51
|
Ravandi R, Zeinali Heris S, Hemmati S, Aghazadeh M, Davaran S, Abdyazdani N. Effects of chitosan and TiO 2 nanoparticles on the antibacterial property and ability to self-healing of cracks and retrieve mechanical characteristics of dental composites. Heliyon 2024; 10:e27734. [PMID: 38524556 PMCID: PMC10957383 DOI: 10.1016/j.heliyon.2024.e27734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
The aim of this study was to improve the self-healing properties of dental nanocomposite using nanoparticles of TiO2 and chitosan. We evaluated flexural and compressive strength, crack-healing, and self-healing lifespan after 3 months of water aging. The effect of the developed composite on cell viability and toxicity was assessed by an MTT assay on human alveolar basal epithelial cells (A549 cell line). The nanocomposite included 7.5 wt% polyurea-formaldehyde (PUF) and 0, 0.5, and 1 wt% n-TiO2 and chitosan. After the fracture, the samples were put in a mold for 1-90 days to enable healing. Then, the fracture toughness of the healed nanocomposites and the healing yield were measured. The flexural strength of the nanocomposite improved by adding 0.5 wt% n-TiO2, while the compressive strength increased after adding 0.5 wt% chitosan (p > 0.1). When these two materials were used simultaneously, the flexural strength was improved by around 2%; however, the compressive strength was unaffected. Compared to the other sample, the nanocomposite with 0.5 wt% n-TiO2 and chitosan had higher KIC-healing and self-healing efficiency. Self-healing efficacy had no significant effect of water aging over 90 days compared to one day (p > 0.1), demonstrating that the PUF nanocapsules were not damaged.
Collapse
Affiliation(s)
- Reza Ravandi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Saeed Zeinali Heris
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, 65811, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Centre and Department of Oral Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
52
|
Hassanin HA, Taha A, Ibrahim HIM, Ahmed EA, Mohamed H, Ahmed H. Cytotoxic activity of bimetallic Ag@Se green synthesized nanoparticles using Jerusalem Thorn ( Parkinsonia aculeata). Front Chem 2024; 12:1343506. [PMID: 38591059 PMCID: PMC11000268 DOI: 10.3389/fchem.2024.1343506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction: The process of green synthesis of metal nanoparticles is considered to be eco-friendly and cost-effective. Methods: In this study, bimetallic Ag@Se-P and Ag@Se-S nanoparticles were synthesized successfully using Parkinsonia aculeata aerial parts and seed extracts. The phytochemical contents in P. aculeata aerial parts and seed aqueous extract serve as reducing and stabilizing capping agents without the need for any chemical stabilization additive in the synthesis of bimetallic nanoparticles. Result and Discussion: The obtained results from UV-vis spectrophotometry, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR) confirmed the successful synthesis of bimetallic nanoparticles with cluster irregular spherical morphology, crystalline nature, and average particle sizes of 17.65 and 24.36 nm for Ag@Se-S and Ag@Se-P, respectively. The cytotoxicity assessment of greenly synthesized nanomaterials using seed and plant extracts showed cell inhibition >50 μg/mL. Ag@Se-S and Ag@Se-P seed and plant extracts significantly reduced LPS-induced inflammation, which was assessed by NO and cytokines IL-1β, IL-6, and TNF-α. The mRNA and protein expression levels of phosphoinositide 3 kinase (PI3K) and nuclear factor kappa B (NFkB) were significantly overexpressed in LPS-induced RAW 264.7 cell lines. Ag@Se-S and Ag@Se-P downregulated the expression of PI3K and NFkB in LPS-induced cell models.
Collapse
Affiliation(s)
- Hanaa A. Hassanin
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amel Taha
- Department of Chemistry, College of Science, King Faisal University, Hufof, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Hairul-Islam Mohamed Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Division of Microbiology and Immunology, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, India
| | - Emad A. Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Lab of Molecular Physiology, Department of Zoology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Hisham Mohamed
- Date Palm Research Center of Excellence, King Faisal University, Hufof, Saudi Arabia
- Agricultural Research Center, Ministry of Agricultural, Giza, Egypt
| | - Hoda Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
53
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
54
|
Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Synthesis of nanoparticles using Trichoderma Harzianum, characterization, antifungal activity and impact on Plant Growth promoting Bacteria. World J Microbiol Biotechnol 2024; 40:107. [PMID: 38396217 DOI: 10.1007/s11274-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Globally cultivated cereals are frequently threatened by various plant pathogenic agents such as Fusarium fungi. To combat these pathogens, researchers have made nanoparticles as potential agricultural pesticides. In this study, selenium and titanium dioxide NPs were synthesized using Trichoderma harzianum metabolites. Characterization of the NPs indicated varying size and shapes of both NPs and functional groups existence to constitute both NPs. The evaluation of antifungal activity of NPs against plant pathogenic fungi, Fusarium culmorum, indicated both NPs maximum antifungal activity at concentration of 100 mg/L. The impacts of nanoparticles on some beneficial plant growth promoting bacteria (PGPB) were evaluated and showed their inhibition effect on optical density of PGPB at a concentration of 100 mg/L but they did not have any impact on nitrogen fixation by bacteria. Existence of TiO2NPs reduced the intensity of color change to pink compared to the control indicating auxin production. Both NPs demonstrated different impact on phosphate solubilization index. This study suggests that the synthesized nanoparticles have the potential to serve as antifungal compounds at special concentration against plant diseases without significantly reducing the potential of PGPB at low concentrations.
Collapse
Affiliation(s)
- Marayam Kashisaz
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mohammadreza Eslahi
- Department of Plant Protection, Khuzestan Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
55
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
56
|
Bocca B, Battistini B. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. Nanotoxicology 2024; 18:1-35. [PMID: 38436298 DOI: 10.1080/17435390.2023.2301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
57
|
Rabiee N, Ahmadi S, Rahimizadeh K, Chen S, Veedu RN. Metallic nanostructure-based aptasensors for robust detection of proteins. NANOSCALE ADVANCES 2024; 6:747-776. [PMID: 38298588 PMCID: PMC10825927 DOI: 10.1039/d3na00765k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024]
Abstract
There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.
Collapse
Affiliation(s)
- Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| |
Collapse
|
58
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
59
|
Beaven E, Kumar R, An JM, Mendoza H, Sutradhar SC, Choi W, Narayan M, Lee YK, Nurunnabi M. Potentials of ionic liquids to overcome physical and biological barriers. Adv Drug Deliv Rev 2024; 204:115157. [PMID: 38104896 PMCID: PMC10787599 DOI: 10.1016/j.addr.2023.115157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Over the last decades, ionic liquids (IL) have shown great potential in non-invasive delivery starting from synthetic small molecules to biological large molecules. ILs are emerging as a particular class of drug delivery systems due to their unique physiochemical properties, simple surface modification, and functionalization. These features of IL help achieve specific design principles that are essential for a non-invasive drug delivery system. In this review, we have discussed IL and their applications in non-invasive drug delivery systems. We evaluated state-of-the-art development and advances of IL aiming to mitigate the biological and physical barriers to improve transdermal and oral delivery, summarized in this review. We also provided an overview of the various factors determining the systemic transportation of IL-based formulation. Additionally, we have emphasized how the ILs facilitate the transportation of therapeutic molecules by overcoming biological barriers.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannia Mendoza
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Republic of Korea
| | - Wonho Choi
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Republic of Korea
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Yong-Kyu Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemical and Biological Engineering, College of Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea; 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Republic of Korea.
