51
|
Santana TP, Gasparino E, de Souza Khatlab A, Brito CO, Barbosa LT, Lamont SJ, Del Vesco AP. Effect of prenatal ambient temperature on the performance physiological parameters, and oxidative metabolism of Japanese quail (Coturnix coturnix japonica) layers exposed to heat stress during growth. Sci Rep 2021; 11:9809. [PMID: 33963276 PMCID: PMC8105354 DOI: 10.1038/s41598-021-89306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
A strategy to mitigate the negative effects of stress on animals is to enhance their ability to beneficially respond to stressful conditions. This study aimed to assess whether prenatal ambient temperature influences the response of Japanese quail (Coturnix coturnix japonica) chicks to environmental challenges during growth. The experiment was conducted in a 2 × 2 factorial arrangement: two temperature conditions for the mothers (thermoneutral and heat stress by continuous exposure to 32 °C) and two offspring ambient temperature conditions (thermoneutral and heat stress by intermittent exposure to 34 °C for 6 h/day from 15 to 35 days of age). Heat stress in mothers led to lower laying rate, egg mass, expression of methionine sulfoxide reductase A (MSRA) gene, and antioxidant capacity as well as higher chick mortality rate (1-15 days of age). Maternal heat stress led to lower weight gain and total antioxidant capacity and higher feed conversion ratio. Maternal temperature × Offspring temperature interaction effects were observed on carbonylated protein content and HSP70, GSS, and MSRA gene expression. It was observed that, for chicks hatched from heat-stressed mothers, exposure to heat stress led to higher carbonylated protein content and HSP70 expression than exposure to thermoneutral conditions. Maternal heat stress was also responsible for increasing GSS expression in chicks grown under thermoneutral conditions. Chicks hatched from non-stressed mothers and subjected to heat stress had higher MSRA expression compared to chicks maintained in a thermoneutral environment. Our results show that, although maternal heat stress had no negative effects on performance or oxidative metabolism of offspring grown under thermoneutral conditions, it was associated with lower performance and higher protein oxidation in offspring exposed to heat stress during growth. These results could be due in part to alterations in the expression of genes related to antioxidant capacity.
Collapse
Affiliation(s)
- Thaís Pacheco Santana
- grid.411252.10000 0001 2285 6801Department of Animal Science, Federal University of Sergipe, São Cristóvão, Brazil
| | - Eliane Gasparino
- grid.271762.70000 0001 2116 9989Department of Animal Science, State University of Maringá, Maringá, Brazil
| | - Angélica de Souza Khatlab
- grid.271762.70000 0001 2116 9989Department of Animal Science, State University of Maringá, Maringá, Brazil
| | - Claudson Oliveira Brito
- grid.411252.10000 0001 2285 6801Department of Animal Science, Federal University of Sergipe, São Cristóvão, Brazil
| | - Leandro Teixeira Barbosa
- grid.411252.10000 0001 2285 6801Department of Animal Science, Federal University of Sergipe, São Cristóvão, Brazil
| | - Susan J. Lamont
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, USA
| | - Ana Paula Del Vesco
- grid.411252.10000 0001 2285 6801Department of Animal Science, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
52
|
Zhao Y, Zhuang Y, Shi Y, Xu Z, Zhou C, Guo L, Liu P, Wu C, Hu R, Hu G, Guo X, Xu L. Effects of N-acetyl-l-cysteine on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens. J Therm Biol 2021; 98:102927. [PMID: 34016350 DOI: 10.1016/j.jtherbio.2021.102927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to discuss the effects of N-acetyl-l-cysteine (NAC) on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens in different periods. A total of 120 Hy-Line variety brown laying hens (12 weeks old) were randomly assigned to 4 groups with 6 replicates. The control group (C group) (22 ± 1 °C) received a basal diet, the NAC-treated group (N group) (22 ± 1 °C) received a basal diet with 1000 mg/kg NAC, and 2 heat-stressed groups (36 ± 1 °C for 10 h per day and 22 ± 1 °C for the remaining time) were fed a basal diet (HS group) or a basal diet with 1000 mg/kg NAC (HS + N group) for 21 consecutive days. The influence of NAC on histologic changes, oxidative stress and proinflammatory cytokine production was measured and analysed in hens with heat stress-induced hypothalamic changes. NAC effectively alleviated the hypothalamic morphological changes induced by heat stress. In addition, NAC attenuated the activity of the Nf-κB pathway activated by heat stress and decreased the expression of the proinflammatory cytokines IL-6, IL-18, TNF-α, IKK, and IFN-γ. In addition, NAC treatment regulated the expression of HO-1, GSH, SOD2 and PRDX3 by regulating the activity of Nrf2 at different time points to resist oxidative stress caused by heat exposure. In summary, dietary NAC may be an effective candidate for the treatment and prevention of heat stress-induced hypothalamus injury by preventing Nf-κB activation and controlling the Nrf2 pathway.
