51
|
Martins PR, de Campos Soares ÂMV, da Silva Pinto Domeneghini AV, Golim MA, Kaneno R. Agaricus brasiliensis polysaccharides stimulate human monocytes to capture Candida albicans, express toll-like receptors 2 and 4, and produce pro-inflammatory cytokines. J Venom Anim Toxins Incl Trop Dis 2017; 23:17. [PMID: 28344593 PMCID: PMC5364684 DOI: 10.1186/s40409-017-0102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/21/2017] [Indexed: 01/16/2023] Open
Abstract
Background Agaricus brasiliensis is a medicinal mushroom with immunomodulatory and antitumor activities attributed to the β-glucans presented in the polysaccharide fraction of its fruiting body. Since β-glucans enhance cellular immunoresponsiveness, in this study we aimed to evaluate the effect of an acid-treated polysaccharide-rich fraction (ATF) of A. brasiliensis on the ability of human monocytes to adhere/phagocyte C. albicans yeast cells, their expression of pattern recognition receptors and their ability to produce cytokines. Methods Adhesion/phagocytosis of FITC-labeled C. albicans was evaluated by flow cytometry. Cells were incubated with specific fluorochrome-labeled antibodies for TLR2 and 4, βGR and MR and also evaluated by flow cytometry. Monocytes were cultured with ATF, and culture supernatants were collected for analysis of in vitro cytokine production by ELISA (TNF-α, IL-1β, IL-12 and IL-10). Results ATF significantly increased the adherence/phagocytosis of C. albicans by monocytes and this was associated with enhanced expression of TLR2 and TLR4, while no effect was observed on βGR or MR. Moreover, expression of TLR4 and TLR2 was associated with higher levels of in vitro production of TNF-α and IL-1, respectively. Production of IL-10 was also increased by ATF treatment, but we found no association between its production and the expression of Toll-like receptors. Conclusion Our results provided us with evidence that A. brasiliensis polysaccharides affect human monocytes probably through the modulation of Toll-like receptors.
Collapse
Affiliation(s)
- Priscila Raquel Martins
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | | | | | - Márjorie Assis Golim
- Blood Bank Division, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| |
Collapse
|
52
|
Michalski C, Kan B, Lavoie PM. Antifungal Immunological Defenses in Newborns. Front Immunol 2017; 8:281. [PMID: 28360910 PMCID: PMC5350100 DOI: 10.3389/fimmu.2017.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Newborns are prone to fungal infections, largely due to Candida species. The immunological basis for this vulnerability is not yet fully understood. However, useful insights can be gained from the knowledge of the maturation of immune pathways during ontogeny, particularly when placed in context with how rare genetic mutations in humans predispose to fungal diseases. In this article, we review these most current data on immune functions in human newborns, highlighting pathways most relevant to the response to Candida. While discussing these data, we propose a framework of why deficiencies in these pathways make newborns particularly vulnerable to this opportunistic pathogen.
Collapse
Affiliation(s)
- Christina Michalski
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Kan
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
53
|
Yoshikawa FSY, De Almeida SR. The Role of Phagocytes and NETs in Dermatophytosis. Mycopathologia 2017; 182:263-272. [PMID: 27659806 DOI: 10.1007/s11046-016-0069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023]
Abstract
Innate immunity is the host first line of defense against pathogens. However, only in recent years, we are beginning to better understand the ways it operates. A key player is this branch of the immune response that are the phagocytes, as macrophages, dendritic cells and neutrophils. These cells act as sentinels, employing specialized receptors in the sensing of invaders and host injury, and readily responding to them by production of inflammatory mediators. They afford protection not only by ingesting and destroying pathogens, but also by providing a suitable biochemical environment that shapes the adaptive response. In this review, we aim to present a broad perspective about the role of phagocytes in dermatophytosis, focusing on the mechanisms possibly involved in protective and non-protective responses. A full understanding of how phagocytes fit in the pathogenesis of these infections may open the venue for the development of new and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Fábio Seiti Yamada Yoshikawa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Prof. Lineu Prestes, 580, São Paulo, 05508-000, Brazil
| | - Sandro Rogério De Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Prof. Lineu Prestes, 580, São Paulo, 05508-000, Brazil.