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States; Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
60
|
Zaib S, Shah HS, Khan I, Jawad Z, Sarfraz M, Riaz H, Asjad HMM, Ishtiaq M, Ogaly HA, Othman G, Ahmed DAEM. Fabrication and evaluation of anticancer potential of diosgenin incorporated chitosan-silver nanoparticles; in vitro, in silico and in vivo studies. Int J Biol Macromol 2024; 254:127975. [PMID: 37944715 DOI: 10.1016/j.ijbiomac.2023.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 μg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | - Zobia Jawad
- Ladywillingdon Hospital, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Huma Riaz
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Hafiz Muhammad Mazhar Asjad
- Department of Pharmaceutical Sciences, Faculty of Biomedical Sciences and Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, KPK, Pakistan
| | - Memoona Ishtiaq
- Leads College of Pharmacy, Lahore LEADS University, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | | |
Collapse
|
61
|
Alattar AM, Al-Sharuee IF, Odah JF. Laser Fragmentation of Green Tea-synthesized Silver Nanoparticles and Their Blood Toxicity: Effect of Laser Wavelength on Particle Diameters. J Med Phys 2024; 49:95-102. [PMID: 38828065 PMCID: PMC11141748 DOI: 10.4103/jmp.jmp_153_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 06/05/2024] Open
Abstract
Background The efficacy of fractionation is significantly impacted by the colloidal particles' spontaneous absorption of laser beam radiation. The classification of silver nanoparticles during fragmentation processing is regulated through the collection of a combination of laser pulses with wavelengths of 1064 nm and 532 nm. Aims and Objectives This study presents an investigation of the efficacy of a plant extract in conjunction with the incorporation of supplementary silver nanoparticles, as well as the generation of smaller-sized silver nanoparticles using laser fragmentation.and then measure thier toxity on the blood. Results Ag nanoparticles were synthesized using pulsed laser fragmentation on green tea AgNPs. The synthesis process involved the utilization of a Q-switch Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy ranging from 200 to 1000 mJ. Initially, a silver nano colloid was synthesized through the process of fragmented of the Ag target using the second harmonic generation of 532 nm at various energy levels. The optimal energy within the selected wavelengths was determined in order to facilitate the ultimate comparison. Transmission electron microscopy (TEM) was used to determine surface morphology and average particle size, while a spectrophotometer was used to analyses UV light's spectrum characteristics. The measurements focused on the surface plasmon resonance (SPR) phenomenon. The absorption spectra of silver nanoparticles exhibit distinct and prominent peaks at wavelengths of 405 nm and 415 nm. The mean diameter of the silver nanoparticles was found to be 16 nm and 20 nm, corresponding to wavelengths of 1064 nm and 532 nm, respectively. Conclusion As a consequence, there is a decrease in the range of particle sizes and a decrease in the mean size to lower magnitudes, resulting in a very stable colloid. This particular methodology has demonstrated considerable efficacy in the production of colloidal suspensions with the intended particle dimensions. Moreover, by the analysis of nanoparticles in human blood, no discernible alterations in the blood constituents were seen, indicating their non-toxic nature.
Collapse
Affiliation(s)
- Ashraf M. Alattar
- Department of Medical Physics, College of Science, Al-Karkh University of Science, Baghdad, Iraq
| | - Israa F. Al-Sharuee
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Jafer Fahdel Odah
- Department of Medical Physics, College of Science, Al-Karkh University of Science, Baghdad, Iraq
| |
Collapse
|
62
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
63
|
Balu SK, Andra S, Jeevanandam J, Kulabhusan PK, Khamari A, Vedarathinam V, Hamimed S, Chan YS, Danquah MK. Exploring the potential of metal oxide nanoparticles as fungicides and plant nutrient boosters. CROP PROTECTION 2023; 174:106398. [DOI: 10.1016/j.cropro.2023.106398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
64
|
Joshi AA, Patil RH. Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. INFECTIOUS MEDICINE 2023; 2:294-307. [PMID: 38205183 PMCID: PMC10774769 DOI: 10.1016/j.imj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Staphylococcus aureus is an aerobic Gram-positive spherical bacterium known to cause a broad range of infections worldwide. It is a major cause of infective skin and soft infections and severe and life-threatening conditions, such as pneumonia, bloodstream infections, and endocarditis. The emergence of drug-resistant strains of S aureus, particularly methicillin-resistant S aureus (MRSA), has become a significant concern in the healthcare community. Antibiotic-resistant S aureus is commonly acquired in hospitals and long-term care facilities. It often affects patients with weakened immune systems, those undergoing invasive medical procedures, or those who have been hospitalized for extended periods. In the US, S aureus is known to cause potentially fatal illnesses, such as toxic shock syndrome (TSS) and acute-onset toxic shock syndrome (TSS), which are characterized by fever and hypotension. It develops resistance to antibiotics through several mechanisms, such as the production of enzymes that inactivate antibiotics, target site modification, efflux pumps, and plasmid-mediated resistance. Therefore, preventing the spread of drug-resistant S aureus is needed, and there is an urgent need to explore novel approaches in the development of anti-staphylococcal agents. This article reviews the principal infections caused by S aureus, major virulence factors, mechanisms of resistance development, and nanotechnology-based solutions for the control of drug-resistant S aureus.
Collapse
Affiliation(s)
- Amruta A. Joshi
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| | - Ravindra H. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| |
Collapse
|
65
|
Al-Majeed SHA, Al-Ali ZSA, Turki AA. Biomedical Assessment of Silver Nanoparticles Derived from L-Aspartic Acid Against Breast Cancer Cell Lines and Bacteria Strains. BIONANOSCIENCE 2023; 13:1833-1848. [DOI: 10.1007/s12668-023-01198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 01/06/2025]
|
66
|
Falsafi SR, Topuz F, Bajer D, Mohebi Z, Shafieiuon M, Heydari H, Rawal S, Sathiyaseelan A, Wang MH, Khursheed R, Enayati MH, Rostamabadi H. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes. Biomed Pharmacother 2023; 168:115695. [PMID: 37839113 DOI: 10.1016/j.biopha.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
The convergence of carbohydrate polymers and metal nanoparticles (MNPs) holds great promise for biomedical applications. Researchers aim to exploit the capability of carbohydrate matrices to modulate the physicochemical properties of MNPs, promote their therapeutic efficiency, improve targeted drug delivery, and enhance their biocompatibility. Therefore, understanding various attributes of both carbohydrates and MNPs is the key to harnessing them for biomedical applications. The many distinct types of carbohydrate-MNP systems confer unique capabilities for drug delivery, wound healing, tissue engineering, cancer treatment, and even food packaging. Here, we introduce distinct physicochemical/biological properties of carbohydrates and MNPs, and discuss their potentials and shortcomings (alone and in combination) for biomedical applications. We then offer an overview on carbohydrate-MNP systems and how they can be utilized to improve biomedical outcomes. Last but not least, future perspectives toward the application of such systems are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer 34469, Istanbul, Turkey
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Zahra Mohebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Shafieiuon
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Heydari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shruti Rawal
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Ahmedabad 382210, India; Department of Pharmaceutics, Institute of Pharmacy, Nirma University, S.G. Highway, Chharodi, Ahmedabad, Gujarat 382481, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - M H Enayati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
67
|
Erfan NA, Mahmoud MS, Kim HY, Barakat NAM. Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO 2 photocatalysis for effective water photo splitting reaction. Front Chem 2023; 11:1301172. [PMID: 38025057 PMCID: PMC10661415 DOI: 10.3389/fchem.2023.1301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
This manuscript is dedicated to a comprehensive exploration of the multifaceted challenge of fast electron-hole recombination in titanium dioxide photocatalysis, with a primary focus on its critical role in advancing the field of water photo splitting. To address this challenge, three prominent approaches-Schottky barriers, Z-scheme systems, and type II heterojunctions-were rigorously investigated for their potential to ameliorate TiO2's photocatalytic performance toward water photo splitting. Three distinct dopants-silver, cadmium oxide, and zinc oxide-were strategically employed. This research also delved into the dynamic interplay between these dopants, analyzing the synergetic effects that arise from binary and tertiary doping configurations. The results concluded that incorporation of Ag, CdO, and ZnO dopants effectively countered the fast electron-hole recombination problem in TiO2 NPs. Ag emerged as a critical contributor at higher temperatures, significantly enhancing photocatalytic performance. The photocatalytic system exhibited a departure from Arrhenius behavior, with an optimal temperature of 40°C. Binary doping systems, particularly those combining CdO and ZnO, demonstrated exceptional photocatalytic activity at lower temperatures. However, the ternary doping configuration involving Ag, CdO, and ZnO proved to be the most promising, surpassing many functional materials. In sum, this study offers valuable insights into how Schottky barriers, Z-scheme systems, and type II heterojunctions, in conjunction with specific dopants, can overcome the electron-hole recombination challenge in TiO2-based photocatalysis. The results underscore the potential of the proposed ternary doping system to revolutionize photocatalytic water splitting for efficient green hydrogen production, significantly advancing the field's understanding and potential for sustainable energy applications.
