51
|
Mbelele PM, Utpatel C, Sauli E, Mpolya EA, Mutayoba BK, Barilar I, Dreyer V, Merker M, Sariko ML, Swema BM, Mmbaga BT, Gratz J, Addo KK, Pletschette M, Niemann S, Houpt ER, Mpagama SG, Heysell SK. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac042. [PMID: 35465240 PMCID: PMC9021016 DOI: 10.1093/jacamr/dlac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rifampicin- or multidrug-resistant (RR/MDR) Mycobacterium tuberculosis complex (MTBC) strains account for considerable morbidity and mortality globally. WGS-based prediction of drug resistance may guide clinical decisions, especially for the design of RR/MDR-TB therapies. Methods We compared WGS-based drug resistance-predictive mutations for 42 MTBC isolates from MDR-TB patients in Tanzania with the MICs of 14 antibiotics measured in the Sensititre™ MycoTB assay. An isolate was phenotypically categorized as resistant if it had an MIC above the epidemiological-cut-off (ECOFF) value, or as susceptible if it had an MIC below or equal to the ECOFF. Results Overall, genotypically non-wild-type MTBC isolates with high-level resistance mutations (gNWT-R) correlated with isolates with MIC values above the ECOFF. For instance, the median MIC value (mg/L) for rifampicin-gNWT-R strains was >4.0 (IQR 4.0–4.0) compared with 0.5 (IQR 0.38–0.50) in genotypically wild-type (gWT-S, P < 0.001); isoniazid-gNWT-R >4.0 (IQR 2.0–4.0) compared with 0.25 (IQR 0.12–1.00) among gWT-S (P = 0.001); ethionamide-gNWT-R 15.0 (IQR 10.0–20.0) compared with 2.50 (IQR; 2.50–5.00) among gWT-S (P < 0.001). WGS correctly predicted resistance in 95% (36/38) and 100% (38/38) of the rifampicin-resistant isolates with ECOFFs >0.5 and >0.125 mg/L, respectively. No known resistance-conferring mutations were present in genes associated with resistance to fluoroquinolones, aminoglycosides, capreomycin, bedaquiline, delamanid, linezolid, clofazimine, cycloserine, or p-amino salicylic acid. Conclusions WGS-based drug resistance prediction worked well to rule-in phenotypic drug resistance and the absence of second-line drug resistance-mediating mutations has the potential to guide the design of RR/MDR-TB regimens in the future.
Collapse
Affiliation(s)
- Peter M. Mbelele
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Corresponding author. E-mail:
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Emmanuel A. Mpolya
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Beatrice K. Mutayoba
- Ministry of Health, National AIDS Control Program, Department of Preventive Services, Dodoma, Tanzania
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | | | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kennedy K. Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michel Pletschette
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah G. Mpagama
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
52
|
Karade S, Thosani P, Agarwal A, Sen S, S. Katoch CD, Jindamwar P, S. Shergill SP. Assessment of resistance to second line anti-tubercular drugs by line probe assay at a tertiary care hospital. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_392_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
53
|
Hidalgo M, Asmat Marrufo P, Lezama Asencio P, Ramos C, Chimoy Tuñoque CA, Zolla G. Evaluation of in vitro susceptibility to sparteine in four strains of Mycobacterium tuberculosis. Rev Peru Med Exp Salud Publica 2022; 39:77-82. [PMID: 35766744 PMCID: PMC11397676 DOI: 10.17843/rpmesp.2022.391.10136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/21/2022] [Indexed: 09/15/2024] Open
Abstract