Collapse
Affiliation(s)
- Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, 45435, USA
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lianying Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Lanjiao Xu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
53
|
Diffuse reflectance spectroscopy reveals heat stress-induced changes in hemoglobin concentration in chicken breast. Sci Rep 2021; 11:3649. [PMID: 33574480 PMCID: PMC7878772 DOI: 10.1038/s41598-021-83293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
Heat stress (HS) is devastating to the poultry industry due to its adverse effects on animal well-being and performance. The effects of heat stress are typically measured using a portable i-STAT blood analyzer that quantifies circulatory hemoglobin concentration and other blood chemistry parameters. Here, we used diffuse reflectance spectroscopy (DRS) as a novel non-invasive method to directly determine changes in hematological parameters in the breast tissues of live heat-stressed broilers. Three-week-old male broilers were randomly subjected to two environmental conditions (thermoneutral, TN, 24 °C vs. cyclic heat stress, HS, 35 °C, 12 h/day). Optical spectra were acquired using DRS to monitor breast hemoglobin (Hb) concentration and vascular oxygen saturation (sO2) at three time points: at baseline prior to heat stress, 2 days, and 21 days after initiation of HS. While i-STAT did not demonstrate a discernible change due to HS in circulatory hemoglobin, DRS found a significant decrease in breast Hb and sO2 after exposure to chronic HS. The decrease in sO2 was found to be due to a decrease in oxygenated hemoglobin concentration, indicating a large increase in oxygen consumption in heat-stressed broilers. Our results demonstrate that DRS could potentially be used to study the effects of HS directly in specific organs of interest, such as the breast and thigh, to improve meat quality.
Collapse
|
54
|
Wang Y, Jia X, Hsieh JCF, Monson MS, Zhang J, Shu D, Nie Q, Persia ME, Rothschild MF, Lamont SJ. Transcriptome Response of Liver and Muscle in Heat-Stressed Laying Hens. Genes (Basel) 2021; 12:genes12020255. [PMID: 33578825 PMCID: PMC7916550 DOI: 10.3390/genes12020255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to high ambient temperature has detrimental effects on poultry welfare and production. Although changes in gene expression due to heat exposure have been well described for broiler chickens, knowledge of the effects of heat on laying hens is still relatively limited. In this study, we profiled the transcriptome for pectoralis major muscle (n = 24) and liver (n = 24), during a 4-week cyclic heating experiment performed on layers in the early phase of egg production. Both heat-control and time-based contrasts were analyzed to determine differentially expressed genes (DEGs). Heat exposure induced different changes in gene expression for the two tissues, and we also observed changes in gene expression over time in the control animals suggesting that metabolic changes occurred during the transition from onset of lay to peak egg production. A total of 73 DEGs in liver were shared between the 3 h heat-control contrast, and the 4-week versus 3 h time contrast in the control group, suggesting a core set of genes that is responsible for maintenance of metabolic homeostasis regardless of the physiologic stressor (heat or commencing egg production). The identified DEGs improve our understanding of the layer’s response to stressors and may serve as targets for genetic selection in the future to improve resilience.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xinzheng Jia
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - John C. F. Hsieh
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Melissa S. Monson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Jibin Zhang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- Toni Stephenson Lymphoma Center, City of Hope, Duarte, CA 91010, USA
