Activity in all other tissues, including blood, was negligible, and the radiolabeled compounds demonstrated high stability in vitro and in vivo. Tumor activity reached a maximum at 4 h post injection (p.i.) and cleared gradually over a period of 96 h. By contrast, activity in the kidney cleared rapidly from 4 to 24 h p.i. As a consequence, by 24 h p.i., the tumor-to-kidney ratio exceeds 2, and the predicted dose to tumors is significantly greater than the dose to kidneys. [64Cu]Cu-RPS-085 combines rapid tissue distribution and clearance with prolonged retention in LNCaP tumor xenografts. The pharmacokinetics should enable radioligand therapy using [67Cu]Cu-RPS-085. By virtue of its rapid kidney clearance, the therapeutic index of [67Cu]Cu-RPS-085 likely compares favorably to its parent structure, [177Lu]Lu-RPS-063, a highly avid PSMA-targeting compound. On this basis, [64/67Cu]Cu-RPS-085 show great promise as PSMA-targeting theranostic ligands for prostate cancer imaging and therapy.
Collapse
Affiliation(s)
- James M Kelly
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Shashikanth Ponnala
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Alejandro Amor-Coarasa
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Nicholas A Zia
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States.,Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, New York 10021, United States
| | - Clarence Williams
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - David J Schlyer
- Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stephen G DiMagno
- College of Pharmacy, University of Illinois-Chicago, Chicago, Illinois 60612, United States
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John W Babich
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States.,Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, New York 10021, United States.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
70
|
Rosar F, Buchholz HG, Michels S, Hoffmann MA, Piel M, Waldmann CM, Rösch F, Reuss S, Schreckenberger M. Image quality analysis of 44Sc on two preclinical PET scanners: a comparison to 68Ga. EJNMMI Phys 2020; 7:16. [PMID: 32166581 PMCID: PMC7067939 DOI: 10.1186/s40658-020-0286-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background 44Sc has been increasingly investigated as a potential alternative to 68Ga in the development of tracers for positron emission tomography (PET). The lower mean positron energy of 44Sc (0.63 MeV) compared to 68Ga (0.83 MeV) can result in better spatial image resolutions. However, high-energy γ-rays (1157 keV) are emitted at high rates (99.9%) during 44Sc decay, which can reduce image quality. Therefore, we investigated the impact of these physical properties and performed an unbiased performance evaluation of 44Sc and 68Ga with different imaging phantoms (image quality phantom, Derenzo phantom, and three-rod phantom) on two preclinical PET scanners (Mediso nanoScan PET/MRI, Siemens microPET Focus 120). Results Despite the presence of high-energy γ-rays in 44Sc decay, a higher image resolution of small structures was observed with 44Sc when compared to 68Ga. Structures as small as 1.3 mm using the Mediso system, and as small as 1.0 mm using the Siemens system, could be visualized and analyzed by calculating full width at half maximum. Full widths at half maxima were similar for both isotopes. For image quality comparison, we calculated recovery coefficients in 1–5 mm rods and spillover ratios in either air, water, or bone-equivalent material (Teflon). Recovery coefficients for 44Sc were significantly higher than those for 68Ga. Despite the lower positron energy, 44Sc-derived spillover ratio (SOR) values were similar or slightly higher to 68Ga-derived SOR values. This may be attributed to the higher background caused by the additional γ-rays. On the Siemens system, an overestimation of scatter correction in the central part of the phantom was observed causing a virtual disappearance of spillover inside the three-rod phantom. Conclusion Based on these findings, 44Sc appears to be a suitable alternative to 68Ga. The superior image resolution makes it an especially strong competitor in preclinical settings. The additional γ-emissions have a small impact on the imaging resolution but cause higher background noises and can effect an overestimation of scatter correction, depending on the PET system and phantom.
Collapse
Affiliation(s)
- Florian Rosar
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. .,Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany.
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Michels
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuela A Hoffmann
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Markus Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christopher M Waldmann
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Reuss
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
71
|
Talip Z, Favaretto C, Geistlich S, van der Meulen NP. A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules 2020; 25:E966. [PMID: 32093425 PMCID: PMC7070971 DOI: 10.3390/molecules25040966] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The production of novel radionuclides is the first step towards the development of new effective radiopharmaceuticals, and the quality thereof directly affects the preclinical and clinical phases. In this review, novel radiometal production for medical applications is briefly elucidated. The production status of the imaging nuclide 44Sc and the therapeutic β--emitter nuclide 161Tb are compared to their more established counterparts, 68Ga and 177Lu according to their targetry, irradiation process, radiochemistry, and quality control aspects. The detailed discussion of these significant issues will help towards the future introduction of these promising radionuclides into drug manufacture for clinical application under Good Manufacturing Practice (GMP).
