51
|
Ramírez Hernández E, Alanis Olvera B, Carmona González D, Guerrero Marín O, Pantoja Mercado D, Valencia Gil L, Hernández-Zimbrón LF, Sánchez Salgado JL, Limón ID, Zenteno E. Neuroinflammation and galectins: a key relationship in neurodegenerative diseases. Glycoconj J 2022; 39:685-699. [PMID: 35653015 DOI: 10.1007/s10719-022-10064-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is a pathological condition that is associated with the loss of neuronal function and structure. In neurodegenerative diseases, mounting evidence indicates that neuroinflammation is a common factor that contributes to neuronal damage and neurodegeneration. Neuroinflammation is characterized by the activation of microglia, the neuroimmune cells of the central nervous system (CNS), which have been implicated as active contributors to neuronal damage. Glycan structure modification is defining the outcome of neuroinflammation and neuronal regeneration; moreover, the expression of galectins, a group of lectins that specifically recognize β-galactosides, has been proposed as a key factor in neuronal regeneration and modulation of the inflammatory response. Of the different galectins identified, galectin-1 stimulates the secretion of neurotrophic factors in astrocytes and promotes neuronal regeneration, whereas galectin-3 induces the proliferation of microglial cells and modulates cell apoptosis. Galectin-8 emerged as a neuroprotective factor, which, in addition to its immunosuppressive function, could generate a neuroprotective environment in the brain. This review describes the role of galectins in the activation and modulation of astrocytes and microglia and their anti- and proinflammatory functions within the context of neuroinflammation. Furthermore, it discusses the potential use of galectins as a therapeutic target for the inflammatory response and remodeling in damaged tissues in the central nervous system.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Beatriz Alanis Olvera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Carmona González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Guerrero Marín
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Denisse Pantoja Mercado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lucero Valencia Gil
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
52
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
53
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
54
|
Effect of a Single Intrauterine Dose of Human Recombinant Galectin-1 Buffered on Pregnancy Rate in Inseminated Cows. Biomolecules 2022; 12:biom12030419. [PMID: 35327611 PMCID: PMC8946135 DOI: 10.3390/biom12030419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
The objective was to evaluate the efficacy of a single dose of exogenous galectin-1 in improving the pregnancy rate in inseminated cows, comparing the pregnancy rate of the two groups (treatment and control Groups) into 107 contemporary groups (YG) established. An ultrasound exam determined the pregnancy rate performed 25 to 35 days after the fixed-time artificial insemination (FTAI) of breeding beef cows (n = 3469). The pregnancy rate of cows that received a single dose of eGAL-1 (200 ± 10 µg), with an intrauterine administration (n = 1901), was compared with the pregnancy rate of cows inseminated using a conventional AI protocol (n = 1568), both comparing into the same YG. YGs were created considering the grouping of cows belonging to the same farm, with the same nutritional score and management, inseminated by the same inseminator and semen batch, and using the same estrus synchronization protocol). The statistical method used calculated the probability of obtaining pregnancy within each group. The administration of a single dose of eGAL-1 can increase the probability of obtaining pregnancy in beef cows by up to 8.68% (p < 0.0001), suggesting that a single dose of eGAL-1 during the FTAI procedure was reasonable in the beef cattle AI routine and can improve the pregnancy rate considerably.
Collapse
|
55
|
Vrbata D, Filipová M, Tavares MR, Červený J, Vlachová M, Šírová M, Pelantová H, Petrásková L, Bumba L, Konefał R, Etrych T, Křen V, Chytil P, Bojarová P. Glycopolymers Decorated with 3- O-Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. J Med Chem 2022; 65:3866-3878. [PMID: 35157467 DOI: 10.1021/acs.jmedchem.1c01625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., β-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.
Collapse
Affiliation(s)
- David Vrbata
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Marina R Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, CZ-128 43 Prague 2, Czech Republic
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-162 06 Prague 6, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic
| |
Collapse
|
56
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
57
|
Pavic K, Chippalkatti R, Abankwa D. Drug targeting opportunities en route to Ras nanoclusters. Adv Cancer Res 2022; 153:63-99. [PMID: 35101236 DOI: 10.1016/bs.acr.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.