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Michael E. Persia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- Correspondence: ; Tel.: +1-515-294-4100
| |
Collapse
|
55
|
Kumar M, Ratwan P, Dahiya SP, Nehra AK. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol 2021; 97:102867. [PMID: 33863431 DOI: 10.1016/j.jtherbio.2021.102867] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Heat stress is an important environmental determinant which adversely affects the performance of poultry worldwide. The present communication reviews the impact of heat stress on production, reproduction and growth performance of poultry, and its alleviation using genetic strategies. The adverse effects of high environmental temperature on poultry include decrease in growth rate, body weight, egg production, egg weight, egg quality, meat quality, semen quality, fertility and hatchability, which cause vast financial losses to the poultry industry. High ambient temperature has an antagonistic effect on performance traits of the poultry. Thus, selection of birds for high performance has increased their susceptibility to heat stress. Additionally, heat burden during transportation of birds from one place to another leads to reduced meat quality, increased mortality and welfare issues. Molecular markers are being explored nowadays to recognize the potential candidate genes related to production, reproduction and growth traits for selecting poultry birds to enhance thermo-tolerance and resistance against diseases. In conclusion, there is a critical need of formulating selection strategies based on genetic markers and exploring more genes in addition to HSP25, 70, 90, H1, RB1CC, BAG3, PDK, ID1, Na, F, dw and K responsible for thermoregulation, to improve the overall performance of poultry along with their ability to tolerate heat stress conditions.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Livestock Farm Complex, LUVAS, Hisar, 125004, Haryana, India.
| | - Poonam Ratwan
- Department of Animal Genetics and Breeding, LUVAS, Hisar, 125004, Haryana, India.
| | - S P Dahiya
- Department of Livestock Farm Complex, LUVAS, Hisar, 125004, Haryana, India.
| | - Anil Kumar Nehra
- Department of Veterinary Parasitology, LUVAS, Hisar, 125004, Haryana, India.
| |
Collapse
|
56
|
Goel A. Heat stress management in poultry. J Anim Physiol Anim Nutr (Berl) 2021; 105:1136-1145. [PMID: 33417275 DOI: 10.1111/jpn.13496] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
High ambient temperature is one of the major causes of economic losses in the livestock industry. The poultry industry is an integral part of the livestock industry. It faces severe losses due to heat stress (HS). The adverse effects of HS can be seen on production performance, body temperature, intestinal health, appetite hormone regulation, immune responses and oxidative characteristics. It is important to monitor these parameters to identify the HS possessions during rearing so that timely action can be taken to minimize the adverse effects of high ambient temperature. Furthermore, the application of productive methods on farms is equally important. Several strategies have been suggested by researchers. Providing a suitable environment with selective rearing systems along with proper ventilation and hygiene is the basic requirement for all types of livestock reared for animal protein. Supplementation of appropriate feed additive could be useful for improving intestinal absorption and minimizing adverse effects of HS. Selection for breeding heat resistant birds also provide merits for improving the germplasm of the strains. Early age thermal conditioning also helps in developing resistance for HS. The most recent advancement is the supplementation of active substances during incubation. It is expected that these methods may have a potential impact on the poultry industry for creating thermotolerance in the newly hatched chicks. This review highlights the major issues concerning chicken health and suggests the measures to be adopted following the increase in environmental temperature.