Collapse
Affiliation(s)
- Nehal A. Erfan
- Chemical Engineering Department, Minia University, El-Minia, Egypt
| | - Mohamed S. Mahmoud
- Chemical Engineering Department, Minia University, El-Minia, Egypt
- Department of Engineering, University of Technology and Applied Sciences, Suhar, Oman
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | | |
Collapse
|
68
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
69
|
Fluksman A, Lafuente A, Braunstein R, Steinberg E, Friedman N, Yekhin Z, Roca AG, Nogues J, Hazan R, Sepulveda B, Benny O. Modular Drug-Loaded Nanocapsules with Metal Dome Layers as a Platform for Obtaining Synergistic Therapeutic Biological Activities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50330-50343. [PMID: 37861446 PMCID: PMC10623511 DOI: 10.1021/acsami.3c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 μm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.
Collapse
Affiliation(s)
- Arnon Fluksman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Aritz Lafuente
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Universitat
Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ron Braunstein
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Eliana Steinberg
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Nethanel Friedman
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Zhanna Yekhin
- Department
of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah
Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Alejandro G. Roca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Josep Nogues
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ronen Hazan
- Institute
of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Borja Sepulveda
- Instituto
de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ofra Benny
- Institute
for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
70
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|
71
|
Chavda VP, Balar PC, Nalla LV, Bezbaruah R, Gogoi NR, Gajula SNR, Peng B, Meena AS, Conde J, Prasad R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS OMEGA 2023; 8:37654-37684. [PMID: 37867666 PMCID: PMC10586263 DOI: 10.1021/acsomega.3c05069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Pankti C. Balar
- Pharmacy
Section, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Lakshmi Vineela Nalla
- Department
of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Rajashri Bezbaruah
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Niva Rani Gogoi
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Siva Nageswara Rao Gajula
- Department
of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Berney Peng
- Department
of Pathology and Laboratory Medicine, University
of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Avtar S. Meena
- Department
of Biotechnology, All India Institute of
Medical Sciences (AIIMS), Ansari
Nagar, New Delhi 110029, India
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
72
|
Han HS, Jung JS, Jeong YI, Choi KC. Biological Synthesis of Copper Nanoparticles Using Edible Plant Allium monanthum: Characterization of Antibacterial, Antioxidant, and Anti-Inflammatory Properties Using In Silico Molecular Docking Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6669. [PMID: 37895651 PMCID: PMC10608194 DOI: 10.3390/ma16206669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
This study prepared copper nanoparticles using an edible leaf extract from A. monanthum (AM-CuNPs) via eco-friendly green synthesis techniques. The size, shape, crystalline nature and functional groups of the synthesized AM-CuNP particles were analyzed by a UV-VIS spectrophotometer and SEM, EDX, TEM, XRD and FT-IR instrumentation. The synthesized AM-CuNPs had spherical shapes with sizes in the range of 30-80 nm and were crystalline in nature. In addition, the AM-CuNPs were synthesized using various bioactive sources, including flavonoids, phenolic acids, alkaloids and sugars that were present in an aqueous broth of A. monanthum. Furthermore, the AM-CuNPs possessed good antibacterial properties against selected major disease-causing pathogenic bacteria, such as E. coli, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus. The antioxidant activity of AM-CuNPs exhibited potent free radical scavenging activities in DPPH, ABTS and H2O2 radical assays. In addition, in silico analysis of the AM-CuNPs was performed, including ADME prediction, and molecular simulation docking on the secondary metabolites identified in the edible plant extract was used to evaluate their anti-inflammatory applications. In particular, the molecular docking scores showed that alliin, apigenin, isorhamnetin, luteolin and myricetin have sufficient binding energy and top values as inhibitors of the protein target involved in the inflammation signaling cascade.
Collapse
Affiliation(s)
- Hyo Shim Han
- Institute of General Education, Sunchon University, Suncheon 57922, Republic of Korea;
| | - Jeong Sung Jung
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Young-Il Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| |
Collapse
|
73
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
74
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
75
|
Azad A, Zafar H, Raza F, Sulaiman M. Factors Influencing the Green Synthesis of Metallic Nanoparticles Using Plant Extracts: A Comprehensive Review. PHARMACEUTICAL FRONTS 2023; 05:e117-e131. [DOI: 10.1055/s-0043-1774289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
AbstractMethods for nanoparticle (NP) synthesis of the past were costly, generating toxic compounds, which necessitates a reduction in toxic contamination associated with chemical and physical syntheses. Green nano synthesis using plant extracts has emerged as a sustainable alternative in nanotechnology with applications in various fields. Factors such as pH, extract and salt concentrations, temperature, solvent, biomolecules in plants, and reaction time significantly influence the quality and quantity of metallic NPs synthesized via green nanotechnology. This review highlights crucial factors affecting the size and shape of metallic NPs as the overall properties of the NPs are size- and shape-dependent. Current and future research in green nano synthesis holds promise for expanding our understanding of the parameters that control the synthesis, size, and shape of NPs. Further investigation is necessary to comprehend the impact of these parameters on the synthesis of metallic NPs using plant extracts, which is considered the most sustainable approach for large-scale production.
Collapse
Affiliation(s)
- Aisha Azad
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Muhammad Sulaiman
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
76
|
Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, Hasan M, Yadav KK, Khorami M, Farajnezhad M, Nouri J. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. CHEMOSPHERE 2023; 335:139103. [PMID: 37271472 DOI: 10.1016/j.chemosphere.2023.139103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Metallic nanoparticles (NPs) are of particular interest as antimicrobial agents in water and wastewater treatment due to their broad suppressive range against bacteria, viruses, and fungi commonly found in these environments. This review explores the potential of different types of metallic NPs, including zinc oxide, gold, copper oxide, and titanium oxide, for use as effective antimicrobial agents in water and wastewater treatment. This is due to the fact that metallic NPs possess a broad suppressive range against bacteria, viruses, as well as fungus. In addition to that, NPs are becoming an increasingly popular alternative to antibiotics for treating bacterial infections. Despite the fact that most research has been focused on silver NPs because of the antibacterial qualities that are known to be associated with them, curiosity about other metallic NPs as potential antimicrobial agents has been growing. Zinc oxide, gold, copper oxide, and titanium oxide NPs are included in this category since it has been demonstrated that these elements have antibacterial properties. Inducing oxidative stress, damage to the cellular membranes, and breakdowns throughout the protein and DNA chains are some of the ways that metallic NPs can have an influence on microbial cells. The purpose of this review was to engage in an in-depth conversation about the current state of the art regarding the utilization of the most important categories of metallic NPs that are used as antimicrobial agents. Several approaches for the synthesis of metal-based NPs were reviewed, including physical and chemical methods as well as "green synthesis" approaches, which are synthesis procedures that do not involve the employment of any chemical agents. Moreover, additional pharmacokinetics, physicochemical properties, and the toxicological hazard associated with the application of silver NPs as antimicrobial agents were discussed.