Collapse
Affiliation(s)
- Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
58
|
The Role of Tumor Microenvironment in the Pathogenesis of Sézary Syndrome. Int J Mol Sci 2022; 23:ijms23020936. [PMID: 35055124 PMCID: PMC8781892 DOI: 10.3390/ijms23020936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023] Open
Abstract
Sézary syndrome is an aggressive leukemic variant of cutaneous T-cell lymphomas, characterized by erythroderma, lymphadenopathy, and peripheral blood involvement by CD4+ malignant T-cells. The pathogenesis of Sézary syndrome is not fully understood. However, the course of the disease is strongly influenced by the tumor microenvironment, which is altered by a combination of cytokines, chemokines, and growth factors. The crosstalk between malignant and reactive cells affects the immunologic response against tumor cells causing immune dysregulation. This review focuses on the interaction of malignant Sézary cells and the tumor microenvironment.
Collapse
|
59
|
Derosiers N, Aguilar W, DeGaramo DA, Posey AD. Sweet Immune Checkpoint Targets to Enhance T Cell Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:278-285. [PMID: 35017217 DOI: 10.4049/jimmunol.2100706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022]
Abstract
Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.
Collapse
Affiliation(s)
- Nohelly Derosiers
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - William Aguilar
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - David A DeGaramo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and .,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
60
|
Cano ME, Jara WE, Cagnoni AJ, Brizzio E, Strumia MC, Repetto E, Uhrig ML. The disulfide bond as a key motif for the construction of multivalent glycoclusters. NEW J CHEM 2022. [DOI: 10.1039/d2nj03071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S-Glycosylated dendrons having a thioacetate group in their focal points led to multivalent glycoclusters by spontaneous O2-oxidation of sulfides.
Collapse
Affiliation(s)
- María Emilia Cano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Walter Emiliano Jara
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Alejandro J. Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428ADN Buenos Aires, Argentina
| | - Emmanuel Brizzio
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Miriam C. Strumia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Av. Haya de la Torre esq. Av. Medina Allende, Córdoba, X5000HUA, Argentina
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA). Av. Velez Sárfield 1611, Córdoba, X5000HUA, Argentina
| | - Evangelina Repetto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| |
Collapse
|
61
|
Sewgobind NV, Albers S, Pieters RJ. Functions and Inhibition of Galectin-7, an Emerging Target in Cellular Pathophysiology. Biomolecules 2021; 11:1720. [PMID: 34827718 PMCID: PMC8615947 DOI: 10.3390/biom11111720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-7 is a soluble unglycosylated lectin that is able to bind specifically to β-galactosides. It has been described to be involved in apoptosis, proliferation and differentiation, but also in cell adhesion and migration. Several disorders and diseases are discussed by covering the aforementioned biological processes. Structural features of galectin-7 are discussed as well as targeting the protein intracellularly or extracellularly. The exact molecular mechanisms that lie behind many biological processes involving galectin-7 are not known. It is therefore useful to come up with chemical probes or tools in order to obtain knowledge of the physiological processes. The objective of this review is to summarize the roles and functions of galectin-7 in the human body, providing reasons why it is necessary to design inhibitors for galectin-7, to give the reader structural insights and describe its current inhibitors.
Collapse
Affiliation(s)
| | | | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, NL-3508 TB Utrecht, The Netherlands; (N.V.S.); (S.A.)
