51
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
52
|
Silvis MJM, Fiolet ATL, Opstal TSJ, Dekker M, Suquilanda D, Zivkovic M, Duyvendak M, The SHK, Timmers L, Bax WA, Mosterd A, Cornel JH, de Kleijn DPV. Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels in chronic coronary disease: A LoDoCo2 biomarker substudy. Atherosclerosis 2021; 334:93-100. [PMID: 34492522 DOI: 10.1016/j.atherosclerosis.2021.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/27/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Colchicine reduces the risk of cardiovascular events in patients with coronary disease. Colchicine has broad anti-inflammatory effects and part of the atheroprotective effects have been suggested to be the result of NLRP3 inflammasome inhibition. We studied the effect of colchicine on extracellular vesicle (EV) NLRP3 protein levels and inflammatory markers, high sensitivity-CRP (hs-CRP) and interleukin (IL)-6, in patients with chronic coronary disease. METHODS In vitro, the NLRP3 inflammasome was stimulated in PMA-differentiated- and undifferentiated THP-1 cells. In vivo, measurements were performed in serum obtained from 278 participants of the LoDoCo2 trial, one year after randomization to colchicine 0.5 mg once daily or placebo. EVs were isolated using precipitation. NLRP3 protein presence in EVs was confirmed using iodixanol density gradient centrifugation. Levels of NLRP3 protein, hs-CRP and IL-6 were measured using ELISA. RESULTS In vitro, NLRP3 inflammasome stimulation showed an increase of EV NLRP3 protein levels. EV NLRP3 protein levels were lower in patients treated with colchicine (median 1.38 ng/mL), compared to placebo (median 1.58 ng/mL) (p = 0.025). No difference was observed in serum NLRP3 protein levels. Serum hs-CRP levels were lower in patients treated with colchicine (median 0.80 mg/L) compared to placebo (median 1.34 mg/L) (p < 0.005). IL-6 levels were lower in patients treated with colchicine (median 2.07 ng/L) compared to placebo (median 2.59 ng/L), although this was not statistically significant (p = 0.076). CONCLUSIONS Colchicine leads to a reduction of EV NLRP3 protein levels. This indicates that inhibitory effects on the NLRP3 inflammasome might contribute to the atheroprotective effects of colchicine in coronary disease.
Collapse
Affiliation(s)
- Max J M Silvis
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aernoud T L Fiolet
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Dutch Network for Cardiovascular Research (WCN), Utrecht, the Netherlands; Department of Cardiology, Meander Medical Center, Amersfoort, the Netherlands
| | - Tjerk S J Opstal
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirthe Dekker
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Cardiology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Daniel Suquilanda
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Minka Zivkovic
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michiel Duyvendak
- Department of Clinical Pharmacy, Antonius Hospital Sneek, Sneek, the Netherlands
| | - Salem H K The
- Department of Cardiology, Treant Hospital, Emmen, the Netherlands
| | - Leo Timmers
- Department of Cardiology, St. Antonius Hospital Nieuwegein, the Netherlands
| | - Willem A Bax
- Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands
| | - Arend Mosterd
- Dutch Network for Cardiovascular Research (WCN), Utrecht, the Netherlands; Department of Cardiology, Meander Medical Center, Amersfoort, the Netherlands
| | - Jan H Cornel
- Dutch Network for Cardiovascular Research (WCN), Utrecht, the Netherlands; Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| |
Collapse
|
53
|
Balanescu S, Barbu E, Georgescu C, Popescu AC. NLRP3 Inflammasome in Cardiovascular Disease: David's Stone against Goliath? ROMANIAN JOURNAL OF CARDIOLOGY 2021; 31:517-527. [DOI: 10.47803/rjc.2021.31.3.517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Inflammation is involved in initiation, development and complications of the vast majority of non-communicable diseases. Recent research demonstrated that inflammation is involved in pathogenesis of all major cardiovascular diseases. Different endogenous factors (LDL, nucleic acid strands, uric acid – collectively called „Damage Associated Molecular Patterns – DAMPs”) activate dedicated receptors („Pattern Recognition Receptors – PRR”) on monocytes, macrophages or dendritic cells responsible for the innate immunologic response. They have a major role in natural defense mechanisms against different pathogens and in normal conditions have a protective role. Among PRRs „NOD-like, leucin rich, pyrin containing (NLRP)” receptors are a 14-member family located in the cytoplasm. One of these is the NLRP3 resulting from nuclear transcription under the influence of NF-kB, a second messenger from membrane PRRs to the nucleus. Mostly the same factors responsible for NLRP3 intracellular expression stimulate its oligomerization resulting in a large protein complex, the NLRP3 inflammasome. This activates caspase-1 responsible for IL-1b and IL-18 production and initiates an inflammatory reaction leading to various pathologic processes, such as atherosclerosis, hypertension, diabetes and heart failure. This is the current story as we know it of the NLRP3 inflammasome, a small intracellular component that when inappropriately activated may does more harm than good.
Collapse
Affiliation(s)
- Serban Balanescu
- „Carol Davila” University of Medicine and Pharmacy , Bucharest , Romania
- „Elias” Emergency University Hospital , Bucharest , Romania
| | - Elena Barbu
- „Carol Davila” University of Medicine and Pharmacy , Bucharest , Romania
- „Elias” Emergency University Hospital , Bucharest , Romania
| | - Camelia Georgescu
- „Carol Davila” University of Medicine and Pharmacy , Bucharest , Romania
- „Elias” Emergency University Hospital , Bucharest , Romania
| | - Andreea Catarina Popescu
- „Carol Davila” University of Medicine and Pharmacy , Bucharest , Romania
- „Elias” Emergency University Hospital , Bucharest , Romania
| |
Collapse
|
54
|
Noori M, Nejadghaderi SA, Sullman MJM, Carson-Chahhoud K, Ardalan M, Kolahi AA, Safiri S. How SARS-CoV-2 might affect potassium balance via impairing epithelial sodium channels? Mol Biol Rep 2021; 48:6655-6661. [PMID: 34392451 PMCID: PMC8364628 DOI: 10.1007/s11033-021-06642-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) is the causative agent of current coronavirus disease 2019 (COVID-19) pandemic. Electrolyte disorders particularly potassium abnormalities have been repeatedly reported as common clinical manifestations of COVID-19. Here, we discuss how SARS-CoV-2 may affect potassium balance by impairing the activity of epithelial sodium channels (ENaC). The first hypothesis could justify the incidence of hypokalemia. SARS-CoV-2 cell entry through angiotensin-converting enzyme 2 (ACE2) may enhance the activity of renin–angiotensin–aldosterone system (RAAS) classical axis and further leading to over production of aldosterone. Aldosterone is capable of enhancing the activity of ENaC and resulting in potassium loss from epithelial cells. However, type II transmembrane serine protease (TMPRSS2) is able to inhibit the ENaC, but it is utilized in the case of SARS-CoV-2 cell entry, therefore the ENaC remains activated. The second hypothesis describe the incidence of hyperkalemia based on the key role of furin. Furin is necessary for cleaving both SARS-CoV-2 spike protein and ENaC subunits. While the furin is hijacked by the virus, the decreased activity of ENaC would be expected, which causes retention of potassium ions and hyperkalemia. Given that the occurrence of hypokalemia is higher than hyperkalemia in COVID-19 patients, the first hypothesis may have greater impact on potassium levels. Further investigations are warranted to determine the exact role of ENaC in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J M Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus.,Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, University of South Australia, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Safiri
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
55
|
Zhang S, Gui X, Ding Y, Tong H, Ju W, Li Y, Li Z, Zeng L, Xu K, Qiao J. Matrine Impairs Platelet Function and Thrombosis and Inhibits ROS Production. Front Pharmacol 2021; 12:717725. [PMID: 34366869 PMCID: PMC8339414 DOI: 10.3389/fphar.2021.717725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Matrine is a naturally occurring alkaloid and possesses a wide range of pharmacological properties, such as anti-cancer, anti-oxidant, anti-inflammatory effects. However, whether it affects platelet function and thrombosis remains unclear. This study aims to evaluate the effect of matrine on platelet function and thrombus formation. Human platelets were treated with matrine (0–1 mg/ml) for 1 h at 37°C followed by measuring platelet aggregation, granule secretion, receptor expression by flow cytometry, spreading and clot retraction. In addition, matrine (10 mg/kg) was injected intraperitoneally into mice to measure tail bleeding time, arterial and venous thrombus formation. Matrine dose-dependently inhibited platelet aggregation and ATP release in response to either collagen-related peptide (Collagen-related peptide, 0.1 μg/ml) or thrombin (0.04 U/mL) stimulation without altering the expression of P-selectin, glycoprotein Ibα, GPVI, or αIIbβ3. In addition, matrine-treated platelets presented significantly decreased spreading on fibrinogen or collagen and clot retraction along with reduced phosphorylation of c-Src. Moreover, matrine administration significantly impaired the in vivo hemostatic function of platelets, arterial and venous thrombus formation. Furthermore, in platelets stimulated with CRP or thrombin, matrine significantly reduced Reactive oxygen species generation, inhibited the phosphorylation level of ERK1/2 (Thr202/Tyr204), p38 (Thr180/Tyr182) and AKT (Thr308/Ser473) as well as increased VASP phosphorylation (Ser239) and intracellular cGMP level. In conclusion, matrine inhibits platelet function, arterial and venous thrombosis, possibly involving inhibition of ROS generation, suggesting that matrine might be used as an antiplatelet agent for treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