Sparteine is an alkaloid with bacteriostatic activity on the genus Mycobacterium. The aim of this study was to evaluate the antimicrobial activity of sparteine on the growth of 4 ATCC strains of Mycobacterium tuberculosis (susceptible, resistant to isoniazid, resistant to rifampicin and multidrug-resistant) in vitro. Validation of bactericidal activity of sparteine sulfate was carried out through an adaptation of the Microscopic-Observation Drug-Susceptibility (MODS) method according to the guidelines of the Peruvian National Health Institute. The results demonstrate that at concentrations of 25; 50 and 100 Mm of sparteine sulfate, there is no development of colony-forming units in any of the 4 evaluated strains. Our results demonstrate the potential in vitro antimicrobial effect of sparteine on multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Manuel Hidalgo
- Universidad Privada Antenor Orrego, La Libertad, Trujillo, Perú
| | - Percy Asmat Marrufo
- Universidad Privada Antenor Orrego, La Libertad, Trujillo, Perú
- Laboratorio de Referencia Regional La Libertad, Perú
| | | | - Cynthia Ramos
- Universidad Privada Antenor Orrego, La Libertad, Trujillo, Perú
| | | | - Gastón Zolla
- Laboratorio de Fisiología Vegetal de la Universidad Nacional Agraria La Molina, Lima, Perú
| |
Collapse
|
54
|
Maladan Y, Krismawati H, Wahyuni T, Tanjung R, Awaludin K, Audah KA, Parikesit AA. The whole-genome sequencing in predicting Mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics 2021; 22:844. [PMID: 34802420 PMCID: PMC8607662 DOI: 10.1186/s12864-021-08139-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tuberculosis is one of the deadliest disease caused by Mycobacterium tuberculosis. Its treatment still becomes a burden for many countries including Indonesia. Drug resistance is one of the problems in TB treatment. However, a development in the molecular field through Whole-genome sequencing (WGS) can be used as a solution in detecting mutations associated with TB- drugs. This investigation intended to implement this data for supporting the scientific community in deeply understanding any TB epidemiology and evolution in Papua along with detecting any mutations in genes associated with TB-Drugs. RESULT A whole-genome sequencing was performed on the random samples from TB Referral Laboratory in Papua utilizing MiSeq 600 cycle Reagent Kit (V3). Furthermore, TBProfiler was used for genome analysis, RAST Server was employed for annotation, while Gview server was applied for BLAST genome mapping and a Microscope server was implemented for Regions of Genomic Plasticity (RGP). The largest genome of M. tuberculosis obtained was at the size of 4,396,040 bp with subsystems number at 309 and the number of coding sequences at 4326. One sample (TB751) contained one RGP. The drug resistance analysis revealed that several mutations associated with TB-drug resistance existed. In details, mutations of rpoB gene which were identified as S450L, D435Y, H445Y, L430P, and Q432K had caused the reduced effectiveness of rifampicin; while the mutases in katG (S315T), kasA (312S), inhA (I21V), and Rv1482c-fabG1 (C-15 T) genes had contributed to the resistance in isoniazid. In streptomycin, the resistance was triggered by the mutations in rpsL (K43R) and rrs (A514C, A514T) genes, and, in Amikacin, its resistance was led by mutations in rrs (A514C) gene. Additionally, in Ethambutol and Pyrazinamide, their reduced effectiveness was provoked by embB gene mutases (M306L, M306V, D1024N) and pncA (W119R). CONCLUSIONS The results from whole-genome sequencing of TB clinical sample in Papua, Indonesia could contribute to the surveillance of TB-drug resistance. In the drug resistance profile, there were 15 Multi Drugs Resistance (MDR) samples. However, Extensively Drug-resistant (XDR) samples have not been found, but samples were resistant to only Amikacin, a second-line drug.
Collapse
Affiliation(s)
- Yustinus Maladan
- Center for Papua Health Research and Development, Papua, Indonesia.
| | - Hana Krismawati
- Center for Papua Health Research and Development, Papua, Indonesia
| | - Tri Wahyuni
- Center for Papua Health Research and Development, Papua, Indonesia
| | - Ratna Tanjung
- Center for Papua Health Research and Development, Papua, Indonesia
| | | | | | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, International Institute for Life Sciences (I3L), Jakarta, Indonesia.