| |
Collapse
|
62
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
63
|
Yin P, Cui S, Liao X, Yao X. Galectin‑3 blockade suppresses the growth of cetuximab‑resistant human oral squamous cell carcinoma. Mol Med Rep 2021; 24:685. [PMID: 34328195 PMCID: PMC8365594 DOI: 10.3892/mmr.2021.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 11/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a cancer associated with high mortality (accounting for 3.1/100,000 deaths per year in Brazil in 2013) and a high frequency of amplification in the expression of the epidermal growth factor receptor (EGFR). Treatment with the EGFR inhibitor cetuximab leads to drug resistance in patients with OSCC due to unknown mechanisms. Galectin‑3 (Gal‑3) is a β‑galactoside binding lectin that regulates multiple signaling pathways in cells. The present study aimed to investigate the effect of Gal‑3 in cetuximab‑resistant (cet‑R) OSCC. The OSCC HSC3 cell line was selected to establish a mouse xenograft model, which was treated with cetuximab to induce resistance. Subsequently, a Gal‑3 inhibitor was used to treat cet‑R tumors, and the tumor volume was monitored. The expression of Gal‑3, phosphorylated (p)‑ERK1/2 and p‑Akt was assessed using immunohistochemistry. The combined effect of cetuximab and the Gal‑3 inhibitor on HSC3 tumor xenografts was also investigated. HSC3 cells were cultured in vitro to investigate the regulatory effects of Gal‑3 on ERK1/2 and Akt via western blotting. In addition, the effects of the Gal‑3 inhibitor on the proliferation, colony formation, invasion and apoptosis of HSC3 cells were investigated by performing Cell Counting Kit‑8, colony formation, Transwell and apoptosis assays, respectively. In cet‑R OSCC tumors, increased expression of Gal‑3, p‑ERK1/2 and p‑Akt was observed. Further research demonstrated that Gal‑3 regulated the expression of both ERK1/2 and Akt in HSC3 cells by promoting phosphorylation. Moreover, the Gal‑3 inhibitor decreased the proliferation and invasion, but increased the apoptosis of cet‑R HSC3 cells. In addition, the Gal‑3 inhibitor suppressed the growth of cet‑R tumors. Collectively, the results indicated that the Gal‑3 inhibitor and cetuximab displayed a synergistic inhibitory effect on OSCC tumors. In summary, the present study demonstrated that Gal‑3 may serve an important role in cet‑R OSCC. The combination of cetuximab and the Gal‑3 inhibitor may display a synergistic antitumor effect, thereby inhibiting the development of cetuximab resistance in OSCC.
Collapse
Affiliation(s)
- Peng Yin
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing 110112, P.R. China
| | - Shuanlong Cui
- Department of Stomatology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiangling Liao
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing 110112, P.R. China
| | - Xiaoguang Yao
- Department of Surgery, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
64
|
Bhowmick S, Saha A, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Structure-based identification of galectin-1 selective modulators in dietary food polyphenols: a pharmacoinformatics approach. Mol Divers 2021; 26:1697-1714. [PMID: 34482478 PMCID: PMC9209356 DOI: 10.1007/s11030-021-10297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
Abstract In this study, a set of dietary polyphenols was comprehensively studied for the selective identification of the potential inhibitors/modulators for galectin-1. Galectin-1 is a potent prognostic indicator of tumor progression and a highly regarded therapeutic target for various pathological conditions. This indicator is composed of a highly conserved carbohydrate recognition domain (CRD) that accounts for the binding affinity of β-galactosides. Although some small molecules have been identified as galectin-1 inhibitors/modulators, there are limited studies on the identification of novel compounds against this attractive therapeutic target. The extensive computational techniques include potential drug binding site recognition on galectin-1, binding affinity predictions of ~ 500 polyphenols, molecular docking, and dynamic simulations of galectin-1 with selective dietary polyphenol modulators, followed by the estimation of binding free energy for the identification of dietary polyphenol-based galectin-1 modulators. Initially, a deep neural network-based algorithm was utilized for the prediction of the druggable binding site and binding affinity. Thereafter, the intermolecular interactions of the polyphenol compounds with galectin-1 were critically explored through the extra-precision docking technique. Further, the stability of the interaction was evaluated through the conventional atomistic 100 ns dynamic simulation study. The docking analyses indicated the high interaction affinity of different amino acids at the CRD region of galectin-1 with the proposed five polyphenols. Strong and consistent interaction stability was suggested from the simulation trajectories of the selected dietary polyphenol under the dynamic conditions. Also, the conserved residue (His44, Asn46, Arg48, Val59, Asn61, Trp68, Glu71, and Arg73) associations suggest high affinity and selectivity of polyphenols toward galectin-1 protein. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| | - Nora Abdullah AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jozaa Zaidan ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Saikh Mohammad Wabaidur
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
65
|
Núñez-Franco R, Peccati F, Jiménez-Osés G. A Computational Perspective on Molecular Recognition by Galectins. Curr Med Chem 2021; 29:1219-1231. [PMID: 34348610 DOI: 10.2174/0929867328666210804093058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
This article presents an overview of recent computational studies dedicated to the analysis of binding between galectins and small-molecule ligands. We first present a summary of the most popular simulation techniques adopted for calculating binding poses and binding energies, and then discuss relevant examples reported in the literature for the three main classes of galectins (dimeric, tandem and chimera). We show that simulation of galectin-ligand interactions is a mature field which has proven invaluable for completing and unraveling experimental observations. Future perspectives to further improve the accuracy and cost-effectiveness of existing computational approaches will involve the development of new schemes to account for solvation and entropy effects, which represent the main current limitations to the accuracy of computational results.
