51
|
Bowman AS, Nolting JM, Massengill R, Baker J, Workman JD, Slemons RD. Influenza A Virus Surveillance in Waterfowl in Missouri, USA, 2005-2013. Avian Dis 2015; 59:303-8. [PMID: 26473682 PMCID: PMC8611411 DOI: 10.1637/11002-121014-reg] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Missouri, United States, is located within the Mississippi Migratory Bird Flyway where wild waterfowl stop to feed and rest during migration and, weather permitting, to overwinter. Historically, Missouri has experienced sporadic influenza A virus (IAV) outbreaks in poultry and commercial swine. The introduction of IAVs from wild, migratory waterfowl is one possible source for the IAV, IAV genomic segments, or both involved in these outbreaks in key agricultural species. During 2005 through 2013, 3984 cloacal swabs were collected from hunter-harvested waterfowl in Missouri as part of an active IAV surveillance effort. Twenty-four avian species were represented in the sample population and 108 (2.7%) of the samples tested positive for IAV recovery. These IAV isolates represented 12 HA and nine NA subtypes and at least 27 distinct HA-NA combinations. An H14 IAV isolate recovered in Missouri during the sample period provided evidence for further establishment of the H14 subtype in North American wild waterfowl and gave proof that the previously rare subtype is more genetically diverse than previously detected. The present surveillance effort also produced IAV isolates that were genomically linked to the highly pathogenic H7N3 IAV strain that emerged in 2012 and caused severe disease in Mexico's domestic poultry. The presence of antigenically diverse IAV's circulating in wild waterfowl in the vicinity of commercial poultry and swine, along with the association of several wild-bird-lineage IAV genomic segments in viruses infecting poultry in North America, justifies continued attention to biosecurity efforts in food animal production systems and ongoing active IAV surveillance in wild birds.
Collapse
Affiliation(s)
| | | | - Rose Massengill
- United States Department of Agriculture, Animal and Plant Health Inspection Service, 1715 Southridge Drive, Jefferson City, MO 65109
- Missouri Department of Agriculture, P.O. Box 630, Jefferson City, MO 65102
| | - Joseph Baker
- Missouri Department of Agriculture, P.O. Box 630, Jefferson City, MO 65102
| | | | | |
Collapse
|
52
|
Krammer F. Emerging influenza viruses and the prospect of a universal influenza virus vaccine. Biotechnol J 2015; 10:690-701. [PMID: 25728134 DOI: 10.1002/biot.201400393] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/06/2015] [Accepted: 02/03/2015] [Indexed: 11/07/2022]
Abstract
Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
53
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
54
|
Xu X, Bao H, Ma Y, Sun J, Zhao Y, Wang Y, Shi J, Zeng X, Li Y, Wang X, Chen H. Simultaneous detection of novel H7N9 and other influenza A viruses in poultry by multiplex real-time RT-PCR. Virol J 2015; 12:69. [PMID: 25925390 PMCID: PMC4424497 DOI: 10.1186/s12985-015-0300-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
Background A novel reassortant H7N9 influenza A virus has crossed the species barrier from poultry to cause human infections in China in 2013 and 2014. Rapid detection of the novel H7N9 virus is important to detect this virus in poultry and reduce the risk of an epidemic in birds or humans. Findings In this study, a multiplex real-time RT-PCR (rRT-PCR) assay for rapid detection of H7N9 and other influenza A viruses was developed. To evaluate the assay, various influenza A viruses, other avian respiratory viruses, and 1,070 samples from poultry were tested. Fluorescence signals corresponding to H7 and N9 subtypes were detected only when H7 and N9 subtypes were present, while the fluorescence signal for the influenza A M gene was detected in all specimens with influenza A strains. The fluorescent signal can be detected in dilutions as low as 56 copies per reaction for the H7, N9 and M genes. Intra- and inter-assay variability tests showed a reliable assay. In poultry samples, a comparison of rRT-PCR with virus isolation showed a high level of agreement. Conclusions The multiplex rRT-PCR assay in this study has good specificity, sensitivity and reproducibility, and will be useful for laboratory surveillance and rapid diagnosis of H7N9 and other influenza A viruses.