Collapse
Affiliation(s)
- Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Chiara Favaretto
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| |
Collapse
|
72
|
Li L, Jaraquemada-Peláez MDG, Aluicio-Sarduy E, Wang X, Jiang D, Sakheie M, Kuo HT, Barnhart TE, Cai W, Radchenko V, Schaffer P, Lin KS, Engle JW, Bénard F, Orvig C. [ nat/44Sc(pypa)] -: Thermodynamic Stability, Radiolabeling, and Biodistribution of a Prostate-Specific-Membrane-Antigen-Targeting Conjugate. Inorg Chem 2020; 59:1985-1995. [PMID: 31976659 DOI: 10.1021/acs.inorgchem.9b03347] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
44Sc is an attractive positron-emitting radionuclide for PET imaging; herein, a new complex of the Sc3+ ion with nonmacrocyclic chelator H4pypa was synthesized and characterized with high-resolution electrospray-ionization mass spectrometry (HR-ESI-MS), as well as different nuclear magnetic resonance (NMR) spectroscopic techniques (1H, 13C, 1H-13C HSQC, 1H-13C HMBC, COSY, and NOESY). In aqueous solution (pH = 7), [Sc(pypa)]- presented two isomeric forms, the structures of which were predicted using density functional theory (DFT) calculation with a small energy difference of 22.4 kJ/mol, explaining their coexistence. [Sc(pypa)]- was found to have superior thermodynamic stability (pM = 27.1) compared to [Sc(AAZTA)]- (24.7) and [Sc(DOTA)]- (23.9). In radiolabeling, [44Sc][Sc(pypa)]- formed efficiently at RT in 15 min over a range of pH (2-5.5), resulting in a complex that is highly stable (>99%) in mouse serum over at least six half-lives of scandium-44. Similar labeling efficiency was observed with the PSMA (prostate-specific membrane antigen)-targeting H4pypa-C7-PSMA617 at pH = 5.5 (RT, 15 min), confirming negligible disturbance from the bifunctionalization on scandium-44 scavenging. Moreover, the kinetic inertness of the radiocomplex was proved in vivo. Surprisingly, the molar activity was found to have profound influence on the pharmacokinetics of the radiotracers where lower molar activity drastically reduced the background accumulations, particularly, kidney, and thus, yielded a much higher tumor-to-background contrast.
Collapse
Affiliation(s)
- Lily Li
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | | | - Eduardo Aluicio-Sarduy
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | | | - Dawei Jiang
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Meelad Sakheie
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology , BC Cancer , 675 West 10th Ave , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Todd E Barnhart
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Weibo Cai
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Valery Radchenko
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | - Paul Schaffer
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer , 675 West 10th Ave , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Jonathan W Engle
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - François Bénard
- Department of Molecular Oncology , BC Cancer , 675 West 10th Ave , Vancouver , British Columbia V5Z 1L3 , Canada
| | | |
Collapse
|
73
|
Vaughn BA, Ahn SH, Aluicio-Sarduy E, Devaraj J, Olson AP, Engle J, Boros E. Chelation with a twist: a bifunctional chelator to enable room temperature radiolabeling and targeted PET imaging with scandium-44. Chem Sci 2020; 11:333-342. [PMID: 32953004 PMCID: PMC7472660 DOI: 10.1039/c9sc04655k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/17/2019] [Indexed: 01/16/2023] Open
Abstract
Scandium-44 has emerged as an attractive, novel PET radioisotope with ideal emission properties and half-life (t 1/2 = 3.97 h, E mean β+ = 632 keV) well matched to the pharmacokinetics of small molecules, peptides and small biologics. Conjugates of the current gold-standard chelator for 44Sc, 1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid (DOTA), require heating to achieve radiochemical complexation, limiting application of this isotope in conjunction with temperature-sensitive biologics. To establish Sc(iii) isotopes as broadly applicable tools for nuclear medicine, development of alternative bifunctional chelators is required. To address this need, we characterized the Sc(iii)-chelation properties of the small-cavity triaza-macrocycle-based, picolinate-functionalized chelator H3mpatcn. Spectroscopic and radiochemical studies establish the [Sc(mpatcn)] complex as kinetically inert and appropriate for biological applications. A proof-of-concept bifunctional conjugate targeting the prostate-specific membrane antigen (PSMA), picaga-DUPA, chelates 44Sc to form 44Sc(picaga)-DUPA at room temperature with an apparent molar activity of 60 MBq μmol-1 and formation of inert RRR-Λ and SSS-Δ-twist isomers. Sc(picaga)-DUPA exhibits a K i of 1.6 nM for PSMA, comparable to the 18F-based imaging probe DCFPyL (K i = 1.1 nM) currently in phase 3 clinical trials for imaging prostate cancer. Finally, we successfully employed 44Sc(picaga)-DUPA to image PSMA-expressing tumors in a preclinical mouse model, establishing the picaga bifunctional chelator as an optimal choice for the 44Sc PET nuclide.
Collapse
Affiliation(s)
- Brett A Vaughn
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , 11790 , New York , USA .
| | - Shin Hye Ahn
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , 11790 , New York , USA .
| | - Eduardo Aluicio-Sarduy
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , 53705 , Wisconsin , USA
| | - Justin Devaraj
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , 11790 , New York , USA .
| | - Aeli P Olson
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , 53705 , Wisconsin , USA
| | - Jonathan Engle
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , 53705 , Wisconsin , USA
| | - Eszter Boros
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , 11790 , New York , USA .
