51
|
Parkin HC, Street STG, Gowen B, Da-Silva-Correa LH, Hof R, Buckley HL, Manners I. Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles. J Am Chem Soc 2024; 146:5128-5141. [PMID: 38356186 DOI: 10.1021/jacs.3c09033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Self-assembled polymer nanoparticles are promising antibacterials, with nonspherical morphologies of particular interest as recent work has demonstrated enhanced antibacterial activity relative to their spherical counterparts. However, the reasons for this enhancement are currently unclear. We have performed a multifaceted analysis of the antibacterial mechanism of action of 1D nanofibers relative to nanospheres by the use of flow cytometry, high-resolution microscopy, and evaluations of the antibacterial activity of pristine and tetracycline-loaded nanoparticles. Low-length dispersity, fluorescent diblock copolymer nanofibers with a crystalline poly(fluorenetrimethylenecarbonate) (PFTMC) core (length = 104 and 472 nm, height = 7 nm, width = 10-13 nm) and a partially protonated poly(dimethylaminoethyl methacrylate) (PDMAEMA) corona (length = 12 nm) were prepared via seeded growth living crystallization-driven self-assembly. Their behavior was compared to that of analogous nanospheres containing an amorphous PFTMC core (diameter of 12 nm). While all nanoparticles were uptaken into Escherichia coli W3110, crystalline-core nanofibers were observed to cause significant bacterial damage. Drug loading studies indicated that while all nanoparticle antibacterial activity was enhanced in combination with tetracycline, the enhancement was especially prominent when small nanoparticles (ca. 15-25 nm) were employed. Therefore, the identified differences in the mechanism of action and the demonstrated consequences for nanoparticle size and morphology control may be exploited for the future design of potent antibacterial agents for overcoming antibacterial resistance. This study also reinforces the requirement of morphological control over polymer nanoparticles for biomedical applications, as differences in activity are observed depending on their size, shape, and core-crystallinity.
Collapse
Affiliation(s)
- Hayley C Parkin
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Steven T G Street
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Luiz H Da-Silva-Correa
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Rebecca Hof
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Heather L Buckley
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
52
|
Du X, Zhang M, Ma Y, Zhang Y, Li W, Hu T, Liu Y, Huang H, Kang Z. Carbon dots derived from metformin by electrochemical synthesis with broad-spectrum antibacterial properties. J Mater Chem B 2024; 12:2346-2353. [PMID: 38344921 DOI: 10.1039/d3tb02442c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Due to the advantages of good aqueous dispersion and biocompatibility, carbon dots (CDs) are promising candidates for a wide range of applications in the biological field. Notably, CDs derived from biosafe organic precursors will contribute both new types of CDs and new bioactivities. Herein, metformin (MET), a first-line drug for the treatment of type II diabetes, was selected as an organic precursor to fabricate a new type of CDs, namely, semi-carbonized MET (MCDs). These MCDs derived from MET possess a completely new antibacterial activity against Staphylococcus aureus (SA) and Escherichia coli (E. coli) compared with that of MET and achieve complete antibacterial activity at 200 μg mL-1. The broad-spectrum antibacterial mechanism of MCDs involves two aspects. For the Gram-positive bacteria SA, MCDs mainly affect the transport of nutrients by adsorbing onto the surface of bacteria, thereby inhibiting bacterial growth. For the Gram-negative bacteria E. coli, MCDs can easily pass through their thin cell walls and stimulate the bacteria to produce excess ROS, eventually leading to the death of the bacteria. This work may open a new way for the future design and development of CDs prepared from biosafe organic precursors with specific functions.
Collapse
Affiliation(s)
- Xin Du
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
53
|
Aboelenin AM, El-Mowafy M, Saleh NM, Shaaban MI, Barwa R. Ciprofloxacin- and levofloxacin-loaded nanoparticles efficiently suppressed fluoroquinolone resistance and biofilm formation in Acinetobacter baumannii. Sci Rep 2024; 14:3125. [PMID: 38326515 PMCID: PMC10850473 DOI: 10.1038/s41598-024-53441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.
Collapse
Affiliation(s)
- Alaa M Aboelenin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
54
|
Chatterjee P, Chauhan N, Jain U. Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Microb Pathog 2024; 187:106499. [PMID: 38097117 DOI: 10.1016/j.micpath.2023.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Antimicrobial resistance arises over time, usually due to genetic modifications. Global observations of high resistance rates to popular antibiotics used to treat common bacterial diseases, such as diarrhea, STIs, sepsis, and urinary tract infections, indicate that our supply of effective antibiotics is running low. The mechanisms of action of several antibiotic groups are covered in this review. Antimicrobials disrupt the development and metabolism of bacteria, leading to their eventual death. However, in recent years, microorganisms become resistant to the drugs. Bacteria encode resistant genes against antibiotics and inhibit the function of antibiotics by reducing the uptake of drugs, modifying the enzyme's active site, synthesizing enzymes to degrade antibiotics, and changing the structure of ribosomal subunits. Additionally, the methods of action of resistant bacteria against different kinds of antibiotics as well as their modes of action are discussed. Besides, the resistant pathogenic bacteria which get the most priority by World Health Organisation (WHO) for synthesizing new drugs, have also been incorporated. To overcome antimicrobial resistance, nanomaterials are used to increase the efficacy of antimicrobial drugs. Metallic, inorganic, and polymer-based nanoparticles once conjugated with antibacterial drugs, exhibit synergistic effects by increasing the efficacy of the drugs by inhibiting bacterial growth. Nanomaterial's toxic properties are proportional to their concentrations. Higher concentration nanomaterials are more toxic to the cells. In this review, the toxic properties of nanomaterials on lung cells, lymph nodes, and neuronal cells are also summarized.
Collapse
Affiliation(s)
- Pallabi Chatterjee
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
55
|
Sarma PP, Rai A, Baruah PK. Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:124. [PMID: 38391510 PMCID: PMC10886052 DOI: 10.3390/antibiotics13020124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) has become an alarming threat to the successful treatment of rapidly growing bacterial infections due to the abuse and misuse of antibiotics. Traditional antibiotics bear many limitations, including restricted bioavailability, inadequate penetration and the emergence of antimicrobial-resistant microorganisms. Recent advances in nanotechnology for the introduction of nanoparticles with fascinating physicochemical characteristics have been predicted as an innovative means of defence against antimicrobial-resistant diseases. The use of nanoparticles provides several benefits, including improved tissue targeting, better solubility, improved stability, enhanced epithelial permeability and causes minimal side effects. However, except for gold nanoparticles (AuNPs), the biological safety of the majority of metal nanoparticles remains a serious problem. AuNPs appear to be promising for drug delivery and medicinal applications because of their minimal toxicity, biocompatibility, functional flexibility, chemical stability and versatile biological activities, such as their antiviral, antifungal, anti-inflammatory and antimicrobial properties. Hence, we are focusing on the gold nanoparticles possessing antimicrobial activity in this article. This review will cover recent strategies in the preparation of gold nanoparticles, with special emphasis placed on antibiotics-coated AuNPs with enhanced antimicrobial properties and how they fight against disease-causing bacteria and eradicate biofilms, along with their activities and physicochemical properties.