Collapse
Affiliation(s)
- Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| |
Collapse
|
66
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021; 10:2788. [PMID: 34202907 PMCID: PMC8268878 DOI: 10.3390/jcm10132788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, 8370993 Santiago, Chile
| |
Collapse
|
67
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021. [PMID: 34202907 DOI: 10.3390/jcm10132788.pmid:34202907;pmcid:pmc8268878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center "Dr Dragisa Misovic-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993 Santiago, Chile
| |
Collapse
|
68
|
Abstract
Influenza viruses grown in eggs for the purposes of vaccine generation often acquire mutations during egg adaptation or possess different glycosylation patterns than viruses circulating among humans. Here, we report that seasonal influenza virus vaccines possess an egg-derived glycan that is an antigenic decoy, with egg-binding MAbs reacting with a sulfated N-acetyllactosamine (LacNAc). Half of subjects that received an egg-grown vaccine mounted an antibody response against this egg-derived antigen. Egg-binding monoclonal antibodies specifically bind viruses grown in eggs, but not viruses grown in other chicken-derived cells, suggesting that only egg-grown vaccines can induce antiegg antibodies. Notably, antibodies against the egg antigen utilized a restricted antibody repertoire and possessed features of natural antibodies, as most antibodies were IgM and had a simple heavy-chain complementarity-determining region 3. By analyzing a public data set of influenza virus vaccine-induced plasmablasts, we discovered egg-binding public clonotypes that were shared across studies. Together, this study shows that egg-grown vaccines can induce antibodies against an egg-associated glycan, which may divert the host immune response away from protective epitopes.
Collapse
|
69
|
Lightfoot A, McGettrick HM, Iqbal AJ. Vascular Endothelial Galectins in Leukocyte Trafficking. Front Immunol 2021; 12:687711. [PMID: 34140956 PMCID: PMC8204101 DOI: 10.3389/fimmu.2021.687711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment to the site of injury is a crucial event in the regulation of an inflammatory response. Tight regulation of interactions between the endothelium and circulating leukocytes is necessary to ensure a protective response to injury does not result in inflammatory disease. Rising interest in the broad immunoregulatory roles displayed by members of the glycan-binding galectin family suggests that these proteins could be an attractive target for therapeutic intervention, since their expression is significantly altered in disease. The focus of this review is to summarize current knowledge on the role of galectins in leukocyte trafficking during inflammation and the clinical approaches being taken to target these interactions for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Abbey Lightfoot
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
70
|
Pourrajab F. Targeting the glycans: A paradigm for host-targeted and COVID-19 drug design. J Cell Mol Med 2021; 25:5842-5856. [PMID: 34028178 PMCID: PMC8242448 DOI: 10.1111/jcmm.16585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is always a need for new approaches for the control of virus burdens caused by seasonal outbreaks, the emergence of novel viruses with pandemic potential and the development of resistance to current antiviral drugs. The outbreak of the 2019 novel coronavirus-disease COVID-19 represented a pandemic threat and declared a public health emergency of international concern. Herein, the role of glycans for the development of new drugs or vaccines, as a host-targeted approach, is discussed where may provide a front-line prophylactic or threats to protect against the current and any future respiratory-infecting virus and possibly against other respiratory pathogens. As a prototype, the role of glycans in the coronavirus infection, as well as, galectins (Gal) as the glycan-recognition agents (GRAs) in drug design are here summarized. Galectins, in particular, Gal-1 and Gal-3 are ubiquitous and important to biological systems, whose interactions with viral glycans modulate host immunity and homeostatic balance.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Reproductive Immunology Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Biotechnology Research Center, International CampusShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
71
|
