51
|
Sleep during development: Sex and gender differences. Sleep Med Rev 2020; 51:101276. [DOI: 10.1016/j.smrv.2020.101276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
|
52
|
Day DB, Collett BR, Barrett ES, Bush NR, Swan SH, Wang C, Sathyanarayana S. Prenatal sex hormones and behavioral outcomes in children. Psychoneuroendocrinology 2020; 113:104547. [PMID: 31901731 PMCID: PMC7759302 DOI: 10.1016/j.psyneuen.2019.104547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
Abnormal sex hormone levels in utero have been associated with child behavioral problems, but it is unclear if normal variation in prenatal sex hormones is associated with subsequent behavior in childhood. We assessed maternal sex hormones, including serum estrone (E1), estradiol (E2), estriol (E3), free testosterone (FT), and total testosterone (TT), during early pregnancy (gestational week 6-21 (mean = 11.1)) and evaluated child behavior at ages 4-5 using the Behavioral Assessment System for Children (BASC-2) and Social Responsiveness Scale (SRS-2) in 404 mother/child pairs (211 girls, 193 boys) within The Infant Development and Environment Study, a multi-site pregnancy cohort study. Associations between hormones and composite scores were evaluated using multiple linear regressions in both sexes combined, and separate models assessed effect modification by sex with the addition of interaction terms. A 10-fold increase in maternal FT or TT was associated in both sexes with a 4.3-point (95 % CI: 0.5, 8.2) or 4.4-point (0.8, 8.0) higher BASC-2 internalizing composite T score, respectively. In addition, a 10-fold increase in FT or TT was associated with a 3.8-point (0.04, 7.5) or 4.0-point (0.5, 7.5) higher behavioral symptoms index composite score. In models evaluating effect modification by sex, a 10-fold increase in E1 was associated with a 4.3-point (1.2, 7.4) decrease in adaptive skills composite score in girls only (interaction p = 0.04). We observed associations between testosterone and internalizing behaviors and behavioral symptoms index in both sexes, as well as a female-specific association between E1 and adaptive skills. Sex hormones during pregnancy may play a key role in influencing later-life behavior, and additional studies should further examine different periods of susceptibility to hormonal signals.
Collapse
Affiliation(s)
- Drew B Day
- Seattle Children's Research Institute, Seattle, WA, United States.
| | - Brent R Collett
- Seattle Children’s Research Institute, Seattle, WA,University of Washington, Seattle, WA
| | | | - Nicole R Bush
- University of California, San Francisco, San Francisco, CA
| | - Shanna H Swan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christina Wang
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA
| | - Sheela Sathyanarayana
- Seattle Children’s Research Institute, Seattle, WA,University of Washington, Seattle, WA
| | | |
Collapse
|
53
|
Bottom RT, Abbott CW, Huffman KJ. Rescue of ethanol-induced FASD-like phenotypes via prenatal co-administration of choline. Neuropharmacology 2020; 168:107990. [PMID: 32044264 DOI: 10.1016/j.neuropharm.2020.107990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Maternal consumption of alcohol during pregnancy can generate a multitude of deficits in the offspring. Fetal Alcohol Spectrum Disorders, or FASD, describe a palette of potentially life-long phenotypes that result from exposure to ethanol during human gestation. There is no cure for FASD and cognitive-behavioral therapies typically have low success rates, especially in severe cases. The neocortex, responsible for complex cognitive and behavioral function, is altered by prenatal ethanol exposure (PrEE). Supplementation with choline, an essential nutrient, during the prenatal ethanol insult has been associated with a reduction of negative outcomes associated with PrEE. However, choline's ability to prevent deficits within the developing neocortex, as well as the underlying mechanisms, remain unclear. Here, we exposed pregnant mice to 25% ethanol in addition to a 642 mg/L choline chloride supplement throughout gestation to determine the impact of choline supplementation on neocortical and behavioral development in ethanol-exposed offspring. We found that concurrent choline supplementation prevented gross developmental abnormalities associated with PrEE including reduced body weight, brain weight, and cortical length as well as partially ameliorated PrEE-induced abnormalities in intraneocortical circuitry. Additionally, choline supplementation prevented altered expression of RZRβ and Id2, two genes implicated in postmitotic patterning of neocortex, and global DNA hypomethylation within developing neocortex. Lastly, choline supplementation prevented sensorimotor behavioral dysfunction and partially ameliorated increased anxiety-like behavior observed in PrEE mice, as assessed by the Suok and Ledge tests. Our results suggest that choline supplementation may represent a potent preventative measure for the adverse outcomes associated with PrEE.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Charles W Abbott
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA; Dept. of Psychology, University of California, Riverside; 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
54
|
Gregoric Kumperscak H, Krgovic D, Drobnic Radobuljac M, Senica N, Zagorac A, Kokalj Vokac N. CNVs and Chromosomal Aneuploidy in Patients With Early-Onset Schizophrenia and Bipolar Disorder: Genotype-Phenotype Associations. Front Psychiatry 2020; 11:606372. [PMID: 33510659 PMCID: PMC7837028 DOI: 10.3389/fpsyt.2020.606372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction: Early-onset schizophrenia (EOS) and bipolar disorder (EOB) start before the age of 18 years and have a more severe clinical course, a worse prognosis, and a greater genetic loading compared to the late-onset forms. Copy number variations (CNVs) are an important genetic factor in the etiology of psychiatric disorders. Therefore, this study aimed to analyze CNVs in patients with EOS and EOB and to establish genotype-phenotype relationships for contiguous gene syndromes or genes affected by identified CNVs. Methods: Molecular karyotyping was performed in 45 patients, 38 with EOS and seven with EOB hospitalized between 2010 and 2017. The exclusion criteria were medical or neurological disorders or IQ under 70. Detected CNVs were analyzed according to the standards and guidelines of the American College of Medical Genetics. Result: Molecular karyotyping showed CNVs in four patients with EOS (encompassing the PAK2, ADAMTS3, and ADAMTSL1 genes, and the 16p11.2 microduplication syndrome) and in two patients with EOB (encompassing the ARHGAP11B and PRODH genes). In one patient with EOB, a chromosomal aneuploidy 47, XYY was found. Discussion: Our study is the first study of CNVs in EOS and EOB patients in Slovenia. Our findings support the association of the PAK2, ARHGAP11B, and PRODH genes with schizophrenia and/or bipolar disorder. To our knowledge, this is also the first report of a multiplication of the ADAMTSL1 gene and the smallest deletion of the PAK2 gene in a patient with EOS, and one of the few reports of the 47, XYY karyotype in a patient with EOB.