Collapse
Affiliation(s)
- Partha Pratim Sarma
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati 781014, Assam, India
| | - Akhilesh Rai
- CNC-Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 000-447 Coimbra, Portugal
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati 781014, Assam, India
| |
Collapse
|
56
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
57
|
Sharifi N, Alitaneh Z, Asadi S, Vahidinia Z, Aghaei Zarch SM, Esmaeili A, Bagheri-Mohammadi S, Najafi S, Mazhari Y. Developing nanosize carrier systems for Amphotericin-B: A review on the biomedical application of nanoparticles for the treatment of leishmaniasis and fungal infections. Biotechnol J 2024; 19:e2300462. [PMID: 38073122 DOI: 10.1002/biot.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
New formulations of Amphotericin-B (Am-B), the most popular therapeutic drug for many human infections such as parasitic and fungal pathogens, are safe, economical, and effective in the world. Several newly designed carrier systems for Am-B can also be considered orally with sufficient gastrointestinal permeability and good solubility. However, the clinical application of several new formulations of Am-B with organ cytotoxicity, low bioavailability, high costs, and technical problems have caused some issues. Therefore, more attention and scientific design are required to progress safe and effective drug delivery systems. Currently, the application of nano-based technology and nanomaterials in the advancement of drug delivery systems exhibits promising outcomes to cure many human systemic infections. Designing novel drug delivery systems including solid lipid nanostructured materials, lipo-polymersomes, drug conjugates and microneedles, liposomes, polymer and protein-based nanostructured materials, dendrimers, emulsions, mixed micelles, polymeric micelles, cyclodextrins, nanocapsules, and nanocochleate for Am-B has many advantages to reducing several related issues. The unique properties of nanostructured particles such as proper morphology, small size, surface coatings, and, electrical charge, permit scientists to design new nanocomposite materials against microorganisms for application in various human diseases. These features have made these nanoparticles an ideal candidate for drug delivery systems in clinical approaches to cure a number of human disorders and currently, several therapeutic nanostructured material formulations are under different stages of clinical tests. Hence, this scientific paper mainly discussed the advances in new formulations of Am-B for the treatment of human systemic infections and related clinical tests.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yosra Mazhari
- Department of Microbiology and Infectious Diseases Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
58
|
Lai C, Lin S, Liu W, Jin Y. Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy. Curr Med Chem 2024; 31:3074-3092. [PMID: 37062062 DOI: 10.2174/0929867330666230416153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/17/2023]
Abstract
Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.
Collapse
Affiliation(s)
- Chunmei Lai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Simin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, 350108, China
| | - Yanqiao Jin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
59
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
60
|
Fayed B, Jagal J, Cagliani R, Kedia RA, Elsherbeny A, Bayraktutan H, Khoder G, Haider M. Co-administration of amoxicillin-loaded chitosan nanoparticles and inulin: A novel strategy for mitigating antibiotic resistance and preserving microbiota balance in Helicobacter pylori treatment. Int J Biol Macromol 2023; 253:126706. [PMID: 37673144 DOI: 10.1016/j.ijbiomac.2023.126706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Helicobacter pylori (H. pylori) is a causative agent of various gastrointestinal diseases and eradication mainly relies on antibiotic treatment, with (AMX) being a key component. However, rising antibiotic resistance in H. pylori necessitates the use of antibiotics combination therapy, often disrupting gut microbiota equilibrium leading to further health complications. This study investigates a novel strategy utilizing AMX-loaded chitosan nanoparticles (AMX-CS NPs), co-administered with prebiotic inulin to counteract H. pylori infection while preserving microbiota health. Following microbroth dilution method, AMX displayed efficacy against H. pylori, with a MIC50 of 48.34 ± 3.3 ng/mL, albeit with a detrimental impact on Lactobacillus casei (L. casei). The co-administration of inulin (500 μg/mL) with AMX restored L. casei viability while retaining the lethal effect on H. pylori. Encapsulation of AMX in CS-NPs via ionic gelation method, resulted in particles of 157.8 ± 3.85 nm in size and an entrapment efficiency (EE) of 86.44 ± 2.19 %. Moreover, AMX-CS NPs showed a sustained drug release pattern over 72 h with no detectable toxicity on human dermal fibroblasts cell lines. Encapsulation of AMX into CS NPs also reduced its MIC50 against H. pylori, while its co-administration with inulin maintained L. casei viability. Interestingly, treatment with AMX-CS NPs also reduced the expression of the efflux pump gene hefA in H. pylori. This dual treatment strategy offers a promising approach for more selective antimicrobial treatment, minimizing disruption to healthy microbial communities while effectively addressing pathogenic threats.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo 12622, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Roberta Cagliani
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Reena A Kedia
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Ghalia Khoder
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Mohamed Haider
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
61
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
62
|
Neff SL, Hampton TH, Koeppen K, Sarkar S, Latario CJ, Ross BD, Stanton BA. Rocket-miR, a translational launchpad for miRNA-based antimicrobial drug development. mSystems 2023; 8:e0065323. [PMID: 37975659 PMCID: PMC10734502 DOI: 10.1128/msystems.00653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Antimicrobial-resistant infections contribute to millions of deaths worldwide every year. In particular, the group of bacteria collectively known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) pathogens are of considerable medical concern due to their virulence and exceptional ability to develop antibiotic resistance. New kinds of antimicrobial therapies are urgently needed to treat patients for whom existing antibiotics are ineffective. The Rocket-miR application predicts targets of human miRNAs in bacterial and fungal pathogens, rapidly identifying candidate miRNA-based antimicrobials. The application's target audience are microbiologists that have the laboratory resources to test the application's predictions. The Rocket-miR application currently supports 24 recognized human pathogens that are relevant to numerous diseases including cystic fibrosis, chronic obstructive pulmonary disease (COPD), urinary tract infections, and pneumonia. Furthermore, the application code was designed to be easily extendible to other human pathogens that commonly cause hospital-acquired infections.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Casey J. Latario
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
63
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
64
|
Sharma C, Verma M, Abidi SMS, Shukla AK, Acharya A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids Surf B Biointerfaces 2023; 232:113583. [PMID: 37844474 DOI: 10.1016/j.colsurfb.2023.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.