| |
Collapse
|
54
|
Heinen MP, Cambier L, Fievez L, Mignon B. Are Th17 Cells Playing a Role in Immunity to Dermatophytosis? Mycopathologia 2016; 182:251-261. [PMID: 27878642 DOI: 10.1007/s11046-016-0093-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022]
Abstract
Despite their superficial localization in the skin, pathogenic dermatophytes can induce a complex but still misunderstood immune response in their hosts. The cell-mediated immunity (CMI) is correlated with both clinical recovery and protection against reinfection, and CD4+ T lymphocytes have been recognized as a crucial component of the immune defense against dermatophytes. Before the discovery of the Th17 pathway, CMI was considered to be only dependent of Th1 cells, and thus most studies on the immunology of dermatophytosis have focused on the Th1 pathway. Nevertheless, the fine comparative analysis of available scientific data on immunology of dermatophytosis in one hand and on the Th17 pathway mechanisms involved in opportunistic mucosal fungal infections in the other hand reveals that some key elements of the Th17 pathway can be activated by dermatophytes. Stimulation of the Th17 pathway could occur through the activation of some C-type lectin-like receptors and inflammasome in antigen-presenting cells. The Th17 cells could go back to the affected skin and by the production of signature cytokines could induce the effector mechanisms like the recruitment of polymorphonuclear neutrophils and the synthesis of antimicrobial peptides. In conclusion, besides the Th1 pathway, which is important to the immune response against dermatophytes, there are also growing evidences for the involvement of the Th17 pathway.
Collapse
Affiliation(s)
- Marie-Pierre Heinen
- Veterinary Mycology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B-43a, 4000, Liège, Belgium
| | - Ludivine Cambier
- Veterinary Mycology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B-43a, 4000, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, GIGA Research, Quartier Hôpital, University of Liège, Avenue de l'Hôpital 11, B-34, 4000, Liège, Belgium
| | - Bernard Mignon
- Veterinary Mycology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B-43a, 4000, Liège, Belgium.
| |
Collapse
|
55
|
Abstract
Fungal diseases are major causes of morbidity and mortality among the immunocompromised, including HIV-infected individuals and patients with cancer. Individuals without a weakened immune system can also suffer from these infections. Not surprisingly, fungi are a major target for the immune system, rendered visible to it by expression of pathogen-associated molecular patterns/signatures. We now appreciate the roles of both innate and adaptive immunity in eliminating fungal infections, and how a disproportionate or inadequate immune response can diminish the host's capacity to eliminate fungi. This review focuses on our current understanding of the roles of innate and adaptive immunity in clearing common and emergent fungal pathogens. A clearer understanding of how the host's immune response tackles fungal infection may provide useful clues as to how we might develop new agents to treat those diseases in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
56
|
Falsetta ML, Foster DC, Bonham AD, Phipps RP. A review of the available clinical therapies for vulvodynia management and new data implicating proinflammatory mediators in pain elicitation. BJOG 2016; 124:210-218. [PMID: 27312009 DOI: 10.1111/1471-0528.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2016] [Indexed: 12/19/2022]
Abstract
Localised provoked vulvodynia (LPV) is a common, chronic, and disabling condition: patients experience profound pain and a diminished quality of life. The aetiologic origins of vulvodynia are poorly understood, yet recent evidence suggests a link to site-specific inflammatory responses. Fibroblasts isolated from the vestibule of LPV patients are sensitive to proinflammatory stimuli and copiously produce pain-associated proinflammatory mediators (IL-6 and PGE2 ). Although LPV is a multifactorial disorder, understanding vulvar inflammation and targeting the inflammatory response should lead to treatment advances, especially for patients exhibiting signs of inflammation. NFκB (already targeted clinically) or other inflammatory components may be suitable therapeutic targets. TWEETABLE ABSTRACT Vulvodynia is a poorly understood, prevalent, and serious women's health issue requiring better understanding to improve therapy.