Collapse
Affiliation(s)
- Hojka Gregoric Kumperscak
- Department of Pediatrics, University Medical Center Maribor, Maribor, Slovenia.,Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Danijela Krgovic
- Medical Faculty, University of Maribor, Maribor, Slovenia.,Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| | - Maja Drobnic Radobuljac
- Unit for Intensive Child and Adolescent Psychiatry, Center for Mental Health, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Senica
- Department of Pediatrics, University Medical Center Maribor, Maribor, Slovenia
| | - Andreja Zagorac
- Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| | - Nadja Kokalj Vokac
- Medical Faculty, University of Maribor, Maribor, Slovenia.,Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| |
Collapse
|
55
|
|
56
|
Patisaul HB. Achieving CLARITY on bisphenol A, brain and behaviour. J Neuroendocrinol 2020; 32:e12730. [PMID: 31063678 PMCID: PMC10947534 DOI: 10.1111/jne.12730] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
There is perhaps no endocrine disrupting chemical more controversial than bisphenol A (BPA). Comprising a high-volume production chemical used in a variety of applications, BPA has been linked to a litany of adverse health-related outcomes, including effects on brain sexual differentiation and behaviour. Risk assessors preferentially rely on classical guideline-compliant toxicity studies over studies published by academic scientists, and have generally downplayed concerns about the potential risks that BPA poses to human health. It has been argued, however, that, because traditional toxicity studies rarely contain neural endpoints, and only a paucity of endocrine-sensitive endpoints, they are incapable of fully evaluating harm. To address current controversies on the safety of BPA, the United States National Institute of Environmental Health Sciences, the National Toxicology Program (NTP), and the US Food and Drug Administration established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). CLARITY-BPA performed a classical regulatory-style toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies conducted by academic laboratories (grantee studies) using a collaboratively devised experimental framework and the same animals and tissues. This review summarises the results from the grantee studies that focused on brain and behaviour. Evidence of altered neuroendocrine development, including age- and sex-specific expression of oestrogen receptor (ER)α and ERβ, and the abrogation of brain and behavioural sexual dimorphisms, supports the conclusion that developmental BPA exposure, even at doses below what regulatory agencies regard as "safe" for humans, contribute to brain and behavioural change. The consistency and the reproducibility of the effects across CLARITY-BPA and prior studies using the same animal strain and almost identical experimental conditions are compelling. Combined analysis of all of the data from the CLARITY-BPA project is underway at the NTP and a final report expected in late 2019.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
57
|
Jaggar M, Rea K, Spichak S, Dinan TG, Cryan JF. You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol 2020; 56:100815. [PMID: 31805290 DOI: 10.1016/j.yfrne.2019.100815] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.
Collapse
Affiliation(s)
- Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
58
|
Liu J, Yang C, Yang J, Song X, Han W, Xie M, Cheng L, Xie L, Chen H, Jiang L. Effects of early postnatal exposure to fine particulate matter on emotional and cognitive development and structural synaptic plasticity in immature and mature rats. Brain Behav 2019; 9:e01453. [PMID: 31709780 PMCID: PMC6908876 DOI: 10.1002/brb3.1453] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 09/21/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fine particulate matter (PM2.5) is closely associated with many neurological disorders including neurodegenerative disease, stroke, and brain tumors. However, the toxic effects of PM2.5 on neurodevelopment remain unclear. In this study, we aimed to determine the neurotoxic effects of early postnatal exposure to PM2.5 in immature and mature rats. METHODS We exposed neonatal rats to PM2.5 (2 or 10 mg/kg body weight) through intranasal instillation from postnatal day (PND) 3-15, once a day. Emotional and cognitive development were evaluated using the elevated plus maze, forced swimming, and Morris water maze tests. Hippocampal tissue was collected and subjected to transmission electron microscopy observation and western blot analysis. RESULTS Rats had lower body weight after exposure to high dose of PM2.5. The behavioral test results indicated that high-dose PM2.5 exposure led to increased anxiety-like symptoms in immature and mature rats, apparent depressive-like behaviors in mature rats, and impaired spatial learning and memory abilities in immature rats, and low-dose PM2.5 exposure increased anxiety-like behaviors in immature rats. Further, high-dose PM2.5 exposure contributed to fewer synapses, thinner postsynaptic density, and shorter active zone in immature and mature rats, and also decreased expressions of synaptophysin (SYP), growth associated protein-43 (GAP43), and postsynaptic density-95 (PSD95) in immature rats, SYP and PSD95 in mature rats. Moreover, low-dose PM2.5 exposure diminished the expression of PSD95 in immature rats. In addition, high-dose PM2.5 exposure reduced brain-derived neurotrophic factor (BDNF) expression and cAMP response element binding protein (CREB) phosphorylation in both immature and mature rats, and low-dose PM2.5 exposure lessened BDNF expression and CREB phosphorylation in immature rats. CONCLUSIONS Our findings indicate that PM2.5 impairs emotional and cognitive development by disrupting structural synaptic plasticity, possibly via the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Jie Liu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Han
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingdan Xie
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cheng
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Xie
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
59
|
Gillera SEA, Marinello WP, Horman BM, Phillips AL, Ruis MT, Stapleton HM, Reif DM, Patisaul HB. Sex-specific effects of perinatal FireMaster® 550 (FM 550) exposure on socioemotional behavior in prairie voles. Neurotoxicol Teratol 2019; 79:106840. [PMID: 31730801 DOI: 10.1016/j.ntt.2019.106840] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
The rapidly rising incidence of neurodevelopmental disorders with social deficits is raising concern that developmental exposure to environmental contaminants may be contributory. Firemaster 550 (FM 550) is one of the most prevalent flame-retardant (FR) mixtures used in foam-based furniture and baby products and contains both brominated and organophosphate components. We and others have published evidence of developmental neurotoxicity and sex specific effects of FM 550 on anxiety-like and exploratory behaviors. Using a prosocial animal model, we investigated the impact of perinatal FM 550 exposure on a range of socioemotional behaviors including anxiety, attachment, and memory. Virtually unknown to toxicologists, but widely used in the behavioral neurosciences, the prairie vole (Microtus ochrogaster) is a uniquely valuable model organism for examining environmental factors on sociality because this species is spontaneously prosocial, biparental, and displays attachment behaviors including pair bonding. Dams were exposed to 0, 500, 1000, or 2000 μg of FM 550 via subcutaneous (sc) injections throughout gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring of both sexes were then subjected to multiple tasks including open field, novel object recognition, and partner preference. Effects were dose responsive and sex-specific, with females more greatly affected. Exposure-related outcomes in females included elevated anxiety, decreased social interaction, decreased exploratory motivation, and aversion to novelty. Exposed males also had social deficits, with males in all three dose groups failing to show a partner preference. Our studies demonstrate the utility of the prairie vole for investigating the impact of chemical exposures on social behavior and support the hypothesis that developmental FR exposure impacts the social brain. Future studies will probe the possible mechanisms by which these effects arise.