Collapse
Affiliation(s)
- Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
65
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
66
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
67
|
de Nies L, Kobras CM, Stracy M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023; 21:789-804. [PMID: 37542123 DOI: 10.1038/s41579-023-00936-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.
Collapse
Affiliation(s)
- Laura de Nies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
68
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
69
|
Madkhali OA. Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges. Polymers (Basel) 2023; 15:4327. [PMID: 37960007 PMCID: PMC10648051 DOI: 10.3390/polym15214327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, there has been a growing interest in the use of gelatin nanoparticles (GNPs) for the treatment of infectious diseases. The inherent properties of these nanoparticles make them attractive options for drug delivery. Their biocompatibility ensures that they can interact with biological systems without causing adverse reactions, while their biodegradability ensures that they can break down harmlessly in the body once their function is performed. Furthermore, their capacity for controlled drug release ensures that therapeutic agents can be delivered over a sustained period, thereby enhancing treatment efficacy. This review examines the current landscape of GNP-based drug delivery, with a specific focus on its potential applications and challenges in the context of infectious diseases. Key challenges include controlling drug release rates, ensuring nanoparticle stability under physiological conditions, scaling up production while maintaining quality, mitigating potential immunogenic reactions, optimizing drug loading efficiency, and tracking the biodistribution and clearance of GNPs in the body. Despite these hurdles, GNPs hold promising potential in the realm of infectious disease treatment. Ongoing research and innovation are essential to overcome these obstacles and completely harness the potential of GNPs in clinical applications.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
70
|
Mardikasari SA, Katona G, Budai-Szűcs M, Sipos B, Orosz L, Burián K, Rovó L, Csóka I. Quality by design-based optimization of in situ ionic-sensitive gels of amoxicillin-loaded bovine serum albumin nanoparticles for enhanced local nasal delivery. Int J Pharm 2023; 645:123435. [PMID: 37741560 DOI: 10.1016/j.ijpharm.2023.123435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - László Orosz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6725 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| |
Collapse
|
71
|
Yaribeygi H, Maleki M, Jamialahmadi T, Shakhpazyan NK, Kesharwani P, Sahebkar A. Nanoparticles with SGLT2 inhibitory activity: Possible benefits and future. Diabetes Metab Syndr 2023; 17:102869. [PMID: 37778134 DOI: 10.1016/j.dsx.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
AIM Nano-drug delivery is a rapidly growing approach in medicine that helps design and develop newer forms of drugs with more efficacy and lower adverse effects. Sodium-glucose cotransporter-2 inhibitors are an emerging class of antidiabetic agents that reduce the blood glucose levels by damping glucose reabsorption in renal proximal tubules. METHODS AND RESULTS This mechanism might be followed by some adverse effects that could be prevented by nano-drug delivery. Although we have still limited evidence about nanoforms of sodium-glucose cotransporter-2 inhibitors, current knowledge strongly suggests that nanotechnology can help us design more effective drugs with lower side effects. In recent years, several studies have explored the possible benefits of nanoforms of sodium-glucose cotransporter-2 inhibitors. However, clinical trials are yet to be conducted. CONCLUSION In the current review, we present the latest findings on the development and benefits of nanoforms of sodium-glucose cotransporter-2 inhibitors.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nikolay K Shakhpazyan
- Petrovsky National Science Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
72
|
Mosallam FM, Bendary MM, Elshimy R, El-Batal AI. Curcumin clarithromycin nano-form a promising agent to fight Helicobacter pylori infections. World J Microbiol Biotechnol 2023; 39:324. [PMID: 37773301 PMCID: PMC10541836 DOI: 10.1007/s11274-023-03745-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
Helicobacter pylori (H. pylori) is the main cause of gastric diseases. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance, low efficacy, and low drug concentration in the stomach. This study developed a Nano-emulsion system with ability to carry Curcumin and Clarithromycin to protect them against stomach acidity and increase their efficacy against H. pylori. We used oil in water emulsion system to prepare a novel Curcumin Clarithromycin Nano-Emulsion (Cur-CLR-NE). The nano-emulsion was validated by dynamic light scattering (DLS) technique, zeta potential; transmission electron microscopy (mean particle size 48 nm), UV-visible scanning and Fourier transform infrared spectroscopy (FT-IR). The in vitro assay of Cur-CLR-NE against H. pylori was evaluated by minimum inhibitory concentration (12.5 to 6.26 µg/mL), minimum bactericidal concentration (MBC) and anti-biofilm that showed a higher inhibitory effect of Cur-CLR-NE in compere with, free curcumin and clarithromycin against H. pylori. The in vivo results indicated that Cur-CLR-NE showed higher H. pylori clearance effect than free clarithromycin or curcumin under the same administration frequency and the same dose regimen. Histological analysis clearly showed that curcumin is highly effective in repairing damaged tissue. In addition, a potent synergistic effect was obvious between clarithromycin and curcumin in nano-emulsion system. The inflammation, superficial damage, the symptoms of gastritis including erosion in the mouse gastric mucosa, necrosis of the gastric epithelium gastric glands and interstitial oedema of tunica muscularis were observed in the positive control infected mice and absent from treated mice with Cur-CLR-NE.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mahmoud M Bendary
- Microbiology and Immunology Department, Faculty of pharmacy, Port-Said University, Port Fuad, Egypt
| | - Rana Elshimy
- Microbiology and immunology, Faculty of pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority, EDA, Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
73
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
74
|
Hadiya S, Ibrahem RA, Abd El-Baky RM, Elsabahy M, Hussein AM, Tolba ME, Aly SA. Nano-ciprofloxacin/meropenem exhibit bactericidal activity against Gram-negative bacteria and rescue septic rat model. Nanomedicine (Lond) 2023; 18:1553-1566. [PMID: 37933674 DOI: 10.2217/nnm-2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Aim: We hypothesized that simultaneous administration of two antibiotics loaded into a nanopolymer matrix would augment their synergistic bactericidal interaction. Methods: Nanoplatforms of chitosan/Pluronic® loaded with ciprofloxacin/meropenem (CS/Plu-Cip/Mer) were prepared by the ionic gelation method, using Plu at concentrations in the range 0.5-4% w/v. CS/Plu-Cip/Mer was evaluated for antibacterial synergistic activity in vitro and in vivo. Results: CS/Plu-Cip and CS/Plu-Mer with Plu concentrations of 3% w/v and 2% w/v, respectively, exhibited ∼80% encapsulation efficiency. The MICs of pathogens were fourfold to 16-fold lower for CS/Plu-Cip/Mer than for Cip/Mer. Synergy was evidenced for CS/Plu-Cip/Mer with a bactericidal effect (at 1× MIC and sub-MICs), and it significantly decreased bacterial load and rescued infected rats. Conclusion: This study illustrates the ability of CS/Plu nanopolymer to intensify synergy between antibiotics, thereby providing a promising potential to rejuvenate antibiotics considered ineffective against resistant pathogens.