| |
Collapse
|
74
|
Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: An overview. Appl Radiat Isot 2020; 155:108898. [DOI: 10.1016/j.apradiso.2019.108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
75
|
Emerging Trends in Nanotheranostics. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
76
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
77
|
Ferguson S, Jans HS, Wuest M, Riauka T, Wuest F. Comparison of scandium-44 g with other PET radionuclides in pre-clinical PET phantom imaging. EJNMMI Phys 2019; 6:23. [PMID: 31832809 PMCID: PMC6908536 DOI: 10.1186/s40658-019-0260-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The decay characteristics of radionuclides in PET studies can impact image reconstruction. 44gSc has been the topic of recent research due to potential theranostic applications and is a promising radiometal for PET imaging. In this study, the reconstructed images from phantom measurements with scandium in a small-animal PET scanner are compared with 18F and two prominent radiometals: 64Cu and 68Ga METHODS: Three phantoms filled with 18F, 64C, 68Ga, and 44gSc were imaged in the Siemens Inveon PET scanner. The NEMA image quality phantom was used to determine the recovery coefficients (RCs), spill-over ratios (SORs), and noise (%SD) under typical pre-clinical imaging conditions. Image contrast was determined using a Derenzo phantom, while the coincidence characteristics were investigated using an NEC phantom. Three reconstruction algorithms were used, namely filtered back projection (FBP), ordered subset expectation maximization (OSEM), and maximum a-posteriori (MAP). RESULTS Image quality parameters were measured for 18F, 64Cu, 68Ga, and 44gSc respectively; using FBP, the %SD are 5.65, 5.88, 7.28, and 7.70; the RCs for the 5-mm rod are 0.849, 1.01, 0.615, and 0.825; the SORs in water are 0.0473, 0.0595, 0.141, 0.0923; and the SORs in air are 0.0589, 0.0484, 0.0525, and 0.0509. The contrast measured in the 2.5-mm rods are 0.674, 0.637, 0.196, and 0.347. The NEC rate with 44gSc increased at a slower rate than 18F and 68Ga as a function of activity in the field of view. CONCLUSION 44gSc demonstrates intermediate behavior relative to 18F and 68Ga with regard to RC and contrast measurements. It is a promising radionuclide for preclinical imaging.
Collapse
Affiliation(s)
- Simon Ferguson
- Department of Oncology, University of Alberta, Edmonton, Canada.
| | - Hans-Sonke Jans
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Terence Riauka
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada
| |
Collapse
|
78
|
Radford LL, Fernandez S, Beacham R, El Sayed R, Farkas R, Benešová M, Müller C, Lapi SE. New 55Co-labeled Albumin-Binding Folate Derivatives as Potential PET Agents for Folate Receptor Imaging. Pharmaceuticals (Basel) 2019; 12:ph12040166. [PMID: 31717279 PMCID: PMC6958329 DOI: 10.3390/ph12040166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/23/2023] Open
Abstract
Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.
Collapse
Affiliation(s)
- Lauren L. Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.L.R.); (S.F.); (R.B.); (R.E.S.)
| | - Solana Fernandez
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.L.R.); (S.F.); (R.B.); (R.E.S.)
| | - Rebecca Beacham
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.L.R.); (S.F.); (R.B.); (R.E.S.)
| | - Retta El Sayed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.L.R.); (S.F.); (R.B.); (R.E.S.)
| | - Renata Farkas
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.F.); (M.B.); (C.M.)
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.F.); (M.B.); (C.M.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (R.F.); (M.B.); (C.M.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.L.R.); (S.F.); (R.B.); (R.E.S.)
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Correspondence:
| |
Collapse
|
79
|
Production of 47Sc, 67Cu, 68Ga, 105Rh, 177Lu, and 188Re using electron linear accelerator. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06904-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
80
|
Siwowska K, Guzik P, Domnanich KA, Monné Rodríguez JM, Bernhardt P, Ponsard B, Hasler R, Borgna F, Schibli R, Köster U, van der Meulen NP, Müller C. Therapeutic Potential of 47Sc in Comparison to 177Lu and 90Y: Preclinical Investigations. Pharmaceutics 2019; 11:pharmaceutics11080424. [PMID: 31434360 PMCID: PMC6723926 DOI: 10.3390/pharmaceutics11080424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted radionuclide therapy with 177Lu- and 90Y-labeled radioconjugates is a clinically-established treatment modality for metastasized cancer. 47Sc is a therapeutic radionuclide that decays with a half-life of 3.35 days and emits medium-energy β−-particles. In this study, 47Sc was investigated, in combination with a DOTA-folate conjugate, and compared to the therapeutic properties of 177Lu-folate and 90Y-folate, respectively. In vitro, 47Sc-folate demonstrated effective reduction of folate receptor-positive ovarian tumor cell viability similar to 177Lu-folate, but 90Y-folate was more potent at equal activities due to the higher energy of emitted β−-particles. Comparable tumor growth inhibition was observed in mice that obtained the same estimated absorbed tumor dose (~21 Gy) when treated with 47Sc-folate (12.5 MBq), 177Lu-folate (10 MBq), and 90Y-folate (5 MBq), respectively. The treatment resulted in increased median survival of 39, 43, and 41 days, respectively, as compared to 26 days in untreated controls. There were no statistically significant differences among the therapeutic effects observed in treated groups. Histological assessment revealed no severe side effects two weeks after application of the radiofolates, even at double the activity used for therapy. Based on the decay properties and our results, 47Sc is likely to be comparable to 177Lu when employed for targeted radionuclide therapy. It may, therefore, have potential for clinical translation and be of particular interest in tandem with 44Sc or 43Sc as a diagnostic match, enabling the realization of radiotheragnostics in future.