Collapse
Affiliation(s)
- Akshat Goel
- Department of Animal Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
57
|
The Impact of Temperature and Humidity on the Performance and Physiology of Laying Hens. Animals (Basel) 2020; 11:ani11010056. [PMID: 33396835 PMCID: PMC7823783 DOI: 10.3390/ani11010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The present study investigated whether the temperature-humidity index (THI) influences the production parameters and physiology of laying hens. Two environmental conditions combining high temperature with low relative humidity (TLHH75) or vice versa (THHL75), with the same THI value (75), were considered. The same THI value indicated equal thermal stress for laying hens. Neither TLHH75 nor THHL75 affected laying performance, including egg production, egg weight, and egg mass, feed intake, feed conversion ratio, plasma biochemical parameters, and stress indicators. Our study suggests that laying hens exposed to the same THI values will receive similar thermal stresses. The results of this study will serve as a scientific basis for management decisions and handling laying hens under thermally challenging conditions. Abstract We investigated the effect of different ambient temperatures and relative humidity (RH) with the same temperature-humidity indices (THI) on laying performance, egg quality, heterophil to lymphocyte ratio (H/L ratio), corticosterone (CORT) concentration in blood, yolk, and albumen, and plasma biochemical parameters of laying hens. Commercial hens (Hy-Line Brown; n = 120), aged 60 weeks, were allocated to two environmental chambers. Laying hens were subjected to either one of two thermal treatments—26 °C and 70% RH (TLHH75) or 30 °C and 30% RH (THHL75) for 28 days—with the same THI of 75. Neither TLHH75 nor THHL75 affected laying performance, including egg production, egg weight, egg mass, feed intake, and feed conversion ratio (p > 0.05). Plasma biochemical parameters such as total cholesterol, high-density lipoprotein cholesterol, triglycerides, calcium, magnesium, and phosphorus were not altered by the environmental treatments (p > 0.05). As for stress indicators, both environmental regimes failed to affect blood H/L ratio and CORT levels in plasma, yolk, and albumen (p > 0.05), although albumen CORT levels were elevated (p < 0.05) in TLHH75 group at day 7. Hence, our study suggests that laying hens performed and responded similarly when exposed to either TLHH75 or THHL75 characterized by the same THI. These results can serve as a scientific basis for management decisions and handling laying hens under thermally challenging conditions.
Collapse
|
58
|
Xiao Y, Kronenfeld JM, Renquist BJ. Feed intake-dependent and -independent effects of heat stress on lactation and mammary gland development. J Dairy Sci 2020; 103:12003-12014. [PMID: 33041042 DOI: 10.3168/jds.2020-18675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022]
Abstract
With a growing population, a reliable food supply is increasingly important. Heat stress reduces livestock meat and milk production. Genetic selection of high-producing animals increases endogenous heat production, while climate change increases exogenous heat exposure. Both sources of heat exacerbate the risk of heat-induced depression of production. Rodents are valuable models to understand mechanisms conserved across species. Heat exposure suppresses feed intake across homeothermic species including rodents and production animal species. We assessed the response to early-mid lactation or late-gestation heat exposure on milk production and mammary gland development/function, respectively. Using pair-fed controls we experimentally isolated the feed intake-dependent and -independent effects of heat stress on mammary function and mass. Heat exposure (35°C, relative humidity 50%) decreased daily feed intake. When heat exposure occurred during lactation, hypophagia accounted for approximately 50% of the heat stress-induced hypogalactia. Heat exposure during middle to late gestation suppressed feed intake, which was fully responsible for the lowered mammary gland weight of dams at parturition. However, the impaired mammary gland function in heat-exposed dams measured by metabolic rate and lactogenesis could not be explained by depressed feed consumption. In conclusion, mice recapitulate the depressed milk production and mammary gland development observed in dairy species while providing insight regarding the role of feed intake. This opens the potential to apply genetic, experimental, and pharmacological models unique to mice to identify the mechanism by which heat is limiting animal production.
Collapse
Affiliation(s)
- Yao Xiao
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson 85721; Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Jason M Kronenfeld
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson 85721
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson 85721.