Collapse
Affiliation(s)
- Safy Hadiya
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, 71515, Egypt
| | - Reham A Ibrahem
- Department of Microbiology & Immunology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Rehab M Abd El-Baky
- Department of Microbiology & Immunology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, 61511, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Abeer Mr Hussein
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mohammed Em Tolba
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Sherine A Aly
- Department of Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
75
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
76
|
Mammari N, Duval RE. Photothermal/Photoacoustic Therapy Combined with Metal-Based Nanomaterials for the Treatment of Microbial Infections. Microorganisms 2023; 11:2084. [PMID: 37630644 PMCID: PMC10458754 DOI: 10.3390/microorganisms11082084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The increased spread and persistence of bacterial drug-resistant phenotypes remains a public health concern and has contributed significantly to the challenge of combating antibiotic resistance. Nanotechnology is considered an encouraging strategy in the fight against antibiotic-resistant bacterial infections; this new strategy should improve therapeutic efficacy and minimize side effects. Evidence has shown that various nanomaterials with antibacterial performance, such as metal-based nanoparticles (i.e., silver, gold, copper, and zinc oxide) have intrinsic antibacterial properties. These antibacterial agents, such as those made of metal oxides, carbon nanomaterials, and polymers, have been used not only to improve antibacterial efficacy but also to reduce bacterial drug resistance due to their interaction with bacteria and their photophysical properties. These nanostructures have been used as effective agents for photothermal therapy (PTT) and photodynamic therapy (PDT) to kill bacteria locally by heating or the controlled production of reactive oxygen species. Additionally, PTT or PDT therapies have also been combined with photoacoustic (PA) imaging to simultaneously improve treatment efficacy, safety, and accuracy. In this present review, we present, on the one hand, a summary of research highlighting the use of PTT-sensitive metallic nanomaterials for the treatment of bacterial and fungal infections, and, on the other hand, an overview of studies showing the PA-mediated theranostic functionality of metal-based nanomaterials.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
77
|
Güncüm E, Işıklan N, Anlaş C, Bulut E, Bakırel T. Preparation, characterization, and evaluation of antibacterial and cytotoxic activity of chitosan-polyethylene glycol nanoparticles loaded with amoxicillin as a novel drug delivery system. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1660-1682. [PMID: 36756763 DOI: 10.1080/09205063.2023.2179269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
In this study, nanoparticles of amoxicillin (AMX) were prepared using chitosan (CHI) and polyethylene glycol (PEG). The physicochemical properties of the particles were investigated by FT-IR, DSC, SEM, and zeta potential analyses. The nanoparticles showed a spherical shape, and the average size of formulations was within the range of 696.20 ± 24.86 - 359.53 ± 7.41 nm. Zeta potential data demonstrated that the formulations had positive surface charges with a zeta potential range of 21.38 ± 2.28 - 7.73 ± 1.66 mV. FTIR analysis showed that the drug was successfully entrapped in the nanoparticles. DSC results suggested that the drug was present in amorphous form in the polymer matrix. In vitro release studies demonstrated that the release pattern consisted of two phases, with an initial burst release followed by a controlled and sustained release. The MTT assay results on mouse fibroblast cell line indicated that the prepared formulations did not affect the viability of the cells. In the in vitro antibacterial activity test, it was found that the drug-loaded nanoparticles have AMX-equivalent antibacterial activity against E. coli, and S. aureus. These findings revealed that the obtained nanoparticles might be a promising and safe nanocarrier system for efficient delivery of AMX.
Collapse
Affiliation(s)
- Enes Güncüm
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Faculty of Science and Arts, Department of Chemistry, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Ceren Anlaş
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University- Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| | - Elif Bulut
- Department of Zoonotic and Vector-borne Diseases, Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Tülay Bakırel
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University- Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
78
|
Santonoceta GDG, Sgarlata C. pH-Responsive Cobalt(II)-Coordinated Assembly Containing Quercetin for Antimicrobial Applications. Molecules 2023; 28:5581. [PMID: 37513453 PMCID: PMC10386366 DOI: 10.3390/molecules28145581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The development of novel drug delivery systems (DDSs) with promising antibacterial properties is essential for facing the emergency of increasing resistance to antimicrobial agents. The antibacterial features of quercetin and its metal complexes have been broadly investigated. However, several drawbacks affect their activity and effectiveness. In this work, we propose a DDS based on a pH-responsive cobalt(II)-coordinated assembly containing quercetin and polyacrylic acid. This system is suggested to trigger the release of the model drug in a pH-dependent mode by exploiting the localized acidic environment at the bacterial infection sites under anaerobic conditions. The delivery system has been designed by accurately examining the species and the multiple equilibria occurring in solution among the assembly components. The formation of cobalt(II) complexes with quercetin in the absence or presence of the pH-responsive polyacrylic acid was investigated in buffered aqueous solution at pH 7.4 using spectrophotometric (UV-Vis) and calorimetric (ITC) techniques. The determined binding affinities and thermodynamic parameters that resulted are essential for the development of a DDS with improved binding and release capabilities. Furthermore, the affinity of the polymer-cobalt(II) complex toward the model antimicrobial flavonoid was explored at the solid-liquid interface by quartz crystal microbalance (QCM-D) experiments, which provided marked evidence for drug loading and release under pH control.