56
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|
57
|
Zhang G, Chen H, Guo Y, Zhang W, Jiang Q, Zhang S, Han L, Chen S, Xue R. Activation of Platelet NLRP3 Inflammasome in Crohn's Disease. Front Pharmacol 2021; 12:705325. [PMID: 34262463 PMCID: PMC8273542 DOI: 10.3389/fphar.2021.705325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with Crohn's disease (CD) are inclined to have platelet hyperactivity and an increased risk of intestinal micro-thrombosis. However, the mechanisms underlying platelet hyperactivity in CD are not well understood. We investigated the assembly of platelet NLRP3 inflammasome in patients with active CD and its correlation with platelet hyperactivity. In this study, Real-time PCR and western blotting analyses uncovered that ASC, NLRP3, and active caspase-1 were significantly upregulated in platelets from patients with active CD compared with healthy subjects. As revealed by flow cytometry (FCM) and ELISA analyses, the levels of interleukin-1β in both serum and isolated platelets were elevated in patients with active CD. Co-immunoprecipitation and immunofluorescence experiments revealed an increased assembly of NLRP3 inflammasome in platelets from patients with active CD. In addition, higher levels of intracellular reactive oxygen species (ROS) were observed in these platelets by FCM. Furthermore, elevated levels of platelet P-selectin exposure and fibrinogen binding were demonstrated in patients with active CD by FCM. They were positively correlated with the protein levels of NLRP3 inflammasome components. Collectively, our results indicate that the ROS-NLRP3 inflammasome-interleukin-1β axis may contribute to platelet hyperactivity in active CD.
Collapse
Affiliation(s)
- Ge Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - He Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Guo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuyu Jiang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liping Han
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
58
|
Pennings GJ, Reddel CJ, Traini M, Lam M, Kockx M, Chen VM, Kritharides L. Rapid Release of Interleukin-1β from Human Platelets Is Independent of NLRP3 and Caspase. Thromb Haemost 2021; 122:517-528. [PMID: 34171934 DOI: 10.1055/s-0041-1731288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Platelets are critical in mediating both rapid responses to injury and the development and progression of coronary disease. Several studies have shown that, after prolonged exposure to agonists, they produce and release inflammatory mediators including interleukin-1β (IL-1β), via the classical pathway (NLRP3 inflammasome and caspase-1 cleavage to release active IL-1β) as described for leukocytes. This study aimed to determine whether there is rapid release of IL-1β in response to soluble platelet agonists and whether such rapid release is NLRP3- and caspase-1-dependent. METHODS AND RESULTS Using flow cytometry to detect platelet activation (and release of α and dense granule contents) and the combination of Western blotting, enzyme-linked-immunosorbent assay, and immunogold labeling transmission electron and immunofluorescence microscopy, we identified that resting human platelets contain mature IL-1β. Platelets release IL-1β within minutes in response to adenosine diphosphate (ADP), collagen, and thrombin receptor agonists, but not in response to conventional NLRP3 inflammasome agonists-lipopolysaccharide and adenosine triphosphate. The rapid release of IL-1β in response to ADP and thrombin receptor agonists was independent of caspases (including caspase-1) and NLRP3. Immature and mature IL-1β were identified as low-abundance proteins on transmission electron microscopy of human platelets, and were localized to the platelet cytosol, open canalicular system, and the periphery of α granules. CONCLUSION Unlike monocytes and neutrophils, human platelets are capable of rapid agonist- and time-dependent release of IL-1β by a mechanism which is independent of caspase-1 and NLRP3.
Collapse
Affiliation(s)
- Gabrielle J Pennings
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Caroline J Reddel
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Mathew Traini
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Magdalena Lam
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Maaike Kockx
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Vivien M Chen
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney Local Health District, New South Wales, Australia
| | - Leonard Kritharides
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney Local Health District, New South Wales, Australia
| |
Collapse
|
59
|
Gando S, Wada T. Thromboplasminflammation in COVID-19 Coagulopathy: Three Viewpoints for Diagnostic and Therapeutic Strategies. Front Immunol 2021; 12:649122. [PMID: 34177896 PMCID: PMC8226122 DOI: 10.3389/fimmu.2021.649122] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
Thromboplasminflammation in coronavirus disease 2019 (COVID-19) coagulopathy consists of angiotensin II (Ang II)-induced coagulopathy, activated factor XII (FXIIa)- and kallikrein, kinin system-enhanced fibrinolysis, and disseminated intravascular coagulation (DIC). All three conditions induce systemic inflammation via each pathomechanism-developed production of inflammatory cytokines. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) downregulates angiotensin-converting enzyme 2, leading to an increase in Ang II levels. Ang II-induced coagulopathy comprising platelet activation, thrombin generation, plasminogen activator inhibitor-1 expression and endothelial injury causes thrombosis via the angiotensin II type 1 receptor. SARS-CoV-2 RNA and neutrophil extracellular trap (NET) DNA activate FXII, resulting in plasmin generation through FXIIa- and kallikrein-mediated plasminogen conversion to plasmin and bradykinin-induced tissue-type plasminogen activator release from the endothelium via the kinin B2 receptor. NETs induce immunothrombosis at the site of infection (lungs), through histone- and DNA-mediated thrombin generation, insufficient anticoagulation control, and inhibition of fibrinolysis. However, if the infection is sufficiently severe, immunothrombosis disseminates into the systemic circulation, and DIC, which is associated with the endothelial injury, occurs. Inflammation, and serine protease networks of coagulation and fibrinolysis, militate each other through complement pathways, which exacerbates three pathologies of COVID-19 coagulopathy. COVID-19 coagulopathy causes microvascular thrombosis and bleeding, resulting in multiple organ dysfunction and death in critically ill patients. Treatment targets for improving the prognosis of COVID-19 coagulopathy include thrombin, plasmin, and inflammation, and SARS-CoV-2 infection. Several drugs are candidates for controlling these conditions; however, further advances are required to establish robust treatments based on a clear understanding of molecular mechanisms of COVID-19 coagulopathy.
Collapse
Affiliation(s)
- Satoshi Gando
- Acute and Critical Center, Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
60
|
Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv 2021; 5:2319-2324. [PMID: 33938940 DOI: 10.1182/bloodadvances.2020003377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is linked to local inflammation. A role for both neutrophil extracellular traps (NETs) and the assembly of inflammasomes (leading to caspase-1-dependent interleukin-1β activation) in the development of DVT was recently suggested. However, no link between these 2 processes in the setting of thrombosis has been investigated. Here, we demonstrate that stimulation of neutrophils induced simultaneous formation of NETs and active caspase-1. Caspase-1 was largely associated with NETs, suggesting that secreted active caspase-1 requires NETs as an adhesive surface. NETs and their components, histones, promoted robust caspase-1 activation in platelets with the strongest effect exerted by histones 3/4. Murine DVT thrombi contained active caspase-1, which peaked at 6 hours when compared with 48-hour thrombi. Platelets constituted more than one-half of cells containing active caspase-1 in dissociated thrombi. Using intravital microscopy, we identified colocalized NETs and caspase-1 as well as platelet recruitment at the site of thrombosis. Pharmacological inhibition of caspase-1 strongly reduced DVT in mice, and thrombi that still formed contained no citrullinated histone 3, a marker of NETs. Taken together, these data demonstrate a cross-talk between NETs and inflammasomes both in vitro and in the DVT setting. This may be an important mechanism supporting thrombosis in veins.