Collapse
Affiliation(s)
- Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Gasim Hayder
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mudassir Hasan
- Department of Chemical Engineering King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Majid Khorami
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuado
| | - Mohammad Farajnezhad
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
| | - J Nouri
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Zafar H, Javed R, Zia M. Nanotoxicity assessment in plants: an updated overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93323-93344. [PMID: 37544947 DOI: 10.1007/s11356-023-29150-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Nanotechnology is rapidly emerging and innovative interdisciplinary field of science. The application of nanomaterials in agricultural biotechnology has been exponentially increased over the years that could be attributed to their uniqueness, versatility, and flexibility. The overuse of nanomaterials makes it crucial to determine their fate and distribution in the in vitro (in cell and tissue cultures) and in vivo (in living species) biological environments by investigating the nano-biointerface. The literature states that the beneficial effects of nanoparticles come along with their adverse effects, subsequently leading to an array of short-term and long-term toxicities. It has been evident that the interplay of nanoparticles with abiotic and biotic communities produces several eco-toxicological effects, and the physiology and biochemistry of crops are greatly influenced by the metabolic alterations taking place at cellular, sub-cellular, and molecular levels. Numerous risk factors affect nanoparticle's accumulation, translocation, and associated cytogenotoxicity. This review article summarizes the contributing factors, possible mechanisms, and risk assessment of hazardous effects of various types of nanoparticles to plant health. The methods for evaluating the plant nanotoxicity parameters have been elaborated. Conclusively, few recommendations are put forward for designing safer, high-quality nanomaterials to protect and maintain environmental safety for smarter agriculture demanded by researchers and industrialists.
Collapse
Affiliation(s)
- Hira Zafar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, Newfoundland, A2H 5G4, Canada.
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
78
|
Madkhali OA. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharm J 2023; 31:101733. [PMID: 37649674 PMCID: PMC10463261 DOI: 10.1016/j.jsps.2023.101733] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
Human pathogenic fungi are responsible for causing a range of infection types including mucosal, skin, and invasive infections. Life-threatening and invasive fungal infections (FIs) are responsible for mortality and morbidity, especially for individuals with compromised immune function. The number of currently available therapeutic agents against invasive FIs is limited compared to that against bacterial infections. In addition, the increased mortality and morbidity caused by FIs are linked to the limited number of available antifungal agents, antifungal resistance, and the increased toxicity of these agents. Currently available antifungal agents have several drawbacks in efficiency, efficacy, toxicity, activity spectrum, and selectivity. It has already been demonstrated with numerous metallic nanoparticles (MNPs) that these nanoparticles can serve as an effective and alternative solution as fungicidal agents. MNPs have great potential owing to their intrinsic antifungal properties and potential to deliver antifungal drugs. For instance, gold nanoparticles (AuNPs) have the capacity to disturb mitochondrial calcium homeostasis induced AuNP-mediated cell death in Candida albicans. In addition, both copper nanoparticles and copper oxide nanoparticles exerted significant suppressive properties against pathogenic fungi. Silver nanoparticles showed strong antifungal properties against numerous pathogenic fungi, such as Stachybotrys chartarum, Mortierella alpina, Chaetomium globosum, A. fumigatus, Cladosporium cladosporioides, Penicillium brevicompactum, Trichophyton rubrum, C. tropicalis, and C. albicans. Iron oxide nanoparticles showed potent antifungal activities against A. niger and P. chrysogenum. It has also been reported that zinc oxide nanoparticles can significantly inhibit fungal growth. These NPs have already exerted potent antifungal properties against a number of pathogenic fungal species including Candida, Aspergillus, Fusarium, and many others. Several strategies are currently used for the research and development of antifungal NPs including chemical modification of NPs and combination with the available drugs. This review has comprehensively presented the current and innovative antifungal approach using MNPs. Moreover, different types of MNPs, their physicochemical characteristics, and production techniques have been summarized in this review.
Collapse
Affiliation(s)
- Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
79
|
Aleid GM, Alshammari AS, Alomari AD, Ahmad A, Alaysuy O, Ibrahim MNM. Biomass and domestic waste: a potential resource combination for bioenergy generation and water treatment via benthic microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29430-8. [PMID: 37632620 DOI: 10.1007/s11356-023-29430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
The benthic microbial fuel cell (BMFC) is one of the most efficient types of bioelectrochemical fuel cell systems. Modern bioelectrochemical fuel cells have several drawbacks, including an unstable organic substrate and a microorganism-unfriendly atmosphere. The recent literature to encounter such issues is one of the emerging talks. Researchers are focusing on the utilization of biomass and waste to encounter such challenges and make the technique more feasible at the pilot scale. This study investigated the combination of local bakery waste as an organic substrate with lignocellulosic biomass material. The whole experiment was conducted for 45 days. At an external resistance of 1000 ῼ and an internal resistance of 677 ῼ, the power density was found to be 3.51 mW/m2. Similarly, for Pb2+, Cd2+, Cr3+, Ni2+, and Co2+, the degradation efficiency was 84.40%, 81.21%, 80%, 89.50%, and 86.0%, respectively. The bacterial identification results showed that Liquorilactobacillus nagelii, Proteus mirabilis, Pectobacterium punjabense, and Xenorhabdus thuongxuanensis are the most prominent species found on anode biofilm. The method of electron generation in this study, which includes the degradation of metal ions, is also well described. Lastly, optimising the parameters showed that pH 7 provides a feasible environment for operation. A few future suggestions for practical steps are enclosed for the research community.
Collapse
Affiliation(s)
- Ghada Mohamed Aleid
- Department, Preparatory Year College, University of Ha'il, Hail, Saudi Arabia
| | - Anoud Saud Alshammari
- Department of Physics and Chemistry, Northern Border University, Rafha, Saudi Arabia
| | - Asma D Alomari
- Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, 1109, Al-7 Qunfudah, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
80
|
Nikolova S, Milusheva M, Gledacheva V, Feizi-Dehnayebi M, Kaynarova L, Georgieva D, Delchev V, Stefanova I, Tumbarski Y, Mihaylova R, Cherneva E, Stoencheva S, Todorova M. Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 2023; 11:2201. [PMID: 37626698 PMCID: PMC10452578 DOI: 10.3390/biomedicines11082201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Anticoagulants prevent the blood from developing the coagulation process, which is the primary cause of death in thromboembolic illnesses. Phenindione (PID) is a well-known anticoagulant that is rarely employed because it totally prevents coagulation, which can be a life-threatening complication. The goal of the current study is to synthesize drug-loaded Ag NPs to slow down the coagulation process. Methods: A rapid synthesis and stabilization of silver nanoparticles as drug-delivery systems for phenindione (PID) were applied for the first time. Results: Several methods are used to determine the size of the resulting Ag NPs. Additionally, the drug-release capabilities of Ag NPs were established. Density functional theory (DFT) calculations were performed for the first time to indicate the nature of the interaction between PID and nanostructures. DFT findings supported that galactose-loaded nanostructure could be a proper delivery system for phenindione. The drug-loaded Ag NPs were characterized in vitro for their antimicrobial, cytotoxic, and anticoagulant activities, and ex vivo for spasmolytic activity. The obtained data confirmed the drug-release experiments. Drug-loaded Ag NPs showed that prothrombin time (PT, sec) and activated partial thromboplastin time (APTT, sec) are approximately 1.5 times longer than the normal values, while PID itself stopped coagulation at all. This can make the PID-loaded Ag NPs better therapeutic anticoagulants. PID was compared to PID-loaded Ag NPs in antimicrobial, spasmolytic activity, and cytotoxicity. All the experiments confirmed the drug-release results.