Collapse
Affiliation(s)
| | - Carmelo Sgarlata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
79
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|
80
|
Kruth S, Nett M. Aurachins, Bacterial Antibiotics Interfering with Electron Transport Processes. Antibiotics (Basel) 2023; 12:1067. [PMID: 37370386 DOI: 10.3390/antibiotics12061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Aurachins are farnesylated quinolone alkaloids of bacterial origin and excellent inhibitors of the respiratory chain in pro- and eukaryotes. Therefore, they have become important tool compounds for the investigation of electron transport processes and they also serve as lead structures for the development of antibacterial and antiprotozoal drugs. Especially aurachin D proved to be a valuable starting point for structure-activity relationship studies. Aurachin D is a selective inhibitor of the cytochrome bd oxidase, which has received increasing attention as a target for the treatment of infectious diseases caused by mycobacteria. Moreover, aurachin D possesses remarkable activities against Leishmania donovani, the causative agent of leishmaniasis. Aurachins are naturally produced by myxobacteria of the genus Stigmatella as well as by some Streptomyces and Rhodococcus strains. The recombinant production of these antibiotics turned out to be challenging due to their complex biosynthesis and their inherent toxicity. Recently, the biotechnological production of aurachin D was established in E. coli with a titer which is higher than previously reported from natural producer organisms.
Collapse
Affiliation(s)
- Sebastian Kruth
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Markus Nett
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
81
|
Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S. Role of bioactive magnetic nanoparticles in the prevention of wound pathogenic biofilm formation using smart nanocomposites. J Nanobiotechnology 2023; 21:161. [PMID: 37211593 DOI: 10.1186/s12951-023-01905-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Biofilm formation and its resistance to various antibiotics is a serious health problem in the treatment of wound infections. An ideal wound dressing should have characteristics such as protection of wound from microbial infection, suitable porosity (to absorb wound exudates), proper permeability (to maintain wound moisture), nontoxicity, and biocompatibility. Although silver nanoparticles (AgNPs) have been investigated as antimicrobial agents, their limitations in penetrating into the biofilm, affecting their efficiency, have consistently been an area for further research. RESULTS Consequently, in this study, the optimal amounts of natural and synthetic polymers combination, along with AgNPs, accompanied by iron oxide nanoparticles (IONPs), were utilized to fabricate a smart bionanocomposite that meets all the requirements of an ideal wound dressing. Superparamagnetic IONPs (with the average size of 11.8 nm) were synthesized through co-precipitation method using oleic acid to improve their stability. It was found that the addition of IONPs to bionanocomposites had a synergistic effect on their antibacterial and antibiofilm properties. Cytotoxicity assay results showed that nanoparticles does not considerably affect eukaryotic cells compared to prokaryotic cells. Based on the images obtained by confocal laser scanning microscopy (CLSM), significant AgNPs release was observed when an external magnetic field (EMF) was applied to the bionanocomposites loaded with IONPs, which increased the antibacterial activity and inhibited the formation of biofilm significantly. CONCLUSION These finding indicated that the nanocomposite recommended can have an efficient properties for the management of wounds through prevention and treatment of antibiotic-resistant biofilm.
Collapse
Affiliation(s)
- Naeimeh Eghbalifam
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
82
|
Razali RA, Vijakumaran U, Fauzi MB, Lokanathan Y. Maximizing Postoperative Recovery: The Role of Functional Biomaterials as Nasal Packs-A Comprehensive Systematic Review without Meta-Analysis (SWiM). Pharmaceutics 2023; 15:pharmaceutics15051534. [PMID: 37242776 DOI: 10.3390/pharmaceutics15051534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous biomaterials have been developed over the years to enhance the outcomes of endoscopic sinus surgery (ESS) for patients with chronic rhinosinusitis. These products are specifically designed to prevent postoperative bleeding, optimize wound healing, and reduce inflammation. However, there is no singular material on the market that can be deemed the optimal material for the nasal pack. We systematically reviewed the available evidence to assess the functional biomaterial efficacy after ESS in prospective studies. The search was performed using predetermined inclusion and exclusion criteria, and 31 articles were identified in PubMed, Scopus, and Web of Science. The Cochrane risk-of-bias tool for randomized trials (RoB 2) was used to assess each study's risk of bias. The studies were critically analyzed and categorized into types of biomaterial and functional properties, according to synthesis without meta-analysis (SWiM) guidelines. Despite the heterogeneity between studies, it was observed that chitosan, gelatin, hyaluronic acid, and starch-derived materials exhibit better endoscopic scores and significant potential for use in nasal packing. The published data support the idea that applying a nasal pack after ESS improves wound healing and patient-reported outcomes.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Razali
- Centre for Tissue Engineering & Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering & Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering & Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
83
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
84
|
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS OMEGA 2023; 8:13492-13508. [PMID: 37091369 PMCID: PMC10116640 DOI: 10.1021/acsomega.3c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The clinical applications of nanotechnology are emerging as widely popular, particularly as a potential treatment approach for infectious diseases. Diseases associated with multiple drug-resistant organisms (MDROs) are a global concern of morbidity and mortality. The prevalence of infections caused by antibiotic-resistant bacterial strains has increased the urgency associated with researching and developing novel bactericidal medicines or unorthodox methods capable of combating antimicrobial resistance. Nanomaterial-based treatments are promising for treating severe bacterial infections because they bypass antibiotic resistance mechanisms. Nanomaterial-based approaches, especially those that do not rely on small-molecule antimicrobials, display potential since they can bypass drug-resistant bacteria systems. Nanoparticles (NPs) are small enough to pass through the cell membranes of pathogenic bacteria and interfere with essential molecular pathways. They can also target biofilms and eliminate infections that have proven difficult to treat. In this review, we described the antibacterial mechanisms of NPs against bacteria and the parameters involved in targeting established antibiotic resistance and biofilms. Finally, yet importantly, we talked about NPs and the various ways they can be utilized, including as delivery methods, intrinsic antimicrobials, or a mixture.