Collapse
|
61
|
The Inflammasome Signaling Pathway Is Actively Regulated and Related to Myocardial Damage in Coronary Thrombi from Patients with STEMI. Mediators Inflamm 2021; 2021:5525917. [PMID: 34135690 PMCID: PMC8178014 DOI: 10.1155/2021/5525917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background The Nod-Like-Receptor-Protein-3 (NLRP3) inflammasome and the Interleukin-6 (IL-6) pathways are central mechanisms of the inflammatory response in myocardial reperfusion injury. Expanding our knowledge about the inflammasome signaling axis is important to improve treatment options. In a cross-sectional study, we aimed to study presence, localization, and genetic expression of inflammasome- and IL-6- signaling-related proteins in coronary thrombi and circulating leukocytes from ST-elevation myocardial infarction (STEMI) patients, with relation to myocardial injury and time from symptoms to PCI. Methods Intracoronary thrombi were aspirated from 33 STEMI patients. Blood samples were drawn. mRNA of Toll-Like-Receptor-4 (TLR4), NLRP3, caspase 1, Interleukin-1β (IL1-β), Interleukin-18 (IL-18), IL-6, IL-6-receptor (IL-6R), and glycoprotein 130 (gp130) were isolated from thrombi and circulating leukocytes and relatively quantified by RT-PCR. A part of each thrombus was embedded in paraffin for histology and immunohistochemistry analyses. Results Genes encoding the 8 markers were present in 76-100% of thrombi. Expression of TLR4 in thrombi significantly correlated to troponin T (r = 0.455, p = 0.013), as did NLRP3 (r = 0.468, p = 0.024). Troponin T correlated with expression in circulating leukocytes of TLR4 (r = 0.438, p = 0.011), NLRP3 (r = 0.420, p = 0.0149), and IL-1β (r = 0.394, p = 0.023). IL-6R expression in thrombi correlated significantly to troponin T (r = 0.434, p = 0.019), whereas gp130 was inversely correlated (r = −0.398, p = 0.050). IL-6 in circulating leukocytes correlated inversely to troponin T (r = −0.421, p = 0.015). There were no significant correlations between genes expressed in thrombi and time from symptom to PCI. Conclusions The inflammasome signaling pathway was actively regulated in coronary thrombi and in circulating leukocytes from patients with STEMI, in association with myocardial damage measured by troponin T. This supports the strategy of medically targeting this pathway in treating myocardial infarction and contributes to sort out optimal timing and targets for anti-inflammatory treatment. The study is registered at clinicaltrials.gov with identification number NCT02746822.
Collapse
|
62
|
Protective Role of Platelets in Myocardial Infarction and Ischemia/Reperfusion Injury. Cardiol Res Pract 2021; 2021:5545416. [PMID: 34123416 PMCID: PMC8169247 DOI: 10.1155/2021/5545416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Thrombotic occlusion of the coronary artery is a key component in the pathogenesis of myocardial ischemia and myocardial infarction (MI). The standard therapy for ischemia is revascularization and restoration of blood flow to previously ischemic myocardium. Paradoxically, reperfusion may result in further tissue damage called ischemia/reperfusion injury (IRI). Platelets play a major role in the pathogenesis of MI and IRI, since they contribute to the thrombus and microthrombi formation, inflammation, release of immunomodulatory mediators, and vasoconstrictive molecules. Antiplatelet therapies have proven efficacy in the prevention of thrombosis and play a protective role in cardiac IRI. Beyond the deterioration effect of platelets in MI and IRI, in the 90s the first reports on a protective effect of molecules released from platelets during MI appeared. However, the role of platelets in cardioprotection is still poorly understood. This review describes the involvement of platelets in MI, IRI, and inflammation. It mainly focuses on the protective role of platelets in MI and IRI. Platelets are involved in cardioprotection based on platelet-releasing molecules and antiplatelet therapy, apart from antiaggregatory effects. Additionally, the use of platelet-derived microparticles as possible markers of MI, with and without comorbidities, and their role in cardioprotection are discussed. This review is aimed at illustrating the present knowledge on the role of platelets in MI and IRI, especially in a context of cardioprotection.
Collapse
|
63
|
Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv 2021; 4:2018-2031. [PMID: 32396616 DOI: 10.1182/bloodadvances.2019001169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence identifies major contributions of platelets to inflammatory amplification in dengue, but the mechanisms of infection-driven platelet activation are not completely understood. Dengue virus nonstructural protein-1 (DENV NS1) is a viral protein secreted by infected cells with recognized roles in dengue pathogenesis, but it remains unknown whether NS1 contributes to the inflammatory phenotype of infected platelets. This study shows that recombinant DENV NS1 activated platelets toward an inflammatory phenotype that partially reproduced DENV infection. NS1 stimulation induced translocation of α-granules and release of stored factors, but not of newly synthesized interleukin-1β (IL-1β). Even though both NS1 and DENV were able to induce pro-IL-1β synthesis, only DENV infection triggered caspase-1 activation and IL-1β release by platelets. A more complete thromboinflammatory phenotype was achieved by synergistic activation of NS1 with classic platelet agonists, enhancing α-granule translocation and inducing thromboxane A2 synthesis (thrombin and platelet-activating factor), or activating caspase-1 for IL-1β processing and secretion (adenosine triphosphate). Also, platelet activation by NS1 partially depended on toll-like receptor-4 (TLR-4), but not TLR-2/6. Finally, the platelets sustained viral genome translation and replication, but did not support the release of viral progeny to the extracellular milieu, characterizing an abortive viral infection. Although DENV infection was not productive, translation of the DENV genome led to NS1 expression and release by platelets, contributing to the activation of infected platelets through an autocrine loop. These data reveal distinct, new mechanisms for platelet activation in dengue, involving DENV genome translation and NS1-induced platelet activation via platelet TLR4.
Collapse
|
64
|
Gedefaw L, Ullah S, Leung PHM, Cai Y, Yip SP, Huang CL. Inflammasome Activation-Induced Hypercoagulopathy: Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells 2021; 10:916. [PMID: 33923537 PMCID: PMC8073302 DOI: 10.3390/cells10040916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the most devastating infectious disease in the 21st century with more than 2 million lives lost in less than a year. The activation of inflammasome in the host infected by SARS-CoV-2 is highly related to cytokine storm and hypercoagulopathy, which significantly contribute to the poor prognosis of COVID-19 patients. Even though many studies have shown the host defense mechanism induced by inflammasome against various viral infections, mechanistic interactions leading to downstream cellular responses and pathogenesis in COVID-19 remain unclear. The SARS-CoV-2 infection has been associated with numerous cardiovascular disorders including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism. The inflammatory response triggered by the activation of NLRP3 inflammasome under certain cardiovascular conditions resulted in hyperinflammation or the modulation of angiotensin-converting enzyme 2 signaling pathways. Perturbations of several target cells and tissues have been described in inflammasome activation, including pneumocytes, macrophages, endothelial cells, and dendritic cells. The interplay between inflammasome activation and hypercoagulopathy in COVID-19 patients is an emerging area to be further addressed. Targeted therapeutics to suppress inflammasome activation may have a positive effect on the reduction of hyperinflammation-induced hypercoagulopathy and cardiovascular disorders occurring as COVID-19 complications.