Collapse
Affiliation(s)
| | - William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Allison L Phillips
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Matthew T Ruis
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - David M Reif
- Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
60
|
Jo H, Eckel SP, Wang X, Chen JC, Cockburn M, Martinez MP, Chow T, Molshatzki N, Lurmann FW, Funk WE, Xiang AH, McConnell R. Sex-specific associations of autism spectrum disorder with residential air pollution exposure in a large Southern California pregnancy cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113010. [PMID: 31554142 PMCID: PMC6764604 DOI: 10.1016/j.envpol.2019.113010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 05/22/2023]
Abstract
Autism spectrum disorder (ASD) affects more boys than girls. Recent animal studies found that early life exposure to ambient particles caused autism-like behaviors only in males. However, there has been little study of sex-specificity of effects on ASD in humans. We evaluated ASD risk associated with prenatal and first year of life exposures to particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) by child sex. This retrospective cohort study included 246,420 singleton children born in Kaiser Permanente Southern California (KPSC) hospitals between 1999 and 2009. The cohort was followed from birth through age five to identify 2471 ASD cases from the electronic medical record. Ambient PM2.5 and other regional air pollution measurements (PM less than 10 μm, ozone, nitrogen dioxide) from regulatory air monitoring stations were interpolated to estimate exposure during each trimester and first year of life at each geocoded birth address. Hazard ratios (HRs) were estimated using Cox regression models to adjust for birth year, KPSC medical center service areas, and relevant maternal and child characteristics. Adjusted HRs per 6.5 μg/m3 PM2.5 were elevated during entire pregnancy [1.17 (95% confidence interval (CI), 1.04-1.33)]; first trimester [1.10 (95% CI, 1.02-1.19)]; third trimester [1.08 (1.00-1.18)]; and first year of life [1.21 (95% CI, 1.05-1.40)]. Only the first trimester association remained robust to adjustment for other exposure windows, and was specific to boys only (HR = 1.18; 95% CI, 1.08-1.27); there was no association in girls (HR = 0.90; 95% CI, 0.76-1.07; interaction p-value 0.03). There were no statistically significant associations with other pollutants. PM2.5-associated ASD risk was stronger in boys, consistent with findings from recent animal studies. Further studies are needed to better understand these sexually dimorphic neurodevelopmental associations.
Collapse
Affiliation(s)
- Heejoo Jo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinhui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Noa Molshatzki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - William E Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
61
|
Tsai HW, Franklin M, Armoskus C, Taniguchi S, Moder C, Trang K, Santacruz M, Milla A. Androgenic regulation of sexually dimorphic expression of RNA binding motif protein 48 in the developing mouse cortex and hippocampus. Int J Dev Neurosci 2019; 78:33-44. [PMID: 31400491 PMCID: PMC6897302 DOI: 10.1016/j.ijdevneu.2019.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
To further reveal the molecular mechanism underlying sexual differentiation of the mouse cerebral cortex and hippocampus, we reanalyzed our previous microarray study with Gene Ontology (GO) term enrichment and found that the GO term "RNA binding" was over-represented among the 89 sexually dimorphic candidate genes. Thus, we selected 16 autosomal genes annotated to the term RNA binding and profiled their mRNA expression in the developing male and female mouse cortex/hippocampus. During the first three weeks after birth, sex differences in mRNA levels of Khdrbs2, Nanos2, Rbm48, and Tdrd3 were observed in the mouse cortex/hippocampus. Of these genes, only the female-biased expression of Rbm48 in neonates was abolished by prenatal exposure to testosterone propionate (TP), while postnatal treatment of TP three weeks after birth increased Rbm48 and Tdrd3 mRNA levels in both sexes. Regardless of sex, the postnatal cortex/hippocampus also showed a marked increase in the content of androgen receptor (Ar) and estrogen receptor β (Esr2), but a decrease in estrogen receptor α (Esr1) and aromatase (Cyp19a1), which might confer the different responses of Rbm48 to prenatal and postnatal TP. Our results suggest that androgen-regulated, sexually dimorphic Rbm48 expression might present a novel molecular mechanism by which perinatal androgens control development of sexual dimorphism in cortical and hippocampal structure and function.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Michael Franklin
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Chris Armoskus
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Saori Taniguchi
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Courtney Moder
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Kathy Trang
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Marilisa Santacruz
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Allyson Milla
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
62
|
Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1968-1981. [DOI: 10.1016/j.bbadis.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
63
|
Valent D, Yeste N, Hernández-Castellano LE, Arroyo L, Wu W, García-Contreras C, Vázquez-Gómez M, González-Bulnes A, Bendixen E, Bassols A. SWATH-MS quantitative proteomic investigation of intrauterine growth restriction in a porcine model reveals sex differences in hippocampus development. J Proteomics 2019; 204:103391. [PMID: 31129268 DOI: 10.1016/j.jprot.2019.103391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Intrauterine growth restriction (IUGR) is characterized by reduced growth and weight of the foetus, mainly due to the lack of nutrients and oxygen. Animals affected by IUGR show changes in specific brain areas and several neuronal processes. Female offspring affected by IUGR show increased survival and development compared to males. The objective of this study was to analyse changes in the hippocampus proteome in male and female piglets affected by IUGR. Seven pregnant Iberian sows were fed from Day 35 of pregnancy onwards at 50% of their requirements. At Day 100 of pregnancy, foetuses were obtained and classified by sex and weight, as mild IUGR (Normal Body Weight) versus severe IUGR (Low Body Weight). Hippocampi were dissected and the proteomes analysed by SWATH-MS DIA. In this study, 1497 proteins