Collapse
Affiliation(s)
- Klaudia Siwowska
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Patrycja Guzik
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Katharina A Domnanich
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Biochemistry University of Bern, 3012 Bern, Switzerland
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
- Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Bernard Ponsard
- SCK.CEN, Belgian Nuclear Research Centre, BR2 Reactor, 2400 Mol, Belgium
| | - Roger Hasler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Ulli Köster
- Institut Laue Langevin, 38042 Grenoble, France
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
81
|
Walczak R, Gawęda W, Dudek J, Choiński J, Bilewicz A. Influence of metal ions on the 44Sc-labeling of DOTATATE. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Radiochemical separation of reactor produced Sc-47 from natural calcium target using Poly(acrylamide-acrylic acid)/multi-walled carbon nanotubes composite. Appl Radiat Isot 2019; 150:87-94. [DOI: 10.1016/j.apradiso.2019.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
|
83
|
Mikolajczak R, van der Meulen NP, Lapi SE. Radiometals for imaging and theranostics, current production, and future perspectives. J Labelled Comp Radiopharm 2019; 62:615-634. [PMID: 31137083 DOI: 10.1002/jlcr.3770] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
The aim of this review is to make the reader familiar with currently available radiometals, their production modes, capacities, and quality concerns related to their medical use, as well as new emerging radiometals and irradiation technologies from the perspective of their diagnostic and theranostic applications. Production methods of 177 Lu serve as an example of various issues related to the production yield, specific activity, radionuclidic and chemical purity, and production economy. Other radiometals that are currently used or explored for potential medical applications, with particular focus on their theranostic value, are discussed. Using radiometals for diagnostic imaging and therapy is on the rise. The high demand for radiometals for medical use prompts investigations towards using alternative irradiation reactions, while using existing nuclear reactors and accelerator facilities. This review discusses these production capacities and what is necessary to cover the growing demand for theranostic nuclides.
Collapse
Affiliation(s)
- Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
84
|
Gizawy MA, Mohamed NMA, Aydia MI, Soliman MA, Shamsel-Din HA. Feasibility study on production of Sc-47 from neutron irradiated Ca target for cancer theranostics applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Scandium-47 is one of the most useful radioisotopes which is gaining great importance in cancer theranostics applications due to its favorable nuclear and chemical properties. MCNPX2.7.0 code was used to simulate the neutron activation of natural calcium target positioned at a thermal neutron flux of 1.8 × 1014 n cm−2 s−1 in the Egypt Second Research Reactor (ETRR-2). The burn card was used to calculate 47Ca and 47Sc radioactivities during 3 days irradiation and 20 days post-irradiation. The undesirable impurities generated during this period were also calculated. The obtained calculations were found to be in agreement with the experimental measurements. The distribution coefficient value (Kd) of 47Sc(III) as well as 47Ca(II) ions was determined using the commercially available ion-exchanger Chelex 100 in HNO3 and/or HCl media. Radiochemical separation of 47Sc(III) from 47Ca(II) was studied using HNO3 and HCl solutions and the results showed that HNO3 is a better medium than HCl for complete retention and recovery of 47Sc(III), where the recovery yields were 85 ± 1.2 and 95 ± 0.87 % using 1 M HCl and 1 M HNO3 solutions, respectively. The recovery yield obtained in our work was higher than in the reported procedures. Radionuclidic, radiochemical and chemical purities were investigated to ensure the suitability of 47Sc(III) for nuclear medicine applications.
Collapse
Affiliation(s)
- Mohamed A. Gizawy
- Radioisotopes Production Facility (RPF), Second Research Reactor (ETRR-2), Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
- Labeled Compounds Department, Hot Labs Center , Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Nader M. A. Mohamed
- Atomic Reactors Department , Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Mohamed I. Aydia
- Radioisotopes Production Facility (RPF), Second Research Reactor (ETRR-2), Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
- Radioactive Isotopes and Generator Department , Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Mohamed A. Soliman
- Second Research Reactor (ETRR-2), Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - Hesham A. Shamsel-Din
- Radioisotopes Production Facility (RPF), Second Research Reactor (ETRR-2), Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
- Labeled Compounds Department, Hot Labs Center , Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| |
Collapse
|
85
|
Zhang J, Singh A, Kulkarni HR, Schuchardt C, Müller D, Wester HJ, Maina T, Rösch F, van der Meulen NP, Müller C, Mäcke H, Baum RP. From Bench to Bedside-The Bad Berka Experience With First-in-Human Studies. Semin Nucl Med 2019; 49:422-437. [PMID: 31470935 DOI: 10.1053/j.semnuclmed.2019.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Precision oncology is being driven by rapid advances in novel diagnostics and therapeutic interventions, with treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations. Inherent in the theranostics paradigm is the assumption that diagnostic test results can precisely determine whether an individual is likely to benefit from a specific treatment. As part and integral in the current era of precision oncology, theranostics in the context of nuclear medicine aims to identify the appropriate molecular targets in neoplasms (diagnostic tool), so that the optimal ligands and radionuclides (therapeutic tool) with favorable labeling chemistry can be selected for personalized management of a specific disease, taking into consideration the specific patient, and subsequently monitor treatment response. Over the past two decades, the use of gallium-68 labeled peptides for somatostatin receptor (SSTR)-targeted PET/CT (or PET/MRI) imaging followed by lutetium-177 and yttrium-90 labeled SSTR-agonist for peptide receptor radionuclide therapy has demonstrated remarkable success in the management of neuroendocrine neoplasms, and paved the way to other indications of theranostics. Rapid advances are being made in the development of other peptide-based radiopharmaceuticals, small molecular-weight ligands and with newer radioisotopes with more favorable kinetics, potentially useful for theranostics strategies for the clinical application. The present review features the Bad Berka experience with first-in-human studies of new radiopharmaceuticals, for example, prostate-specific membrane antigen ligand, gastrin-releasing peptide receptor, neurotensin receptor 1 ligand, novel SSTR-targeting peptides and nonpeptide, and bone-seeking radiopharmaceuticals. Also new radioisotopes, for example, actinium (225Ac), copper (64Cu), scandium (44Sc), and terbium (152Tb/161Tb) will be discussed briefly demonstrating the development from basic science to precision oncology in the clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhang
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Aviral Singh
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Harshad R Kulkarni
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Christiane Schuchardt
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Dirk Müller
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Hans-J Wester
- Institute for Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland; (
- )Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Helmut Mäcke
- Department of Nuclear Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Richard P Baum
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany.