Collapse
Affiliation(s)
| | | | | | | | - Shea-Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (L.G.); (S.U.); (P.H.M.L.); (Y.C.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (L.G.); (S.U.); (P.H.M.L.); (Y.C.)
| |
Collapse
|
65
|
Vogel S, Kamimura S, Arora T, Smith ML, Almeida LEF, Combs CA, Thein SL, Quezado ZMN. NLRP3 inflammasome and bruton tyrosine kinase inhibition interferes with upregulated platelet aggregation and in vitro thrombus formation in sickle cell mice. Biochem Biophys Res Commun 2021; 555:196-201. [PMID: 33831782 DOI: 10.1016/j.bbrc.2021.03.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a critical inflammatory mechanism identified in platelets, which controls platelet activation and aggregation. We have recently shown that the platelet NLRP3 inflammasome is upregulated in sickle cell disease (SCD), which is mediated by Bruton tyrosine kinase (BTK). Here, we investigated the effect of pharmacological inhibition of NLRP3 and BTK on platelet aggregation and the formation of in vitro thrombi in Townes SCD mice. Mice were injected for 4 weeks with the NLRP3 inhibitor MCC950, the BTK inhibitor ibrutinib or vehicle control. NLRP3 activity, as monitored by caspase-1 activation, was upregulated in platelets from SCD mice, which was dependent on BTK. Large areas of platelet aggregates detected in the liver of SCD mice were decreased when mice were treated with MCC950 or ibrutinib. Moreover, platelet aggregation and in vitro thrombus formation were upregulated in SCD mice and were inhibited when mice were subjected to pharmacological inhibition of NLRP3 and BTK. Targeting the NLRP3 inflammasome might be a novel approach for antiplatelet therapy in SCD.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Taruna Arora
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
66
|
Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed Pharmacother 2021; 138:111442. [PMID: 33667791 DOI: 10.1016/j.biopha.2021.111442] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. Current approved medication for IBD treatment in the clinic mainly includes corticosteroids and neutralization antibodies to pro-inflammatory cytokines. However, drug resistance and severe side effect hinder long-term efficacy of these agents. The NOD-like receptor family pyrin domain containing protein 3 (NLRP3) is exclusively expressed in several inflammatory and autoimmune diseases. Excessive expression, aberrant activation, polymorphism, and gain-of-function mutation of the NLRP3 inflammasome contribute to IBD pathogenesis. In this article, we summarize the regulatory factors to NLRP3, and review recently developed NLRP3 inhibitors and their preclinical and clinical applications in treating inflammatory and autoimmune diseases. We present our views on the therapeutic potential of NLRP3 inhibitors as emerging therapeutic avenue for IBD.
Collapse
|
67
|
Chen X, Wang C, Sun N, Pan S, Li R, Li X, Zhao J, Tong H, Tang Y, Han J, Qiao J, Qiu H, Wang H, Yang J, Ikezoe T. Aurka loss in CD19 + B cells promotes megakaryocytopoiesis via IL-6/STAT3 signaling-mediated thrombopoietin production. Theranostics 2021; 11:4655-4671. [PMID: 33754019 PMCID: PMC7978311 DOI: 10.7150/thno.49007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/15/2021] [Indexed: 01/21/2023] Open
Abstract
Rationale: Aurora kinase A (Aurora-A), which is required for mitosis, is a therapeutic target in various tumors. Targeting Aurora-A led to an increase in the differentiation and polyploidization of megakaryocytes both in vivo and in vitro. However, the mechanisms involved in controlling megakaryocyte differentiation have not been fully elucidated. Methods: Conditional Aurka knockout mice were generated. B cell development, platelet development and function were subsequently examined. Proplatelet formation, in vivo response to mTPO, post-transfusion experiment, colony assay, immunofluorescence staining and quantification, and ChIP assay were conducted to gain insights into the mechanisms of Aurka loss in megakaryocytopoiesis. Results: Loss of Aurka in CD19+ B cells impaired B cell development in association with an increase in the number of platelets in peripheral blood (PB). Surprisingly, thrombopoietin (TPO) production and IL-6 were elevated in the plasma in parallel with an increase in the number of differentiated megakaryocytes in the bone marrow (BM) of Aurkaf/f;Cd19Cre/+ mice. Interestingly, compared with that of the Aurkaf/f mice, a higher number of CD19+ B cells close to megakaryocytes was observed in the BM of the Aurkaf/f;Cd19Cre/+ mice. Moreover, Aurka loss in CD19+ B cells induced signal transducer and activator of transcription-3 (STAT3) activation. Inhibition of STAT3 reduced the Tpo mRNA levels. ChIP assays revealed that STAT3 bound to the TPO promoter. Additionally, STAT3-mediated TPO transcription was an autocrine effect provoked by IL-6, at least partially. Conclusions: Deletion of Aurka in CD19+ B cells led to an increase in IL-6 production, promoting STAT3 activation, which in turn contributed to TPO transcription and megakaryocytopoiesis.
Collapse
|
68
|
Wang X, Sun K, Zhou Y, Wang H, Zhou Y, Liu S, Nie Y, Li Y. NLRP3 inflammasome inhibitor CY-09 reduces hepatic steatosis in experimental NAFLD mice. Biochem Biophys Res Commun 2021; 534:734-739. [PMID: 33213837 DOI: 10.1016/j.bbrc.2020.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases. The NOD-like receptor protein 3 (NLRP3) inflammasome was suggested to be involved in the pathogenesis of NAFLD. A small-molecule named CY-09 is a new selective and direct inhibitor of the NLRP3 inflammasome. We aimed to investigate whether CY-09 is effective for the treatment of NAFLD in a high-fat diet (HFD)-induced mouse model. METHODS Twenty mice were fed by HFD for 14 weeks, and then were randomly assigned into two groups: (1) control group receiving dimethylsulfoxide (DMSO) solution; (2) CY-09 group receiving CY-09 injection. In an 8-week follow-up, oral glucose tolerance test (OGTT) and homeostasis model assessment of insulin resistance (HOMA-IR) were used to measure glucose metabolism. Liver steatosis was evaluated by the NAFLD activity score (NAS) and deemed as the primary outcome. RESULTS The body weight in CY-09 group was significantly lower than the DMSO control group on 27 weeks (41.0 ± 3.5 g vs. 49.7 ± 5.2 g, P = 0.014). The area under the curve (AUC) of OGTT was less in CY-09 group than that in DMSO group (35.81 ± 6.79 vs. 22.91 ± 2.58 mmol/L·hr, P = 0.004), as well as HOMA-IR (14.36 ± 3.89 vs. 8.82 ± 2.04 mmol.mIU.L-2, P = 0.023). Microscopically, liver lipid droplets dramatically improved and significantly lower NAS was observed in CY-09 group (8.25 ± 1.26 vs. 3.20 ± 0.45, P < 0.001). CONCLUSION CY-09 reduces hepatic steatosis in experimental NAFLD mice and CY-09 may be a potential therapeutic drug of NAFLD in clinical practice.
Collapse
Affiliation(s)
- Xianfei Wang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Kangyue Sun
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Youlian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Hong Wang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China.
| | - Yue Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
69
|
Wang S, Liu Y, Li G, Feng Q, Hou M, Peng J. Reduced intracellular antioxidant capacity in platelets contributes to primary immune thrombocytopenia via ROS-NLRP3-caspase-1 pathway. Thromb Res 2020; 199:1-9. [PMID: 33383234 DOI: 10.1016/j.thromres.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Primary immune thrombocytopenia (ITP) is a common acquired autoimmune hemorrhagic disease characterized by a low platelet count and increased risk of bleeding. However, some patients do not respond well to current therapeutic approaches. Further studies on pathogenesis and pathophysiology of ITP are needed to discover new therapeutic targets. We explored the role of enhanced intracellular oxidative stress and NLRP3 inflammasome activation of platelets in ITP. The expression of NLRP3 inflammasome was assessed in platelets from active ITP patients and healthy donors. Both the mRNA and protein expression level of platelet NLRP3 inflammasome was upregulated in ITP patients compared with healthy donors. Besides, the elevated caspase-1 activity and increased co-localization of NLRP3 and its adaptor molecule ASC indicated activation of NLRP3 inflammasome in ITP platelets. Significantly decreased intracellular antioxidant capacity was observed in ITP platelets. H2O2 supplementation elevated the expression of NLRP3 inflammasome and increased IL-1β secretion in ITP platelets. Preincubating ITP platelets with NAC down-regulated the expression of NLRP3 inflammasome. Pretreating ITP platelets with NLRP3 inhibitor MCC950 or caspase-1 inhibitor Z-YVAD-FMK significantly reduced the proportion of pyroptotic cells in H2O2-treated ITP platelets and suppressed IL-1β secretion in supernatants. Hence, platelet NLRP3 inflammasome activation resulted from reduced intracellular antioxidant capacity plays a critical role in ITP and might have potential diagnostic or therapeutic implications.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
70
|
Peng H, Wu H, Zhang G, Zhang W, Guo Y, Chang L, Chen S, Xue R, Zhang S. Expression and Clinical Prognostic Value of Platelet NLRP3 in Acute Coronary Syndrome. Int J Gen Med 2020; 13:791-802. [PMID: 33116771 PMCID: PMC7555296 DOI: 10.2147/ijgm.s275481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Little is known about the relationship between the level of platelet NOD-like receptor protein 3 (NLRP3) and the severity of acute coronary syndrome (ACS) or the prognostic value of platelet NLRP3 for percutaneous coronary intervention (PCI). METHODS Platelets collected from 25 healthy subjects, 23 patients with stable angina pectoris (SAP), and 72 patients with ACS were analyzed by Western blotting and real-time fluorescence quantitative PCR (qPCR). A total of 152 patients with ACS who had undergone PCI were included in this study to evaluate the prognostic value of platelet NLRP3. RESULTS The levels of platelet NLRP3 in both the healthy and SAP groups were clearly lower than in the ACS group (P<0.001). According to the Pearson correlation analysis, the expression of platelet NLRP3 was closely related to the mean platelet volume (MPV), left ventricular ejection fraction (LVEF), the Gensini score, and the Global Registry of Acute Coronary Events (GRACE) score (all P<0.001). Multivariate logistic regression analysis identified NLRP3 as an independent risk factor for adverse cardiovascular events (ACEs) after PCI (P=0.004). The proportion of patients with high NLPR3 expression (the NLRP3-high group) remaining free of adverse events for 3 years was remarkably lower than that in patients with low NLPR3 expression (the NLRP3-low group; P=0.024). The NLRP3-high group had a significantly higher proportion of patients with interleukin-1β-expressing (20.4%±6.1%) platelets than the NLRP3-low group (10.7%±3.5%, P<0.001). Moreover, the NLRP3-high group exhibited higher platelet activity, as indicated by increased PAC-1 binding and CD62P expression, compared with the NLRP3-low group (P<0.001). CONCLUSION These results indicated that platelet NLRP3 was a novel potential prognostic factor for patients with ACS that underwent PCI.