Collapse
Affiliation(s)
- Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory of Experimental Chemotherapy, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
- Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., BI 9, 1113 Sofia, Bulgaria
| | - Snezhana Stoencheva
- University Hospital “Sveti Georgi” EAD, 4002 Plovdiv, Bulgaria
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
81
|
Fan G, Xiao Q, Li Q, Xia Y, Feng H, Ma X, Cai L, Sun X. Antimicrobial mechanisms of ZnO nanoparticles to phytopathogen Pseudomonas syringae: Damage of cell envelope, suppression of metabolism, biofilm and motility, and stimulation of stomatal immunity on host plant. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105455. [PMID: 37532364 DOI: 10.1016/j.pestbp.2023.105455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 08/04/2023]
Abstract
Nanoparticles have recently been employed as a new strategy to act as bactericides in agricultural applications. However, the effects and mechanisms of foliar deposition of nanoparticles on bacterial pathogens, plant physiology and particularly plant immunity have not been sufficiently understood. Here, we investigated the effects and mechanisms of ZnO NPs in controlling of tobacco wildfire caused by Pseudomonas syringae pv. tabaci, through the comprehensive analysis of biological changes of both bacteria and plants. The global gene expression changes of Pseudomonas syringae pv. tabaci supported that the functions of "protein secretion", "membrane part", "signal transducer activity", "locomotion", "chemotaxis" and "taxis" in bacteria, as well as the metabolic pathways of "bacterial chemotaxis", "two-component system", "biofilm formation", "ABC transporters" and "valine, leucine and isoleucine degradation" were significantly down-regulated by ZnO NPs. Correspondingly, we reconfirmed that the cell envelope structure, biofilm and motility of Pseudomonas syringae pv. tabaci were directly disrupted or suppressed by ZnO NPs. Different from completely killing Pseudomonas syringae pv. tabaci, ZnO NPs (0.5 mg/mL) potentially improved plant growth and immunity through enzymatic activity and global molecular response analysis. Furthermore, the changes of gene expression in ABA signaling pathway, ABA concentration and stomatal aperture all supported that ZnO NPs can specifically stimulate stomatal immunity, which is important to defend bacterial infection. Taken together, we proposed that both the inhibition or damage of motility, biofilm, metabolisms, virulence and cell envelope on P. syringae pv. tabaci, and the activation of the stomatal immunity formed two-layered antibacterial mechanisms of ZnO NPs on phytopathogenic bacteria.
Collapse
Affiliation(s)
- Guangjin Fan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qingli Xiao
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060, China
| | - Qian Li
- Henan Tobacco Company Nanyang City Co., Ltd, Nanyang 473000, China
| | - Yinling Xia
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hui Feng
- College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lin Cai
- College of Tobacco Science, Guizhou University, Guiyang 550025, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
82
|
Pham VHT, Kim J, Chang S, Shim J, Chung W, Bang D. Rice Husk-Cellulose-Based Agricultural Waste Enhances the Degradation of Synthetic Dyes Using Multiple Enzyme-Producing Extremophiles. Microorganisms 2023; 11:1974. [PMID: 37630534 PMCID: PMC10458849 DOI: 10.3390/microorganisms11081974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The brightly colored synthetic dyes used in the textile industry are discharged at high concentrations-for example, various azo dyes including Methylene Blue (MB) and Methyl Orange (MO)-which is a matter of global concern, as such dyes are harmful to humans and the environment. Microbial degradation is considered an efficient alternative for overcoming the disadvantages of conventional physical and chemical dye removal methods. In this study, we investigated the potential of multiple types of the enzyme-producing extremophilic bacteria Bacillus FW2, isolated from food waste leachate, for the decolorization and bioremediation of artificial synthetic dyes. The screening of enzyme production and assaying of bacterial strain enzymes are essential for enhancing the breakdown of azo bonds in textile azo dyes. The degradation efficiencies of the water-soluble dyes MB and MO were determined at different concentrations using rice husk, which is an efficient substrate. Using the rice husks, the MO was removed completely within 20 h, and an estimated 99.8% of MB was degraded after 24 h by employing shaking at 120 rpm at 40 °C-whereas a removal efficiency of 98.9% was achieved for the combination of MB + MO. These results indicate the possibility of applying an extremophilic bacterial strain, Bacillus sp., for large-scale dye degradation in the future.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jeahong Shim
- Soil and Fertilizer Management Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-Gun 55365, Republic of Korea;
| | - Woojin Chung
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Donggyu Bang
- Department of Environmental Energy Engineering, Graduate School, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
83
|
Adeyemi JO, Fawole OA. Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review. Biomolecules 2023; 13:1092. [PMID: 37509128 PMCID: PMC10377377 DOI: 10.3390/biom13071092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Food security has continued to be a topic of interest in our world due to the increasing demand for food. Many technologies have been adopted to enhance food supply and narrow the demand gap. Thus, the attempt to use nanotechnology to improve food security and increase supply has emerged due to the severe shortcomings of conventional technologies, which have made them insufficient to cater to the continuous demand for food products. Hence, nanoparticles have been identified to play a major role in areas involving food production, protection, and shelf-life extensions. Specifically, metal-based nanoparticles have been singled out to play an important role in manufacturing materials with outstanding properties, which can help increase the shelf-life of different food materials. The physicochemical and biological properties of metal-based nanoparticles, such as the large surface area and antimicrobial properties, have made them suitable and adequately useful, not just as a regular packaging material but as a functional material upon incorporation into biopolymer matrices. These, amongst many other reasons, have led to their wide synthesis and applications, even though their methods of preparation and risk evaluation remain a topic of concern. This review, therefore, briefly explores the available synthetic methods, physicochemical properties, roles, and biological properties of metal-based nanoparticles for food packaging. Furthermore, the associated limitations, alongside quality and safety considerations, of these materials were summarily explored. Although this area of research continues to garner attention, this review showed that metal-based nanoparticles possess great potential to be a leading material for food packaging if the problem of migration and toxicity can be effectively modulated.
Collapse
Affiliation(s)
- Jerry O Adeyemi
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
84
|
Costas A, Preda N, Zgura I, Kuncser A, Apostol N, Curutiu C, Enculescu I. Silver nanoparticles decorated ZnO-CuO core-shell nanowire arrays with low water adhesion and high antibacterial activity. Sci Rep 2023; 13:10698. [PMID: 37400545 PMCID: PMC10318101 DOI: 10.1038/s41598-023-37953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
Nanostructured surfaces based on silver nanoparticles decorated ZnO-CuO core-shell nanowire arrays, which can assure protection against various environmental factors such as water and bacteria were developed by combining dry preparation techniques namely thermal oxidation in air, radio frequency (RF) magnetron sputtering and thermal vacuum evaporation. Thus, high-aspect-ratio ZnO nanowire arrays were grown directly on zinc foils by thermal oxidation in air. Further ZnO nanowires were coated with a CuO layer by RF magnetron sputtering, the obtained ZnO-CuO core-shell nanowires being decorated with Ag nanoparticles by thermal vacuum evaporation. The prepared samples were comprehensively assessed from morphological, compositional, structural, optical, surface chemistry, wetting and antibacterial activity point of view. The wettability studies show that native Zn foil and ZnO nanowire arrays grown on it are featured by a high water droplet adhesion while ZnO-CuO core-shell nanowire arrays (before and after decoration with Ag nanoparticles) reveal a low water droplet adhesion. The antibacterial tests carried on Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) emphasize that the nanostructured surfaces based on nanowire arrays present excellent antibacterial activity against both type of bacteria. This study proves that functional surfaces obtained by relatively simple and highly reproducible preparation techniques that can be easily scaled to large area are very attractive in the field of water repellent coatings with enhanced antibacterial function.