| |
Collapse
|
86
|
Jafari A, Aboudzadeh MR, Azizakram H, Sadeghi M, Alirezapour B, Rajabifar S, Yousefi K. Investigations of proton and deuteron induced nuclear reactions on natural and enriched Titanium, Calcium and Vanadium targets, with special reference to the production of 47Sc. Appl Radiat Isot 2019; 152:145-155. [PMID: 31301541 DOI: 10.1016/j.apradiso.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
47Sc could be used in SPECT imaging and also suitable for targeted therapy of small tumors. The excitation functions for the production of 47Sc and accompanying impurities via proton and deuteron bombardment of Calcium, Titanium and Vanadium targets were evaluated by three nuclear codes, ALICE, TALYS and EMPIRE. Therefrom, integral yields of 47Sc and also 46gSc as a main impurity were calculated. The various production routes of 47Sc were compared together. The results consistency with available experimental data was checked for each reaction. Based on the results, the 46Ca(d,n)47Sc reaction can leads to the high purity 47Sc with the moderate yield.
Collapse
Affiliation(s)
- Ali Jafari
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran
| | - Mohammad Reza Aboudzadeh
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran.
| | - Hamid Azizakram
- Department of Physics, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-6183, Tehran, Iran
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran
| | - Saeid Rajabifar
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran
| | - Kamran Yousefi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran
| |
Collapse
|
87
|
Pawlak D, Wojdowska W, Parus LJ, Cieszykowska I, Zoltowska M, Garnuszek P, Mikolajczak R. Comparison of separation methods for 47Ca/47Sc radionuclide generator. Appl Radiat Isot 2019; 151:140-144. [PMID: 31177071 DOI: 10.1016/j.apradiso.2019.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Dariusz Pawlak
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Poland
| | - Wioletta Wojdowska
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Poland.
| | - Leon Jozef Parus
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Poland
| | | | | | - Piotr Garnuszek
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Poland
| | - Renata Mikolajczak
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Poland
| |
Collapse
|
88
|
Loveless CS, Radford LL, Ferran SJ, Queern SL, Shepherd MR, Lapi SE. Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47Sc. EJNMMI Res 2019; 9:42. [PMID: 31098710 PMCID: PMC6522578 DOI: 10.1186/s13550-019-0515-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Background In molecular imaging and nuclear medicine, theranostic agents that integrate radionuclide pairs are successfully being used for individualized care, which has led to rapidly growing interest in their continued development. These compounds, which are radiolabeled with one radionuclide for imaging and a chemically identical or similar radionuclide for therapy, may improve patient-specific treatment and outcomes by matching the properties of different radionuclides with a targeting vector for a particular tumor type. One proposed theranostic radionuclide is scandium-47 (47Sc, T1/2 = 3.35 days), which can be used for targeted radiotherapy and may be paired with the positron emitting radionuclides, 43Sc (T1/2 = 3.89 h) and 44Sc (T1/2 = 3.97 h) for imaging. The aim of this study was to investigate the photonuclear production of 47Sc via the 48Ti(γ,p)47Sc reaction using an electron linear accelerator (eLINAC), separation and purification of 47Sc, the radiolabeling of somatostatin receptor-targeting peptide DOTATOC with 47Sc, and in vitro receptor-mediated binding of [47Sc]Sc-DOTATOC in AR42J somatostatin receptor subtype two (SSTR2) expressing rat pancreatic tumor cells. Results The rate of 47Sc production in a stack of natural titanium foils (n = 39) was 8 × 107 Bq/mA·h (n = 3). Irradiated target foils were dissolved in 2.0 M H2SO4 under reflux. After dissolution, trivalent 47Sc ions were separated from natural Ti using AG MP-50 cation exchange resin. The recovered 47Sc was then purified using CHELEX 100 ion exchange resin. The average decay-corrected two-step 47Sc recovery (n = 9) was (77 ± 7)%. A radiolabeling yield of > 99.9% of [47Sc]Sc-DOTATOC (0.384 mg in 0.3 mL) was achieved using 1.7 MBq of 47Sc. Blocking studies using Octreotide illustrated receptor-mediated uptake of [47Sc]Sc-DOTATOC in AR42J cells. Conclusions 47Sc can be produced via the 48Ti(γ,p)47Sc reaction and separated from natural Ti targets with a yield and radiochemical purity suitable for radiolabeling of peptides for in vitro studies. The data in this work supports the potential use of eLINACs for studies of photonuclear production of medical radionuclides and the future development of high-intensity eLINAC facilities capable of producing relevant quantities of carrier-free radionuclides currently inaccessible via routine production pathways or limited due to costly enriched targets. Electronic supplementary material The online version of this article (10.1186/s13550-019-0515-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Shaun Loveless
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63134, USA
| | - Lauren L Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Samuel J Ferran
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.,Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Stacy L Queern