were identified of which 260 were quantitatively analysed. All differential proteins were more abundant in females versus males and were involved in protein synthesis, neuronal development, metabolism, antiapoptotic signalling and vesicular transport. Our findings support that female foetuses tolerate nutrient limitation better than males, especially under mild IUGR. Under severe IUGR, females still seems to maintain normal lipid metabolism and antiapoptotic signalling, which may be related to the increased female survival. SIGNIFICANCE: In the last years, proteomics have been used to evidence differences related to sex in non-reproductive organs. Intrauterine Growth Restriction (IUGR) can affect female and male offspring differently. Female offspring has stronger protective strategies compared to males, enhancing growth and postnatal survival. Most studies regarding this issue have focused on metabolic organs (i.e. liver). However, the predominance of neurodevelopmental disorders in males suggests that the central nervous system in female offspring adapt better to nutritional stress conditions than that of males. Based on the differential protein expression in hippocampal samples, our work demonstrates that female foetuses indeed adapt better to IUGR than males, especially under mild IUGR conditions. In severe IUGR conditions, differences between males and females were not so evident, but even in this case, the remaining differences suggest increased survival in females than in males.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lorenzo E Hernández-Castellano
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Wei Wu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Marta Vázquez-Gómez
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Comparative Physiology Group, INIA, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
64
|
Griffiths BB, Madden AMK, Edwards KA, Zup SL, Stary CM. Age-dependent sexual dimorphism in hippocampal cornu ammonis-1 perineuronal net expression in rats. Brain Behav 2019; 9:e01265. [PMID: 30912298 PMCID: PMC6520292 DOI: 10.1002/brb3.1265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/21/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Perineuronal nets (PNNs) are extracellular matrices that encompass parvalbumin-expressing parvalbumin positive (PVALB+) fast-spiking inhibitory interneurons where they protect and stabilize afferent synapses. Recent observations that gonadal hormones influence PVALB+ neuron development suggest that PNN regulation may be sexually dimorphic. Sex differences in PNN abundance and complexity have been reported in sexually dimorphic nuclei in zebra finch brains; however, corresponding differences in mammalian brains have not been investigated. METHODS In this study we assessed the number of cortical and hippocampal PNNs in juvenile and young adult male and female rats using fluorescent immunohistochemistry for PVALB and the PNN marker Wisteria Floribunda Lectin. RESULTS We report here that PNNs are numerous and well developed in hippocampal cornu ammonis-1 of adult males but are lower in juvenile and possibly adult females. No significant differences were observed between sexes in cornu ammonis-3 or adjacent neocortex. There was an observed developmental difference in the neocortex as juveniles had more PVALB+ cells, but fewer PNN+ cells, than adults. CONCLUSIONS Because PNNs are integral for several hippocampal-mediated learning and memory tasks, these observations have potential sex-dependent translational implications for clinical strategies targeting cognitive dysfunction.
Collapse
Affiliation(s)
- Brian B Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| | - Amanda M K Madden
- Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, Massachusetts
| | - Kimbra A Edwards
- Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, Massachusetts.,Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts
| | - Susan L Zup
- Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, Massachusetts.,Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California
| |
Collapse
|
65
|
Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, Oaks AW, Manzini MC. Male-Specific cAMP Signaling in the Hippocampus Controls Spatial Memory Deficits in a Mouse Model of Autism and Intellectual Disability. Biol Psychiatry 2019; 85:760-768. [PMID: 30732858 PMCID: PMC6474812 DOI: 10.1016/j.biopsych.2018.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Zamarbide
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adele Mossa
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pablo Muñoz-Llancao
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Molly K Wilkinson
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Heather L Pond
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adam W Oaks
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
66
|
Haida O, Al Sagheer T, Balbous A, Francheteau M, Matas E, Soria F, Fernagut PO, Jaber M. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl Psychiatry 2019; 9:124. [PMID: 30923308 PMCID: PMC6438965 DOI: 10.1038/s41398-019-0457-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023] Open
Abstract
Infections during gestation and the consequent maternal immune activation (MIA) increase the risk of developing neuropsychiatric disorders in infants and throughout life, including autism spectrum disorders (ASD). ASD is a neurodevelopmental disorder that affects three times more males than females and is mainly characterized by deficits in social communication and restricted interests. Consistent findings also indicate that ASD patients suffer from movement disorders, although these symptoms are not yet considered as diagnosis criteria. Here we used the double-stranded RNA analog polyinosinic:polycytidylic acid (poly I:C) MIA animal model of ASD in mice and explored its effects in males and females on social and motor behavior. We then investigated brain areas implicated in controlling and coordinating movements, namely the nigro-striatal pathway, motor cortex and cerebellum. We show that male mice are more affected by this treatment than females as they show reduced social interactions as well as motor development and coordination deficits. Reduced numbers of Purkinje cells in the cerebellum was found more widespread and within distinct lobules in males than in females. Moreover, a reduced number of neurons was found in the motor cortex of males only. These results suggest that females are better protected against developmental insults leading to ASD symptoms in mice. They also point to brain areas that may be targeted to better manage social and motor consequences of ASD.