Collapse
Affiliation(s)
- M L Falsetta
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - D C Foster
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - A D Bonham
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - R P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.,Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
57
|
Agustinho DP, de Oliveira MA, Tavares AH, Derengowski L, Stolz V, Guilhelmelli F, Mortari MR, Kuchler K, Silva-Pereira I. Dectin-1 is required for miR155 upregulation in murine macrophages in response to Candida albicans. Virulence 2016; 8:41-52. [PMID: 27294852 DOI: 10.1080/21505594.2016.1200215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Marco Antônio de Oliveira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Aldo Henrique Tavares
- b Departamento de Biologia Celular , Laboratório de Imunologia Aplicada, Instituto de Biologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Lorena Derengowski
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Valentina Stolz
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Fernanda Guilhelmelli
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Márcia Renata Mortari
- d Departamento de Ciências Fisiológicas , Laboratório de Neurofarmacologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Karl Kuchler
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Ildinete Silva-Pereira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| |
Collapse
|
58
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
59
|
Patin EC, Jones AV, Thompson A, Clement M, Liao CT, Griffiths JS, Wallace LE, Bryant CE, Lang R, Rosenstiel P, Humphreys IR, Taylor PR, Jones GW, Orr SJ. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. THE JOURNAL OF IMMUNOLOGY 2016; 197:208-21. [PMID: 27259855 PMCID: PMC4911616 DOI: 10.4049/jimmunol.1501204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Adam V Jones
- University Dental Hospital, Cardiff and Vale University Health Board, Cardiff CF14 4XY, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chia-Te Liao
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - James S Griffiths
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Leah E Wallace
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; and
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Gareth W Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| |
Collapse
|
60
|
ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2183026. [PMID: 27127546 PMCID: PMC4835650 DOI: 10.1155/2016/2183026] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 12/27/2022]
Abstract
Ischemia and reperfusion (I/R) causes a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to the ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, and inflammatory responses to cell death. In normal conditions, ROS mediate important beneficial responses. When their production is prolonged or elevated, harmful events are observed with peculiar cellular changes. In particular, during I/R, ROS stimulate tissue inflammation and induce NLRP3 inflammasome activation. The mechanisms underlying the activation of NLRP3 are several and not completely elucidated. It was recently shown that NLRP3 might sense directly the presence of ROS produced by normal or malfunctioning mitochondria or indirectly by other activators of NLRP3. Aim of the present review is to describe the current knowledge on the role of NLRP3 in some organs (brain, heart, kidney, and testis) after I/R injury, with particular regard to the role played by ROS in its activation. Furthermore, as no specific therapy for the prevention or treatment of the high mortality and morbidity associated with I/R is available, the state of the art of the development of novel therapeutic approaches is illustrated.
Collapse
|
61
|
Pinke KH, Lima HGD, Cunha FQ, Lara VS. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology 2016; 221:220-7. [DOI: 10.1016/j.imbio.2015.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
62
|
Azevedo MDCS, Rosa PS, Soares CT, Fachin LRV, Baptista IMFD, Woods WJ, Garlet GP, Trombone APF, Belone ADFF. Analysis of Immune Response Markers in Jorge Lobo's Disease Lesions Suggests the Occurrence of Mixed T Helper Responses with the Dominance of Regulatory T Cell Activity. PLoS One 2015; 10:e0145814. [PMID: 26700881 PMCID: PMC4689386 DOI: 10.1371/journal.pone.0145814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023] Open
Abstract
Jorge Lobo's disease (JLD) is a chronic infection that affects the skin and subcutaneous tissues. Its etiologic agent is the fungus Lacazia loboi. Lesions are classified as localized, multifocal, or disseminated, depending on their location. Early diagnosis and the surgical removal of lesions are the best therapeutic options currently available for JLD. The few studies that evaluate the immunological response of JLD patients show a predominance of Th2 response, as well as a high frequency of TGF-β and IL-10 positive cells in the lesions; however, the overall immunological status of the lesions in terms of their T cell phenotype has yet to be determined. Therefore, the objective of this study was to evaluate the pattern of Th1, Th2, Th17 and regulatory T cell (Treg) markers mRNA in JLD patients by means of real-time PCR. Biopsies of JLD lesions (N = 102) were classified according to their clinical and histopathological features and then analyzed using real-time PCR in order to determine the expression levels of TGF-β1, FoxP3, CTLA4, IKZF2, IL-10, T-bet, IFN-γ, GATA3, IL-4, IL-5, IL-13, IL-33, RORC, IL-17A, IL-17F, and IL-22 and to compare these levels to those of healthy control skin (N = 12). The results showed an increased expression of FoxP3, CTLA4, TGF-β1, IL-10, T-bet, IL-17F, and IL-17A in lesions, while GATA3 and IL-4 levels were found to be lower in diseased skin than in the control group. When the clinical forms were compared, TGF-β1 was found to be highly expressed in patients with a single localized lesion while IL-5 and IL-17A levels were higher in patients with multiple/disseminated lesions. These results demonstrate the occurrence of mixed T helper responses and suggest the dominance of regulatory T cell activity, which could inhibit Th-dependent protective responses to intracellular fungi such as L. loboi. Therefore, Tregs may play a key role in JLD pathogenesis.
