51
|
Shamim M, Khan NI. Neuroprotective effect ofPanax ginsengextract against cerebral ischemia–reperfusion-injury-induced oxidative stress in middle cerebral artery occlusion models. Facets (Ott) 2019. [DOI: 10.1139/facets-2018-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the in vivo neuroprotective role of Panax ginseng extract (PGE) pretreatment against transient cerebral ischemia in a middle cerebral artery occlusion (MCAO) model. Rats were randomly divided as follows: group I, control; group II, sham-operated; group III, where animals were subjected to MCAO surgery; and group IV, where animals were orally administered 10 mL PGE per day (200 mg/kg of body weight per day) for 30 d followed by MCAO induction at day 31. Following 24 h of reperfusion, blood and tissue (brain, liver, and kidney) samples were collected for biochemical and histopathological examination. Biochemical testing included lipid profile, liver enzymes, kidney function tests, C-reactive protein (CRP), lactate dehydrogenase (LDH), glucose, and total protein estimation. Tissue antioxidants (catalase, superoxide dismutase, and glutathione) were assessed in brain, liver, and kidney tissues. MCAO-induced histopathological changes were also examined in the tissues. Pretreatment with PGE showed significant improvement in tissue antioxidant status in brain, liver and kidney tissues. PGE treatment maintains plasma lipid profile, liver enzymes, kidney function, and CRP, LDH, and glucose levels. Histologically, monocytes and macrophage infiltration were observed in the tissues of MCAO animals, whereas PGE treatment preserved tissue architecture and minimal monocyte infiltration. PGE supplementation showed a neuroprotective effect against ischemia–reperfusion injury by effectively increasing endogenous antioxidant enzyme activity.
Collapse
Affiliation(s)
- Mufzala Shamim
- Pathophysiology Research Unit, Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Nazish Iqbal Khan
- Pathophysiology Research Unit, Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
52
|
Yu Z, Lin L, Jiang Y, Chin I, Wang X, Li X, Lo EH, Wang X. Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice. Mol Neurobiol 2019; 56:2314-2327. [PMID: 30022432 PMCID: PMC6339597 DOI: 10.1007/s12035-018-1234-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Blood-brain barrier (BBB) damage is a characteristic feature of diabetes mellitus pathology and plays significant roles in diabetes-associated neurological disorders. However, effective treatments for diabetes targeting BBB damage are yet to be developed. Fibroblast growth factor 21 (FGF21) is a potent regulator of lipid and glucose metabolism. In this study, we tested the hypothesis that recombinant FGF21 (rFGF21) administration may reduce type 2 diabetes (T2D)-induced BBB disruption via NF-E2-related factor-2 (Nrf2) upregulation. Our experimental results show that rFGF21 treatment significantly ameliorated BBB permeability and preserved junction protein expression in db/db mice in vivo. This protective effect was further confirmed by ameliorated transendothelial permeability and junction protein loss by rFGF21 under hyperglycemia and IL1β (HG-IL1β) condition in cultured human brain microvascular endothelial cells (HBMEC) in vitro. We further reveal that rFGF21 can activate FGF receptor 1 (FGFR1) that increases its binding with Kelch ECH-associating protein 1 (Keap1), a repressor of Nrf2, thereby reducing Keap1-Nrf2 interaction leading to Nrf2 release. These data suggest that rFGF21 administration may decrease T2D-induced BBB permeability, at least in part via FGFR1-Keap1-Nrf2 activation pathway. This study may provide an impetus for development of therapeutics targeting BBB damage in diabetes.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Li Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China (L. Lin, ; X. Wang, ; X. Li, )
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Ian Chin
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China (L. Lin, ; X. Wang, ; X. Li, )
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China (L. Lin, ; X. Wang, ; X. Li, )
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| |
Collapse
|
53
|
Ferrara I, Ciardiello I. Efficacia della terapia con ossigeno-ozonizzato subcutaneo nel trattamento delle lesioni vulvari da lichen sclerosus. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2018. [DOI: 10.23736/s0393-3660.18.03673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Ozone Therapy as Adjuvant for Cancer Treatment: Is Further Research Warranted? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7931849. [PMID: 30271455 PMCID: PMC6151231 DOI: 10.1155/2018/7931849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Introduction This article provides an overview of the potential use of ozone as an adjuvant during cancer treatment. Methods We summarize the findings of the most relevant publications focused on this goal, and we include our related clinical experience. Results Over several decades, prestigious journals have published in vitro studies on the capacity of ozone to induce direct damage on tumor cells and, as well, to enhance the effects of radiotherapy and chemotherapy. Indirect effects have been demonstrated in animal models: immune modulation by ozone alone and sensitizing effect of radiotherapy by concurrent ozone administration. The effects of ozone in modifying hemoglobin dissociation curve, 2,3-diphosphoglycerate levels, locoregional blood flow, and tumor hypoxia provide additional support for potential beneficial effects during cancer treatment. Unfortunately, only a few clinical studies are available. Finally, we describe some works and our experience supporting the potential role of local ozone therapy in treating delayed healing after tumor resection, to avoid delays in commencing radiotherapy and chemotherapy. Conclusions In vitro and animal studies, as well as isolated clinical reports, suggest the potential role of ozone as an adjuvant during radiotherapy and/or chemotherapy. However, further research, such as randomized clinical trials, is required to demonstrate its potential usefulness as an adjuvant therapeutic tool.