Collapse
Affiliation(s)
- Obelia Haida
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Tareq Al Sagheer
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Anais Balbous
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France ,0000 0000 9336 4276grid.411162.1CHU Poitiers, Poitiers, France
| | - Maureen Francheteau
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emmanuel Matas
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Federico Soria
- grid.462010.1Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Pierre Olivier Fernagut
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France ,grid.462010.1Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France. .,CHU Poitiers, Poitiers, France.
| |
Collapse
|
67
|
Keil KP, Sethi S, Lein PJ. Sex-Dependent Effects of 2,2',3,5',6-Pentachlorobiphenyl on Dendritic Arborization of Primary Mouse Neurons. Toxicol Sci 2019; 168:95-109. [PMID: 30395321 PMCID: PMC6390665 DOI: 10.1093/toxsci/kfy277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Early life exposures to environmental contaminants are implicated in the pathogenesis of many neurodevelopmental disorders (NDDs). These disorders often display sex biases, but whether environmental neurotoxicants act in a sex-dependent manner to modify neurodevelopment is largely unknown. Since altered dendritic morphology is associated with many NDDs, we tested the hypothesis that male and female primary mouse neurons are differentially susceptible to the dendrite-promoting activity of 2,2',3,5',6-pentachlorobiphenyl (PCB 95). Hippocampal and cortical neuron-glia co-cultures were exposed to vehicle (0.1% dimethylsulfoxide) or PCB 95 (100 fM-1 μM) from day in vitro 7-9. As determined by Sholl analysis, PCB 95-enhanced dendritic growth in female but not male hippocampal and cortical neurons. In contrast, both male and female neurons responded to bicuculline with increased dendritic complexity. Detailed morphometric analyses confirmed that PCB 95 effects on the number and length of primary and nonprimary dendrites varied depending on sex, brain region and PCB concentration, and that female neurons responded more consistently with increased dendritic growth and at lower concentrations of PCB 95 than their male counterparts. Exposure to PCB 95 did not alter cell viability or the ratio of neurons to glia in cultures of either sex. These results demonstrate that cultured female mouse hippocampal and cortical neurons are more sensitive than male neurons to the dendrite-promoting activity of PCB 95, and suggest that mechanisms underlying PCB 95-induced dendritic growth are sex-dependent. These data highlight the importance of sex in neuronal responses to environmental neurotoxicants.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616,To whom correspondence should be addressed at Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616. Fax: (530) 752-7690; E-mail:
| |
Collapse
|
68
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
69
|
Let's call the whole thing off: evaluating gender and sex differences in executive function. Neuropsychopharmacology 2019; 44:86-96. [PMID: 30143781 PMCID: PMC6235899 DOI: 10.1038/s41386-018-0179-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The executive functions allow for purposeful, deliberate, and intentional interactions with the world-attention and focus, impulse control, decision making, and working memory. These measures have been correlated with academic outcomes and quality of life, and are impacted by deleterious environmental events throughout the life span, including gestational and early life insults. This review will address the topic of sex differences in executive function including a discussion of differences arising in response to developmental programming. Work on gender differences in human studies and sex differences in animal research will be reviewed. Overall, we find little support for significant gender or sex differences in executive function. An important variable that factors into the interpretation of potential sex differences include differing developmental trajectories. We conclude by discussing future directions for the field and a brief discussion of biological mechanisms.
Collapse
|
70
|
Prins GS, Patisaul HB, Belcher SM, Vandenberg LN. CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems. Basic Clin Pharmacol Toxicol 2018; 125 Suppl 3:14-31. [PMID: 30207065 DOI: 10.1111/bcpt.13125] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a high-production chemical used in a variety of applications worldwide. While BPA has been documented as an endocrine-disrupting chemical (EDC) having adverse health-related outcomes in multiple studies, risk assessment for BPA has lagged due to reliance on guideline toxicology studies over academic ones with end-points considered more sensitive and appropriate. To address current controversies on BPA safety, the United States National Institute of Environmental Health Sciences (NIEHS), the National Toxicology Program (NTP) and the Food and Drug Administration (FDA) established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) using the NCTR Sprague-Dawley rats. The goal of CLARITY-BPA is to perform a traditional regulatory toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies by academic laboratories focused on previously identified BPA-sensitive organ systems (Academic studies). Combined analysis of the data from both study types will be undertaken by the NTP with the aim of resolving uncertainties on BPA toxicity. To date, the Core study has been completed and a draft report released. Most of the academic studies have also been finalized and published in peer-reviewed journals. In light of this important milestone, the PPTOX-VI meeting held in the Faroe Islands, 27-30 May 2018 devoted a plenary session to CLARITY-BPA with presentations by multiple investigators with the purpose of highlighting key outcome. This MiniReview synthesizes the results of three academic studies presented at this plenary session, evaluates recently published findings by other CLARITY-BPA academic studies to provide an early combined overview of this emerging data and places this in the context of the Core study findings. This co-ordinated effort revealed a plethora of significant BPA effects across multiple organ systems and BPA doses with non-monotonic responses across the dose range utilized. Remarkably consistent across most studies, including the Core study, are low-dose effects (2.5, 25 and 250 μg BPA/kg body-weight). Collectively, the findings highlighted herein corroborate a significant body of evidence that documents adverse effects of BPA at doses relevant to human exposures and emphasizes the need for updated risk assessment analysis.
Collapse
Affiliation(s)
- Gail S Prins
- Departments of Urology, Pathology, and Physiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Department of Biological Sciences and the Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina
| | - Scott M Belcher
- Department of Biological Sciences and the Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, School of Public Health & Health Sciences, Amherst, Massachusetts
| |
Collapse
|
71
|
Tronson NC. Focus on females: A less biased approach for studying strategies and mechanisms of memory. Curr Opin Behav Sci 2018; 23:92-97. [PMID: 30083579 PMCID: PMC6075684 DOI: 10.1016/j.cobeha.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent work on sex differences in learning and memory has demonstrated that females and males differ in cognitive and behavioral strategies, as well as neural mechanisms required to learn, retrieve and express memory. Although our understanding of the mechanisms of memory is highly sophisticated, this work is based on male animals. As such, the study of female memory is narrowed to a comparison with behavior and mechanisms defined in males, resulting in findings of male-specific mechanisms but little understanding of how females learn and store information. In this paper, we discuss a female-focused framework and experimental approaches to deepen our understanding of the strategies and neural mechanisms engaged by females (and males) in learning, consolidation, and retrieval of memory.