Collapse
Affiliation(s)
- Xiaolong Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Yong Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Jiashan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Yunhe Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|
55
|
Abstract
Influenza virus infections are a major public health concern and cause significant morbidity and mortality worldwide. Current influenza virus vaccines are an effective countermeasure against infection but need to be reformulated almost every year owing to antigenic drift. Furthermore, these vaccines do not protect against novel pandemic strains, and the timely production of pandemic vaccines remains problematic because of the limitations of current technology. Several improvements have been made recently to enhance immune protection induced by seasonal and pandemic vaccines, and to speed up production in case of a pandemic. Importantly, vaccine constructs that induce broad or even universal influenza virus protection are currently in preclinical and clinical development.
Collapse
|
56
|
Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head. Vaccines (Basel) 2015; 3:239-62. [PMID: 26343187 PMCID: PMC4494343 DOI: 10.3390/vaccines3020239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines.
Collapse
|
57
|
Nogales A, Baker SF, Martínez-Sobrido L. Replication-competent influenza A viruses expressing a red fluorescent protein. Virology 2015; 476:206-216. [PMID: 25553516 PMCID: PMC4323957 DOI: 10.1016/j.virol.2014.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022]
Abstract
Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
58
|
Hata A, Akashi-Ueda R, Takamatsu K, Matsumura T. Safety and efficacy of peramivir for influenza treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2017-38. [PMID: 25368514 PMCID: PMC4216046 DOI: 10.2147/dddt.s46654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective This report presents a review of the efficacy and safety of peramivir, a neuraminidase inhibitor that was granted Emergency Use Authorization by the US Food and Drug Administration (FDA) from October 23, 2009 to June 23, 2010 during the 2009 H1N1 pandemic. Methods Literature was accessed via PubMed (January 2000–April 2014) using several search terms: peramivir; BCX-1812; RWJ 270201; H1N1, influenza; antivirals; and neuraminidase inhibitors. The peramivir manufacturers, Shionogi and Co Ltd and BioCryst Pharmaceuticals, were contacted to obtain unpublished data and information presented at recent scientific meetings. Information was obtained from the Centers for Disease Control and Prevention (CDC) and from US FDA websites. English-language and Japanese-language reports in the literature were reviewed and selected based on relevance, along with information from the CDC, US FDA, and the drug manufacturers. Results We obtained eleven clinical trial reports of intravenous peramivir, two of which described comparisons with oseltamivir. Seven of nine other recently reported published studies was a dose–response study. Clinical reports of critically ill patients and pediatric patients infected with pandemic H1N1 described that early treatment significantly decreased mortality. Peramivir administered at 300 mg once daily in adult patients with influenza significantly reduces the time to alleviation of symptoms or fever compared to placebo. It is likely to be as effective as other neuraminidase inhibitors. Conclusion Although peramivir shows efficacy for the treatment of seasonal and pH1N1 influenza, it has not received US FDA approval. Peramivir is used safely and efficiently in hospitalized adult and pediatric patients with suspected or laboratory-confirmed influenza. Peramivir might be a beneficial alternative antiviral treatment for many patients, including those unable to receive inhaled or oral neuraminidase inhibitors, or those requiring nonintravenous drug delivery.
Collapse
Affiliation(s)
- Atsuko Hata
- Department of Pediatrics, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan ; Department of Infectious Diseases, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryoko Akashi-Ueda
- Department of Pediatrics, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Kazufumi Takamatsu
- Respiratory Disease Center, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Takuro Matsumura
- Department of Infectious Diseases, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| |
Collapse
|
59
|
Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico. PLoS One 2014; 9:e107330. [PMID: 25226523 PMCID: PMC4165766 DOI: 10.1371/journal.pone.0107330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/16/2014] [Indexed: 01/03/2023] Open
Abstract
Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.