| |
Collapse
|
55
|
Bonnet I, Enouf V, Morel F, Ok V, Jaffré J, Jarlier V, Aubry A, Robert J, Sougakoff W. A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB ® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Front Cell Infect Microbiol 2021; 11:707244. [PMID: 34778100 PMCID: PMC8586210 DOI: 10.3389/fcimb.2021.707244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
The GeneLEAD VIII (Diagenode, Belgium) is a new, fully automated, sample-to-result precision instrument for the extraction of DNA and PCR detection of Mycobacterium tuberculosis complex (MTBC) directly from clinical samples. The Deeplex Myc-TB® assay (Genoscreen, France) is a diagnostic kit based on the deep sequencing of a 24-plexed amplicon mix allowing simultaneously the detection of resistance to 13 antituberculous (antiTB) drugs and the determination of spoligotype. We evaluated the performance of a strategy combining the both mentioned tools to detect directly from clinical samples, in 8 days, MTBC and its resistance to 13 antiTB drugs, and identify potential transmission of strains from patient-to-patient. Using this approach, we screened 112 clinical samples (65 smear-negative) and 94 MTBC cultured strains. The sensitivity and the specificity of the GeneLEAD/Deeplex Myc-TB approach for MTBC detection were 79.3% and 100%, respectively. One hundred forty successful Deeplex Myc-TB results were obtained for 46 clinical samples and 94 strains, a total of 85.4% of which had a Deeplex Myc-TB susceptibility and resistance prediction consistent with phenotypic drug susceptibility testing (DST). Importantly, the Deeplex Myc-TB assay was able to detect 100% of the multidrug-resistant (MDR) MTBC tested. The lowest concordance rates were for pyrazinamide, ethambutol, streptomycin, and ethionamide (84.5%, 81.5%, 73%, and 55%, respectively) for which the determination of susceptibility or resistance is generally difficult with current tools. One of the main difficulties of Deeplex Myc-TB is to interpret the non-synonymous uncharacterized variants that can represent up to 30% of the detected single nucleotide variants. We observed a good level of concordance between Deeplex Myc-TB-spoligotyping and MIRU-VNTR despite a lower discriminatory power for spoligotyping. The median time to obtain complete results from clinical samples was 8 days (IQR 7–13) provided a high-throughput NGS sequencing platform was available. Our results highlight that the GeneLEAD/Deeplex Myc-TB approach could be a breakthrough in rapid diagnosis of MDR TB in routine practice.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Enouf
- Plateforme de Microbiologie Mutualisée (P2M), Pasteur International Bioresources network (PIBnet), Institut Pasteur, Paris, France
| | - Florence Morel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vichita Ok
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérémy Jaffré
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Vincent Jarlier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France
| | - Alexandra Aubry
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Jérôme Robert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| | - Wladimir Sougakoff
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service de Bactériologie-Hygiène, Paris, France.,Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), Paris, France.,Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Unité Mixte de Recherche (UMR) 1135, Paris, France
| |
Collapse
|
56
|
Analysis on Drug-Resistance-Associated Mutations among Multidrug-Resistant Mycobacterium tuberculosis Isolates in China. Antibiotics (Basel) 2021; 10:antibiotics10111367. [PMID: 34827305 PMCID: PMC8614678 DOI: 10.3390/antibiotics10111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
As the causative bacteria of tuberculosis, Mycobacteriumtuberculosis (M. tb) is aggravated by the emergence of its multidrug-resistant isolates in China. Mutations of six of the most frequently reported resistant genes (rpoB, katG, inhA, embB, gyrA, and rpsL) were detected for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), ofloxacin (OFX), and streptomycin (STR) in this study. The amino acid missense mutations (MMs) and their corresponding single nucleotide polymorphism mutations for all drug-resistant (DR) isolates are described in detail. All isolates were divided into non-extensively drug-resistant (Non-XDR) and preXDR/XDR groups. No statistical differences were detected among MMs and linked MMs (LMs) between the two groups, except for rpsL 88 (p = 0.037). In the preXDR/XDR group, the occurrence of MMs in rpoB, katG, and inhA developed phenotypic resistance and MMs of rpoB 531, katG 315, rpsL 43, and rpsL 88 could develop high levels of DR. It is necessary to carry out epidemiological investigations of DR gene mutations in the local region, and thus provide necessary data to support the design of new technologies for rapid detection of resistant M. tb and the optimization of detection targets.