| |
Collapse
|
59
|
The Mediation of miR-34a/miR-449c for Immune Cytokines in Acute Cold/Heat-Stressed Broiler Chicken. Animals (Basel) 2020; 10:ani10112168. [PMID: 33233727 PMCID: PMC7699918 DOI: 10.3390/ani10112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In the intensive and scale poultry industry, the level of heat stress (HS) directly affects the growth, development, and production performance of poultry. To alleviate the adverse effects of stress in broilers, microRNA (miRNA) was regarded as a potential regulator of immune cytokines. In this study, through the sequencing analysis of spleens after cold/heat stress, we found that 33 and 37 miRNA were differentially expressed in the heat stress group compared with the normal (NS) group and cold stress (CS) group, respectively. The differential miRNA were mainly involved in biological processes such as the cytokine–cytokine receptor interaction. To further understand the miRNA-mediated effect of heat stress on the immune level of chickens, we selected miR-34a and miR-449c as the research objects, predicted and verified that interleukin 2 (IL-2) and interleukin 12α (IL-12α) were the target genes of miR-34a and miR-449c. Coupled with the analysis of the expression of other cytokines, we found that miRNA could change the expression of immune cytokines directly or indirectly. This discovery provides a new insight into the mediation of miRNA for immune cytokines in acute cold/heat stressed broiler chicken. Abstract An increasing amount of evidence has revealed that microRNAs (miRNAs) participated in immune regulation and reaction to acute cold and heat stresses. As a new type of post-transcriptional regulatory factor, miRNA has received widespread attention; However, the specific mechanism used for this regulation still needs to be determined. In this study, thirty broilers at the same growth period were divided into three groups and treated with different temperature and humidity of CS (10–15 °C and 90% Relative Humidity (RH)), HS (39 °C and 90% RH), and NS (26 °C and 50–60% RH) respectively. After 6 h, splenic tissues were collected from all study groups. miRNA sequencing was performed to identify the differentially expressed miRNAs (DEMs) between HS, CS, and NS. We found 33, 37, and 7 DEMs in the HS-NS, HS-CS, CS-NS group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEMs were significantly enriched in cytokine–cytokine receptor interaction and functioned as the cellular responders to stress. We chose two miRNA, miR-34a and miR-449c, from the same family and differential expressed in HS-CS and HS-NS group, as the research objects to predict and verify the target genes. The dual-luciferase reporter assay and quantitative real-time PCR (qRT-PCR) confirmed that two cytokines, IL-2 and IL-12α, were the direct target genes of miR-34a and miR-449c. To further understand the mediation mechanism of miRNAs in acute cold/heat-stressed broiler chicken, a splenic cytokines profile was constructed. The results showed that IL-1β was strongly related to acute heat stress in broiler chicken, and from this we predicted that the increased expression of IL-1β might promote the expression of miR-34a, inducing the upregulation of interferon-γ (INF-γ) and IL-17. Our finds have laid a theoretical foundation for the breeding of poultry resistance and alleviation of the adverse effects of stress.
Collapse
|
60
|
Chanthavixay G, Kern C, Wang Y, Saelao P, Lamont SJ, Gallardo RA, Rincon G, Zhou H. Integrated Transcriptome and Histone Modification Analysis Reveals NDV Infection Under Heat Stress Affects Bursa Development and Proliferation in Susceptible Chicken Line. Front Genet 2020; 11:567812. [PMID: 33101389 PMCID: PMC7545831 DOI: 10.3389/fgene.2020.567812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Two environmental factors, Newcastle disease and heat stress, are concurrently negatively impacting poultry worldwide and warrant greater attention into developing genetic resistance within chickens. Using two genetically distinct and highly inbred layer lines, Fayoumi and Leghorn, we explored how different genetic backgrounds affect the bursal response to a treatment of simultaneous Newcastle disease virus (NDV) infection at 6 days postinfection (dpi) while under chronic heat stress. The bursa is a primary lymphoid organ within birds and is crucial for the development of B cells. We performed RNA-seq and ChIP-seq targeting histone modifications on bursa tissue. Differential gene expression revealed that Leghorn, compared to Fayoumi, had significant down-regulation in genes involved in cell proliferation, cell cycle, and cell division. Interestingly, we also found greater differences in histone modification levels in response to treatment in Leghorns than Fayoumis, and biological processes enriched in associated target genes of H3K27ac and H3K4me1 were similarly associated with cell cycle and receptor signaling of lymphocytes. Lastly, we found candidate variants between the two genetic lines within exons of differentially expressed genes and regulatory elements with differential histone modification enrichment between the lines, which provides a strong foundation for understanding the effects of genetic variation on NDV resistance under heat stress. This study provides further understanding of the cellular mechanisms affected by NDV infection under heat stress in chicken bursa and identified potential genes and regulatory regions that may be targets for developing genetic resistance within chickens.