Collapse
Affiliation(s)
- Michelle de C. S. Azevedo
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Patricia S. Rosa
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Cleverson T. Soares
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Luciana R. V. Fachin
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | | | - William J. Woods
- Serviço Especializado em Dermatologia, Hospital das Clínicas do Acre, Rio Branco, São Paulo, Brazil
| | - Gustavo P. Garlet
- Departamento de Ciências Biológicas, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Ana Paula F. Trombone
- Departamento de Ciências da Saúde, Universidade do Sagrado Coração, Bauru, São Paulo, Brazil
| | | |
Collapse
|
63
|
Ravikumar S, Win MS, Chai LYA. Optimizing Outcomes in Immunocompromised Hosts: Understanding the Role of Immunotherapy in Invasive Fungal Diseases. Front Microbiol 2015; 6:1322. [PMID: 26635780 PMCID: PMC4660869 DOI: 10.3389/fmicb.2015.01322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
A major global concern is the emergence and spread of systemic life-threatening fungal infections in critically ill patients. The increase in invasive fungal infections, caused most commonly by Candida and Aspergillus species, occurs in patients with impaired defenses due to a number of reasons such as underlying disease, the use of chemotherapeutic and immunosuppressive agents, broad-spectrum antibiotics, prosthetic devices and grafts, burns, neutropenia and HIV infection. The high morbidity and mortality associated with these infections is compounded by the limited therapeutic options and the emergence of drug resistant fungi. Hence, creative approaches to bridge the significant gap in antifungal drug development needs to be explored. Here, we review the potential anti-fungal targets for patient-centered therapies and immune-enhancing strategies for the prevention and treatment of invasive fungal diseases.
Collapse
Affiliation(s)
- Sharada Ravikumar
- Division of Infectious Diseases, University Medicine Cluster, National University Health System , Singapore, Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Mar Soe Win
- Division of Infectious Diseases, University Medicine Cluster, National University Health System , Singapore, Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System , Singapore, Singapore ; Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| |
Collapse
|
64
|
Medici NP, Del Poeta M. New insights on the development of fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz 2015; 110:966-73. [PMID: 26602871 PMCID: PMC4708015 DOI: 10.1590/0074-02760150335] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are emerging as a major problem in part due to high mortality associated with systemic infections, especially in the case of immunocompromised patients. With the development of new treatments for diseases such as cancer and the acquired immune deficiency syndrome pandemic, the number of immunosuppressed patients has increased and, as a consequence, also the number of invasive fungal infections has increased. Several studies have proposed new strategies for the development of effective fungal vaccines. In addition, better understanding of how the immune system works against fungal pathogens has improved the further development of these new vaccination strategies. As a result, some fungal vaccines have advanced through clinical trials. However, there are still many challenges that prevent the clinical development of fungal vaccines that can efficiently immunise subjects at risk of developing invasive fungal infections. In this review, we will discuss these new vaccination strategies and the challenges that they present. In the future with proper investments, fungal vaccines may soon become a reality.