Collapse
|
57
|
Monde N, Zulu M, Tembo M, Handema R, Munyeme M, Malama S. Drug Resistant Tuberculosis in the Northern Region of Zambia: A Retrospective Study. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.735028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundZambia like many countries in sub-Saharan Africa is affected with drug resistant tuberculosis. However, the drug resistant tuberculosis situation over the years has not been described in various regions of the country. Consequently, this study aims to determine the drug resistant tuberculosis burden in northern regions of Zambia over a four-year period based on data generated from a Regional Tuberculosis Reference Laboratory.MethodTwo hundred and thirty two (232) Tuberculosis Drug Susceptibility Testing results over a four-year period (2016-2019) were reviewed. Data was collected from tuberculosis registers and patient request forms and entered into a pre-tested standardized checklist and later entered in Excel Computer software. Double blinded checking was done by two independent data clerks to minimize duplication of cases. Cleaned data was then imported in R programme for analysis. Bivariant and descriptive statistics were performed and reported.ResultsOf 232 Drug Susceptibility Testing results, 90.9% were drug resistant TB while 9% were drug susceptible. Fifty three percent (53%) of these were multi-drug resistant Tuberculosis and 32% were confirmed as Rifampicin Mono-resistance. Only 1.7% of the Multi-drug resistant Tuberculosis patients were Pre-extensively drug-resistant Tuberculosis. Copperbelt province had the largest proportion (46.0%) of multi-drug resistant tuberculosis patients followed by Luapula (8.1%) and North-Western (4.7%) provinces. In new and previously treated patients, the proportion of Multi-drug resistant tuberculosis was 71.8% and 28.7% respectively. History of previous anti-tuberculosis treatment and treatment failure were associated with multi-drug resistance TB.Conclusion and RecommendationThis study has shown a small increase in the proportions of drug resistant tuberculosis cases over the four years under review with high rates being recorded on the Copperbelt Province. Previous treatment to first line TB treatment and treatment failure were associated with development of Multi-drug resistance. We therefore recommend strengthened routine laboratory surveillance and improved case management of multi-drug resistant tuberculosis patients in the region.
Collapse
|
58
|
Mugumbate G, Nyathi B, Zindoga A, Munyuki G. Application of Computational Methods in Understanding Mutations in Mycobacterium tuberculosis Drug Resistance. Front Mol Biosci 2021; 8:643849. [PMID: 34651013 PMCID: PMC8505691 DOI: 10.3389/fmolb.2021.643849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the End TB Strategy by the World Health Organization aiming for zero deaths, disease, and suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play a major role in conferring drug resistance within Mtb; hence, computational methods and tools are being used to understand the mechanisms by which they facilitate drug resistance. In this article, computational techniques such as molecular docking and molecular dynamics are applied to explore point mutations and their roles in affecting binding affinities for anti-TB drugs, often times lowering the protein’s affinity for the drug. Advances and adoption of computational techniques, chemoinformatics, and bioinformatics in molecular biosciences and resources supporting machine learning techniques are in abundance, and this has seen a spike in its use to predict mutations in Mtb. This article highlights the importance of molecular modeling in deducing how point mutations in proteins confer resistance through destabilizing binding sites of drugs and effectively inhibiting the drug action.
Collapse
Affiliation(s)
- Grace Mugumbate
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | - Brilliant Nyathi
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Albert Zindoga
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Gadzikano Munyuki
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
59
|
Khoshnood S, Taki E, Sadeghifard N, Kaviar VH, Haddadi MH, Farshadzadeh Z, Kouhsari E, Goudarzi M, Heidary M. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front Microbiol 2021; 12:717045. [PMID: 34690963 PMCID: PMC8529252 DOI: 10.3389/fmicb.2021.717045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis (MTB) remain a primary global threat to the end of tuberculosis (TB) era. Delamanid (DLM) is a nitro-dihydro-imidazooxazole derivative utilized to treat MDR-TB. DLM has distinct mechanism of action, inhibiting methoxy- and keto-mycolic acid (MA) synthesis through the F420 coenzyme mycobacteria system and generating nitrous oxide. While DLM resistance among MTB strains is uncommon, there are increasing reports in Asia and Europe, and such resistance will prolong the treatment courses of patients infected with MDR-TB. In this review, we address the antimycobacterial properties of DLM, report the global prevalence of DLM resistance, discuss the synergism of DLM with other anti-TB drugs, and evaluate the documented clinical trials to provide new insights into the clinical use of this antibiotic.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