Collapse
|
72
|
Dutil C, Walsh JJ, Featherstone RB, Gunnell KE, Tremblay MS, Gruber R, Weiss SK, Cote KA, Sampson M, Chaput JP. Influence of sleep on developing brain functions and structures in children and adolescents: A systematic review. Sleep Med Rev 2018; 42:184-201. [PMID: 30241996 DOI: 10.1016/j.smrv.2018.08.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022]
Abstract
This systematic review examined the associations between sleep and brain functions and structures in children and adolescents aged 1-17 ys. Included studies (n = 24) were peer-reviewed and met the a priori determined population (apparently healthy children and adolescents aged 1 y to 17 ys), intervention/exposure/comparator (various sleep characteristics including duration, architecture, quality, timing), and outcome criteria (brain functions and/or brain structures, excluding cognitive function outcomes). Collectively, the reviewed studies report some relationships between inadequate sleep and resultant differences in brain functions or structures. Although the research presented supports and offers more insight into the importance of sleep for the developing brain of children and adolescents, no firm conclusions that apply broadly may be drawn from these results, particularly because of the diversity of the sleep variables and outcomes. However, it is clear that sleeping habits in the pediatric population should be prioritized. Health care providers should continue to recommend healthy sleep practices and adequate time for sleep, as they are essential for overall health, including brain health.
Collapse
Affiliation(s)
- Caroline Dutil
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Jeremy J Walsh
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada.
| | - Ryan B Featherstone
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Katie E Gunnell
- Department of Psychology, Faculty of Arts and Social Sciences, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Mark S Tremblay
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada.
| | - Reut Gruber
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, H3A 1A1, Canada.
| | - Shelly K Weiss
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - Kimberly A Cote
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Margaret Sampson
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada.
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
73
|
Iturra-Mena AM, Arriagada-Solimano M, Luttecke-Anders A, Dagnino-Subiabre A. Effects of prenatal stress on anxiety- and depressive-like behaviours are sex-specific in prepubertal rats. J Neuroendocrinol 2018; 30:e12609. [PMID: 29772083 DOI: 10.1111/jne.12609] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
The foetal brain is highly susceptible to stress in late pregnancy, with lifelong effects of stress on physiology and behaviour. The present study aimed to determine the physiological and behavioural effects of prenatal stress during the prepubertal period of female and male rats. We subjected pregnant Sprague-Dawley rats to a restraint stress protocol from gestational day 14 to 21, a critical period for foetal brain susceptibility to stress effects. Male and female offspring were subsequently assessed at postnatal day 24 for anxiety- and depressive-like behaviours, as well as spontaneous social interaction. We also assessed maternal behaviours and 2 stress markers: basal vs acute-evoked stress levels of serum corticosterone and body weight gain. Prenatal stress did not affect the maternal behaviour, whereas both female and male offspring had higher body weight gain. On the other hand, lower levels of corticosterone after acute stress stimulation, as well as anxiety- and depressive-like behaviours, were only evident in stressed males compared to control males. These results suggest that prenatal stress induced sex-specific effects on hypothalamic-pituitary-adrenal (HPA) axis activity and on behaviour during prepuberty. The HPA axis of prenatally stressed male rats was less active compared to control males, and they were also more anxious and experienced depressive-like behaviours. These results are useful with respect to studying the neurobiological basis of childhood depression at a preclinical level.
Collapse
Affiliation(s)
- A M Iturra-Mena
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
- School of Psychology, Faculty of Social Sciences, Universidad de las Américas, Viña del Mar, Chile
| | - M Arriagada-Solimano
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - A Luttecke-Anders
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - A Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
- Auditory and Cognition Center, AUCO, Santiago, Chile
| |
Collapse
|
74
|
Rice TR, Shah LD, Trelles P, Lin SK, Christensen DS, Walther A, Sher L. Mental health of the male adolescent and young man: the Copenhagen statement. World J Pediatr 2018; 14:224-232. [PMID: 29679360 DOI: 10.1007/s12519-018-0155-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Male adolescents and young men benefit when their mental health care is specialized to match their unique gendered and developmental needs. Sensitivity to the social circumstances of this population is important; additionally, the emerging ability to tailor care through knowledge gleaned from the intersection of psychiatry, neurology, and endocrinology informs care. DATA SOURCES This article summarized the views of six experts in the area of the adolescent and young adult male mental health. These experts were select members of the World Federation of Societies of Biological Psychiatry's Task Force on Men's Mental Health. They convened to present two symposia on the topic of men's mental health at the 13th World Congress of Biological Psychiatry (WCBP) in Copenhagen, Denmark in 2017. RESULTS In these works, a special focus is paid to addictive disorders, disruptive behavior disorders, aggression, and brain development. Collectively, the authors present an argument for the merits of a male-specific model of mental health care to advance the overall well-being of this population. CONCLUSIONS Men's mental health should be recognized as a social issue as much as a medical issue, with special attention paid to problems such as unemployment, familial disruption, and substance abuse. These problems, and especially those of major societal impact including violence and suicide which are much more frequently the product of male youth and men, should have more male-tailored options for service provision that respond to men's mental health needs.