Collapse
Affiliation(s)
- Huitong Peng
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Hongyi Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ge Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Yifan Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - She Chen
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
71
|
de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome in Times of COVID-19. Front Immunol 2020; 11:583373. [PMID: 33149733 PMCID: PMC7580384 DOI: 10.3389/fimmu.2020.583373] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses (CoVs) are members of the genus Betacoronavirus and the Coronaviridiae family responsible for infections such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and more recently, coronavirus disease-2019 (COVID-19). CoV infections present mainly as respiratory infections that lead to acute respiratory distress syndrome (ARDS). However, CoVs, such as COVID-19, also present as a hyperactivation of the inflammatory response that results in increased production of inflammatory cytokines such as interleukin (IL)-1β and its downstream molecule IL-6. The inflammasome is a multiprotein complex involved in the activation of caspase-1 that leads to the activation of IL-1β in a variety of diseases and infections such as CoV infection and in different tissues such as lungs, brain, intestines and kidneys, all of which have been shown to be affected in COVID-19 patients. Here we review the literature regarding the mechanism of inflammasome activation by CoV infection, the role of the inflammasome in ARDS, ventilator-induced lung injury (VILI), and Disseminated Intravascular Coagulation (DIC) as well as the potential mechanism by which the inflammasome may contribute to the damaging effects of inflammation in the cardiac, renal, digestive, and nervous systems in COVID-19 patients.
Collapse
Affiliation(s)
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
72
|
Zhang Y, Zhao Y, Zhang J, Yang G. Mechanisms of NLRP3 Inflammasome Activation: Its Role in the Treatment of Alzheimer's Disease. Neurochem Res 2020; 45:2560-2572. [PMID: 32929691 DOI: 10.1007/s11064-020-03121-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease of progressive dementia which is characterized pathologically by extracellular neuritic plaques containing aggregated amyloid beta (Aβ) and intracellular hyperphosphorylated tau protein tangles in cerebrum. It has been confirmed that microglia-specific nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated chronic neuroinflammation plays a crucial role in the pathogenesis of AD. Stimulated by Aβ deposition, NLRP3 assembles and activates within microglia in the AD brain, leading to caspase-1 activation along with downstream interleukin (IL)-1β secretion, and subsequent inflammatory events. Activation of the NLRP3 inflammasome mediates microglia to exhibit inflammatory M1 phenotype, with high expression of caspase-1 and IL-1β. This leads to Aβ deposition and neuronal loss in the amyloid precursor protein (APP)/human presenilin-1 (PS1) mouse model of AD. However, NLRP3 or caspase-1 deletion in APP/PS1 mice promotes microglia to transform to an anti-inflammatory M2 phenotype, with decreased secretion of caspase-1 and IL-1β. It also results in improved cognition, enhanced Aβ clearance, and a lower cerebral inflammatory response. This result suggests that the NLRP3 inflammasome may be an appropriate target for reducing neuroinflammation and alleviating pathological processes in AD. In the present review, we summarize the generally accepted regulatory mechanisms of NLRP3 inflammasome activation, and explore its role in neuroinflammation. Furthermore, we speculate on the possible roles of microglia-specific NLRP3 activation in AD pathogenesis and consider potential therapeutic interventions targeting the NLRP3 inflammasome in AD.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yuan Zhao
- Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jian Zhang
- Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
73
|
Oikonomou E, Leopoulou M, Theofilis P, Antonopoulos AS, Siasos G, Latsios G, Mystakidi VC, Antoniades C, Tousoulis D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020; 309:16-26. [PMID: 32858395 DOI: 10.1016/j.atherosclerosis.2020.07.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
The association between thrombosis and acute coronary syndromes is well established. Inflammation and activation of innate and adaptive immunity are another important factor implicated in atherosclerosis. However, the exact interactions between thrombosis and inflammation in atherosclerosis are less well understood. Accumulating data suggest a firm interaction between these two key pathophysiologic processes. Pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and interleukin-1, have been implicated in the thrombotic cascade following plaque rupture and myocardial infarction. Furthermore, cell adhesion molecules accelerate not only atheromatosis but also thrombosis formation while activated platelets are able to trigger leukocyte adhesion and accumulation. Additionally, tissue factor, thrombin, and activated coagulation factors induce the release of pro-inflammatory cytokines such as prostaglandin and C reactive protein, which may further induce von Willebrand factor secretion. Treatments targeting immune activation (i.e. interleukin-1 inhibitors, colchicine, statins, etc.) may also beneficially modulate platelet activation while common anti-thrombotic therapies appear to attenuate the inflammatory process. Taken together in the context of cardiovascular diseases, thrombosis and inflammation should be studied and managed as a common entity under the concept of thrombo-inflammation.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Marianna Leopoulou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vasiliki Chara Mystakidi
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
74
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
75
|
Freeman TL, Swartz TH. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front Immunol 2020; 11:1518. [PMID: 32655582 PMCID: PMC7324760 DOI: 10.3389/fimmu.2020.01518] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus within the family Coronaviridae. It is an enveloped single-stranded positive-sense RNA virus. Since December of 2019, a global expansion of the infection has occurred with widespread dissemination of coronavirus disease 2019 (COVID-19). COVID-19 often manifests as only mild cold-like symptomatology, but severe disease with complications occurs in 15% of cases. Respiratory failure occurs in severe disease that can be accompanied by a systemic inflammatory reaction characterized by inflammatory cytokine release. In severe cases, fatality is caused by the rapid development of severe lung injury characteristic of acute respiratory distress syndrome (ARDS). Although ARDS is a complication of SARS-CoV-2 infection, it is not viral replication or infection that causes tissue injury; rather, it is the result of dysregulated hyperinflammation in response to viral infection. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathway and release of its products including the proinflammatory cytokines IL-6 and IL-1β. Here we review the literature that describes the pathogenesis of severe COVID-19 and NLRP3 activation and describe an important role in targeting this pathway for the treatment of severe COVID-19.