Collapse
Affiliation(s)
- Andreea Costas
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania.
| | - Irina Zgura
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Nicoleta Apostol
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| | - Carmen Curutiu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101, Bucharest, Romania
| | - Ionut Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Romania
| |
Collapse
|
85
|
Srivastava A, Mishra G, Singh KR, Singh J, Pandey R, Pandey MD. Synthesis, characterization, and electrocatalytic behaviour of hydrothermally grown nanostructured La 2 O 3 and La 2 O 3 /K-complex. LUMINESCENCE 2023; 38:1347-1357. [PMID: 36584881 DOI: 10.1002/bio.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium-potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study. Therefore, in this work, previously synthesized potassium (K) complexes formed by the reflux of 4-N,N-dimethylaminobenzoic acid (DBA) and potassium hydroxide in methanol, and named [(μ2-4-N,N-dimethylaminobenzoate-κO)(μ2-4-N,N-dimethylaminobenzoic acid-κO)(4-N,N-dimethylaminobenzoic acid-κO) potassium(I) coordination polymer)] were treated hydrothermally with La2 O3 nanomaterials to obtain a nanohybrid La2 O3 /K-complex. After that, the K-complex was analyzed using single-crystal X-ray diffraction and 1 H and 13 C NMR spectroscopy. In addition, the structural and morphological properties of the as-prepared nanostructured La2 O3 /K-complex were also characterized, which involved an investigation using X-ray diffraction (XRD)spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force spectroscopy (AFM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. After this, the electrochemical redox behaviour of the synthesized nanohybrid material was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Therefore, the results from these studies revealed that the as-prepared material was a La2 O3 /K-complex that has a promising future role in sensing various analytes, as it showed effective electrocatalytic behaviour.
Collapse
Affiliation(s)
- Ankur Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gargi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
86
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
87
|
Junejo B, Solangi QA, Thani ASB, Palabiyik IM, Ghumro T, Bano N, Solangi AR, Taqvi SIH. Physical properties and pharmacological applications of Co 3O 4, CuO, NiO and ZnO nanoparticles. World J Microbiol Biotechnol 2023; 39:220. [PMID: 37269437 DOI: 10.1007/s11274-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Nano materials have found developing interest in biogenic approaches in the present times. In this study, metal oxide nanoparticles (NPs) such as cobalt oxide (Co3O4), copper oxide (CuO), nickel oxide (NiO) and zinc oxide (ZnO), were synthesized using a convenient and rapid method. The structural features of synthesized metal oxide NPs were studied using various microscopic and spectroscopic techniques like SEM, TEM, XRD, FTIR and EDX. The characterization results confirmed that the prepared NPs possess highly pure, unique and crystalline geometry with size ranging between 10 and 20 nm. The synthesized nanoparticles were successfully employed for pharmacological applications. Enzyme inhibition potential of NPs was evaluated against the urease and tyrosinase enzymes. The percent inhibition for the urease enzyme was observed as 80 to 90% by using Co3O4, CuO, NiO and ZnO NPs while ZnO NPs were found to have best anti-urease and anti-tyrosinase activities. Moreover, effective inhibition was observed in the case of ZnO NPs at IC50 values of 0.0833 and 0.1732 for urease and tyrosinase enzymes which were comparable to reference drugs thiourea and kojic acid. The lower the IC50 value, higher the free radical scavenging power. Antioxidant activity by DPPH free radical scavenging method was found moderately high for the synthesized metal oxide NPs while best results were obtained for Co3O4 and ZnO NPs as compared to the standard ascorbic acid. Antimicrobial potential was also evaluated via the disc diffusion and well diffusion methods. CuO NPs show a better zone of inhibition at 20 and 27 mm by using both methods. This study proves that the novel metal oxide NPs can compete with the standard materials used in the pharmacological studies nowadays.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Qamar A Solangi
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ali Salman B Thani
- Department of Biology, College of Science, University of Bahrain, 32038, Zallaq, Bahrain
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Nadia Bano
- Institute of Microbiology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University Hyderabad, Hyderabad, Sindh, Pakistan
| |
Collapse
|
88
|
Todorova M, Milusheva M, Kaynarova L, Georgieva D, Delchev V, Simeonova S, Pilicheva B, Nikolova S. Drug-Loaded Silver Nanoparticles-A Tool for Delivery of a Mebeverine Precursor in Inflammatory Bowel Diseases Treatment. Biomedicines 2023; 11:1593. [PMID: 37371688 DOI: 10.3390/biomedicines11061593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic, multifactorial illnesses of the gastrointestinal tract include inflammatory bowel diseases. One of the greatest methods for regulated medicine administration in a particular region of inflammation is the nanoparticle system. Silver nanoparticles (Ag NPs) have been utilized as drug delivery systems in the pharmaceutical industry. The goal of the current study is to synthesize drug-loaded Ag NPs using a previously described 3-methyl-1-phenylbutan-2-amine, as a mebeverine precursor (MP). Methods: A green, galactose-assisted method for the rapid synthesis and stabilization of Ag NPs as a drug-delivery system is presented. Galactose was used as a reducing and capping agent forming a thin layer encasing the nanoparticles. Results: The structure, size distribution, zeta potential, surface charge, and the role of the capping agent of drug-loaded Ag NPs were discussed. The drug release of the MP-loaded Ag NPs was also investigated. The Ag NPs indicated a very good drug release between 80 and 85%. Based on the preliminary results, Ag NPs might be a promising medication delivery system for MP and a useful treatment option for inflammatory bowel disease. Therefore, future research into the potential medical applications of the produced Ag NPs is necessary.
Collapse
Affiliation(s)
- Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
89
|
Helmy EAM, San PP, Zhang YZ, Adarkwah C, Tuda M. Entomotoxic efficacy of fungus-synthesized nanoparticles against immature stages of stored bean pests. Sci Rep 2023; 13:8508. [PMID: 37231118 DOI: 10.1038/s41598-023-35697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Nanopesticides, particularly biosynthesized ones using organic reductants, hold great promise as a cost-effective and eco-friendly alternative to chemical pesticides. However, their efficacy on stored product pests, which can cause damage to dried grains, has not been extensively tested, especially on immature stages. Here, we biosynthesized six types of nanoparticles (NPs) using extracts from the fungus Fusarium solani: silver (AgNPs), selenium (SeNPs), silicon dioxide (SiO2NPs), copper oxide (CuONPs), titanium dioxide (TiO2NPs) and zinc oxide (ZnONPs) ranging in size from 8 to 33 nm. To test their efficacy on stored bean pests, they were applied to the eggs and larvae of pest beetles Callosobruchus chinensis and Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae), which burrow into seeds as larvae. Susceptibility to the NPs was species-dependent and differed between developmental stages; eggs were more susceptible than larvae inhabiting in seeds. SeNPs and TiO2NPs reduced the hatchability of C. chinensis eggs by 23% and 18% compared to the control, respectively, leading to an 18% reduction in egg-to-adult survival by SeNPs. In C. maculatus, TiO2NPs applied to eggs reduced larva-to-adult survivorship by 11%, resulting in a 15% reduction in egg-to-adult survival. The egg mass of C. chinensis was 23% smaller than that of C. maculatus: the higher surface-area-to-volume ratio of the C. chinensis eggs could explain their higher acute mortality caused by the NPs compared to C. maculatus eggs. The biosynthesized SeNPs and TiO2NPs have potential for controlling major stored bean pests when applied to their eggs. This is the first to show the efficacy of biosynthesized SeNPs and TiO2NPs on stored product pests and the efficacy of Fusarium-synthesized NPs on insects.