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63134, USA
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA. .,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63134, USA. .,Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
89
|
Jakobsson U, Mäkilä E, Airaksinen AJ, Alanen O, Etilé A, Köster U, Ranjan S, Salonen J, Santos HA, Helariutta K. Porous Silicon as a Platform for Radiation Theranostics Together with a Novel RIB-Based Radiolanthanoid. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3728563. [PMID: 30992696 PMCID: PMC6434306 DOI: 10.1155/2019/3728563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/07/2019] [Indexed: 01/01/2023]
Abstract
Mesoporous silicon (PSi) is biocompatible and tailorable material with high potential in drug delivery applications. Here, we report of an evaluation of PSi as a carrier platform for theranostics by delivering a radioactive ion beam- (RIB-) based radioactive lanthanoid into tumors in a mouse model of prostate carcinoma. Thermally hydrocarbonized porous silicon (THCPSi) wafers were implanted with 159Dy at the facility for radioactive ion beams ISOLDE located at CERN, and the resulting [159Dy]THCPSi was postprocessed into particles. The particles were intratumorally injected into mice bearing prostate cancer xenografts. The stability of the particles was studied in vivo, followed by ex vivo biodistribution and autoradiographic studies. We showed that the process of producing radionuclide-implanted PSi particles is feasible and that the [159Dy]THCPSi particles stay stable and local inside the tumor over seven days. Upon release of 159Dy from the particles, the main site of accumulation is in the skeleton, which is in agreement with previous studies on the biodistribution of dysprosium. We conclude that THCPSi particles are a suitable platform together with RIB-based radiolanthanoids for theranostic purposes as they are retained after administration inside the tumor and the radiolanthanoid remains embedded in the THCPSi.
Collapse
Affiliation(s)
- Ulrika Jakobsson
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Anu J. Airaksinen
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Osku Alanen
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Asenath Etilé
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ulli Köster
- Institut Laue-Langevin, 71 Avenue des Martyrs, FI-38042 Grenoble Cedex 9, France
| | - Sanjeev Ranjan
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Kerttuli Helariutta
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
90
|
Brandt M, Cardinale J, Giammei C, Guarrochena X, Happl B, Jouini N, Mindt TL. Mini-review: Targeted radiopharmaceuticals incorporating reversible, low molecular weight albumin binders. Nucl Med Biol 2019; 70:46-52. [PMID: 30831342 DOI: 10.1016/j.nucmedbio.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The combination of low molecular weight, reversible human serum albumin (HSA) binders with targeted radiopharmaceuticals in dual-targeted radioconjugates holds great promise, in particular for endoradiotherapy. Attachment of HSA-binders to radiopharmaceuticals extends their blood circulation time and results in an enhanced tumour uptake as well as often in an improved pharmacokinetic profile. In this mini-review, an overview of currently pursued approaches of this novel strategy is provided.
Collapse
Affiliation(s)
- Marie Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Jens Cardinale
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Carolina Giammei
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Xabier Guarrochena
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Happl
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Nedra Jouini
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria; Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
91
|
Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl Radiat Isot 2019; 144:64-79. [DOI: 10.1016/j.apradiso.2018.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/12/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
|
92
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
93
|
|
94
|
Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F. Promising Scandium Radionuclides for Nuclear Medicine: A Review on the Production and Chemistry up to In Vivo Proofs of Concept. Cancer Biother Radiopharm 2018; 33:316-329. [PMID: 30265573 DOI: 10.1089/cbr.2018.2485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Scandium radionuclides have been identified in the late 1990s as promising for nuclear medicine applications, but have been set aside for about 20 years. Among the different isotopes of scandium, 43Sc and 44Sc are interesting for positron emission tomography imaging, whereas 47Sc is interesting for therapy. The 44Sc/47Sc or 43Sc/47Sc pairs could be thus envisaged as true theranostic pairs. Another interesting aspect of scandium is that its chemistry is governed by the trivalent ion, Sc3+. When combined with its hardness and its size, it gives this element a lanthanide-like behavior. It is then also possible to use it in a theranostic approach in combination with 177Lu or other lanthanides. This article aims to review the progresses that have been made over the last decade on scandium isotope production and coordination chemistry. It also reviews the radiolabeling aspects and the first (pre) clinical studies performed.