Collapse
MESH Headings
- Animals
- Betacoronavirus/metabolism
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/metabolism
- Coronavirus Infections/virology
- Cytokine Release Syndrome/drug therapy
- Cytokine Release Syndrome/metabolism
- Furans
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
- Humans
- Immunity, Innate
- Indenes
- Inflammasomes/antagonists & inhibitors
- Inflammasomes/metabolism
- Interleukin 1 Receptor Antagonist Protein/pharmacology
- Interleukin 1 Receptor Antagonist Protein/therapeutic use
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Mice
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Pandemics
- Pneumonia, Viral/complications
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/virology
- Pyroptosis/drug effects
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/etiology
- Respiratory Distress Syndrome/metabolism
- SARS-CoV-2
- Sesquiterpenes, Guaiane/pharmacology
- Sesquiterpenes, Guaiane/therapeutic use
- Sulfonamides
- Sulfones/pharmacology
- Sulfones/therapeutic use
Collapse
Affiliation(s)
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
76
|
p47phox deficiency impairs platelet function and protects mice against arterial and venous thrombosis. Redox Biol 2020; 34:101569. [PMID: 32422541 PMCID: PMC7231845 DOI: 10.1016/j.redox.2020.101569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
NADPH oxidase-derived reactive oxygen species (ROS) regulates platelet function and thrombosis. It remains controversial regarding NOX2’s role in platelet function. As a regulatory subunit for NOX2, whether p47phox regulates platelet function remains unclear. Our study intends to evaluate p47phox’s role in platelet function. Platelets were isolated from wild-type or p47phox-/- mice followed by analysis of platelet aggregation, granule secretion, surface receptors expression, spreading, clot retraction and ROS generation. Additionally, in vivo hemostasis, arterial and venous thrombosis was assessed. Moreover, human platelets were treated with PR-39 to inhibit p47phox activity followed by analysis of platelet function. p47phox deficiency significantly prolonged tail-bleeding time, delayed arterial and venous thrombus formation in vivo as well as reduced platelet aggregation, ATP release and αIIbβ3 activation. In addition, p47phox-/- platelets presented impaired spreading on fibrinogen or collagen and defective clot retraction concomitant with decreased phosphorylation of Syk and PLCγ2. Moreover, CRP or thrombin-stimulated p47phox-/- platelets displayed reduced intracellular ROS generation which was further decreased after inhibition of NOX1. Meanwhile, p47phox deficiency increased VASP phosphorylation and decreased phosphorylation of ERK1/2, p38, ERK5 and JNK without affecting AKT and c-PLA2 phosphorylation. Furthermore, p47phox translocates to membrane to interact with both NOX1 and NOX2 after stimulation with CRP or thrombin. Finally, inhibition of p47phox activity by PR-39 reduced ROS generation, platelet aggregation and clot retraction in human platelets. In conclusion, p47phox regulates platelet function, arterial and venous thrombus formation and ROS generation, indicating that p47phox might be a novel therapeutic target for treating thrombotic or cardiovascular diseases. p47phox deficiency impaired hemostasis, delayed arterial and venous thrombosis. Reduced platelet aggregation, spreading and clot retraction in p47phox-/- platelet. Decreased ROS production and elevated VASP phosphorylation in p47phox-/- platelet. p47phox deficiency decreased phosphorylation of ERK1/2, p38 MAPK, ERK5 and JNK. p47phox translocates to membrane to interact with both NOX1 and NOX2 after stimulation.
Collapse
|
77
|
Wei G, Xu X, Tong H, Wang X, Chen Y, Ding Y, Zhang S, Ju W, Fu C, Li Z, Zeng L, Xu K, Qiao J. Salidroside inhibits platelet function and thrombus formation through AKT/GSK3β signaling pathway. Aging (Albany NY) 2020; 12:8151-8166. [PMID: 32352928 PMCID: PMC7244060 DOI: 10.18632/aging.103131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Salidroside is the main bioactive component in Rhodiola rosea and possesses multiple biological and pharmacological properties. However, whether salidroside affects platelet function remains unclear. Our study aims to investigate salidroside’s effect on platelet function. Human or mouse platelets were treated with salidroside (0-20 μM) for 1 hour at 37°C. Platelet aggregation, granule secretion, and receptors expression were measured together with detection of platelet spreading and clot retraction. In addition, salidroside (20 mg/kg) was intraperitoneally injected into mice followed by measuring tail bleeding time, arterial and venous thrombosis. Salidroside inhibited thrombin- or CRP-induced platelet aggregation and ATP release and did not affect the expression of P-selectin, glycoprotein (GP) Ibα, GPVI and αIIbβ3. Salidroside-treated platelets presented decreased spreading on fibrinogen or collagen and reduced clot retraction with decreased phosphorylation of c-Src, Syk and PLCγ2. Additionally, salidroside significantly impaired hemostasis, arterial and venous thrombus formation in mice. Moreover, in thrombin-stimulated platelets, salidroside inhibited phosphorylation of AKT (T308/S473) and GSK3β (Ser9). Further, addition of GSK3β inhibitor reversed the inhibitory effect of salidroside on platelet aggregation and clot retraction. In conclusion, salidroside inhibits platelet function and thrombosis via AKT/GSK3β signaling, suggesting that salidroside may be a novel therapeutic drug for treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Guangyu Wei
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiaoqi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiamin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yuting Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
78
|
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease in which a variety of circulating pro-inflammatory cells and dysregulated molecules are involved in disease aetiology and progression. Platelets are an important cellular element in the circulation that can bind several dysregulated molecules (such as collagen, thrombin and fibrinogen) that are present both in the synovium and the circulation of patients with RA. Platelets not only respond to dysregulated molecules in their environment but also transport and express their own inflammatory mediators, and serve as regulators at the boundary between haemostasis and immunity. Activated platelets also produce microparticles, which further convey signalling molecules and receptors to the synovium and circulation, thereby positioning these platelet-derived particles as strategic regulators of inflammation. These diverse functions come together to make platelets facilitators of cellular crosstalk in RA. Thus, the receptor functions, ligand binding potential and dysregulated signalling pathways in platelets are becoming increasingly important for treatment in RA. This Review aims to highlight the role of platelets in RA and the need to closely examine platelets as health indicators when designing effective pharmaceutical targets in this disease.
Collapse
|
79
|
Chanchal S, Mishra A, Singh MK, Ashraf MZ. Understanding Inflammatory Responses in the Manifestation of Prothrombotic Phenotypes. Front Cell Dev Biol 2020; 8:73. [PMID: 32117993 PMCID: PMC7033430 DOI: 10.3389/fcell.2020.00073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammasome complex is a multimeric protein comprising of upstream sensor protein of nucleotide-binding oligomerization domain (NOD)-like receptor family. It has an adaptor protein apoptosis-associated speck-like protein and downstream effector cysteine protease procaspase-1. Activation of inflammasome complex is body’s innate response to pathogen attack but its abnormal activation results in many inflammatory and cardiovascular disorders including thrombosis. It has displayed a prominent role in the clot formation advocating an interplay between inflammation and coagulation cascades. Therefore, elucidation of inflammasome and its molecular mechanisms in the manifestation of prothrombotic phenotypes becomes pertinent. Thrombosis is the formation and propagation of blood clot in the arterial or venous system due to several interactions of vascular and immune factors. It is a prevalent pathology underlying disorders like venous thromboembolism, stroke and acute coronary syndrome; thus, making thrombosis, a major contributor to the global disease burden. Recently studies have established a strong connection of inflammatory processes with this blood coagulation disorder. The hemostatic balance in thrombosis gets altered by the inflammatory mechanisms resulting in endothelial and platelet activation that subsequently increases secretion of several prothrombotic and antifibrinolytic factors. The upregulation of these factors is the critical event in the pathogenesis of thrombosis. Among various inflammasome, nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) is one of the best-studied sterile inflammasome strengthening a link between inflammation and coagulation in thrombosis. NLRP3 activation results in the catalytic conversion of procaspase-1 to active caspase-1, which facilitate the maturation of interleukin-1β (IL-1β) and interleukin-18. These cytokines are responsible for immune cells activation critical for immune responses. These responses further results in endothelial and platelet activation and aggregation. However, the exact molecular mechanism related to the pathogenesis of thrombosis is still elusive. There have been several reports that demonstrate Tissue factor (TF)-mediated signaling in the production of pro-inflammatory cytokines enhancing inflammation by activating protease-activated receptors on various cells, which lead to additional cytokine expression. Therefore, it would be illuminating to interpret the inflammasomes regulation in coagulation and inflammation. This review, thus, tries to comprehensively compile emerging regulatory roles of the inflammasomes in thrombosis and discusses their molecular pathways in the manifestation of thrombotic phenotypes.