Collapse
Affiliation(s)
- Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
61
|
Kim DH, Lee YK, Lee SD, Kim SH, Lee SR, Lee HG, Lee KW. Changes in Production Parameters, Egg Qualities, Fecal Volatile Fatty Acids, Nutrient Digestibility, and Plasma Parameters in Laying Hens Exposed to Ambient Temperature. Front Vet Sci 2020; 7:412. [PMID: 32766297 PMCID: PMC7379879 DOI: 10.3389/fvets.2020.00412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The present study was undertaken to investigate the impact of heat stress on nutrient digestibility and tibia and reproductive traits, and changes in laying performance, egg qualities, fecal volatile fatty acids, and plasma parameters in laying hens. One-hundred twenty 52-week-old laying hens were raised in three temperature-controlled facilities with constant humidity (50% RH), either normal temperature (LT; 22°C) or heat stress considered being moderate (MT; 27°C) or severe (HT; 32°C) for 42 days. Feed intakes were consistently low (p < 0.01) in HT hens compared with those in LT or MT over the period of 42 days. Egg production kept markedly (p < 0.05) or numerically (p > 0.05) low in hens exposed to HT vs. LT or MT. Egg mass and egg weight were consistently low (p < 0.01) in hens exposed to HT compared with those raised under LT or MT. On the other hand, feed conversion ratio and frequency of dirty and cracked eggs were not significantly affected (p > 0.05) during the experimental period. HT-exposed hens consistently had lowered (p < 0.05) eggshell thickness and breaking strength, eggshell weight, and plasma Ca, P, and Mg levels compared with LT- or MT-treated hens. HT hens had lower (p < 0.01) relative oviduct weight and less number of large yellow follicles compared with those raised under LT or MT conditions at 42 days. Tibia traits measured at 42 days were not affected by any of heat treatments. Fecal volatile fatty acids tended to be higher in HT-exposed laying hens throughout the experiment. It was noted that digestibilities of neutral detergent fiber and dry matter were lowest (p < 0.05) in hens exposed to HT vs. LT or MT environments. Our study suggests that heat stress could lower laying performance, egg quality, and physiological parameters that are coupled with alterations in gut metabolites and mineral/lipid metabolism. The findings emerged from this study will help us design the nutritional and environmental strategies to mitigate the negative effect of heat stress on laying hens.
Collapse
Affiliation(s)
- Da-Hye Kim
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Yoo-Kyung Lee
- National Institute of Animal Science, Rural Development of Administration, Jeonju-si, South Korea
| | - Sung-Dae Lee
- National Institute of Animal Science, Rural Development of Administration, Jeonju-si, South Korea
| | - Sang-Ho Kim
- National Institute of Animal Science, Rural Development of Administration, Jeonju-si, South Korea
| | - Sang-Rak Lee
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, College of Animal Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
62
|
Selenium Attenuates Chronic Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Molecules 2020; 25:molecules25030557. [PMID: 32012916 PMCID: PMC7037519 DOI: 10.3390/molecules25030557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heat stress induces apoptosis in various cells. Selenium, an essential micronutrient, has beneficial effects in maintaining the cellular physiological functions. However, its potential protective action against chronic heat stress (CHS)-induced apoptosis in granulosa cells and the related molecular mechanisms are not fully elucidated. In this study, we investigated the roles of selenium in CHS-induced apoptosis in mouse granulosa cells and explored its underlying mechanism. The heat treatment for 6–48 h induced apoptosis, potentiated caspase 3 activity, increased the expression levels of apoptosis-related gene BAX and ER stress markers, glucose-regulated protein 78 (GRP78), and CCAAT/enhancer binding protein homologous protein (CHOP) in mouse granulosa cells. The treatment with ER stress inhibitor 4-PBA significantly attenuated the adverse effects caused by CHS. Selenium treatment significantly attenuated the CHS- or thapsigargin (Tg, an ER stress activator)-induced apoptosis, potentiation of caspase 3 activity, and the increased protein expression levels of BAX, GRP78, and CHOP. Additionally, treatment of the cells with 5 ng/mL selenium significantly ameliorated the levels of estradiol, which were decreased in response to heat exposure. Consistently, administering selenium supplement alleviated the hyperthermia-caused reduction in the serum estradiol levels in vivo. Together, our findings indicate that selenium has protective effects on CHS-induced apoptosis via inhibition of the ER stress pathway. The current study provides new insights in understanding the role of selenium during the process of heat-induced cell apoptosis.
Collapse
|