60
|
Andarge DB, Anticho TL, Jara GM, Ali MM. Prevalence of Mycobacterium tuberculosis infection and rifampicin resistance among presumptive tuberculosis cases visiting tuberculosis clinic of Adare General Hospital, Southern Ethiopia. SAGE Open Med 2021; 9:20503121211045541. [PMID: 34540228 PMCID: PMC8447093 DOI: 10.1177/20503121211045541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: Multidrug-resistant Mycobacterium tuberculosis is a public
health threat in resource-limited countries where it is easily disseminated
and difficult to control. The aim of this study was to determine the
prevalence of tuberculosis, rifampicin-resistant/multidrug-resistant
Mycobacterium tuberculosis, and associated factors
among presumptive tuberculosis cases attending the tuberculosis clinic of
Adare General Hospital located in Hawassa city. Methods: A hospital-based cross-sectional study was conducted among 321 tuberculosis
suspected patients from April to July 2018. Socio-demographic,
environmental, and behavioral data were collected using a structured
questionnaire. Sputum specimens were analyzed using GeneXpert. Data entry
was made using Epi info version 7 and analyzed by SPSS version 20. Logistic
regression models were used to determine the risk factors. A
p-value less than 0.05 was taken as a cut point. Results: In this study, the prevalence of Mycobacterium tuberculosis
was 98 (30.5%) with 95% confidence interval (25.5–35.8), and the prevalence
of rifampicin-resistant/multidrug-resistant Mycobacterium
tuberculosis among the 98 Mycobacterium
tuberculosis confirmed cases was 4 (4.1%). The prevalence of
rifampicin-resistant/multidrug-resistant Mycobacterium
tuberculosis among the tuberculosis suspected patients was
1.24%. Participants who had a history of treatment with anti-tuberculosis
drugs were more likely to develop rifampicin-resistant/multidrug-resistant
Mycobacterium tuberculosis. Conclusions: This study identified relatively high
rifampicin-resistant/multidrug-resistant Mycobacterium
tuberculosis among tuberculosis suspected patients in the study
area. Early detection of drug-resistant Mycobacterium
tuberculosis should be given enough attention to strengthen the
management of tuberculosis cases and improve direct observation therapy
short-course and eventually minimize the spread of rifampicin-resistant
tuberculosis strain in the community.
Collapse
Affiliation(s)
| | - Tariku Lambiyo Anticho
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Getamesay Mulatu Jara
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Musa Mohammed Ali
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
61
|
Mala L, Lalouckova K, Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals (Basel) 2021; 11:2473. [PMID: 34438930 PMCID: PMC8388705 DOI: 10.3390/ani11082473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Collapse
Affiliation(s)
- Lucie Mala
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Klara Lalouckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.M.); (K.L.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic
| |
Collapse
|
62
|
Halder SK, Elma F. In silico identification of novel chemical compounds with antituberculosis activity for the inhibition of InhA and EthR proteins from Mycobacterium tuberculosis. J Clin Tuberc Other Mycobact Dis 2021; 24:100246. [PMID: 34124395 PMCID: PMC8173314 DOI: 10.1016/j.jctube.2021.100246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) continuously poses a major public health concern around the globe, with a mounting death toll of approximately 1.4 million in 2019. Reduced bioavailability, elevated toxicity, increased side effects, and resistance of multiple first-line and second-line TB medications, including isoniazid, ethionamide necessitate studies of new drugs. The method of computational biology and bioinformatics approach allows virtual screening of a large number of drugs, reduces growing side effects of medications, and predicts potential drug resistance over time. In this study, we have analyzed fifty small molecules with antituberculosis properties using in silico approach including molecular docking, drug-likeness assessment, ADMET (absorption, distribution, metabolism, excretion, toxicity) profile evaluation, P450 site of metabolism prediction, and molecular dynamics simulation. Among those fifty compounds, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide (C22) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were found to pass the two-step molecular docking, P450 site of metabolism prediction and pharmacokinetics analysis successfully. Their binding stability for target proteins has been evaluated through root mean square deviation and root mean square fluctuation, Radius of gyration analysis from 10 ns Molecular Dynamics Simulation (MDS). Our identified drugs (C22 and C29) performed better than the control drugs (Isoniazid, Ethionamide) regarding binding affinity and molecular stability with the regulatory proteins (InhA, EthR) of Mycobacterium tuberculosis. The study proposed these compounds as effective therapeutic agents for Tuberculosis drug discovery, but further in vitro and in vivo testing are needed to substantiate their potential as novel drugs and modes of action.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Research assistant at Padma Bioresearch, Dhaka, Bangladesh