Collapse
Affiliation(s)
- Shankar Chanchal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aastha Mishra
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manvendra Kumar Singh
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Mohammad Zahid Ashraf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
80
|
Fender AC, Kleeschulte S, Stolte S, Leineweber K, Kamler M, Bode J, Li N, Dobrev D. Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart. Basic Res Cardiol 2020; 115:10. [PMID: 31912235 DOI: 10.1007/s00395-019-0771-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
The deleterious effects of diabetes in the heart are increasingly attributed to inflammatory signaling through the NLRP3 (NOD, LRR and PYD domains-containing protein 3) inflammasome. Thrombin antagonists reduce cardiac remodeling and dysfunction in diabetic mice, in part by suppressing fibrin-driven inflammation. The role of cellular thrombin receptor subtypes in this context is not known. We sought to determine the causal involvement of protease-activated receptors (PAR) in inflammatory signaling of the diabetic heart. Mice with diet-induced diabetes showed increased abundance of pro-caspase-1 and pro-interleukin (IL)-1β in the left ventricle (LV), indicating transcriptional NLRP3 inflammasome priming, and augmented cleavage of active caspase-1 and IL-1β, pointing to canonical NLRP3 inflammasome activation. Caspase-11 activation, which mediates non-canonical NLRP3 inflammasome signaling, was not augmented. Formation of the plasma membrane pore-forming protein N-terminal gasdermin D (GDSMD), a prerequisite for IL-1β secretion, was also higher in diabetic vs. control mouse LV. NLRP3, ASC and IL-18 expression did not differ between the groups, nor did expression of PAR1 or PAR2. PAR3 was nearly undetectable. LV abundance of PAR4 by contrast increased with diabetes and correlated positively with active caspase-1. Genetic deletion of PAR4 in mice prevented the diet-induced cleavage of caspase-1, IL-1β and GDSMD. Right atrial appendages from patients with type 2 diabetes also showed higher levels of PAR4, but not of PAR1 or PAR2, than non-diabetic atrial tissue, along with increased abundance of cleaved caspase-1, IL-1β and GSDMD. Human cardiac fibroblasts maintained in high glucose conditions to mimic diabetes also upregulated PAR4 mRNA and protein, and increased PAR4-dependent IL-1β transcription and secretion in response to thrombin, while PAR1 and PAR2 expressions were unaltered. In conclusion, PAR4 drives caspase-1-dependent IL-1β production through the canonical NLRP3 inflammasome pathway in the diabetic heart, providing mechanistic insights into diabetes-associated cardiac thromboinflammation. The emerging PAR4-selective antagonists may provide a feasible approach to prevent cardiac inflammation in patients with diabetes.
Collapse
Affiliation(s)
- Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Sonja Kleeschulte
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Svenja Stolte
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Katja Leineweber
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Johannes Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Düsseldorf, Germany
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| |
Collapse
|
81
|
Margraf A, Zarbock A. Platelets in Inflammation and Resolution. THE JOURNAL OF IMMUNOLOGY 2019; 203:2357-2367. [DOI: 10.4049/jimmunol.1900899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
|
82
|
Guo L, Rondina MT. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases. Front Immunol 2019; 10:2204. [PMID: 31572400 PMCID: PMC6753373 DOI: 10.3389/fimmu.2019.02204] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are anucleate cells produced by megakaryocytes. In recent years, a robust body of literature supports the evolving role of platelets as key sentinel and effector cells in infectious diseases, especially critical in bridging hemostatic, inflammatory, and immune continuums. Upon intravascular pathogen invasion, platelets can directly sense viral, parasitic, and bacterial infections through pattern recognition receptors and integrin receptors or pathogen: immunoglobulin complexes through Fc and complement receptors—although our understanding of these interactions remains incomplete. Constantly scanning for areas of injury or inflammation as they circulate in the vasculature, platelets also indirectly respond to pathogen invasion through interactions with leukocytes and the endothelium. Following antigen recognition, platelets often become activated. Through a diverse repertoire of mechanisms, activated platelets can directly sequester or kill pathogens, or facilitate pathogen clearance by activating macrophages and neutrophils, promoting neutrophil extracellular traps (NETs) formation, forming platelet aggregates and microthrombi. At times, however, platelet activation may also be injurious to the host, exacerbating inflammation and promoting endothelial damage and thrombosis. There are many gaps in our understandings of the role of platelets in infectious diseases. However, with the emergence of advanced technologies, our knowledge is increasing. In the current review, we mainly discuss these evolving roles of platelets under four different infectious pathogen infections, of which are dengue, malaria, Esterichia coli (E. coli) and staphylococcus aureus S. aureus, highlighting the complex interplay of these processes with hemostatic and thrombotic pathways.
Collapse
Affiliation(s)
- Li Guo
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, UT, United States
| |
Collapse
|
83
|
The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. Blood Adv 2019; 2:2672-2680. [PMID: 30333099 DOI: 10.1182/bloodadvances.2018021709] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
A key inflammatory mechanism recently identified in platelets involves the Nod-like receptor nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK), which control activation of caspase-1 within inflammasome complexes. We investigated platelet caspase-1 activity in the context of sickle cell disease (SCD) directly in platelets isolated from SCD patients (n = 24) and indirectly by incubating platelets from healthy subjects with plasma obtained from SCD patients (n = 20), both in steady state and during an acute pain crisis (paired samples). The platelet NLRP3 inflammasome was upregulated in SCD patients under steady state conditions compared with healthy controls, and it was further upregulated when patients experienced an acute pain crisis. The results were consistent with indirect platelet assays, in which SCD plasma increased caspase-1 activity of platelets from healthy subjects in an NLRP3-dependent fashion. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) was elevated in plasma of SCD subjects compared with healthy controls and correlated with caspase-1 activity in platelets. Pharmacological or antibody-mediated inhibition of HMGB1, Toll-like receptor 4, and BTK interfered with sickle plasma-induced platelet caspase-1 activation. In Townes SCD mice, caspase-1 activity and aggregation of circulating platelets were elevated, which was suppressed by IV injection of an NLRP3 inhibitor and the BTK inhibitor ibrutinib. Activation of the platelet NLRP3 inflammasome in SCD may have diagnostic and therapeutic implications.
Collapse
|
84
|
An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, Yuan M, Yang X, Li X, Shang H, Xiong X, Xing Y. Regulatory Mechanisms of the NLRP3 Inflammasome, a Novel Immune-Inflammatory Marker in Cardiovascular Diseases. Front Immunol 2019; 10:1592. [PMID: 31354731 PMCID: PMC6635885 DOI: 10.3389/fimmu.2019.01592] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The nod-like receptor family pyrin domain containing 3 (NLRP3) is currently the most widely studied inflammasome and has become a hot topic of recent research. As a macromolecular complex, the NLRP3 inflammasome is activated to produce downstream factors, including caspase-1, IL-1β, and IL-18, which then promote local inflammatory responses and induce pyroptosis, leading to unfavorable effects. A growing number of studies have examined the relationship between the NLRP3 inflammasome and cardiovascular diseases (CVDs). However, some studies have shown that the NLRP3 inflammasome is not involved in the occurrence of certain diseases. Therefore, identifying the mechanism of action of the NLRP3 inflammasome and its potential involvement in the pathological process of disease progression is of utmost importance. This review discusses the mechanisms of NLRP3 inflammasome activation and the relationship between the inflammasome and CVDs, including coronary atherosclerosis, myocardial ischemia/reperfusion, cardiomyopathies, and arrhythmia, as well as CVD-related treatments.
Collapse
Affiliation(s)
- Na An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- Department of Acupuncture and Moxibustion, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Hanlai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Liqin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
85
|
Boone BA, Murthy P, Miller-Ocuin JL, Liang X, Russell KL, Loughran P, Gawaz M, Lotze MT, Zeh HJ, Vogel S. The platelet NLRP3 inflammasome is upregulated in a murine model of pancreatic cancer and promotes platelet aggregation and tumor growth. Ann Hematol 2019; 98:1603-1610. [PMID: 31020347 DOI: 10.1007/s00277-019-03692-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Platelets are activated in solid cancers, including pancreatic ductal adenocarcinoma (PDA), a highly aggressive malignancy with a devastating prognosis and limited therapeutic options. The mechanisms by which activated platelets regulate tumor progression are poorly understood. The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a key inflammatory mechanism recently identified in platelets, which controls platelet activation and aggregation. In an orthotopic PDA mouse model involving surgical implantation of Panc02 murine cancer cells into the tail of the pancreas, we show that the NLRP3 inflammasome in circulating platelets is upregulated in pancreatic cancer. Pharmacological inhibition or genetic ablation of NLRP3 in platelets resulted in decreased platelet activation, platelet aggregation, and tumor progression. Moreover, interfering with platelet NLRP3 signaling significantly improved survival of tumor-bearing mice. Hence, the platelet NLRP3 inflammasome plays a critical role in PDA and might represent a novel therapeutic target.