Collapse
|
55
|
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, Covi V, Tabaracci G, Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018; 124:114-121. [PMID: 29864481 DOI: 10.1016/j.freeradbiomed.2018.05.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Treatment with low-dose ozone is successfully exploited as an adjuvant therapy in the treatment of several disorders. Although the list of medical applications of ozone therapy is increasing, molecular mechanisms underlying its beneficial effects are still partially known. Clinical and experimental evidence suggests that the therapeutic effects of ozone treatment may rely on its capability to mount a beneficial antioxidant response through activation of the nuclear factor erythroid-derived-like 2 (Nrf2) pathway. However, a conclusive mechanistic demonstration is still lacking. Here, we bridge this gap of knowledge by providing evidence that treatment with a low concentration of ozone in cultured cells promotes nuclear translocation of Nrf2 at the chromatin sites of active transcription and increases the expression of antioxidant response element (ARE)-driven genes. Importantly, we show that ozone-induced ARE activation can be reverted by the ectopic expression of the Nrf2 specific inhibitor Kelch-like ECH associated protein (Keap1), thus proving the role of the Nrf2 pathway in the antioxidant response induced by mild ozonisation.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
56
|
Zhang T, Lu D, Yang W, Shi C, Zang J, Shen L, Mai H, Xu A. HMG-CoA Reductase Inhibitors Relieve Endoplasmic Reticulum Stress by Autophagy Inhibition in Rats With Permanent Brain Ischemia. Front Neurosci 2018; 12:405. [PMID: 29970982 PMCID: PMC6018104 DOI: 10.3389/fnins.2018.00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Exploring and expanding the indications of common clinical drugs, such as statins, is important to improve the prognosis of patients with permanent cerebral infarction. It has been suggested that reversing the defects in cellular autophagy and ER stress with statin therapy may be a potential treatment option for reducing ischemic damage. Male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (PMCAO) by electrocoagulation surgery. Atorvastatin (ATV, 10 mg/kg/day) or vehicle was administered intraperitoneally. Rats were divided into the vehicle-treated (SHAM), ATV pretreatment for MCAO (AMCAO), and 3-methyladenine (3MA) combined with ATV pretreatment (3MAMCAO) groups. Magnetic resonance imaging, as well as immunohistochemical and Western blot assessments, were performed 24 h after MCAO. Each ATV-treated group demonstrated significant reductions in infarct volume compared with that in the vehicle-treated group at 24 h after MCAO, which was associated with autophagy reduction and ER stress attenuation in neurons and neovascularization. Next, Western blotting was used to detect the levels of the autophagy-related proteins LC3B and P62 and of ER stress pathway proteins. However, 3MA significantly partially inhibited the ER stress pathway via limiting the autophagic flux in the AMCAO group. In conclusion, our results imply that the neuroprotective function of ATV depends on autophagic activity to diminish ER stress-related cell apoptosis in rats with PMCAO and suggest that compounds that inhibit autophagic activity might reduce the neuroprotective effect of ATV after brain ischemia.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Wanyong Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Changzheng Shi
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Lingling Shen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| |
Collapse
|
57
|
Hu J, Chen C, Ou G, You X, Tan T, Hu X, Zeng Y, Yu M, Zhu C. Nrf2 regulates the inflammatory response, including heme oxygenase-1 induction, by mycoplasma pneumoniae lipid-associated membrane proteins in THP-1 cells. Pathog Dis 2018; 75:3738187. [PMID: 28430965 DOI: 10.1093/femspd/ftx044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/15/2017] [Indexed: 11/14/2022] Open
Abstract
A series of inflammatory responses caused by Mycoplasma pneumoniae largely depend on the lipid-associated membrane proteins (LAMPs). Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, is considered to be a critical modulator of inflammatory responses and cellular redox homeostasis. Monocytes play an important role in the invasion and immunity to resist pathogens. Here, we investigated the role of Nrf2 in the anti-inflammatory response stimulated by LAMPs using the human monocyte cell line THP-1. LAMPs were shown to affect the localization of Nrf2, and the levels of reactive oxygen species and inflammatory reactants, including nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines (IL-6, IL-8), were highly elevated in LAMP-stimulated Nrf2-silenced THP-1 cells. Moreover, LAMPs induced the levels of mRNA and the expression of heme oxygenase-1 (HO-1). In summary, our results demonstrated that LAMPs cause nuclear translocation of Nrf2, which further suppresses the expression of inflammatory reactants in THP-1 cells.
Collapse
Affiliation(s)
- Jihong Hu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Chunyan Chen
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Guangli Ou
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Tianping Tan
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Xinnian Hu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Yihua Zeng
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Minjun Yu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| |
Collapse
|
58
|
Siniscalco D, Trotta MC, Brigida AL, Maisto R, Luongo M, Ferraraccio F, D'Amico M, Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. BIOLOGY 2018; 7:biology7010010. [PMID: 29324687 PMCID: PMC5872036 DOI: 10.3390/biology7010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
Background: The rat model of streptozotocin (STZ)-induced pancreatic damage was used to examine whether a systemic oxygen/ozone mixture could be beneficial for the pancreas by reducing the machinery of the local detrimental mediators released by STZ. Results: The results showed that oxygen/ozone administration (150 µg/Kg i.p.) for ten days in STZ rats increased the endogenous glutathione-s-transferase (GST) enzyme and nuclear factor-erythroid 2-related factor 2 (Nrf2) into the pancreatic tissue, together with reduction of 4-hydroxynonenal (4-HNE) and PARP-1 compared to STZ rats receiving O₂ only. Interestingly, these changes resulted in higher levels of serum insulin and leptin, and pancreatic glucagon immunostaining. Consequently, glucose metabolism improved as evidenced by the monitoring of glycemia throughout. Conclusions: This study provides evidence that systemic administration of oxygen/ozone reduces the machinery of detrimental mediators released by STZ into the pancreas with less local damage and better functionality.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Anna Lisa Brigida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Rosa Maisto
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Margherita Luongo
- "Maria Guarino" Foundation-AMOR No Profit Association, 80078 Pozzuoli, Italy.