Sethi A, Sanam S, Alvala R, Alvala M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016-present). Expert Opin Ther Pat 2021; 31:709-721. [PMID: 33749494 DOI: 10.1080/13543776.2021.1903430] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Galectins are ubiquitous in nature. They have established themselves as a protein family of high therapeutic potential and play a role in a wide variety of diseases like cancer, fibrosis, and Alzheimer's. Within the galectin family, galectin- 1 and galectin- 3 have been widely studied and their roles and functions have now been well established. AREAS COVERED In this review, we discuss the important advancements in the development of galectin-1 & 3 inhibitors. All patents filed detailing the divergent strategies to inhibit galectin-1 & 3 from 2016 to present have been covered and discussed. EXPERT OPINION Over the past couple of decades, distinct galectin inhibitors have been synthesized, reported and studied. Among all, the mono and disaccharide-based antagonists have been found to be considerably successful. However, the cumbersome synthetic route followed to develop this class of inhibitors, in addition to complexity involved in making selective modifications within these molecules has posed a significant challenge. Recently, there have been numerous reports on heterocyclic-based galectin inhibitors. If these are established as potent galectin inhibitors, their ease of synthesis and tunability could overcome the potential drawbacks of carbohydrate-based inhibitors and could thus be exploited to develop efficient and highly specific galectin inhibitors.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India
| | - Swetha Sanam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India
| | - Ravi Alvala
- G Pulla Reddy College of Pharmacy, Mehdipatnam, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India.,Assistant Professor, School of Pharmacy and Technology Management, NMIMS (Deemed to be University), Hyderabad, India
| |
Collapse
|
72
|
Donskow-Łysoniewska K, Maruszewska-Cheruiyot M, Stear M. The interaction of host and nematode galectins influences the outcome of gastrointestinal nematode infections. Parasitology 2021; 148:648-654. [PMID: 33461629 PMCID: PMC11010190 DOI: 10.1017/s003118202100007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Galectins are a family of proteins that bind β-galactosides and play key roles in a variety of cellular processes including host defence. They have been well studied in hosts but less so in gastrointestinal nematodes. Both host and parasite galectins are present in the gastrointestinal tract following infection. Parasite galectins can both bind antibody, especially highly glycosylated IgE and be bound by antibody. Parasite galectins may act as molecular sponges that soak up antibody. Host galectins promote mast cell degranulation while parasite galectins inhibit degranulation. Host and parasite galectins can also bind mucins and influence mucus viscosity. As the protective response against gastrointestinal nematode infection is partly dependent on IgE mediated mast cell degranulation and mucus, the interactions between host and parasite galectins play key roles in determining the outcome of infection.
Collapse
Affiliation(s)
- Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Michael Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
73
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
74
|
Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci 2021; 277:119426. [PMID: 33785342 DOI: 10.1016/j.lfs.2021.119426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Over the past few years, tumor immunotherapy has emerged as an innovative tumor treatment and owned incomparable advantages over other tumor therapy. With unique complexity and uncertainty, immunotherapy still need helper to apply in the clinic. Galectins, modulated in tumor microenvironment, can regulate the disorders of innate and adaptive immune system resisting tumor growth. Considering the role of galectins in tumor immunosuppression, combination therapy of targeted anti-galectins and immunotherapy may be a promising tumor treatment. This brief review summarizes the expression and immune functions of different galectins in tumor microenvironment and discusses the potential value of anti-galectins in combination with checkpoint inhibitors in tumor immunotherapy.
Collapse
|
75
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
76
|
Makshakova ON, Safarova ER, Zuev YF. Structural insights in interactions between RNase from Bacillus Intermedius and rhamnogalacturonan I from potato. Carbohydr Polym 2021; 251:117038. [PMID: 33142596 DOI: 10.1016/j.carbpol.2020.117038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023]
Abstract
Being biocompatible and biodegradable polymers, polysaccharides present a perspective material for drug delivery systems. This study aimed at unraveling the molecular details of interactions between rhamnogalacturonan I, brunched with galactan side chains, and RNase from Bacillus Intermedius, binase. FTIR- and NMR-spectroscopic analyses showed that binase interacts with side chains of the polysaccharide. In complexes with polysaccharide, the protein retains its native structure. The 2D-NMR techniques revealed eight protein residues responsive to polysaccharide binding. Further, computer simulations were carried out to provide the atomistic details of binase-polysaccharide complexes. Both blind and knowledge-based docking procedures elucidate the existence of epitopes on the binase surface with the preferential binding of galactan fragments. The refinement of these complexes by molecular dynamics simulations confirmed stable protein-polysaccharide interactions. The results of this study strengthen the knowledge on non-specific protein-carbohydrate interactions and outline the rhamnogalacturonan I as a possible matrix material for protein delivery systems.