Collapse
Affiliation(s)
- Natasha P Medici
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
65
|
Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 2015; 6:262. [PMID: 26594174 PMCID: PMC4633676 DOI: 10.3389/fphar.2015.00262] [Citation(s) in RCA: 632] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023] Open
Abstract
Inflammasomes are newly recognized, vital players in innate immunity. The best characterized is the NLRP3 inflammasome, so-called because the NLRP3 protein in the complex belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and is also known as “pyrin domain-containing protein 3”. The NLRP3 inflammasome is associated with onset and progression of various diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, cryopyrin-associated periodic fever syndrome, as well as other auto-immune and auto-inflammatory diseases. Several NLRP3 inflammasome inhibitors have been described, some of which show promise in the clinic. The present review will describe the structure and mechanisms of activation of the NLRP3 inflammasome, its association with various auto-immune and auto-inflammatory diseases, and the state of research into NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| |
Collapse
|
66
|
Site-specific mesenchymal control of inflammatory pain to yeast challenge in vulvodynia-afflicted and pain-free women. Pain 2015; 156:386-396. [PMID: 25679469 DOI: 10.1097/01.j.pain.0000460320.95267.5d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblast strains were derived from 2 regions of the lower genital tract of localized provoked vulvodynia (LPV) cases and pain-free controls. Sixteen strains were derived from 4 cases and 4 controls, age and race matched, after presampling mechanical pain threshold assessments. Strains were challenged with 6 separate stimuli: live yeast species (Candida albicans, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae), yeast extract (zymosan), or inactive vehicle. Production of prostaglandin E2 (PGE2) and interleukin 6 (IL-6) were proinflammatory response measures. Highest IL-6 and PGE2 occurred with vestibular strains after C albicans, C glabrata, and zymosan challenges, resulting in the ability to significantly predict IL-6 and PGE2 production by genital tract location. After C albicans and C glabrata challenge of all 16 fibroblast strains, adjusting for dual sampling of subjects, PGE2 and IL-6 production significantly predicted the presampling pain threshold from the genital tract site of sampling. At the same location of pain assessment and fibroblast sampling, in situ immunohistochemical (IHC)(+) fibroblasts for IL-6 and Cox-2 were quantified microscopically. The correlation between IL-6 production and IL-6 IHC(+) was statistically significant; however, biological significance is unknown because of the small number of IHC(+) IL-6 fibroblasts identified. A low fibroblast IL-6 IHC(+) count may result from most IL-6 produced by fibroblasts existing in a secreted extracellular state. Enhanced, site-specific, innate immune responsiveness to yeast pathogens by fibroblasts may be an early step in LPV pathogenesis. Fibroblast strain testing may offer an attractive and objective marker of LPV pathology in women with vulvodynia of inflammatory origin.
Collapse
|
67
|
Zhou HY, Zhong W, Zhang H, Bi MM, Wang S, Zhang WS. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis. Int J Ophthalmol 2015; 8:826-32. [PMID: 26309886 DOI: 10.3980/j.issn.2222-395.2015.04.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/04/2015] [Indexed: 12/17/2022] Open
Abstract
Fungal keratitis (FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA) have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α), retinoic acid receptor γ (RAR γ), and retinoid X receptor α (RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Wei Zhong
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Hong Zhang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Miao-Miao Bi
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Shuang Wang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Glaucoma, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
68
|
Mora-Montes HM, Dantas ADS, Trujillo-Esquivel E, de Souza Baptista AR, Lopes-Bezerra LM. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era. FEMS Yeast Res 2015; 15:fov065. [PMID: 26260509 DOI: 10.1093/femsyr/fov065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 12/13/2022] Open
Abstract
Sporotrichosis has been attributed for more than a century to one single etiological agent, Sporothrix schencki. Only eight years ago, it was described that, in fact, the disease is caused by several pathogenic cryptic species. The present review will focus on recent advances to understand the biology and virulence of epidemiologically relevant pathogenic species of the S. schenckii complex. The main subjects covered are the new clinical and epidemiological aspects including diagnostic and therapeutic challenges, the development of molecular tools, the genome database and the perspectives for study of virulence of emerging Sporothrix species.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, CP 36050, Guanajuato, Gto., México
| | - Alessandra da Silva Dantas
- Laboratório de Micologia Celular e Proteômica, Universidade do Estado do Rio de Janeiro (UERJ), CEP 20550-013 Rio de Janeiro, RJ, Brazil
| | - Elías Trujillo-Esquivel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, CP 36050, Guanajuato, Gto., México
| | - Andrea R de Souza Baptista
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense (UFF), CEP 24210-130 Niterói, RJ, Brazil
| | - Leila M Lopes-Bezerra
- Laboratório de Micologia Celular e Proteômica, Universidade do Estado do Rio de Janeiro (UERJ), CEP 20550-013 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
69
|
Alcantara C, Maza PK, Barros BCSC, Suzuki E. Role of protein kinase C in cytokine secretion by lung epithelial cells during infection with Paracoccidioides brasiliensis. Pathog Dis 2015; 73:ftv045. [PMID: 26152710 DOI: 10.1093/femspd/ftv045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the role of protein kinases C (PKCs) in interleukin (IL)-6 and IL-8 secretion by human lung epithelial A549 cells during infection with the fungal pathogen Paracoccidioides brasiliensis. Rottlerin and the broad spectrum PKC inhibitor Go 6983 reduced cytokine levels in A549 cell-P. brasiliensis cultures. Next, by western blot, we verified that infection with this fungus led to phosphorylation of PKC δ (Thr(505)). By using a peptide inhibitor for PKC δ or PKC δ short interfering RNA technique, IL-6 and IL-8 levels in A549-P. brasiliensis cultures were also reduced. Together, these results indicate that P. brasiliensis promotes IL-6 and IL-8 secretion by A549 cells in a PKC δ-dependent manner.