| | - Franca Ferraraccio
- Department of Physical and Mental Health and Preventive Medicine, University of Campania, 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| | - Clara Di Filippo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania, via S. Maria di Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|
59
|
Zhang S, Jiang W, Ma L, Liu Y, Zhang X, Wang S. Nrf2 transfection enhances the efficacy of human amniotic mesenchymal stem cells to repair lung injury induced by lipopolysaccharide. J Cell Biochem 2017; 119:1627-1636. [PMID: 28905450 DOI: 10.1002/jcb.26322] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical emergencies with no effective pharmaceutical treatment. This study aims to determine the protective effects of Nrf2-transfected human amniotic mesenchymal stem cells (hAMSCs) against lipopolysaccharide (LPS)-induced lung injury in mice. hAMSCs stably transfected with Nrf2 or green fluorescent protein control were transplanted into male C57BL/6 mice via the tail vein 4 h after intratracheal instillation of LPS. At 3, 7, and 14 days after cell transplantation, total lung injury score (the Smith score) was determined by hematoxylin and eosin staining. Lung fibrosis was assessed by Masson's trichrome staining. Alveolar epithelial apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The plasma levels of interleukin (IL)-1β, IL-6, and IL-10 were determined by enzyme-linked immunosorbent assays (ELISA). The homing and differentiation of hAMSCs into type II alveolar epithelial (AT II) cells were examined by immunofluorescent staining and/or western blot analysis. Nrf2, mRNA, and protein expression in lungs were examined by qRT-PCR and western blot analysis, and DNA-binding activity of Nrf2 was detected by ELISA. We found that, compared with control hAMSCs, treatment with Nrf2-overexpressing hAMSCs led to further reduced lung injury, lung fibrosis, and inflammation in LPS-challenged mice. Nrf2-overexpressing hAMSCs also exhibited increased cell retention in the lung, more efficient differentiation into AT II cells, and more prominent effects on the increased mRNA and protein expression as well as DNA-binding activity of Nrf2 than control. These results support Nrf2-overexpressing hAMSCs as a potential cell-based therapy for clinical ALI/ARDS.
Collapse
Affiliation(s)
- Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Jiang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijie Ma
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
60
|
Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res 2017; 7:212-219. [PMID: 29152215 PMCID: PMC5674660 DOI: 10.4103/2045-9912.215752] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of ozone (O3) gas as a therapy in alternative medicine has attracted skepticism due to its unstable molecular structure. However, copious volumes of research have provided evidence that O3's dynamic resonance structures facilitate physiological interactions useful in treating a myriad of pathologies. Specifically, O3 therapy induces moderate oxidative stress when interacting with lipids. This interaction increases endogenous production of antioxidants, local perfusion, and oxygen delivery, as well as enhances immune responses. We have conducted a comprehensive review of O3 therapy, investigating its contraindications, routes and concentrations of administration, mechanisms of action, disinfectant properties in various microorganisms, and its medicinal use in different pathologies. We explore the therapeutic value of O3 in pathologies of the cardiovascular system, gastrointestinal tract, genitourinary system, central nervous system, head and neck, musculoskeletal, subcutaneous tissue, and peripheral vascular disease. Despite compelling evidence, further studies are essential to mark it as a viable and quintessential treatment option in medicine.
Collapse
Affiliation(s)
| | - Anthony L Wilson
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA.,Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Sohrab Vatsia
- Department of Cardiothoracic Surgery, Lenox Hill Hospital, New York, NY, USA
| | - Sardar Ali Khan
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA.,Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
61
|
Lakshmi SP, Reddy AT, Reddy RC. Emerging pharmaceutical therapies for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2141-2156. [PMID: 28790817 PMCID: PMC5531723 DOI: 10.2147/copd.s121416] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
62
|
Effects of mild ozonisation on gene expression and nuclear domains organization in vitro. Toxicol In Vitro 2017; 44:100-110. [PMID: 28652203 DOI: 10.1016/j.tiv.2017.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
In the last two decades, the use of ozone (O3) as a complementary medical approach has progressively been increasing; however, its application is still limited due to the numerous doubts about its possible toxicity, despite the low concentrations used in therapy. For an appropriate and safe clinical application of a potentially toxic agent such as O3, it is crucial to elucidate the cellular response to its administration. Molecular analyses and transmission electron microscopy were here combined to investigate in vitro the effects of O3 administration on transcriptional activity and nuclear domains organization of cultured SH-SY5Y neuronal cells; low O3 concentrations were used as those currently administered in clinical practice. Mild ozonisation did not affect cell proliferation or death, while molecular analyses showed an O3-induced modulation of some genes involved in the cell response to stress (HMOX1, ERCC4, CDKN1A) and in the transcription machinery (CTDSP1). Ultrastructural cytochemistry after experiments of bromouridine incorporation consistently demonstrated an increased transcriptional rate at both the nucleoplasmic (mRNA) and the nucleolar (rRNA) level. No ultrastructural alteration of nuclear domains was observed. Our molecular, ultrastructural and cytochemical data demonstrate that a mild toxic stimulus such as mild ozonisation stimulate cell protective pathways and nuclear transcription, without altering cell viability. This could possibly account for the positive effects observed in ozone-treated patients.