Collapse
Affiliation(s)
- Eman Ahmed Mohamed Helmy
- The Regional Centre for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt.
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Phyu Phyu San
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Department of Entomology and Zoology, Yezin Agricultural University, Naypyitaw, Myanmar
| | - Yao Zhuo Zhang
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Charles Adarkwah
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
- Department of Horticulture and Crop Production, School of Agriculture and Technology, Dormaa-Ahenkro Campus, University of Energy and Natural Resources, PO Box 214, Sunyani, Ghana.
- Division Urban Plant Ecophysiology, Faculty Life Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195, Berlin, Germany.
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
90
|
Emam MH, Elezaby RS, Swidan SA, Loutfy SA, Hathout RM. Cerium Oxide Nanoparticles/Polyacrylonitrile Nanofibers as Impervious Barrier against Viral Infections. Pharmaceutics 2023; 15:1494. [PMID: 37242737 PMCID: PMC10224416 DOI: 10.3390/pharmaceutics15051494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Using face masks is one of the protective measures to reduce the transmission rate of coronavirus. Its massive spread necessitates developing safe and effective antiviral masks (filters) applying nanotechnology. METHODS Novel electrospun composites were fabricated by incorporating cerium oxide nanoparticles (CeO2 NPs) into polyacrylonitrile (PAN) electrospun nanofibers that can be used in the future in face masks. The effects of the polymer concentration, applied voltage, and feeding rate during the electrospinning were studied. The electrospun nanofibers were characterized using SEM, XRD, FTIR, and tensile strength testing. The cytotoxic effect of the nanofibers was evaluated in the Vero cell line using the MTT colorimetric assay, and the antiviral activity of the proposed nanofibers was evaluated against the human adenovirus type 5 (ADV-5) respiratory virus. RESULTS The optimum formulation was fabricated with a PAN concentration of 8%, w/v loaded with 0.25%, w/v CeO2 NPs with a feeding rate of 26 KV and an applied voltage of 0.5 mL/h. They showed a particle size of 15.8 ± 1.91 nm and a zeta potential of -14 ± 0.141 mV. SEM imaging demonstrated the nanoscale features of the nanofibers even after incorporating CeO2 NPs. The cellular viability study showed the safety of the PAN nanofibers. Incorporating CeO2 NPs into these fibers further increased their cellular viability. Moreover, the assembled filter could prevent viral entry into the host cells as well as prevent their replication inside the cells via adsorption and virucidal antiviral mechanisms. CONCLUSIONS The developed cerium oxide nanoparticles/polyacrylonitrile nanofibers can be considered a promising antiviral filter that can be used to halt virus spread.
Collapse
Affiliation(s)
- Merna H. Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo 11837, Egypt
| | - Reham S. Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, P.O. Box 43, Cairo 11837, Egypt
| | - Samah A. Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo 11837, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
91
|
Rahman MM, Ahmed L, Anika F, Riya AA, Kali SK, Rauf A, Sharma R. Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorg Chem Appl 2023; 2023:2409642. [PMID: 37077203 PMCID: PMC10110382 DOI: 10.1155/2023/2409642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Nowadays, environmental pollution has become a critical issue for both developed and developing countries. Because of excessive industrialization, burning of fossil fuels, mining and exploration, extensive agricultural activities, and plastics, the environment is being contaminated rapidly through soil, air, and water. There are a variety of approaches for treating environmental toxins, but each has its own set of restrictions. As a result, various therapies are accessible, and approaches that are effective, long-lasting, less harmful, and have a superior outcome are extensively demanded. Modern research advances focus more on polymer-based nanoparticles, which are frequently used in drug design, drug delivery systems, environmental remediation, power storage, transformations, and other fields. Bioinorganic nanomaterials could be a better candidate to control contaminants in the environment. In this article, we focused on their synthesis, characterization, photocatalytic process, and contributions to environmental remediation against numerous ecological hazards. In this review article, we also tried to explore their recent advancements and futuristic contributions to control and prevent various pollutants in the environment.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Anha Akter Riya
- Department of Pharmacy, East-West University, Aftabnagar, Dhaka 1212, Bangladesh
| | - Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
92
|
Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
93
|
Aleid GM, Alshammari AS, Alomari AD, A. Almukhlifi H, Ahmad A, Yaqoob AA. Dual Role of Sugarcane Waste in Benthic Microbial Fuel to Produce Energy with Degradation of Metals and Chemical Oxygen Demand. Processes (Basel) 2023. [DOI: 10.3390/pr11041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
One of the most advanced systems of microbial fuel cells is the benthic microbial fuel cell (BMFC). Despite several developments, this strategy still has a number of significant flaws, such as instable organic substrate. Waste material (sugarcane) is used as a substrate in this work to address the organic substrate instability. The process was operated continuously for 70 days. A level of 300 mV was achieved after 33 days of operation, while the degradation efficiencies of Pb (II), Cd (II), and Cr (III) were more than 90%. More than 90% of the removed chemical oxygen demand (COD) was also recorded. The measured power density was 3.571 mW/m2 at 1000 external resistance with 458 internal resistance. This demonstrates that electrons are effectively transported throughout the operation. The Bacillus strains are the most dominant bacterial community on the surface of the anode. This research’s mechanism, which involves metal ion degradation, is also explained. Finally, parameter optimization indicated that pH 7 works efficiently. In addition to that, there are some future perspectives and concluding remarks enclosed.
Collapse
Affiliation(s)
- Ghada Mohamed Aleid
- B.Sc. Department, Preparatory Year College, University of Ha’il, Hail 55475, Saudi Arabia
| | - Anoud Saud Alshammari
- Department of Physics and Chemistry, Northern Border University, Rafha 76313, Saudi Arabia
| | - Asma D. Alomari
- Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 28821, Saudi Arabia
| | - Hanadi A. Almukhlifi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
94
|
Adel AM, Al-Shemy MT, Diab MA, El-Sakhawy M, Toro RG, Cerri L, Caschera D. Immobilization of TiO 2NP@ oxidized cellulose nanocrystals for paper-based active packaging materials. Int J Biol Macromol 2023; 231:123270. [PMID: 36657542 DOI: 10.1016/j.ijbiomac.2023.123270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In the current work, we present a renewable alternative coating formulation made of durable titania nanoparticles and oxidized nanocellulose (TiO2NPs@OCNs) nanocomposites and sodium alginate (SA), to create an environmentally friendly and secure food packaging paper. OCNs sugarcane fibers are firstly hydrolyzed using ammonium persulphate (APS). Then, TiO2NPs@OCNs nanocomposites are made in situ with OCNs using a green water-based sol-gel synthesis. Gram (+) microorganisms as well as Gram (-) bacteria are used to test the antibacterial properties of the TiO2NPs@OCN dispersions. The results show that the TiO2NP@OCNs significantly decreases the growth for all bacterial species. The TiO2NP@OCNs nanocomposites are mixed with SA, and the resulting formulations are used to coat paper sheets. The corresponding physicochemical properties are evaluated using FTIR, TGA, AFM, SEM, and EDX. Furthermore, the mechanical strength, air permeability, and water vapor characteristics of the paper sheets treated with SA/TiO2NPs@OCN are carried out, resulting in a great improvement of these properties. Finally, the SA/TiO2NPs@OCNs coated papers have been used as packaging for strawberries. The findings demonstrate that coated papers could preserve strawberry quality better than unpacked fruit and extend strawberry shelf life from 6 to 18 days.