Collapse
Affiliation(s)
- Sandrine Huclier-Markai
- 1 Laboratoire Subatech , UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Université de Nantes, Nantes Cedex, France .,2 ARRONAX GIP , Nantes Cedex, France
| | - Cyrille Alliot
- 2 ARRONAX GIP , Nantes Cedex, France .,3 CRCINA, Inserm/CNRS/Université de Nantes , Nantes Cedex, France
| | - Rabha Kerdjoudj
- 1 Laboratoire Subatech , UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Université de Nantes, Nantes Cedex, France .,2 ARRONAX GIP , Nantes Cedex, France
| | | | - Nicolas Chouin
- 3 CRCINA, Inserm/CNRS/Université de Nantes , Nantes Cedex, France .,4 Unité AMaROC ONIRIS Site de la Chantrerie , Nantes Cedex, France
| | - Ferid Haddad
- 1 Laboratoire Subatech , UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Université de Nantes, Nantes Cedex, France .,2 ARRONAX GIP , Nantes Cedex, France
| |
Collapse
|
95
|
Chaple IF, Lapi SE. Production and Use of the First-Row Transition Metal PET Radionuclides 43,44Sc, 52Mn, and 45Ti. J Nucl Med 2018; 59:1655-1659. [DOI: 10.2967/jnumed.118.213264] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
|
96
|
Production of Sc medical radioisotopes with proton and deuteron beams. Appl Radiat Isot 2018; 142:104-112. [PMID: 30273758 DOI: 10.1016/j.apradiso.2018.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 01/29/2023]
Abstract
Proton and deuteron beams (15.3 and 6.8 MeV, respectively) extracted from the PETtrace medical cyclotron at the Radiopharmaceuticals Production and Research Centre in the University of Warsaw, Heavy Ion Laboratory, 28 MeV protons from the C30 cyclotron at the National Centre for Nuclear Research, Świerk, near Warsaw and 33 MeV protons from the ARRONAX accelerator, Nantes were used to produce and investigate the medically interesting Sc radioisotopes. Both natural and isotopically enriched CaCO3 and TiO2 targets were used (42Ca, 43Ca, 44Ca, 48Ca, 48Ti). The production efficiency and isotopic purity were determined and are reported here for the highest commercially available enrichments of the target material. The Thick Target Yield, Activities at the End of Bombardment (EOB) and the relative activities of produced impurities at EOB are reported for 43Sc, 44gSc, 44mSc and 47Sc produced with particle energies below 33 MeV.
Collapse
|
97
|
Bandara N, Jacobson O, Mpoy C, Chen X, Rogers BE. Novel Structural Modification Based on Evans Blue Dye to Improve Pharmacokinetics of a Somastostatin-Receptor-Based Theranostic Agent. Bioconjug Chem 2018; 29:2448-2454. [PMID: 29927587 DOI: 10.1021/acs.bioconjchem.8b00341] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of somastatin (SS) peptide analogues for the detection and treatment of neuroendocrine tumors has been successful with the recent FDA approval of 68Ga-DOTA-TATE and 177Lu-DOTA-TATE. The structure of these peptide constructs contains the peptide binding motif that binds to the receptor with high affinity, a chelator to complex the radioactive metal, and a linker between the peptide and chelator. However, these constructs suffer from rapid blood clearance, which limits their tumor uptake. In this study, this design has been further improved by incorporating a modification to control the in vivo pharmacokinetics. Adding a truncated Evans Blue (EB) dye molecule into the construct provides a prolonged half-life in blood as a result of its low micromolar affinity to albumin. We compared 177Lu-DOTA-TATE to the modified 177Lu Evans Blue compound (177Lu-DMEB-TATE), in vitro and in vivo in mice bearing A427-7 xenografts. The tumor uptake of 177Lu-DMEB-TATE was significantly greater than the uptake of 177Lu-DOTA-TATE in the biodistribution and SPECT-imaging studies. The therapeutic effect of the 177Lu-DMEB-TATE construct was superior to the that of the 177Lu-DOTA-TATE construct at the doses evaluated.
Collapse
Affiliation(s)
- Nilantha Bandara
- Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63108 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Cedric Mpoy
- Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63108 , United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine , National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Buck E Rogers
- Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63108 , United States
| |
Collapse
|
98
|
Baimukhanova A, Chakrova E, Karaivanov D, Kozempel J, Roesch F, Filosofov D. Production of the positron-emitting radionuclide 68Ga: the radiochemical scheme of radionuclide generator 68Ge → 68Ga. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2018. [DOI: 10.15328/cb1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
68Ga (T1 / 2 = 68 min) in complexes with peptides is used in positron emission tomography for diagnostics of neuroendocrine tumors. The most promising strategy for 68Ga production is usage of the radionuclide generator 68Ge → 68Ga. In this research, the sorption behavior of Ge(IV) and Ga (III) has been studied. The distribution coefficients (Kd) of Ge(IV) on the anion exchange (Dowex 1×8) and cation exchange (Dowex 50×8) resins in various ethanedioic and hydrochloric acid solutions were determined. For each ion exchange resin, four series of measurements were carried out, in which the concentration of oxalic acid was fixed (0.001 M, 0.003 M, 0.005 M, 0.01 M), and the concentrations of hydrochloric acid ranged from 0 to 3 M. Based on the distribution coefficients, the chemical scheme of the radionuclide generator 68Ge → 68Ga has been developed. The chemical system is based on the anion exchange resin Dowex 1×8 and mixture of 0.005 M C2H2O4 / 0.33 M HCl. Several types of the generators with direct and reverse mode of elution were tested and the optimal scheme was determined. Elution of the generators was performed once a day with 8 ml of 0.005 M C2H2O4 / 0.33 M HCl solution. The 68Ga yield and the 68Ge breakthrough are comparable for all the systems.