Collapse
Affiliation(s)
- Arun Karnwal
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Road, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
85
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
86
|
Kumar L, Mohan L, Anand R, Bharadvaja N. Chlorella minutissima-assisted silver nanoparticles synthesis and evaluation of its antibacterial activity. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2023; 4:1-10. [PMID: 38625121 PMCID: PMC10072807 DOI: 10.1007/s43393-023-00173-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 10/07/2023]
Abstract
The conventional methods of nanoparticles synthesis led to the production of highly toxic by-products and the use of toxic chemicals that are highly expensive in nature. Thus, the recent past has witnessed a surge in green synthesis of nanoparticles as a sustainable alternative. The present study outlines the biogenic silver nanoparticles (Ag-NPs) synthesis from an aqueous extract of Chlorella minutissima. The effect of certain parameters such as the reaction mixture's pH and precursor metal solution to algal extract ratios were explored and optimized. The UV spectrophotometric analysis of Ag-NPs gave surface plasmon response maximally at 426 nm. The developed Ag-NPs were characterized using zeta potential, indicating their high stability (-21.2 mV) with a mean diameter of 73.13 nm. Results from field emission-scanning electron microscopy (FE-SEM) showed that the particles were spherical in shape. Ag-NPs synthesized using Chlorella minutissima extract could significantly inhibit the growth of both Gram-positive and Gram-negative bacterial species. The study highlights that using C. minutissima extract for Ag-NPs synthesis is a convenient and fast process for controlling the growth of Gram-positive as well as Gram-negative bacteria.
Collapse
Affiliation(s)
- Lakhan Kumar
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, India 110042, Delhi
| | - Lalit Mohan
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, India 110042, Delhi
| | - Raksha Anand
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, India 110042, Delhi
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, India 110042, Delhi
| |
Collapse
|
87
|
Han Z, Yuan M, Liu L, Zhang K, Zhao B, He B, Liang Y, Li F. pH-Responsive wound dressings: advances and prospects. NANOSCALE HORIZONS 2023; 8:422-440. [PMID: 36852666 DOI: 10.1039/d2nh00574c] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wound healing is a complex and dynamic process, in which the pH value plays an important role in reflecting the wound status. Wound dressings are materials that are able to accelerate the healing process. Among the multifunctional advanced wound dressings developed in recent years, pH-responsive wound dressings, especially hydrogels, show great potential owing to their unique properties of adjusting their functions according to the wound conditions, thereby allowing the wound to heal in a regulated manner. However, a comprehensive review of pH-responsive wound dressings is lacking. This review summarizes the design strategies and advanced functions of pH-responsive hydrogel wound dressings, including their excellent antibacterial properties and significant pro-healing abilities. Other advanced pH-responsive materials, such as nanofibers, composite films, nanoparticle clusters, and microneedles, are also classified and discussed. Next, the pH-monitoring functions of pH-responsive wound dressings and the related pH indicators are summarized in detail. Finally, the achievements, challenges, and future development trends of pH-responsive wound dressings are discussed.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Lubin Liu
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Kaiyue Zhang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266000, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
- School of Stomatology, Qingdao University, Qingdao 266000, China
| |
Collapse
|
88
|
Ryan A, Patel P, Ratrey P, O'Connor PM, O'Sullivan J, Ross RP, Hill C, Hudson SP. The development of a solid lipid nanoparticle (SLN)-based lacticin 3147 hydrogel for the treatment of wound infections. Drug Deliv Transl Res 2023:10.1007/s13346-023-01332-9. [PMID: 36964439 PMCID: PMC10382363 DOI: 10.1007/s13346-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
Chronic wounds affect millions of people globally. This number is set to rise with the increasing incidence of antimicrobial-resistant bacterial infections, such as methicillin-resistant Staphylococcus aureus (MRSA), which impair the healing of chronic wounds. Lacticin 3147 is a two-peptide chain bacteriocin produced by Lactococcus lactis that is active against S. aureus including MRSA strains. Previously, poor physicochemical properties of the peptides were overcome by the encapsulation of lacticin 3147 into solid lipid nanoparticles. Here, a lacticin 3147 solid lipid nanoparticle gel is proposed as a topical treatment for S. aureus and MRSA wound infections. Initially, lacticin 3147's antimicrobial activity against S. aureus was determined before encapsulation into solid lipid nanoparticles. An optimised gel formulation with the desired physicochemical properties for topical application was developed, and the lacticin-loaded solid lipid nanoparticles and free lacticin 3147 aqueous solution were incorporated into separate gels. The release of lacticin 3147 from both the solid lipid nanoparticle and free lacticin gels was measured where the solid lipid nanoparticle gel exhibited increased activity for a longer period (11 days) compared to the free lacticin gel (9 days). Both gels displayed potent activity ex vivo against S. aureus-infected pig skin with significant bacterial eradication (> 75%) after 1 h. Thus, a long-acting potent lacticin 3147 solid lipid nanoparticle gel with the required physicochemical properties for topical delivery of lacticin 3147 to the skin for the potential treatment of S. aureus-infected chronic wounds was developed.
Collapse
Affiliation(s)
- Aoibhín Ryan
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Pratikkumar Patel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Poonam Ratrey
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Julie O'Sullivan
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
- SSPC the SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick, Ireland.
| |
Collapse
|
89
|
Metryka O, Wasilkowski D, Adamczyk-Habrajska M, Mrozik A. Undesirable consequences of the metallic nanoparticles action on the properties and functioning of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis membranes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130728. [PMID: 36610340 DOI: 10.1016/j.jhazmat.2023.130728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Controversial and inconsistent findings on the toxicity of metallic nanoparticles (NPs) against many bacteria are common in recorded studies; therefore, further advanced experimental work is needed to elucidate the mechanisms underlying nanotoxicity. This study deciphered the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on membrane permeability, cytoplasmic leakage, ATP level, ATPase activity and fatty acid profiling of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis as model microorganisms. A multifaceted analysis of all collected results indicated the different influences of individual NPs on the measured parameters depending on their type and concentration. Predominantly, membrane permeability was correlated with increased cytoplasmic leakage, reduced total ATP levels and ATPase activity. The established fatty acid profiles were unique and concerned various changes in the percentages of hydroxyl, cyclopropane, branched and unsaturated fatty acids. Decisively, E. coli was more susceptible to changes in measured parameters than B. cereus and S. epidermidis. Also, it was established that ZnO-NPs and Cu-NPs had a major differentiating impact on studied parameters. Additionally, bacterial cell imaging using scanning electron microscopy elucidated different NPs distributions on the cell surface. The presented results are believed to provide novel, valuable and accumulated knowledge in the understanding of NPs action on bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, Katowice 40-032, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, Żytnia 12, Sosnowiec 41-200, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland.