Collapse
|
63
|
MEF2D haploinsufficiency downregulates the NRF2 pathway and renders photoreceptors susceptible to light-induced oxidative stress. Proc Natl Acad Sci U S A 2017; 114:E4048-E4056. [PMID: 28461502 DOI: 10.1073/pnas.1613067114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice. Here, using a mild light-induced retinal degeneration model, we show that the diminished MEF2D transcriptional activity in Mef2d+/- retina is further reduced under photostimulation-induced oxidative stress. Reactive oxygen species cause an aberrant redox modification on MEF2D, consequently inhibiting transcription of its downstream target, nuclear factor (erythroid-derived 2)-like 2 (NRF2). NRF2 is a master regulator of phase II antiinflammatory and antioxidant gene expression. In the Mef2d heterozygous mouse retina, NRF2 is not up-regulated to a normal degree in the face of light-induced oxidative stress, contributing to accelerated photoreceptor cell death. Furthermore, to combat this injury, we found that activation of the endogenous NRF2 pathway using proelectrophilic drugs rescues photoreceptors from photo-induced oxidative stress and may therefore represent a viable treatment for oxidative stress-induced photoreceptor degeneration, which is thought to contribute to some forms of retinitis pigmentosa and age-related macular degeneration.
Collapse
|
64
|
Jakobs P, Serbulea V, Leitinger N, Eckers A, Haendeler J. Nuclear Factor (Erythroid-Derived 2)-Like 2 and Thioredoxin-1 in Atherosclerosis and Ischemia/Reperfusion Injury in the Heart. Antioxid Redox Signal 2017; 26:630-644. [PMID: 27923281 PMCID: PMC5397216 DOI: 10.1089/ars.2016.6795] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Redox signaling is one of the key elements involved in cardiovascular diseases. Two important molecules are the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the oxidoreductase thioredoxin-1 (Trx-1). Recent Advances: During the previous years, a lot of studies investigated Nrf2 and Trx-1 as protective proteins in cardiovascular disorders. Moreover, post-translational modifications of those molecules were identified that play an important role in the cardiovascular system. This review will summarize changes in the vasculature in atherosclerosis and ischemia reperfusion injury of the heart and the newest findings achieved with Nrf2 and Trx-1 therein. Interestingly, Nrf2 and Trx-1 can act together as well as independently of each other in protection against atherosclerosis and ischemia and reperfusion injury. CRITICAL ISSUES In principle, pharmacological activation of a transcription factor-like Nrf2 can be dangerous, since a transcription regulator has multiple targets and the pleiotropic effects of such activation should not be ignored. Moreover, overactivation of Nrf2 as well as long-term treatment with Trx-1 could be deleterious for the cardiovascular system. FUTURE DIRECTIONS Therefore, the length of treatment with Nrf2 activators and/or Trx-1 has first to be studied in more detail in cardiovascular disorders. Moreover, a combination of Nrf2 activators and Trx-1 should be investigated and taken into consideration. Antioxid. Redox Signal. 26, 630-644.
Collapse
Affiliation(s)
- Philipp Jakobs
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Anna Eckers
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Judith Haendeler
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
65
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
66
|
Rajgopal A, Missler SR, Scholten JD. Magnolia officinalis (Hou Po) bark extract stimulates the Nrf2-pathway in hepatocytes and protects against oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:657-662. [PMID: 27721050 DOI: 10.1016/j.jep.2016.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The highly aromatic bark of Magnolia officinalis Rehder and EH Wilson, (magnolia bark) has been widely used in traditional Chinese medicine where it is known as Hou Po. Historically the bark of the tree has been used for treating variety of disorders the most common use of magnolia bark in traditional prescription has been to treat stress and anxiety disorders. Till date it is not clear regarding the fundamental cellular pathway it modulates. NRF2 signaling has emerged as the central pathway that protects cells from variety of stressors this led us to hypothesize that basis for magnolia bark's effects could be via activating NRF2 pathway. MATERIALS AND METHODS We utilized variety of biochemical procedures like luciferase reporter assay, enzyme induction, gene expression to determine NRF2 inducing activity by magnolia bark extract and its significance. Further we identified the phytochemicals inducing this activity using bio-directed fractionation procedure. RESULTS In this study, we demonstrate that magnolia bark extract activates Nrf2-dependent gene expression and protects against hydrogen peroxide mediated oxidative stress in hepatocytes. We further identified through HPLC fractionation and mass spectroscopy that magnolol, 4-methoxy honokiol and honokiol are the active phytochemicals inducing the Nrf2-mediated activity. This could be the molecular basis for its numerous beneficial activity.
Collapse
Affiliation(s)
- Arun Rajgopal
- Analytical Sciences, Amway Corporation, 7575 East Fulton Avenue, Ada, MI 49355, United States.