Collapse
Affiliation(s)
- Cristiane Alcantara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| | - Paloma Korehisa Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| | - Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, 6° andar, São Paulo, SP 04023-062, Brazil
| |
Collapse
|
70
|
Identification of novel mechanisms involved in generating localized vulvodynia pain. Am J Obstet Gynecol 2015; 213:38.e1-38.e12. [PMID: 25683963 DOI: 10.1016/j.ajog.2015.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/12/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Our goal was to gain a better understanding of the inflammatory pathways affected during localized vulvodynia, a poorly understood, common, and debilitating condition characterized by chronic pain of the vulvar vestibule. STUDY DESIGN In a control matched study, primary human fibroblast strains were generated from biopsies collected from localized provoked vulvodynia (LPV) cases and from age- and race-matched controls. We then examined intracellular mechanisms by which these fibroblasts recognize pathogenic Candida albicans; >70% of vulvodynia patients report the occurrence of prior chronic Candida infections, which is accompanied by localized inflammation and elevated production of proinflammatory/pain-associated interleukin (IL)-6 and prostaglandin E2 (PGE2). We focused on examining the signaling pathways involved in recognition of yeast components that are present and abundant during chronic infection. RESULTS Dectin-1, a surface receptor that binds C albicans cell wall glucan, was significantly elevated in vestibular vs external vulvar cells (from areas without pain) in both cases and controls, while its abundance was highest in LPV cases. Blocking Dectin-1 signaling significantly reduced pain-associated IL-6 and PGE2 production during the response to C albicans. Furthermore, LPV patient vestibular cells produced inflammatory mediators in response to low numbers of C albicans cells, while external vulvar fibroblasts were nonresponsive. Inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (proinflammatory transcription factor) nearly abrogated IL-6 and PGE2 production induced by C albicans, in keeping with observations that Dectin-1 signals through the nuclear factor kappa-light-chain-enhancer of activated B cells pathway. CONCLUSION These findings implicate that a fibroblast-mediated proinflammatory response to C albicans contributes to the induction of pain in LPV cases. Targeting this response may be an ideal strategy for the development of new vulvodynia therapies.
Collapse
|
71
|
Oliveira-Coelho A, Rodrigues F, Campos A, Lacerda JF, Carvalho A, Cunha C. Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol 2015; 6:411. [PMID: 25999936 PMCID: PMC4419722 DOI: 10.3389/fmicb.2015.00411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease commonly diagnosed among individuals with immunological deficits, namely hematological patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation. Vaccines are not available, and despite the improved diagnosis and antifungal therapy, the treatment of IA is associated with a poor outcome. Importantly, the risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and microbiological exposure. Recent insights into antifungal immunity have further highlighted the complexity of host-fungus interactions and the multiple pathogen-sensing systems activated to control infection. How to decode this information into clinical practice remains however, a challenging issue in medical mycology. Here, we address recent advances in our understanding of the host-fungus interaction and discuss the application of this knowledge in potential strategies with the aim of moving toward personalized diagnostics and treatment (theranostics) in immunocompromised patients. Ultimately, the integration of individual traits into a clinically applicable process to predict the risk and progression of disease, and the efficacy of antifungal prophylaxis and therapy, holds the promise of a pioneering innovation benefiting patients at risk of IA.