| |
Collapse
|
90
|
Karpuz M, Temel A, Ozgenc E, Tekintas Y, Erel-Akbaba G, Senyigit Z, Atlihan-Gundogdu E. 99mTc-Labeled, Colistin Encapsulated, Theranostic Liposomes for Pseudomonas aeruginosa Infection. AAPS PharmSciTech 2023; 24:77. [PMID: 36899198 DOI: 10.1208/s12249-023-02533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Infectious diseases are still the major issue not only due to antibiotic resistance but also causing deaths if not diagnosed at early-stages. Different approaches including nanosized drug delivery systems and theranostics are researched to overcome antibiotic resistance, decrease the side effects of antibiotics, improve the treatment response, and early diagnose. Therefore, in the present study, nanosized, radiolabeled with 99mTc, colistin encapsulated, neutral and cationic liposome formulations were prepared as the theranostic agent for Pseudomonas aeruginosa infections. Liposomes exhibited appropriate physicochemical properties thanks to their nano-particle size (between 173 and 217 nm), neutral zeta potential value (about - 6.5 and 2.8 mV), as well as encapsulation efficiency of about 75%. All liposome formulations were radiolabeled with over 90% efficiency, and the concentration of stannous chloride was found as 1 mg.mL-1 to obtain maximum radiolabeling efficiency. In alamar blue analysis, neutral liposome formulations were found more biocompatible compared with the cationic formulations. Neutral colistin encapsulated liposomes were found to be more effective against P. aeruginosa strain according to their time-dependent antibacterial effect, in addition to their highest bacterial binding capacity. As conclusion, theranostic, nanosized, colistin encapsulated, neutral liposome formulations were found as promising agents for the imaging and treating of P. aeruginosa infections.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey.
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Yamac Tekintas
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Zeynep Senyigit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | |
Collapse
|
91
|
Almeida Furquim de Camargo B, Fonseca-Santos B, Gonçalves Carvalho S, Corrêa Carvalho G, Delello Di Filippo L, Sousa Araújo VH, Lobato Duarte J, Polli Silvestre AL, Bauab TM, Chorilli M. Functionalized lipid-based drug delivery nanosystems for the treatment of human infectious diseases. Crit Rev Microbiol 2023; 49:214-230. [PMID: 35634703 DOI: 10.1080/1040841x.2022.2047007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.
Collapse
Affiliation(s)
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, Campinas State University (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
92
|
Zhou Y, Lei H, Wang M, Shi Y, Wang Z. Potent intrinsic bactericidal activity of novel copper telluride nano-grape clusters with facile preparation. Biomater Sci 2023; 11:1828-1839. [PMID: 36655811 DOI: 10.1039/d2bm01617f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bactericidal nanomedicines often suffer from a complicated design and insufficient intrinsic inhibitory efficacy. Herein, novel anti-bacterial copper telluride (CuTe) nano-clusters are reported, featuring superior bactericidal efficiency, facile preparation, and unique mechanism. These nanoparticles, well dispersable in water, resembled grape clusters with rough surfaces. The CuTe nano-grape clusters exhibited ultra-high sterilization efficacy at ultra-low concentration, particularly for Gram-negative bacteria, and were more potent than conventional anti-microbial nanoparticles. Also, the grape clusters effectively inhibited the bacterial biofilm development. Further investigation revealed the synergized mechanisms of reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Interestingly, electron microscopy revealed that the grape clusters served as bacterial hunters by tightly adhering to bacterial surfaces. The bacteria subsequently suffered from the leakage of various intracellular components including nucleic acid, proteins, and potassium. Most encouragingly, CuTe drastically reduced bacterial number in a mouse model with lethal intraperitoneal infection and increased the mouse survival rate to 90%. This finding could inspire the development of highly potent bactericidal inorganic formulations with simplified structure, multiple antibacterial mechanisms, and promising application potential.
Collapse
Affiliation(s)
- Yanwen Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Haozhuo Lei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Meng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhaohui Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
93
|
Sumera NS, Iqbal SS, Khan ST, Rehman ZU. Fusarium oxysporum; its enhanced entomopathogenic activity with acidic silver nanoparticles against Rhipicephalus microplus ticks. BRAZ J BIOL 2023; 84:e266741. [PMID: 36820787 DOI: 10.1590/1519-6984.266741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/29/2022] [Indexed: 02/22/2023] Open
Abstract
Fusarium oxysporum is an entomopathogenic fungus, and it has anti-biological activity against arthropods. Ticks are blood sucking arthropods which are responsible for transmitting different diseases in humans and animals. The use of chemical insecticides against ticks is not eco-friendly option and results in the development of acaricide resistance. Previously, we had cultured a local isolate of Fusarium oxysporum from soil samples which were identified through microscopy and confirmed through molecular technique. In our previous experiments, we have prepared Silver nanoparticles (AgNP) at pH 7 and they had been characterized through X-Ray Diffraction (XRD), UV-visible and zeta-potential. In our current study, the AgNP were prepared at different pH conditions and characterized through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The protein molecules of F. oxysporum were charged with Ag ions. F. oxysporum NP were observed to enhance anti-biological activity by killing Rhipicephalus microplus and they caused 100% mortality at pH 4 and pH 5 in 24 h in anti-tick biological assay. Our study is the first report to do biological assay against Rhipicehalus ticks by using Fusarium AgNP at acidic pH. Biological control using entomopathogenic fungi can be the best alternative of the chemical method to control the tick population.
Collapse
Affiliation(s)
- N S Sumera
- Government College for Women, Department of Physics, Mustafabad, Lahore, Pakistan.,University of Lahore, Department of Physics, Lahore, Pakistan
| | - S S Iqbal
- University of Lahore, Department of Physics, Lahore, Pakistan.,Lahore Garrison University, Department of Physics, Lahore, Pakistan
| | - S T Khan
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| | - Z Ul Rehman
- University of Veterinary and Animal Sciences, Department of Parasitology, Lahore, Pakistan
| |
Collapse
|
94
|
Huang S, Song Y, Zhang JR, Chen X, Zhu JJ. Antibacterial Carbon Dots-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207385. [PMID: 36799145 DOI: 10.1002/smll.202207385] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emergence and global spread of bacterial resistance to conventionally used antibiotics have highlighted the urgent need for new antimicrobial agents that might replace antibiotics. Currently, nanomaterials hold considerable promise as antimicrobial agents in anti-inflammatory therapy. Due to their distinctive functional physicochemical characteristics and exceptional biocompatibility, carbon dots (CDs)-based composites have attracted a lot of attention in the context of these antimicrobial nanomaterials. Here, a thorough assessment of current developments in the field of antimicrobial CDs-based composites is provided, starting with a brief explanation of the general synthesis procedures, categorization, and physicochemical characteristics of CDs-based composites. The many processes driving the antibacterial action of these composites are then thoroughly described, including physical destruction, oxidative stress, and the incorporation of antimicrobial agents. Finally, the obstacles that CDs-based composites now suffer in combating infectious diseases are outlined and investigated, along with the potential applications of antimicrobial CDs-based composites.