| | - Stephen R Missler
- Analytical Sciences, Amway Corporation, 7575 East Fulton Avenue, Ada, MI 49355, United States
| | - Jeffery D Scholten
- Analytical Sciences, Amway Corporation, 7575 East Fulton Avenue, Ada, MI 49355, United States
| |
Collapse
|
67
|
Wise RA, Holbrook JT, Criner G, Sethi S, Rayapudi S, Sudini KR, Sugar EA, Burke A, Thimmulappa R, Singh A, Talalay P, Fahey JW, Berenson CS, Jacobs MR, Biswal S. Lack of Effect of Oral Sulforaphane Administration on Nrf2 Expression in COPD: A Randomized, Double-Blind, Placebo Controlled Trial. PLoS One 2016; 11:e0163716. [PMID: 27832073 PMCID: PMC5104323 DOI: 10.1371/journal.pone.0163716] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND COPD patients have high pulmonary and systemic oxidative stress that correlates with severity of disease. Sulforaphane has been shown to induce expression of antioxidant genes via activation of a transcription factor, nuclear factor erythroid-2 related factor 2 (Nrf2). METHODS This parallel, placebo-controlled, phase 2, randomized trial was conducted at three US academic medical centers. Patients who met GOLD criteria for COPD and were able to tolerate bronchoscopies were randomly assigned (1:1:1) to receive placebo, 25 μmoles, or 150 μmoles sulforaphane daily by mouth for four weeks. The primary outcomes were changes in Nrf2 target gene expression (NQ01, HO1, AKR1C1 and AKR1C3) in alveolar macrophages and bronchial epithelial cells. Secondary outcomes included measures of oxidative stress and airway inflammation, and pulmonary function tests. RESULTS Between July 2011 and May 2013, 89 patients were enrolled and randomized. Sulforaphane was absorbed in the patients as evident from their plasma metabolite levels. Changes in Nrf2 target gene expression relative to baseline ranged from 0.79 to 1.45 and there was no consistent pattern among the three groups; the changes were not statistically significantly different from baseline. Changes in measures of inflammation and pulmonary function tests were not different among the groups. Sulforaphane was well tolerated at both dose levels. CONCLUSION Sulforaphane administered for four weeks at doses of 25 μmoles and 150 μmoles to patients with COPD did not stimulate the expression of Nrf2 target genes or have an effect on levels of other anti-oxidants or markers of inflammation. TRIAL REGISTRATION Clinicaltrials.gov: NCT01335971.
Collapse
Affiliation(s)
- Robert A. Wise
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Janet T. Holbrook
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Gerard Criner
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sanjay Sethi
- University at Buffalo, SUNY and VA WNY Healthcare system, Buffalo, New York, United States of America
| | - Sobharani Rayapudi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kuladeep R. Sudini
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elizabeth A. Sugar
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alyce Burke
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rajesh Thimmulappa
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Anju Singh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Paul Talalay
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Jed W. Fahey
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Charles S. Berenson
- University at Buffalo, SUNY and VA WNY Healthcare system, Buffalo, New York, United States of America
| | - Michael R. Jacobs
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Shyam Biswal
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | |
Collapse
|
68
|
Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer 2016; 15:64. [PMID: 27756327 PMCID: PMC5069780 DOI: 10.1186/s12943-016-0550-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A handful of studies have exploited antitumor potential of esculetin, a dihydroxy coumarine derivative; the targets to which it binds and the possible downstream mechanism for its cytotoxicity in cancer cells remain to be elucidated. Using pancreatic cancer cell lines as a model system, herein the study was initiated to check the efficacy of esculetin in inhibiting growth of these cancer cells, to decipher mechanism of its action and to predict its direct binding target protein. METHODS The cytotoxicity of esculetin was determined in PANC-1, MIA PaCa-2 and AsPC-1 cell lines; followed by an inspection of intracellular levels of ROS and its associated transcription factor, p65-NF-κB. The interaction between transcription factor, Nrf2 and its regulator KEAP1 was studied in the presence and absence of esculetin. The effect of Nrf2 on gene expression of antioxidant response element pathway was monitored by real time PCR. Thereafter, potential binding target of esculetin was predicted through molecular docking and then confirmed in vitro. RESULTS Esculetin treatment in all three pancreatic cancer cell lines resulted in significant growth inhibition with G1-phase cell cycle arrest and induction of mitochondrial dependent apoptosis through activation of caspases 3, 8 and 9. A notable decrease was observed in intracellular ROS and protein levels of p65-NF-κB in PANC-1 cells on esculetin treatment. Antioxidant response regulator Nrf2 has been reportedly involved in crosstalk with NF-κB. Interaction between Nrf2 and KEAP1 was found to be lost upon esculetin treatment in PANC-1 and MIA Paca-2 cells. Nuclear accumulation of Nrf2 and an upregulation of expression of Nrf2 regulated gene NQO1, observed on esculetin treatment in PANC-1 further supported the activation of Nrf2. To account for the loss of Nrf2-KEAP1 interaction on esculetin treatment, direct binding potential between esculetin and KEAP1 was depicted in silico using molecular docking studies. Pull down assay using esculetin conjugated sepharose beads confirmed the binding between esculetin and KEAP1. CONCLUSIONS We propose that esculetin binds to KEAP1 and inhibits its interaction with Nrf2 in pancreatic cancer cells. This thereby promotes nuclear accumulation of Nrf2 in PANC-1 cells that induces antiproliferative and apoptotic response possibly by attenuating NF-κB.
Collapse
Affiliation(s)
- Rashi Arora
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Sharad Sawney
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Vikas Saini
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Chris Steffi
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Manisha Tiwari
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Daman Saluja
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| |
Collapse
|
69
|
Glory A, Averill-Bates DA. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis. Free Radic Biol Med 2016; 99:485-497. [PMID: 27591796 DOI: 10.1016/j.freeradbiomed.2016.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/07/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
The exposure of cells to low doses of stress induces adaptive survival responses that protect cells against subsequent exposure to toxic stress. The ability of cells to resist subsequent toxic stress following exposure to low dose heat stress at 40°C is known as mild thermotolerance. Mild thermotolerance involves increased expression of heat shock proteins and antioxidants, but the initiating factors in this response are not understood. This study aims to understand the role of the Nrf2 antioxidant pathway in acquisition of mild thermotolerance at 40°C, and secondly, whether the Nrf2 pathway could be involved in the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis. During cell preconditioning at 40°C, protein expression of the Nrf2 transcription factor increased after 15-60min. In addition, levels of the Nrf2 targets MnSOD, catalase, heme oxygenase-1, glutamate cysteine ligase and Hsp70 increased at 40°C. Levels of these Nrf2 targets were enhanced by Nrf2 activator oltipraz and decreased by shRNA targeting Nrf2. Levels of pro-oxidants increased after 30-60min at 40°C. Pro-oxidant levels were decreased by oltipraz and increased by knockdown of Nrf2. Increased Nrf2 expression and catalase activity at 40°C were inhibited by the antioxidant PEG-catalase and by p53 inhibitor pifithrin-α. These results suggest that mild thermotolerance (40°C) increases cellular pro-oxidant levels, which in turn activate Nrf2 and its target genes. Moreover, Nrf2 contributes to the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis, because Nrf2 activation by oltipraz enhanced thermotolerance, whereas Nrf2 knockdown partly reversed thermotolerance. Improved knowledge about the different protective mechanisms that mild thermotolerance can activate is crucial for the potential use of this adaptive survival response to treat stress-related diseases.