Collapse
Affiliation(s)
- O N Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky str. 2/31, Kazan, Russian Federation.
| | - E R Safarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky str. 2/31, Kazan, Russian Federation
| | - Y F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky str. 2/31, Kazan, Russian Federation
| |
Collapse
|
77
|
Zhang T, Jiang S, Sun L. A Fish Galectin-8 Possesses Direct Bactericidal Activity. Int J Mol Sci 2020; 22:ijms22010376. [PMID: 33396490 PMCID: PMC7796122 DOI: 10.3390/ijms22010376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
Galectins are a family of animal lectins with high affinity for β-galactosides. Galectins are able to bind to bacteria, and a few mammalian galectins are known to kill the bound bacteria. In fish, no galectins with direct bactericidal effect have been reported. In the present study, we identified and characterized a tandem repeat galectin-8 from tongue sole Cynoglossus semilaevis (designated CsGal-8). CsGal-8 possesses conserved carbohydrate recognition domains (CRDs), as well as the conserved HXNPR and WGXEE motifs that are critical for carbohydrate binding. CsGal-8 was constitutively expressed in nine tissues of tongue sole and up-regulated in kidney, spleen, and blood by bacterial challenge. When expressed in HeLa cells, CsGal-8 protein was detected both in the cytoplasm and in the micro-vesicles secreted from the cells. Recombinant CsGal-8 (rCsGal-8) bound to lactose and other carbohydrates in a dose dependent manner. rCsGal-8 bound to a wide range of gram-positive and gram-negative bacteria and was co-localized with the bound bacteria in animal cells. Lactose, fructose, galactose, and trehalose effectively blocked the interactions between rCsGal-8 and different bacteria. Furthermore, rCsGal-8 exerted potent bactericidal activity against some gram-negative bacterial pathogens by directly damaging the membrane and structure of the pathogens. Taken together, these results indicate that CsGal-8 likely plays an important role in the immune defense against some bacterial pathogens by direct bacterial interaction and killing.
Collapse
Affiliation(s)
- Tengfei Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Correspondence: (S.J.); (L.S.); Tel.: +86-532-8289-1027 (S.J.); +86-532-8289-8829 (L.S.)
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Correspondence: (S.J.); (L.S.); Tel.: +86-532-8289-1027 (S.J.); +86-532-8289-8829 (L.S.)
| |
Collapse
|
78
|
Bertuzzi S, Gimeno A, Núñez‐Franco R, Bernardo‐Seisdedos G, Delgado S, Jiménez‐Osés G, Millet O, Jiménez‐Barbero J, Ardá A. Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectin-1. Chemistry 2020; 26:15643-15653. [PMID: 32780906 PMCID: PMC7756784 DOI: 10.1002/chem.202003212] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The interaction of human galectin-1 with a variety of oligosaccharides, from di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been scrutinized by using a combined approach of different NMR experiments, molecular dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and receptor-based NMR experiments assisted by computational methods allowed proposing three-dimensional structures for the different complexes, which explained the lack of enthalpy gain when increasing the chemical complexity of the glycan. Interestingly, and independently of the glycan ligand, the entropy term does not oppose the binding event, a rather unusual feature for protein-sugar interactions. CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding affected residues far from the binding site and described significant changes in the dynamics of the protein. In particular, motions in the microsecond-millisecond timescale in residues at the protein dimer interface were identified in the presence of high affinity ligands. The dynamic process was further explored by extensive MD simulations, which provided additional support for the existence of allostery in glycan recognition by human galectin-1.