Collapse
Affiliation(s)
- Timothy R Rice
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Lesha D Shah
- New York University School of Medicine, New York, NY, USA
| | - Pilar Trelles
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Shih-Ku Lin
- Taipei City Hospital and Taipei Medical University, Taipei, China
| | - Dinne Skjærlund Christensen
- Department of Public Health, Center for Healthy Aging and Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Walther
- Biological Psychology, TU Dresden, Dresden, Germany
- Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Leo Sher
- James J. Peters VA Medical Center and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
75
|
Kundakovic M. Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior. Curr Environ Health Rep 2018; 4:385-391. [PMID: 28986864 DOI: 10.1007/s40572-017-0172-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review discusses the current state of knowledge on sex differences in the epigenetic regulation in the brain and highlights its relevance for the environmental studies of brain and behavior. RECENT FINDINGS Recent evidence shows that epigenetic mechanisms are involved in the control of brain sexual differentiation and in memory-enhancing effects of estradiol in females. In addition, several studies have implicated epigenetic dysregulation as an underlying mechanism for sex-specific neurobehavioral effects of environmental exposures. The area of sex-specific neurepigenetics has a great potential to improve our understanding of brain function in health and disease. Future neuropigenetic studies will require the inclusion of males and females and would ideally account for the fluctuating hormonal status in females which is likely to affect the epigenome. The implementation of cutting-edge methods that include epigenomic characterization of specific cell types using latest next-generation sequencing approaches will further advance the area.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Larkin Hall, Room 160, Bronx, NY, 10458, USA.
| |
Collapse
|
76
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
77
|
Bolea-Alamanac B, Bailey SJ, Lovick TA, Scheele D, Valentino R. Female psychopharmacology matters! Towards a sex-specific psychopharmacology. J Psychopharmacol 2018; 32:125-133. [PMID: 29405799 DOI: 10.1177/0269881117747578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing recognition that women have a higher prevalence of certain psychiatric illnesses, and a differential treatment response and course of illness compared to men. Additionally, clinicians deal with a number of disorders like premenstrual syndrome, premenstrual dysphoric disorder, and postpartum depression, which affect women specifically and for which treatment and biological pathways are still unclear. In this article we highlight recent research which suggests that different biological mechanisms may underlie sex differences in responsiveness to stress. Sex differences are evident at the receptor level; where the corticotropin-releasing factor receptor shows differential coupling to adaptor proteins in males and females. The neuropeptide oxytocin also shows sex-specific effects in a range of social behaviors. It may act as a biomarker in post-traumatic stress disorder where sex differences are evident. Studies in women using hormonal contraception show that some of these oxytocin-mediated effects are likely influenced by sex hormones. In female rats rapid changes in circulating progesterone levels are associated with exaggerated behavioral responses to mild stress and blunted responses to benzodiazepines that could be prevented by acute treatment with low-dose fluoxetine. Perceived barriers in research on women have hindered progress. The development of a sex-specific psychopharmacology as a basis for translating this type of research into clinical practice is vital to improve treatment outcomes for women.
Collapse
Affiliation(s)
| | - Sarah J Bailey
- 2 Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Thelma A Lovick
- 3 School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Dirk Scheele
- 4 Division of Medical Psychology, University of Bonn Medical Center, Bonn, Germany
| | - Rita Valentino
- 5 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
78
|
Olesen TS, Bleses D, Andersen HR, Grandjean P, Frederiksen H, Trecca F, Bilenberg N, Kyhl HB, Dalsager L, Jensen IK, Andersson AM, Jensen TK. Prenatal phthalate exposure and language development in toddlers from the Odense Child Cohort. Neurotoxicol Teratol 2017; 65:34-41. [PMID: 29198963 DOI: 10.1016/j.ntt.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Phthalates are a group of chemicals found in a variety of consumer products. They have anti-androgenic properties and human studies have reported associations between prenatal phthalate exposure and neuropsychological development in the offspring despite different cognitive tests, different ages and varying timing of exposure. OBJECTIVES To investigate the association between prenatal phthalate exposure and language development in children aged 20-36months. METHODS In the Odense Child Cohort, we analyzed 3rd trimester urine samples of 518 pregnant women for content of metabolites of diethyl, di-n-butyl, diisobutyl, butylbenzyl, di(2-ethylhexyl), and diisononyl phthalate, adjusted for osmolality. Language development was addressed using the Danish version of the MacArthur-Bates Communicative Development Inventories "Words and Sentences". Associations were assessed using logistic regression models comparing children below and above the 15th percentile while stratifying by sex and adjusting for maternal age and educational level. RESULTS Phthalate metabolites were detectable in all samples although in lower levels than previous studies. Among boys, increased prenatal phthalate exposure was associated with lower scores in language development; odds ratios for vocabulary score below the 15th percentile with doubling in monoethyl phthalate, and summed di-(2-ethylhexyl) phthalate metabolites were respectively 1.24 (95% confidence interval: 1.05,1.46), and 1.33 (1.01,1.75). Similar associations were found for language complexity. No associations were found for girls. CONCLUSIONS Our findings are notable, as adverse associations were suggested even in this low-level exposed population, with only one spot urine sample for exposure assessment and control for confounders. Lower scores in early language development are of relevance to health as this test predicts later educational success.
Collapse
Affiliation(s)
- Trine Staak Olesen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Dorthe Bleses
- TrygFonden's Center for Child Research and School of Communication and Culture, Aarhus, Denmark
| | - Helle Raun Andersen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Philippe Grandjean
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Fabio Trecca
- Department of Language and Communication, Faculty of Humanities, University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, University of Southern Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23 C, 5000 Odense C, Denmark; Odense Patient data Explorative Network (OPEN), Odense, Denmark
| | - Louise Dalsager
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Inge Kjær Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23 C, 5000 Odense C, Denmark; Odense Patient data Explorative Network (OPEN), Odense, Denmark.