Collapse
Affiliation(s)
- Audrey Glory
- Département des Sciences Biologiques (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Center-Ville Montréal, Montréal, Québec, Canada H3C 3P8
| | - Diana A Averill-Bates
- Département des Sciences Biologiques (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Center-Ville Montréal, Montréal, Québec, Canada H3C 3P8.
| |
Collapse
|
70
|
Valacchi G, Sticozzi C, Zanardi I, Belmonte G, Cervellati F, Bocci V, Travagli V. Ozone mediators effect on “in vitro” scratch wound closure. Free Radic Res 2016; 50:1022-31. [DOI: 10.1080/10715762.2016.1219731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
71
|
Degli Agosti I, Ginelli E, Mazzacane B, Peroni G, Bianco S, Guerriero F, Ricevuti G, Perna S, Rondanelli M. Effectiveness of a Short-Term Treatment of Oxygen-Ozone Therapy into Healing in a Posttraumatic Wound. Case Rep Med 2016; 2016:9528572. [PMID: 27738434 PMCID: PMC5055932 DOI: 10.1155/2016/9528572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/27/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction. A number of studies suggest that oxygen-ozone therapy may have a role in the treatment of chronic, nonhealing, or ischemic wounds for its disinfectant and antibacterial properties. Nonhealing wounds are a significant cause of morbidity. Here we present a case of subcutaneous oxygen-ozone therapy used to treat a nonhealing postoperative wound in a young man during a period of 5 weeks. Case Presentation. A 46-year-old man had a motorcycle accident and underwent amputation of the right tibia and fibula. At the discharge he came to our attention to start rehabilitation treatment. At that time the wound was ulcerated but it was afebrile with no signs of inflammation and negativity to blood tests. At 2 months from the trauma despite appropriate treatment and dressing, the wound was slowly improving and the patient complained of pain. For this reason in addition to standard dressing he underwent oxygen-ozone therapy. After 5 weeks of treatment the wound had healed. Conclusion. In patients with nonhealing wounds, oxygen-ozone therapy could be helpful in speeding the healing and reducing the pain thanks to its disinfectant property and by the increase of endogenous oxygen free radicals' scavenging properties. Compared to standard dressing and other treatments reported in the literature it showed a shorter time of action.
Collapse
Affiliation(s)
- Irene Degli Agosti
- Rehabilitation Unit, Azienda di Servizi alla Persona di Pavia, 27100 Pavia, Italy
| | - Elena Ginelli
- Rehabilitation Unit, Azienda di Servizi alla Persona di Pavia, 27100 Pavia, Italy
| | - Bruno Mazzacane
- Rehabilitation Unit, Azienda di Servizi alla Persona di Pavia, 27100 Pavia, Italy
| | - Gabriella Peroni
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Pavia, Italy
| | - Sandra Bianco
- Section of Geriatrics, Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Fabio Guerriero
- Section of Geriatrics, Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Section of Geriatrics, Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Simone Perna
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Pavia, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
72
|
Bhakkiyalakshmi E, Dineshkumar K, Karthik S, Sireesh D, Hopper W, Paulmurugan R, Ramkumar KM. Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface. Bioorg Med Chem 2016; 24:3378-86. [DOI: 10.1016/j.bmc.2016.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 01/18/2023]
|
73
|
Barone A, Otero-Losada M, Grangeat AM, Cao G, Azzato F, Rodríguez A, Milei J. Ozonetherapy protects from in-stent coronary neointimal proliferation. Role of redoxins. Int J Cardiol 2016; 223:258-261. [PMID: 27541668 DOI: 10.1016/j.ijcard.2016.07.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/27/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND In-stent restenosis and poor re-endothelization usually follow percutaneous transluminal coronary angioplasty, even using drug-eluting stents, due to inflammation and oxidative stress. Medical ozone has antioxidant and anti-inflammatory properties and has not been evaluated in this context. OBJECTIVES To evaluate whether ozonotherapy might reduce restenosis following bare metal stents implantation in relation to the redoxin system in pigs. METHODS Twelve male Landrace pigs (51±9kg) underwent percutaneous transluminal circumflex coronary arteries bare metal stent implantation under heparine infusion and fluoroscopical guidance, using standard techniques. Pigs were randomized to ozonetherapy (n=6) or placebo (n=6) treatment. Before stenting (24h) and twice a week for 30days post-stenting, venous blood was collected, ozonized and reinfused. Same procedure was performed in placebo group except for ozonation. Both groups received antiplatelet treatment. Histopathology and immunohistochemistry studies were performed. RESULTS Severe inflammatory reaction and restenosis with increase in the immunohistochemical expression of thioredoxin-1 were observed in placebo group 30days after surgery. Oppositely, ozonetherapy drastically reduced inflammatory reaction and restenosis, and showed no increase in the Trx-1 immunohistochemical expression 30days after surgery. Immunolabeling for Prx-2 was negative in both groups. Ozonated autohemotherapy strikingly reduced restenosis 30days following PTCA with BMS implantation in pigs. CONCLUSIONS Stimulation of the redoxin system by ozone pretreatment might neutralize oxidative damage from the start and increase antioxidative buffering capacity post-injury, reducing further damage and so the demand for antioxidant enzymes. Our interpretation agrees with the ozone oxidative preconditioning mechanism, extensively investigated.