Collapse
Affiliation(s)
- Sara Bertuzzi
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Ana Gimeno
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Reyes Núñez‐Franco
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Ganeko Bernardo‐Seisdedos
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Sandra Delgado
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Gonzalo Jiménez‐Osés
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Oscar Millet
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| | - Jesús Jiménez‐Barbero
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
- Ikerbasque—Basque Foundation for Science48013BilbaoBizkaiaSpain
- Department of Organic Chemistry IIUPV/EHUUniversity of the Basque Country48940LeioaBizkaiaSpain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen InteractionsCIC bioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology Park, Building 80048162DerioBizkaiaSpain
| |
Collapse
|
79
|
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling. J Cell Sci 2020; 133:133/15/jcs244186. [PMID: 32788209 DOI: 10.1242/jcs.244186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular trans-synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the Drosophila glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling trans-synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.
Collapse
Affiliation(s)
- Emma Rushton
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Brain Institute, and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
80
|
Hoffmann D, Diderrich R, Reithofer V, Friederichs S, Kock M, Essen LO, Mösch HU. Functional reprogramming of Candida glabrata epithelial adhesins: the role of conserved and variable structural motifs in ligand binding. J Biol Chem 2020; 295:12512-12524. [PMID: 32669365 DOI: 10.1074/jbc.ra120.013968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
For host-cell interaction, the human fungal pathogen Candida glabrata harbors a large family of more than 20 cell wall-attached epithelial adhesins (Epas). Epa family members are lectins with binding pockets containing several conserved and variable structural hot spots, which were implicated in mediating functional diversity. In this study, we have performed an elaborate structure-based mutational analysis of numerous Epa paralogs to generally determine the role of diverse structural hot spots in conferring host cell binding and ligand binding specificity. Our study reveals that several conserved structural motifs contribute to efficient host cell binding. Moreover, our directed motif exchange experiments reveal that the variable loop CBL2 is key for programming ligand binding specificity, albeit with limited predictability. In contrast, we find that the variable loop L1 affects host cell binding without significantly influencing the specificity of ligand binding. Our data strongly suggest that variation of numerous structural hot spots in the ligand binding pocket of Epa proteins is a main driver of their functional diversification and evolution.
Collapse
Affiliation(s)
- Daniel Hoffmann
- Department of Genetics, Philipps-Universität, Marburg, Germany
| | - Rike Diderrich
- Department of Genetics, Philipps-Universität, Marburg, Germany
| | | | | | - Michael Kock
- Department of Biochemistry, Philipps-Universität, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Biochemistry, Philipps-Universität, Marburg, Germany .,Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität, Marburg, Germany .,Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
| |
Collapse
|
81
|
Binding of CML-Modified as Well as Heat-Glycated β-lactoglobulin to Receptors for AGEs Is Determined by Charge and Hydrophobicity. Int J Mol Sci 2020; 21:ijms21124567. [PMID: 32604964 PMCID: PMC7348724 DOI: 10.3390/ijms21124567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
Intake of dietary advanced glycation end products (AGEs) is associated with inflammation-related health problems. Nε-carboxymethyl lysine (CML) is one of the best characterised AGEs in processed food. AGEs have been described as ligands for receptors present on antigen presenting cells. However, changes in protein secondary and tertiary structure also induce binding to AGE receptors. We aimed to discriminate the role of different protein modifications in binding to AGE receptors. Therefore, β-lactoglobulin was chemically modified with glyoxylic acid to produce CML and compared to β-lactoglobulin glycated with lactose. Secondary structure was monitored with circular dichroism, while hydrophobicity and formation of β-sheet structures was measured with ANS-assay and ThT-assay, respectively. Aggregation was monitored using native-PAGE. Binding to sRAGE, CD36, and galectin-3 was measured using inhibition ELISA. Even though no changes in secondary structure were observed in all tested samples, binding to AGE receptors increased with CML concentration of CML-modified β-lactoglobulin. The negative charge of CML was a crucial determinant for the binding of protein bound CML, while binding of glycated BLG was determined by increasing hydrophobicity. This shows that sRAGE, galectin-3, and CD36 bind to protein bound CML and points out the role of negatively charged AGEs in binding to AGE receptors.
Collapse
|