Collapse
Affiliation(s)
- Shan Huang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yuexin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaojun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
95
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
96
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
97
|
Hetta HF, Ramadan YN, Al-Harbi AI, A. Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023; 11:biomedicines11020413. [PMID: 36830949 PMCID: PMC9953167 DOI: 10.3390/biomedicines11020413] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (H.F.H.); (M.G.D.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Esraa A. Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: (H.F.H.); (M.G.D.)
| |
Collapse
|
98
|
Crintea A, Carpa R, Mitre AO, Petho RI, Chelaru VF, Nădășan SM, Neamti L, Dutu AG. Nanotechnology Involved in Treating Urinary Tract Infections: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:555. [PMID: 36770516 PMCID: PMC9919202 DOI: 10.3390/nano13030555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Considered as the most frequent contaminations that do not require hospitalization, urinary tract infections (UTIs) are largely known to cause significant personal burdens on patients. Although UTIs overall are highly preventable health issues, the recourse to antibiotics as drug treatments for these infections is a worryingly spread approach that should be addressed and gradually overcome in a contemporary, modernized healthcare system. With a virtually alarming global rise of antibiotic resistance overall, nanotechnologies may prove to be the much-needed 'lifebuoy' that will eventually suppress this prejudicial phenomenon. This review aims to present the most promising, currently known nano-solutions, with glimpses on clinical and epidemiological aspects of the UTIs, prospective diagnostic instruments, and non-antibiotic treatments, all of these engulfed in a comprehensive overview.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Department of Pathophysiology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Robert Istvan Petho
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Vlad-Florin Chelaru
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Sebastian-Mihail Nădășan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Lidia Neamti
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
99
|
Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB, Gabr GA, Kianfar E. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. BRAZ J BIOL 2023; 84:e264946. [PMID: 36722677 DOI: 10.1590/1519-6984.264946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023] Open
Abstract
Infectious diseases are the leading cause of death worldwide. Thus, nanotechnology provides an excellent opportunity to treat drug-resistant microbial infections. Numerous antibiotics have been used to inhibit the growth and kill of microbes, but the development of resistance and the emergence of side effects have severely limited the use of these agents. Due to the development of the nanotechnology, nanoparticles are widely used as antimicrobials. Silver and chitosan nanoparticles have antifungal, antiviral and antibacterial properties, and many studies confirm the antifungal properties of silver nanoparticles. Nowadays, the use of nanoparticles in the diagnosis and treatment of infectious diseases has developed due to less side effects and also the help of these particles in effective drug delivery to the target tissue. Liposomes are also used as carriers of drug delivery, genes, and modeling of cell membranes in both animals and humans. The ability of these liposomes to encapsulate large amounts of drugs, minimize unwanted side effects, high effectiveness and low toxicity has attracted the interest of researchers. This review article examines recent efforts by researchers to identify and treat infectious diseases using antimicrobial nanoparticles and drug nano-carriers.
Collapse
Affiliation(s)
- G R L Al-Awsi
- Al-Mustaqbal University College, Department of Radiological Techniques, Hillah, Babylon, Iraq
| | - A A Alameri
- University of Babylon, College of Science, Department of Chemistry, Babylon, Babylon, Iraq
| | - A M B Al-Dhalimy
- Altoosi University College, Department of Nursing, Najaf, Iraq.,The Islamic University, Islamic University Centre for Scientific Research, Najaf, Iraq
| | - G A Gabr
- Prince Sattam Bin Abdulaziz University, College of Pharmacy, Department of Pharmacology and Toxicology, Al-Kharj, Al-Kharj, Saudi Arabia.,Agricultural Genetic Engineering Research Institute - AGERI, Agricultural Research Center, Giza, Egypt
| | - E Kianfar
- Islamic Azad University, Department of Chemistry, Sousangerd, Iran.,Istanbul Medeniyet University, Department of Mechanical Engineering, Istanbul, Turkey.,Islamic Azad University, Department of Chemical Engineering, Arak, Iran.,Islamic Azad University, Young Researchers and Elite Club, Gachsaran, Iran
| |
Collapse
|
100
|
van Gent ME, van Baaren T, Kłodzińska SN, Ali M, Dolezal N, van Doodewaerd BR, Bos E, de Waal AM, Koning RI, Drijfhout JW, Nielsen HM, Nibbering PH. Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections. Pharmaceutics 2023; 15:pharmaceutics15020429. [PMID: 36839751 PMCID: PMC9967827 DOI: 10.3390/pharmaceutics15020429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic wound infections colonized by bacteria are becoming more difficult to treat with current antibiotics due to the development of antimicrobial resistance (AMR) as well as biofilm and persister cell formation. Synthetic antibacterial and antibiofilm peptide (SAAP)-148 is an excellent alternative for treatment of such infections but suffers from limitations related to its cationic peptidic nature and thus instability and possible cytotoxicity, resulting in a narrow therapeutic window. Here, we evaluated SAAP-148 encapsulation in nanogels composed of octenyl succinic anhydride (OSA)-modified hyaluronic acid (HA) to circumvent these limitations. SAAP-148 was efficiently (>98%) encapsulated with high drug loading (23%), resulting in monodispersed anionic OSA-HA nanogels with sizes ranging 204-253 nm. Nanogel lyophilization in presence of polyvinyl alcohol maintained their sizes and morphology. SAAP-148 was sustainedly released from lyophilized nanogels (37-41% in 72 h) upon reconstitution. Lyophilized SAAP-148-loaded nanogels showed similar antimicrobial activity as SAAP-148 against planktonic and biofilm-residing AMR Staphylococcus aureus and Acinetobacter baumannii. Importantly, formulated SAAP-148 showed reduced cytotoxicity against human erythrocytes, primary human skin fibroblasts and human keratinocytes. Additionally, lyophilized SAAP-148-loaded nanogels eradicated AMR S. aureus and A. baumannii colonizing a 3D human epidermal model, without inducing any cytotoxicity in contrast to SAAP-148. These findings indicate that OSA-HA nanogels increase SAAP-148's therapeutic potential for treatment of skin wound infections.
Collapse
Affiliation(s)
- Miriam E. van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence:
| | - Tom van Baaren
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sylvia N. Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Muhanad Ali
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bjorn R. van Doodewaerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amy M. de Waal
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Roman I. Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|