| | - Fatiha Elma
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
63
|
Mazlan MKN, Mohd Tazizi MHD, Ahmad R, Noh MAA, Bakhtiar A, Wahab HA, Mohd Gazzali A. Antituberculosis Targeted Drug Delivery as a Potential Future Treatment Approach. Antibiotics (Basel) 2021; 10:antibiotics10080908. [PMID: 34438958 PMCID: PMC8388690 DOI: 10.3390/antibiotics10080908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the microorganism that causes tuberculosis. This infectious disease has been around for centuries, with the earliest record of Mtb around three million years ago. The discovery of the antituberculosis agents in the 20th century has managed to improve the recovery rate and reduce the death rate tremendously. However, the conventional antituberculosis therapy is complicated by the development of resistant strains and adverse drug reactions experienced by the patients. Research has been conducted continuously to discover new, safe, and effective antituberculosis drugs. In the last 50 years, only two molecules were approved despite laborious work and costly research. The repurposing of drugs is also being done with few drugs; antibiotics, particularly, were found to have antituberculosis activity. Besides the discovery work, enhancing the delivery of currently available antituberculosis drugs is also being researched. Targeted drug delivery may be a potentially useful approach to be developed into clinically accepted treatment modalities. Active targeting utilizes a specifically designed targeting agent to deliver a chemically conjugated drug(s) towards Mtb. Passive targeting is very widely explored, with the development of multiple types of nanoparticles from organic and inorganic materials. The nanoparticles will be engulfed by macrophages and this will eliminate the Mtb that is present in the macrophages, or the encapsulated drug may be released at the sites of infections that may be in the form of intra- and extrapulmonary tuberculosis. This article provided an overview on the history of tuberculosis and the currently available treatment options, followed by discussions on the discovery of new antituberculosis drugs and active and passive targeting approaches against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Mohd Khairul Nizam Mazlan
- CHEST, School of Pharmaceutical Sciences, Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.K.N.M.); (R.A.)
| | | | - Rosliza Ahmad
- CHEST, School of Pharmaceutical Sciences, Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.K.N.M.); (R.A.)
| | - Muhammad Amirul Asyraf Noh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.H.D.M.T.); (M.A.A.N.)
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia;
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.H.D.M.T.); (M.A.A.N.)
- Correspondence: (H.A.W.); (A.M.G.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.H.D.M.T.); (M.A.A.N.)
- Correspondence: (H.A.W.); (A.M.G.)
| |
Collapse
|
64
|
Sheikh BA, Bhat BA, Mehraj U, Mir W, Hamadani S, Mir MA. Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis. Curr Pharm Biotechnol 2021; 22:480-500. [PMID: 32600226 DOI: 10.2174/1389201021666200628021702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat A Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Wajahat Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Suhail Hamadani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
65
|
Sieniawska E, Sawicki R, Truszkiewicz W, Marchev AS, Georgiev MI. Usnic Acid Treatment Changes the Composition of Mycobacterium tuberculosis Cell Envelope and Alters Bacterial Redox Status. mSystems 2021; 6:e00097-21. [PMID: 33947802 PMCID: PMC8269206 DOI: 10.1128/msystems.00097-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis developed efficient adaptation mechanisms in response to different environmental conditions. This resulted in the ability to survive in human macrophages and in resistance to numerous antibiotics. To get insight into bacterial responses to potent antimycobacterial natural compounds, we tested how usnic acid, a lichen-derived secondary metabolite, would influence mycobacteria at transcriptomic and metabolomic levels. The analysis of expression of sigma factors revealed a profound impact of usnic acid on one of the primary genetic regulatory systems of M. tuberculosis Combined liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses allowed us to observe the perturbations in metabolic pathways, as well as in lipid composition, which took place within 24 h of exposure. Early bacterial response was related to redox homeostasis, lipid synthesis, and nucleic acid repair. Usnic acid treatment provoked disturbances of redox state in mycobacterial cells and increased production of structural elements of the cell wall and cell membrane. In addition, to increase the number of molecules related to restoration of redox balance, the rearrangements of the cell envelope were the first defense mechanisms observed under usnic acid treatment.IMPORTANCE The evaluation of mechanisms of mycobacterial response to natural products has been barely studied. However, it might be helpful to reveal bacterial adaptation strategies, which are eventually crucial for the discovery of new drug targets and, hence, understanding the resistance mechanisms. This study showed that the first-line mycobacterial defense against usnic acid, a potent antimicrobial agent, is the remodeling of the cell envelope and restoring redox homeostasis. Transcriptomic data correlated with metabolomics analysis. The observed metabolic changes appeared similar to those exerted by antibiotics.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Medical University of Lublin, Chair and Department of Pharmacognosy, Lublin, Poland