| |
Collapse
|
79
|
de Castro-Catala M, Peña E, Kwapil TR, Papiol S, Sheinbaum T, Cristóbal-Narváez P, Ballespí S, Barrantes-Vidal N, Rosa A. Interaction between FKBP5 gene and childhood trauma on psychosis, depression and anxiety symptoms in a non-clinical sample. Psychoneuroendocrinology 2017; 85:200-209. [PMID: 28889074 DOI: 10.1016/j.psyneuen.2017.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Childhood trauma has been associated with a heightened risk for presenting clinical and non-clinical psychopathology in adulthood. Genes related with the stress response, such as the FK506 binding protein 51 (FKBP5), are plausible candidates moderating the effects of childhood trauma on the emergence of such symptoms later on. The present study aimed to explore the moderating role of FKBP5 genetic variability on the association of different types of childhood trauma with subclinical psychosis, depression and anxiety in a non-clinical sample. METHODS Schizotypy, psychotic-like experiences, depression and anxiety symptoms and childhood trauma were assessed in 808 young adults. Two FKBP5 haplotypic blocks were detected: block 1 (rs3800373 - rs9296158 - rs1360780) and block 2 (rs9470080 - rs4713916). Subjects were classified in two groups according to whether they carried or not the risk haplotype previously described in the literature (block 1: CAT and block 2: TA). Linear regression analyses were used to study (i) the main effects of childhood trauma and FKBP5 haplotype blocks and (ii) their interaction effects on the mentioned forms of psychopathology. RESULTS All childhood trauma scales, except sexual abuse, were associated with schizotypy, psychotic-like experiences, depression and anxiety symptoms. None of the analysed symptoms was associated with the main effects of FKBP5 genetic variability. However an interaction effect between block 1 and physical abuse was observed on anxiety, with lower scores in CAT carriers. This effect was driven by SNP 1 and 2. Moreover, an interaction effect between block 2 and physical abuse was identified on the variables tapping depressive and anxiety symptoms. Specifically, non-TA carrier subjects who were exposed to physical abuse were found to be at higher risk for depressive and anxiety symptoms. These effects were driven by SNP 5. No interaction effect was observed for the other variables. CONCLUSIONS Our data suggest that exposure to childhood physical abuse may increase the risk for sub-clinical depressive and anxiety symptoms depending on FKBP5 genetic variability. Further research is needed to better elucidate the role of FKBP5 on mental health in clinical and non-clinical cohorts.
Collapse
Affiliation(s)
- Marta de Castro-Catala
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Elionora Peña
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Thomas R Kwapil
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, United States; Department of Psychology, University of Illinois at Champaign-Urbana, Champaign, IL 61820, United States
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstrasse 7, 80336 Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany; Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto Carlos III, Madrid, Spain
| | - Tamara Sheinbaum
- Departament de Psicologia Clínica i de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Paula Cristóbal-Narváez
- Departament de Psicologia Clínica i de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Sergi Ballespí
- Departament de Psicologia Clínica i de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Neus Barrantes-Vidal
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, United States; Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto Carlos III, Madrid, Spain; Departament de Psicologia Clínica i de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Sant Pere Claver-Fundació Sanitària Carrer Vila i Vilà 16, 08004 Barcelona, Spain
| | - Araceli Rosa
- Secció de Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Centre for Biomedical Research Network on Mental Health (CIBERSAM), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
80
|
Brown AG, Tulina NM, Barila GO, Hester MS, Elovitz MA. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse. PLoS One 2017; 12:e0186656. [PMID: 29049352 PMCID: PMC5648237 DOI: 10.1371/journal.pone.0186656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain. METHODS CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam) or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group). Postnatal brains were collected on day of life 1 (n = 6/group/sex). Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.). Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex. RESULTS/CONCLUSIONS Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo) xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique profiles existed. Neonatal pups exposed to intrauterine inflammation have significant alterations in their lipid metabolites, in particular, fatty acids. These sex-specific metabolic changes within the newborn brain offer an explanation regarding the sexual dimorphism of certain psychiatric and neurobehavioral disorders associated with exposure to prenatal inflammation.
Collapse
Affiliation(s)
- Amy G. Brown
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Natalia M. Tulina
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guillermo O. Barila
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Hester
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
81
|
Bridging Autism Spectrum Disorders and Schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations. J Neuroinflammation 2017; 14:179. [PMID: 28870209 PMCID: PMC5584030 DOI: 10.1186/s12974-017-0938-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
In recent years, evidence supporting a link between inflammation and neuropsychiatric disorders has been mounting. Autism spectrum disorders (ASD) and schizophrenia share some clinical similarities which we hypothesize might reflect the same biological basis, namely, in terms of inflammation. However, the diagnosis of ASD and schizophrenia relies solely on clinical symptoms, and to date, there is no clinically useful biomarker to diagnose or monitor the course of such illnesses. The focus of this review is the central role that inflammation plays in ASD and schizophrenia. It spans from pre-clinical animal models to clinical research and excludes in vitro studies. Four major areas are covered: (1) microglia, the inflammatory brain resident myeloid cells, (2) biomarkers, including circulating cytokines, oxidative stress markers, and microRNA players, known to influence cellular processes at brain and immune levels, (3) effect of anti-psychotics on biomarkers and other predictors of response, and (4) impact of gender on response to immune activation, biomarkers, and response to anti-psychotic treatments.
Collapse
|
82
|
In vivo and in vitro sex differences in the dendritic morphology of developing murine hippocampal and cortical neurons. Sci Rep 2017; 7:8486. [PMID: 28814778 PMCID: PMC5559594 DOI: 10.1038/s41598-017-08459-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Altered dendritic morphology is common in neurodevelopmental disorders (NDDs), many of which show sex biases in prevalence, onset and/or severity. However, whether dendritic morphology varies as a function of sex in juvenile mice or primary neuronal cell cultures is largely unknown even though both are widely used models for studying NDDs. To address this gap, we quantified dendritic morphology in CA1 pyramidal hippocampal and adjacent somatosensory pyramidal cortical neurons from male and female postnatal day (P)28 C57BL/6J mice. As determined by Sholl analysis of Golgi-stained brain sections, dendritic arbors of male hippocampal neurons are more complex than females. Conversely, dendritic morphology of female cortical neurons is more complex than males. In primary neuron-glia co-cultures from P0 mouse hippocampi, male neurons have more complex dendritic arbors than female neurons. Sex differences are less pronounced in cortical cultures. In vitro sex differences in dendritic morphology are driven in part by estrogen-dependent mechanisms, as evidenced by decreased dendritic complexity in male hippocampal neurons cultured in phenol red-free media or in the presence of an estrogen receptor antagonist. Evidence that sex influences dendritic morphogenesis in two models of neurodevelopment in a region-specific manner has significant mechanistic implications regarding sex biases in NDDs.
Collapse
|
83
|
Gender does matter in clinical research. Eur Arch Psychiatry Clin Neurosci 2017; 267:283-284. [PMID: 28389888 DOI: 10.1007/s00406-017-0797-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|