Collapse
|
60
|
Wong SS, Jeevan T, Kercher L, Yoon SW, Petkova AM, Crumpton JC, Franks J, Debeauchamp J, Rubrum A, Seiler P, Krauss S, Webster R, Webby RJ. A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets. Vaccine 2014; 32:4571-4577. [PMID: 24950355 DOI: 10.1016/j.vaccine.2014.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 12/09/2022]
Abstract
The H7N9 influenza virus caused significant mortality and morbidity in infected humans during an outbreak in China in 2013 stimulating vaccine development efforts. As previous H7-based vaccines have been poorly immunogenic in humans we sought to determine the immunogenic and protective properties of an inactivated whole virus vaccine derived from a 2013 H7N9 virus in ferrets. As whole virus vaccine preparations have been shown to be more immunogenic in humans, but less likely to be used, than split or surface antigen formulations, we vaccinated ferrets with a single dose of 15, 30, or 50 μg of the vaccine and subsequently challenged with wild-type A/Anhui/1/2013 (H7N9) either by direct instillation or by contact with infected animals. Although ferrets vaccinated with higher doses of vaccine had higher serum hemagglutinin inhibition (HI) titers, the titers were still low. During subsequent instillation challenge, however, ferrets vaccinated with 50 μg of vaccine showed no illness and shed significantly less virus than mock vaccinated controls. All vaccinated ferrets had lower virus loads in their lungs as compared to controls. In a separate study where unvaccinated-infected ferrets were placed in the same cage with vaccinated-uninfected ferrets, vaccination did not prevent infection in the contact ferrets, although they showed a trend of lower viral load. Overall, we conclude that inactivated whole-virus H7N9 vaccine was able to reduce the severity of infection and viral load, despite the lack of hemagglutinin-inhibiting antibodies.
Collapse
Affiliation(s)
- Sook-San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Lisa Kercher
- Animal Resource Center, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Sun-Woo Yoon
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA; Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Youseong-gu, Daejeon 305-806, South Korea
| | - Atanaska-Marinova Petkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jeri-Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jennifer Debeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Robert Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
61
|
Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol 2014; 88:7016-23. [PMID: 24719414 DOI: 10.1128/jvi.00100-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 10(8.6) fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. IMPORTANCE In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous wild-type H7 virus challenge, making it suitable for use in protecting humans from H7 infection.
Collapse
|
62
|
To KKW, Tsang AKL, Chan JFW, Cheng VCC, Chen H, Yuen KY. Emergence in China of human disease due to avian influenza A(H10N8)--cause for concern? J Infect 2014; 68:205-15. [PMID: 24406432 DOI: 10.1016/j.jinf.2013.12.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022]
Abstract
In December 2013, China reported the first human case of avian influenza A(H10N8). A 73-year-old female with chronic diseases who had visited a live poultry market succumbed with community-acquired pneumonia. While human infections with avian influenza viruses are usually associated with subtypes prevalent in poultries, A(H10N8) isolates were mostly found in migratory birds and only recently in poultries. Although not possible to predict whether this single intrusion by A(H10N8) is an accident or the start of another epidemic like the preceding A(H7N9) and A(H5N1), several features suggest that A(H10N8) is a potential threat to humans. Recombinant H10 could attach to human respiratory epithelium, and A(H10N4) virus could cause severe infections in minks and chickens. A(H10N8) viruses contain genetic markers for mammalian adaptation and virulence in the haemagglutinin (A135T, S138A[H3 numbering]), M1(N30D, T215A), NS1(P42S) and PB2(E627K) protein. Studies on this human A(H10N8) isolate will reveal its adaptability to humans. Clinicians should alert the laboratory to test for A(H5,6,7,9,10) viruses in patients with epidemiological exposure in endemic geographical areas especially when human influenza A(H1,3) and B are negative. Vigilant virological and serological surveillance for A(H10N8) in human, poultry and wild bird is important for following the trajectory of this emerging influenza virus.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
63
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|
64
|
Herfst S, Imai M, Kawaoka Y, Fouchier RAM. Avian influenza virus transmission to mammals. Curr Top Microbiol Immunol 2014; 385:137-55. [PMID: 25048542 DOI: 10.1007/82_2014_387] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.
Collapse
Affiliation(s)
- S Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|