Collapse
Affiliation(s)
- A Barone
- Institute of Cardiological Research, University of Buenos Aires, National Research Council Argentina, ININCA-UBA-CONICET, Argentina
| | - M Otero-Losada
- Institute of Cardiological Research, University of Buenos Aires, National Research Council Argentina, ININCA-UBA-CONICET, Argentina..
| | - A M Grangeat
- Institute of Cardiological Research, University of Buenos Aires, National Research Council Argentina, ININCA-UBA-CONICET, Argentina
| | - G Cao
- Institute of Cardiological Research, University of Buenos Aires, National Research Council Argentina, ININCA-UBA-CONICET, Argentina
| | - F Azzato
- Institute of Cardiological Research, University of Buenos Aires, National Research Council Argentina, ININCA-UBA-CONICET, Argentina
| | - A Rodríguez
- Otamendi Hospital, Post Graduate School of Medicine, Cardiac Unit, Buenos Aires, Argentina
| | - J Milei
- Institute of Cardiological Research, University of Buenos Aires, National Research Council Argentina, ININCA-UBA-CONICET, Argentina
| |
Collapse
|
74
|
Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA Damage: A Main Determinant of Vascular Aging. Int J Mol Sci 2016; 17:E748. [PMID: 27213333 PMCID: PMC4881569 DOI: 10.3390/ijms17050748] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
Collapse
Affiliation(s)
- Paula K Bautista-Niño
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Eliana Portilla-Fernandez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Douglas E Vaughan
- Department of Medicine & Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
75
|
Involvement of MEK-ERK1-2 pathway in the anti-oxidant response in C6 glioma cells after diesel exhaust particles exposure. Toxicol Lett 2016; 250-251:57-65. [DOI: 10.1016/j.toxlet.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022]
|
76
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
77
|
Yamada K, Asai K, Nagayasu F, Sato K, Ijiri N, Yoshii N, Imahashi Y, Watanabe T, Tochino Y, Kanazawa H, Hirata K. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med 2016; 16:27. [PMID: 26861788 PMCID: PMC4748455 DOI: 10.1186/s12890-016-0189-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cigarette smoking-induced oxidative stress is known to be a key mechanism in COPD pathogenesis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a central transcription factor that regulates the antioxidant defense system. The aim of this study was to compare Nrf2 expression in COPD subjects and control subjects, and to determine the role of Nrf2 in protecting against oxidative stress-induced apoptosis. METHODS We enrolled 8 COPD subjects and 7 control subjects in this study. We performed bronchial brushing by bronchoscopy and obtained bronchial epithelial cells from the airways. Nrf2 expression in bronchial epithelial cells was evaluated by real-time PCR and Western blotting. We examined the effect of 10 or 15 % cigarette smoke extract (CSE) induced A549 cells apoptosis using a time-lapse cell imaging assay with caspase-3/7 activation detecting reagent and performed Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling assay for confirming A549 cells apoptosis. We also examined the effects of Nrf2 knockdown and, 0.1, 0.5, and 1.0 mM N-acetyl cysteine on CSE-induced apoptosis. Statistical analyses were performed using t-test, paired t-test or an analysis of variance followed by the Tukey-Kramer method. RESULTS Nrf2 mRNA expression in COPD subjects was significantly lower than that in control subjects and Nrf2 mRNA were negatively correlated with pack year. Nrf2 protein in COPD subjects was significantly lower than that in control subjects. CSE-induced A549 cells apoptosis was increased in a time-, concentration-dependent manner, and was significantly increased by Nrf2 knockdown. N-acetyl cysteine significantly ameliorated CSE-induced apoptosis. CONCLUSIONS Nrf2 expression was lower in COPD patients than in control subjects. Nrf2 might have a protective role against apoptosis caused by CSE-induced oxidative stress. These results suggest an involvement of Nrf2 in COPD and administration of antioxidants to patients with COPD might be a basic therapeutic option.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Fumihiro Nagayasu
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Kanako Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Naoko Yoshii
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Yumiko Imahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Yoshihiro Tochino
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Hiroshi Kanazawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Kazuto Hirata
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
78
|
Nasheri N, Ning Z, Figeys D, Yao S, Goto NK, Pezacki JP. Activity-based profiling of the proteasome pathway during hepatitis C virus infection. Proteomics 2015; 15:3815-25. [PMID: 26314548 DOI: 10.1002/pmic.201500169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.