Collapse
|
99
|
Graves SA, Kutyreff C, Barrett KE, Hernandez R, Ellison PA, Happel S, Aluicio-Sarduy E, Barnhart TE, Nickles RJ, Engle JW. Evaluation of a chloride-based 89Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin. Nucl Med Biol 2018; 64-65:1-7. [PMID: 30015090 DOI: 10.1016/j.nucmedbio.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The remarkable stability of the 89Zr-DOTA complex has been shown in recent literature. The formation of this complex appears to require 89Zr-chloride as the complexation precursor rather than the more conventional 89Zr-oxalate. In this work we present a method for the direct isolation of 89Zr-chloride from irradiated natY foils. METHODS 89Zr, 88Zr, and 88Y were prepared by 16 MeV proton irradiation of natY foils and used for batch-extraction based equilibrium coefficient measurements for TBP and UTEVA resin. Radionuclidically pure 89Zr was prepared by 14 MeV proton-irradiation of natY foils. These foils were dissolved in concentrated HCl, trapped on columns of TBP or UTEVA resin, and 89Zr-chloride was eluted in <1 mL of 0.1 M HCl. For purposes of comparison, conventionally-isolated 89Zr-oxalate was converted to 89Zr-chloride by trapping, rinsing, and elution from a QMA cartridge into 1 M HCl. Trace metal analysis was performed on the resulting 89Zr products. RESULTS Equilibrium coefficients for Y and Zr were similar between UTEVA and TBP resins across all HCl concentrations. Kd values of <10-1 mL/g were observed for Y across all HCl concentrations. Kd values of >103 mL/g were observed at HCl concentrations >9 M for Zr, falling to Kd values of <100 mL/g at low HCl concentrations. 89Zr-chloride was recovered from small columns of TBP in <1 mL of 0.1 M HCl with an overall recovery efficiency of 89 ± 3% (n = 3). An average Y/Zr separation factor of 1.5 × 105 (n = 3) was obtained. Trace metal impurities, notably Fe, were higher in TBP-isolated 89Zr-chloride compared with 89Zr-chloride prepared using the conventional two-step procedure. CONCLUSION TBP-functionalized resin appears promising for the direct isolation of 89Zr-chloride from irradiated natY targets. Excellent 89Zr recovery efficiencies were obtained, and chemical purity was sufficient for proof-of-concept chelation studies.
Collapse
Affiliation(s)
- Stephen A Graves
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - Christopher Kutyreff
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Kendall E Barrett
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Steffen Happel
- TrisKem International, 3 rue des champs Geons, 35170 Bruz, France
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
100
|
Müller C, Domnanich KA, Umbricht CA, van der Meulen NP. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol 2018; 91:20180074. [PMID: 29658792 PMCID: PMC6475947 DOI: 10.1259/bjr.20180074] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Currently, different radiometals are in use for imaging and therapy in nuclear medicine: 68Ga and 111In are examples of nuclides for positron emission tomography (PET) and single photon emission computed tomography (SPECT), respectively, while 177Lu and 225Ac are used for β−- and α-radionuclide therapy. The application of diagnostic and therapeutic radionuclides of the same element (radioisotopes) would utilize chemically-identical radiopharmaceuticals for imaging and subsequent treatment, thereby enabling the radiotheranostic concept. There are two elements which are of particular interest in this regard: Scandium and Terbium. Scandium presents three radioisotopes for theranostic application. 43Sc (T1/2 = 3.9 h) and 44Sc (T1/2 = 4.0 h) can both be used for PET, while 47Sc (T1/2 = 3.35 d) is the therapeutic match—also suitable for SPECT. Currently, 44Sc is most advanced in terms of production, as well as with pre-clinical investigations, and has already been employed in proof-of-concept studies in patients. Even though the production of 43Sc may be more challenging, it would be advantageous due to the absence of high-energetic γ-ray emission. The development of 47Sc is still in its infancy, however, its therapeutic potential has been demonstrated preclinically. Terbium is unique in that it represents four medically-interesting radioisotopes. 155Tb (T1/2 = 5.32 d) and 152Tb (T1/2 = 17.5 h) can be used for SPECT and PET, respectively. Both radioisotopes were produced and tested preclinically. 152Tb has been the first Tb isotope that was tested (as 152Tb-DOTATOC) in a patient. Both radionuclides may be of interest for dosimetry purposes prior to the application of radiolanthanide therapy. The decay properties of 161Tb (T1/2 = 6.89 d) are similar to 177Lu, but the coemission of Auger electrons make it attractive for a combined β−/Auger electron therapy, which was shown to be effective in preclinical experiments. 149Tb (T1/2 = 4.1 h) has been proposed for targeted α-therapy with the possibility of PET imaging. In terms of production, 161Tb and 155Tb are most promising to be made available at the large quantities suitable for future clinical translation. This review article is dedicated to the production routes, the methods of separating the radioisotopes from the target material, preclinical investigations and clinical proof-of-concept studies of Sc and Tb radionuclides. The availability, challenges of production and first (pre)clinical application, as well as the potential of these novel radionuclides for future application in nuclear medicine, are discussed.
Collapse
Affiliation(s)
- Cristina Müller
- 1 Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut , Villigen-PSI , Switzerland
| | | | - Christoph A Umbricht
- 1 Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut , Villigen-PSI , Switzerland
| | - Nicholas P van der Meulen
- 1 Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut , Villigen-PSI , Switzerland.,2 Laboratory of Radiochemistry, Paul Scherrer Institut , Villigen-PSI , Switzerland
| |
Collapse
|