Collapse
Affiliation(s)
- Ana Oliveira-Coelho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto , Porto, Portugal
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa , Lisboa, Portugal ; Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria , Lisboa, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
72
|
Abstract
Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.
Collapse
Affiliation(s)
- Jonathan P Richardson
- a Mucosal and Salivary Biology Division ; Dental Institute; King's College London ; London , UK
| | | |
Collapse
|
73
|
Abstract
The first description of dermatophytosis was recorded by Celsus, a Roman encyclopaedist who described a suppurative infection of scalp (‘porrigo’ or ‘kerion of Celsus’) in De Re Medicina (30 A.D.). Throughout the middle ages, several descriptions of dermatophytosis were produced where it is described as ‘tinea’. The keratin-destroying moths which made circular holes in the woollen garments are known as Tinea. Due to similarity in the structure of circular lesion of dermatophytosis on the smooth skin with the circular hole made by moth, Cassius Felix introduced the term ‘tinea’ to describe the lesions. In 1806, Alibert used the term ‘favus’ to describe the honey-like exudate in some scalp infections. However, the fungal aetiology of tinea was first detected by Robert Remak, a Polish physician who first observed the presence of hyphae in the crusts of favus. This detection is also a landmark in medical history because this is the first description of a microbe causing a human disease. He himself did not publish his work, but he permitted the reference of his observations in a dissertation by Xavier Hube in 1837. Remak gave all the credits of his discovery to his mentor Schoenlein who first published the fungal etiological report of favus in 1839. He observed the infectious nature of the favus by autoinoculation into his own hands and also successfully isolated the fungus later (1945) and named Achorion schoenleinii (Trichophyton schoenleinii) in honour of his mentor. In 1844, Gruby described the etiologic agent of tinea endothrix, later became known as Trichophyton tonsurans. The genus Trichophyton was created and described by Malmsten (1845) with its representative species T. tonsurans. Charles Robin identified T. mentagrophytes in 1847 and T. equinum was identified by Matruchot and Dassonville in 1898. Raymond Jacques Adrien Sabouraud (France) first compiled the description of Trichophyton in his book (Les Teignes) in 1910 which was based on his observation in artificial culture. The sexual state of dermatophyte was described by Nannizzi (1927). Emmons (1934) first reported the classification of dermatophytes based on vegetative structures and conidia. Gentles (1958) established the successful treatment of tinea capitis with griseofulvin.
Collapse
|
74
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
75
|
Pothlichet J, Quintana-Murci L. The genetics of innate immunity sensors and human disease. Int Rev Immunol 2013; 32:157-208. [PMID: 23570315 DOI: 10.3109/08830185.2013.777064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their discovery, innate immunity microbial sensors have been increasingly studied and shown to play a critical role in innate responses to microbes in several experimental in vitro, ex vivo, and animal models. However, their role in the human response to infection in natural conditions has just started to be deciphered, by means of clinical studies of primary immunodeficiencies and epidemiological genetic studies. Here, we summarize the major findings concerning the genetic diversity of the various families of microbial sensors in humans, and of other molecules involved in the signaling pathways they trigger. Specifically, we review the genetic associations, revealed by both clinical and epidemiological genetics studies, of microbial sensors from five different families: Toll-like receptors, C-type lectin receptors, NOD-like receptors, RIG-I-like receptors, and cytosolic DNA sensors. In particular, we consider the relationships between variation at the genes encoding these molecules and susceptibility to and the severity of infectious diseases and other clinical conditions associated with immune dysfunction, including autoimmunity, inflammation, allergy, and cancer. Despite the fact that the genetic links between innate immunity sensors and human disorders remain still limited, human genetics studies are increasingly improving our understanding of the genuine functions of microbial sensors and downstream signaling molecules in the natural setting.