Collapse
Affiliation(s)
- Brian A Boone
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Xiaoyan Liang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kira L Russell
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Vogel
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University Tübingen, Tübingen, Germany. .,Department of Perioperative Medicine, Pediatric Anesthesiology and Critical Care Section, National Institutes of Health Clinical Center, NIH, 10 Center Drive, Building 10 Room B1B50, Bethesda, MD, 20814, USA.
| |
Collapse
|
86
|
Yadav V, Chi L, Zhao R, Tourdot BE, Yalavarthi S, Jacobs BN, Banka A, Liao H, Koonse S, Anyanwu AC, Visovatti SH, Holinstat MA, Kahlenberg JM, Knight JS, Pinsky DJ, Kanthi Y. Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis. J Clin Invest 2019; 129:2872-2877. [PMID: 30990798 DOI: 10.1172/jci124804] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep vein thrombosis (DVT), caused by alterations in venous homeostasis is the third most common cause of cardiovascular mortality; however, key molecular determinants in venous thrombosis have not been fully elucidated. Several lines of evidence indicate that DVT occurs at the intersection of dysregulated inflammation and coagulation. The enzyme ectonucleoside tri(di)phosphohydrolase (ENTPD1, also known as CD39) is a vascular ecto-apyrase on the surface of leukocytes and the endothelium that inhibits intravascular inflammation and thrombosis by hydrolysis of phosphodiester bonds from nucleotides released by activated cells. Here, we evaluated the contribution of CD39 to venous thrombosis in a restricted-flow model of murine inferior vena cava stenosis. CD39-deficiency conferred a >2-fold increase in venous thrombogenesis, characterized by increased leukocyte engagement, neutrophil extracellular trap formation, fibrin, and local activation of tissue factor in the thrombotic milieu. This was orchestrated by increased phosphorylation of the p65 subunit of NFκB, activation of the NLRP3 inflammasome, and interleukin-1β (IL-1β) release in CD39-deficient mice. Substantiating these findings, an IL-1β-neutralizing antibody attenuated the thrombosis risk in CD39-deficient mice. These data demonstrate that IL-1β is a key accelerant of venous thrombo-inflammation, which can be suppressed by CD39. CD39 inhibits in vivo crosstalk between inflammation and coagulation pathways, and is a critical vascular checkpoint in venous thrombosis.
Collapse
Affiliation(s)
- Vinita Yadav
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Liguo Chi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Raymond Zhao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | | | | | - Benjamin N Jacobs
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alison Banka
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Chemical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Hui Liao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Sharon Koonse
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Anuli C Anyanwu
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | - David J Pinsky
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Section of Cardiology, Ann Arbor Veterans Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
87
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
88
|
Vogel S, Murthy P, Cui X, Lotze MT, Zeh HJ, Sachdev U. TLR4-dependent upregulation of the platelet NLRP3 inflammasome promotes platelet aggregation in a murine model of hindlimb ischemia. Biochem Biophys Res Commun 2018; 508:614-619. [PMID: 30522866 DOI: 10.1016/j.bbrc.2018.11.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022]
Abstract
Platelets play a critical role in the pathophysiology of peripheral arterial disease (PAD). The mechanisms by which muscle ischemia regulates aggregation of platelets are poorly understood. We have recently identified the Nod-like receptor nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3) expressed by platelets as a critical regulator of platelet activation and aggregation, which may be triggered by activation of toll-like receptor 4 (TLR4). In this study, we performed femoral artery ligation (FAL) in transgenic mice with platelet-specific ablation of TLR4 (TLR4 PF4) and in NLRP3 knockout (NLRP3-/-) mice. NLRP3 inflammasome activity of circulating platelets, as monitored by activation of caspase-1 and cleavage of interleukin-1β (IL-1β), was upregulated in mice subjected to FAL. Genetic ablation of TLR4 in platelets led to decreased platelet caspase 1 activation and platelet aggregation, which was reversed by the NLRP3 activator Nigericin. Two weeks after the induction of FAL, ischemic limb perfusion was increased in TLR4 PF4 and NLRP3-/- mice as compared to control mice. Hence, activation of platelet TLR4/NLRP3 signaling plays a critical role in upregulating platelet aggregation and interfering with perfusion recovery in muscle ischemia and may represent a therapeutic target to improve limb salvage.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiangdong Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ulka Sachdev
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
89
|
Luo Q, Wei G, Wu X, Tang K, Xu M, Wu Y, Liu Y, Li X, Sun Z, Ju W, Qi K, Chen C, Yan Z, Cheng H, Zhu F, Li Z, Zeng L, Xu K, Qiao J. Platycodin D inhibits platelet function and thrombus formation through inducing internalization of platelet glycoprotein receptors. J Transl Med 2018; 16:311. [PMID: 30442147 PMCID: PMC6238268 DOI: 10.1186/s12967-018-1688-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 01/25/2023] Open
Abstract
Background Platycodin D (PD) is one of the major bioactive components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties, such as antiviral, anti-inflammatory, and anti-cancer activities. However, whether it affects platelet function remains unclear. This study aims to evaluate the role of PD in platelet function and thrombus formation. Methods Platelets were treated with PD followed by measuring platelet aggregation, activation, spreading, clot retraction, expression of glycoprotein receptors. Moreover, mice platelets were treated with PD and infused into wild-type mice for analysis of in vivo hemostasis and arterial thrombosis. Results Platycodin D treatment significantly inhibited platelet aggregation in response to collagen, ADP, arachidonic acid and epinephrine, reduced platelet P-selectin expression, integrin αIIbβ3 activation, spreading on fibrinogen as well as clot retraction, accompanied with decreased phosphorylation of Syk and PLCγ2 in collagen-related peptide or thrombin-stimulated platelets. Moreover, PD-treated mice platelets presented significantly impaired in vivo hemostasis and arterial thrombus formation. Interestingly, PD induced internalization of glycoprotein receptors αIIbβ3, GPIbα and GPVI. However, GM6001, cytochalasin D, BAPTA-AM and wortmannin did not prevent PD-induced internalization of receptors. Conclusions Our study demonstrates that PD inhibits platelet aggregation, activation and impairs hemostasis and arterial thrombosis, suggesting it might be a potent anti-thrombotic drug.
Collapse
Affiliation(s)
- Qi Luo
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Guangyu Wei
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Xiaoqing Wu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Kai Tang
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yulu Wu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Yun Liu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Xiaoqian Li
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China
| | - Chong Chen
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China
| | - Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China. .,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Rd, Quanshan District, Xuzhou, 221002, China. .,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| |
Collapse
|
90
|
Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseño L, Carreón-Torres E, Izquierdo-Vega JA, Sharma A, Cancino-Díaz JC, Pérez-Méndez O, Belefant-Miller H, Betanzos-Cabrera G. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules 2018; 23:molecules23112730. [PMID: 30360466 PMCID: PMC6278283 DOI: 10.3390/molecules23112730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDL) comprise a heterogeneous family of lipoprotein particles divided into subclasses that are determined by density, size and surface charge as well as protein composition. Epidemiological studies have suggested an inverse correlation between High-density lipoprotein-cholesterol (HDL-C) levels and the risk of cardiovascular diseases and atherosclerosis. HDLs promote reverse cholesterol transport (RCT) and have several atheroprotective functions such as anti-inflammation, anti-thrombosis, and anti-oxidation. HDLs are considered to be atheroprotective because they are associated in serum with paraoxonases (PONs) which protect HDL from oxidation. Polyphenol consumption reduces the risk of chronic diseases in humans. Polyphenols increase the binding of HDL to PON1, increasing the catalytic activity of PON1. This review summarizes the evidence currently available regarding pharmacological and alternative treatments aimed at improving the functionality of HDL-C. Information on the effectiveness of the treatments has contributed to the understanding of the molecular mechanisms that regulate plasma levels of HDL-C, thereby promoting the development of more effective treatment of cardiovascular diseases. For that purpose, Scopus and Medline databases were searched to identify the publications investigating the impact of current therapies focused on high-density lipoproteins.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - María Araceli Ortiz-Rodriguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, UAEM, Calle Río Iztaccihuatl S/N, Vista Hermosa, 62350 Cuernavaca, Morelos, Mexico.
| | - Lizett Medina-Briseño
- Universidad de la Sierra Sur, UNSIS, Miahuatlán de Porfirio Díaz, 70800 Oaxaca, Mexico.
| | - Elizabeth Carreón-Torres
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - Jeannett Alejandra Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, 76130 Queretaro, Mexico.
| | - Juan Carlos Cancino-Díaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Oscar Pérez-Méndez
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | | | - Gabriel Betanzos-Cabrera
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| |
Collapse
|