Collapse
Affiliation(s)
- Neda Nasheri
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Shao Yao
- Department of Chemistry, National University of Singapore, Singapore
| | - Natalie K Goto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
79
|
Kong M, Mao J, Luo B, Qin Z. Role of transcriptional factor Nrf2 in the acute lung injury of mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10929-34. [PMID: 26617809 PMCID: PMC4637624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the expression and role of Nrf2 in the acute lung injury (ALI) of mice. METHODS A total of 60 BABL/c mice were randomly divided into 2 groups: ALI group and control group. In ALI group, ALI was introduced by injection of LPS. Immunohistochemistry was performed to detect Nrf2 expression in the lung; Western blot assay was employed to detect the expression of Nrf2 in the lung homogenate; ELISA was conducted to detect the expression of Nrf2 in the lung homogenate and BALF. RESULTS As compared to control group, ALI mice had a high Nrf2 expression in the lung as shown in immunohistochemistry, and the Nrf2 expression in the lung homogenate and BALF also increased markedly (P<0.05). CONCLUSION The Nrf2 expression increases in the lung and BALF of ALI mice, suggesting that Nrf2 is involved in the inflammation during ALI and may serve as a new target in the therapy of ALI.
Collapse
Affiliation(s)
| | | | - Bijun Luo
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 20072, China
| | - Zonghao Qin
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 20072, China
| |
Collapse
|
80
|
Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:480369. [PMID: 26357522 PMCID: PMC4556325 DOI: 10.1155/2015/480369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022]
Abstract
Introduction. Persistent radiation-induced proctitis and rectal bleeding are debilitating complications with limited therapeutic options. We present our experience with ozone therapy in the management of such refractory rectal bleeding. Methods. Patients (n = 12) previously irradiated for prostate cancer with persistent or severe rectal bleeding without response to conventional treatment were enrolled to receive ozone therapy via rectal insufflations and/or topical application of ozonized-oil. Ten (83%) patients had Grade 3 or Grade 4 toxicity. Median follow-up after ozone therapy was 104 months (range: 52-119). Results. Following ozone therapy, the median grade of toxicity improved from 3 to 1 (p < 0.001) and the number of endoscopy treatments from 37 to 4 (p = 0.032). Hemoglobin levels changed from 11.1 (7-14) g/dL to 13 (10-15) g/dL, before and after ozone therapy, respectively (p = 0.008). Ozone therapy was well tolerated and no adverse effects were noted, except soft and temporary flatulence for some hours after each session. Conclusions. Ozone therapy was effective in radiation-induced rectal bleeding in prostate cancer patients without serious adverse events. It proved useful in the management of rectal bleeding and merits further evaluation.
Collapse
|
81
|
Song MG, Ryoo IG, Choi HY, Choi BH, Kim ST, Heo TH, Lee JY, Park PH, Kwak MK. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages. PLoS One 2015. [PMID: 26222138 PMCID: PMC4519053 DOI: 10.1371/journal.pone.0134235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS) are known to be an important contributor to monocytes’ differentiation and macrophages’ function. NF-E2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA). In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNFα) were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1) was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER) stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB) p50 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937 cells.
Collapse
Affiliation(s)
- Min-gu Song
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - In-geun Ryoo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Hye-young Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Bo-hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Sang-Tae Kim
- Seoul National University Bundang Hospital, Sungnam, Gyeonggi-do 463–707, Republic of Korea
| | - Tae-Hwe Heo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
- * E-mail:
| |
Collapse
|
82
|
Daily Oxygen/O₃ Treatment Reduces Muscular Fatigue and Improves Cardiac Performance in Rats Subjected to Prolonged High Intensity Physical Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:190640. [PMID: 26265981 PMCID: PMC4523667 DOI: 10.1155/2015/190640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/28/2015] [Indexed: 01/01/2023]
Abstract
Rats receiving daily intraperitoneal administration of O2 and running on a treadmill covered an average distance of 482.8 ± 21.8 m/week as calculated during 5-week observation. This distance was increased in rats receiving daily intraperitoneal administration of an oxygen/O3 mixture at a dose of 100; 150; and 300 μg/kg with the maximum increase being +34.5% at 300 μg/kg and still present after stopping the administration of oxygen/O3. Oxygen/O3 decreased the mean arterial blood pressure (-13%), the heart rate (-6%), the gastrocnemius and cardiac hypertrophy, and fibrosis and reduced by 49% the left ventricular mass and relative wall thickness measurements. Systolic and diastolic functions were improved in exercised oxygen/O3 rats compared to O2 rats. Oxygen/O3 treatment led to higher MPI index starting from the dose of 150 μg/kg (p < 0.05) and more effective (+14%) at a dose of 300 μg/kg oxygen/O3. Oxygen/O3 dose-dependently increased the expression of the antioxidant enzymes Mn-SOD and GPx1 and of eNOS compared to the exercised O2 rats. The same doses resulted in decrease of LDH levels, CPK, TnI, and nitrotyrosine concentration in the heart and gastrocnemius tissues, arguing a beneficial effect of the ozone molecule against the fatigue induced by a prolonged high intensity exercise.
Collapse
|
83
|
Uryash A, Bassuk J, Kurlansky P, Altamirano F, Lopez JR, Adams JA. Antioxidant Properties of Whole Body Periodic Acceleration (pGz). PLoS One 2015; 10:e0131392. [PMID: 26133377 PMCID: PMC4489838 DOI: 10.1371/journal.pone.0131392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
The recognition that oxidative stress is a major component of several chronic diseases has engendered numerous trials of antioxidant therapies with minimal or no direct benefits. Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimulation of eNOS have antioxidant properties but physiologic stimulation as through increased pulsatile shear stress of the endothelium has not been assessed. The present study utilized a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duchene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in hearts. Application of pGz was associated with significantly increased expression of endogenous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Superoxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity along with an increase in the antioxidant response element transcription factor Nrf2 translocation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxidative stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous antioxidant capacity.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Jorge Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Paul Kurlansky
- Department of Surgery, Columbia University, New York, New York, United States of America
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
- * E-mail:
| |
Collapse
|