Collapse
Affiliation(s)
- Julien Pothlichet
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris, France
| | | |
Collapse
|
76
|
Pathak S, Hatam LJ, Bonagura V, Vambutas A. Innate immune recognition of molds and homology to the inner ear protein, cochlin, in patients with autoimmune inner ear disease. J Clin Immunol 2013; 33:1204-15. [PMID: 23912888 DOI: 10.1007/s10875-013-9926-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
Abstract
Autoimmune Inner Ear Disease (AIED) is characterized by bilateral, fluctuating sensorineural hearing loss with periods of hearing decline triggered by unknown stimuli. Here we examined whether an environmental exposure to mold in these AIED patients is sufficient to generate a pro-inflammatory response that may, in part, explain periods of acute exacerbation of disease. We hypothesized that molds may stimulate an aberrant immune response in these patients as both several Aspergillus species and penecillium share homology with the LCCL domain of the inner ear protein, cochlin. We showed the presence of higher levels of anti-mold IgG in plasma of AIED patients at dilution of 1:256 (p = 0.032) and anti-cochlin IgG 1:256 (p = 0.0094 and at 1:512 p = 0.024) as compared with controls. Exposure of peripheral blood mononuclear cells (PBMC) of AIED patients to mold resulted in an up-regulation of IL-1β mRNA expression, enhanced IL-1β and IL-6 secretion, and generation of IL-17 expressing cells in mold-sensitive AIED patients, suggesting mold acts as a PAMP in a subset of these patients. Naïve B cells secreted IgM when stimulated with conditioned supernatant from AIED patients' monocytes treated with mold extract. In conclusion, the present studies indicate that fungal exposure can trigger autoimmunity in a subset of susceptible AIED patients.
Collapse
Affiliation(s)
- Shresh Pathak
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | |
Collapse
|
77
|
Eriksson M, Johannssen T, von Smolinski D, Gruber AD, Seeberger PH, Lepenies B. The C-Type Lectin Receptor SIGNR3 Binds to Fungi Present in Commensal Microbiota and Influences Immune Regulation in Experimental Colitis. Front Immunol 2013; 4:196. [PMID: 23882266 PMCID: PMC3712271 DOI: 10.3389/fimmu.2013.00196] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/02/2013] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel disease is a condition of acute and chronic inflammation of the gut. An important factor contributing to pathogenesis is a dysregulated mucosal immunity against commensal bacteria and fungi. Host pattern-recognition receptors (PRRs) sense commensals in the gut and are involved in maintaining the balance between controlled responses to pathogens and overwhelming innate immune activation. C-type lectin receptors (CLRs) are PRRs recognizing glycan structures on pathogens and self-antigens. Here we examined the role of the murine CLR specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 (SIGNR3) in the recognition of commensals and its involvement in intestinal immunity. SIGNR3 is the closest murine homolog of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) receptor recognizing similar carbohydrate ligands such as terminal fucose or high-mannose glycans. We discovered that SIGNR3 recognizes fungi present in the commensal microbiota. To analyze whether this interaction impacts the intestinal immunity against microbiota, the dextran sulfate sodium-induced colitis model was employed. SIGNR3−/− mice exhibited an increased weight loss associated with more severe colitis symptoms compared to wild-type control mice. The increased inflammation in SIGNR3−/− mice was accompanied by a higher level of TNF-α in colon. Our findings demonstrate for the first time that SIGNR3 recognizes intestinal fungi and has an immune regulatory role in colitis.
Collapse
Affiliation(s)
- Magdalena Eriksson
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Potsdam , Germany ; Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | | | | | | | | |
Collapse
|
78
|
Wevers BA, Geijtenbeek TBH, Gringhuis SI. C-type lectin receptors orchestrate antifungal immunity. Future Microbiol 2013; 8:839-54. [DOI: 10.2217/fmb.13.56] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fungal infections are an emerging threat for human health. A coordinated host immune response is fundamental for successful elimination of an invading fungal microbe. A panel of C-type lectin receptors expressed on antigen-presenting dendritic cells enable innate recognition of fungal cell wall carbohydrates and tailors adaptive responses via the instruction of CD4+ T helper cell fates. Well-balanced T helper cell type 1 and IL-17-producing T helper cell responses are crucial in antifungal immunity and facilitate phagocytic clearance of fungal encounters. Strikingly, different classes of fungi trigger distinct sets of C-type lectin receptors to evoke a pathogen-specific T helper response. In this review, we outline the key roles of several C-type lectin receptors during the generation of protective antifungal immunity, with particular emphasis on the distinct signaling pathways and transcriptional programs triggered by these receptors, which collaborate to orchestrate polarization of the T helper response.
Collapse
Affiliation(s)
- Brigitte A Wevers
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|