Collapse
Affiliation(s)
- Abeer M Adel
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt
| | - Mona T Al-Shemy
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt
| | - Mohamed A Diab
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt
| | - Mohamed El-Sakhawy
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt.
| | - Roberta G Toro
- National Council of Research, Institute for the Study of Nanostructured Materials, Via Salaria Km 29.300, 00015 Monterotondo, Rome, Italy
| | - Luciana Cerri
- National Council of Research, Institute for the Study of Nanostructured Materials, Via Salaria Km 29.300, 00015 Monterotondo, Rome, Italy
| | - Daniela Caschera
- National Council of Research, Institute for the Study of Nanostructured Materials, Via Salaria Km 29.300, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
95
|
Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review. Polymers (Basel) 2023; 15:polym15061392. [PMID: 36987172 PMCID: PMC10058650 DOI: 10.3390/polym15061392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Antibiotic-resistant bacteria (ARB) is a growing global health threat, leading to the search for alternative strategies to combat bacterial infections. Phytochemicals, which are naturally occurring compounds found in plants, have shown potential as antimicrobial agents; however, therapy with these agents has certain limitations. The use of nanotechnology combined with antibacterial phytochemicals could help achieve greater antibacterial capacity against ARB by providing improved mechanical, physicochemical, biopharmaceutical, bioavailability, morphological or release properties. This review aims to provide an updated overview of the current state of research on the use of phytochemical-based nanomaterials for the treatment against ARB, with a special focus on polymeric nanofibers and nanoparticles. The review discusses the various types of phytochemicals that have been incorporated into different nanomaterials, the methods used to synthesize these materials, and the results of studies evaluating their antimicrobial activity. The challenges and limitations of using phytochemical-based nanomaterials, as well as future directions for research in this field, are also considered here. Overall, this review highlights the potential of phytochemical-based nanomaterials as a promising strategy for the treatment against ARB, but also stresses the need for further studies to fully understand their mechanisms of action and optimize their use in clinical settings.
Collapse
|
96
|
Singh P, Ali SW, Kale RD. Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment. ACS OMEGA 2023; 8:8159-8171. [PMID: 36910928 PMCID: PMC9996805 DOI: 10.1021/acsomega.2c06343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Controlling bioaerosols has become increasingly critical in affecting human health. Natural product treatment in the nano form is a potential method since it has lower toxicity than inorganic nanomaterials like silver nanoparticles. This research is important for the creation of a bioaerosol control system that is effective. Nanoparticles (NPs) are gradually being employed to use bacteria as a nonantibiotic substitute for treating bacterial infections. The present study looks at nanoparticles' antimicrobial properties, their method of action, their impact on drug-opposing bacteria, and the hazards connected with their operation as antimicrobial agents. The aspects that influence nanoparticle conduct in clinical settings, as well as their distinctive features and mode of action as antibacterial assistants, are thoroughly examined. Nanoparticles' action on bacterial cells is presently accepted by way of the introduction of oxidative stress induction, metal-ion release, and nonoxidative methods. Because many concurrent mechanisms of action against germs would necessitate multiple simultaneous gene modifications in the same bacterial cell for antibacterial protection to evolve, bacterial cells developing resistance to NPs is difficult. This review discusses the antimicrobial function of NPs against microbes and presents a comprehensive discussion of the bioaerosols: their origin, hazards, and their prevention. This state of the art method is dependent upon the use of personal protective gear against these bioaerosols. The benefit of the utmost significant categories of metal nanoparticles as antibacterial agents is given important consideration. The novelty of this review depends upon the antimicrobial properties of (a) silver (Ag), (b) zinc oxide (ZnO), and (c) copper oxide (CuO) nanoparticles. The value-added features of these nanoparticles are discussed, as well as their physicochemical characterization and pharmacokinetics, including the toxicological danger they pose to people. Lastly, the effective role of nanomaterials and their future in human wellness is discussed.
Collapse
Affiliation(s)
- Preeti Singh
- Fibers
& Textile Processing Technology, Institute
of Chemical Technology, Mumbai, India
- Department
of Textile and Fibre Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S. Wazed Ali
- Department
of Textile and Fibre Engineering, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravindra D. Kale
- Fibers
& Textile Processing Technology, Institute
of Chemical Technology, Mumbai, India
| |
Collapse
|
97
|
Das BK, Ghosh S, Gomes A, De UC. Synthesis of silver nanoparticles using aqueous leaf extract of Premna esculenta and in vivo evaluation of its hepatoprotective activity in Swiss albino male mice. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2181821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Bijoy Krishna Das
- Department of Chemistry, Tripura University, Suryamaninagar, India
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Antony Gomes
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, India
| |
Collapse
|
98
|
Xu M, Zhang Q, Lin X, Shang Y, Cui X, Guo L, Huang Y, Wu M, Song K. Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:778. [PMID: 36840126 PMCID: PMC9966375 DOI: 10.3390/plants12040778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The extensive usage of metal oxide nanoparticles has aided in the spread and accumulation of these nanoparticles in the environment, potentially endangering both human health and the agroecological system. This research describes in detail the hazardous and advantageous impacts of common metal oxide nanomaterials, such as iron oxide, copper oxide, and zinc oxide, on the life cycle of rice. In-depth analyses are conducted on the transport patterns of nanoparticles in rice, the plant's reaction to stress, the reduction of heavy metal stress, and the improvement of rice quality by metal oxide nanoparticles, all of which are of significant interest in this subject. It is emphasized that from the perspective of advancing the field of nanoagriculture, the next stage of research should focus more on the molecular mechanisms of the effects of metal oxide nanoparticles on rice and the effects of combined use with other biological media. The limitations of the lack of existing studies on the effects of metal oxide nanomaterials on the entire life cycle of rice have been clearly pointed out.
Collapse
Affiliation(s)
- Miao Xu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Qi Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiuyun Lin
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Yuqing Shang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiyan Cui
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Liquan Guo
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yuanrui Huang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ming Wu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
99
|
Degradation of Metal Ions with Electricity Generation by Using Fruit Waste as an Organic Substrate in the Microbial Fuel Cell. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1155/2023/1334279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A potential and developing green technology for producing renewable energy and treating wastewater is the microbial fuel cell (MFC). Despite several advancements, there are still several serious problems with this approach. In the present work, we addressed the problem of the organic substrate in MFC, which is necessary for the degradation of metal ions in conjunction with the production of energy. The utilization of fruit waste as a carbon source was strongly suggested in earlier research. Hence, the mango peel was used as a substrate in the current study. Within 25 days of operation, a 102-mV voltage was achieved in 13 days, while the degradation efficiency of Cr3+ was 69.21%, Co2+ was 72%, and Ni2+ was 70.11%. The procedure is carried out in the batch mode, and there is no continuous feeding of the organic substrate. In addition, a detailed explanation of the hypothesized mechanism for this investigation is provided, which focuses on the process of metal ion degradation. Lastly, future and concluding remarks are also enclosed.
Collapse
|
100
|
Oves M, Rauf MA, Qari HA. Therapeutic Applications of Biogenic Silver Nanomaterial Synthesized from the Paper Flower of Bougainvillea glabra (Miami, Pink). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030615. [PMID: 36770576 PMCID: PMC9920917 DOI: 10.3390/nano13030615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/29/2023]
Abstract
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 ions. Data patterns obtained from physical techniques for characterizing BAgNPs, employing UV-visible, scattering electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), suggested that the nanoparticles have a spherical to oval form with size ranging from 10 to 50 nm. Spectroscopy and microscopic analysis were used to learn more about the antibacterial properties of the biologically produced BAgNPs from Bougainvillea glabra. Further, the potential mechanism of action of nanoparticles was investigated by studying their interactions in vitro with several bacterial strains and mammalian cancer cell systems. Finally, we can conclude that BAgNPs can be functionalized to dramatically inhibit bacterial growth and the growth of cancer cells in culture conditions, suggesting that biologically produced nanomaterials will provide new opportunities for a wide range of biomedical applications in the near future.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohd Ahmar Rauf
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Huda A. Qari
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|