| | - Rafal Sawicki
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Wieslaw Truszkiewicz
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Andrey S Marchev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
66
|
Du J, Gao J, Yu Y, Li Q, Bai G, Shu W, Gao M, Liu Y, Wang L, Wang Y, Xue Z, Huo F, Li L, Pang Y. Low Rate of Acquired Linezolid Resistance in Multidrug-Resistant Tuberculosis Treated With Bedaquiline-Linezolid Combination. Front Microbiol 2021; 12:655653. [PMID: 34012425 PMCID: PMC8126624 DOI: 10.3389/fmicb.2021.655653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
In this retrospective study in China, we aimed to: (1) determine the prevalence of linezolid (LZD) resistance among multidrug-resistant tuberculosis (MDR-TB)-infected patients; (2) monitor for dynamic LZD susceptibility changes during anti-TB treatment; and (3) explore molecular mechanisms conferring LZD resistance. A total of 277 MDR-TB patients receiving bedaquiline (BDQ)-containing regimens in 13 TB specialized hospitals across China were enrolled in the study. LZD and BDQ susceptibility rates were determined using the minimum inhibitory concentration (MIC) method, then DNA sequences of patient isolates were analyzed using Sanger sequencing to detect mutations conferring LZD resistance. Of 277 patients in our cohort, 115 (115/277, 41.5%) with prior LZD exposure yielded 19 (19/277, 6.9%) isolates exhibiting LZD resistance. The LZD resistance rate of LZD-exposed group isolates significantly exceeded the corresponding rate for non-exposed group isolates (P = 0.047). Genetic mutations were observed in 10 (52.6%, 10/19) LZD-resistant isolates, of which a Cys154Arg (36.8%, 7/19) substitution within ribosomal protein L3 was most prevalent. Analysis of sequential positive cultures obtained from 81 LZD-treated patients indicated that cultured organisms obtained from most patients (85.2%, 69/81) retained original LZD MIC values; however, organisms cultured later from two patients exhibited significantly increased MIC values that were attributed to the rplC substitution T460C. Overall, LZD resistance was detected in 6.9% of patients of an MDR-TB cohort in China. Low rate of acquired LZD resistance was noted in MDR-TB treated with BDQ-LZD combination.
Collapse
Affiliation(s)
- Jian Du
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jingtao Gao
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanhong Yu
- Tuberculosis Laboratory, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Qingfeng Li
- Department of Laboratory, Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Guanghong Bai
- Department of Laboratory, Shaanxi Provincial Tuberculosis Institute, Xi'an, China
| | - Wei Shu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuhong Liu
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lu Wang
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yufeng Wang
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Zhongtan Xue
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Fengmin Huo
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liang Li
- Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Pang
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
67
|
Evans A, Kavanagh KA. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J Med Microbiol 2021; 70:001363. [PMID: 33961541 PMCID: PMC8289199 DOI: 10.1099/jmm.0.001363] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest global health challenges of modern times and its prevalence is rising worldwide. AMR within bacteria reduces the efficacy of antibiotics and increases both the morbidity and the mortality associated with bacterial infections. Despite this growing risk, few antibiotics with a novel mode of action are being produced, leading to a lack of antibiotics that can effectively treat bacterial infections with AMR. Metals have a history of antibacterial use but upon the discovery of antibiotics, often became overlooked as antibacterial agents. Meanwhile, metal-based complexes have been used as treatments for other diseases, such as the gold-containing drug auranofin, used to treat rheumatoid arthritis. Metal-based antibacterial compounds have novel modes of action that provide an advantage for the treatment of bacterial infections with resistance to conventional antibiotics. In this review, the antibacterial activity, mode of action, and potential for systemic use of a number of metal-based antibacterial complexes are discussed. The current limitations of these compounds are highlighted to determine if metal-based agents are a potential solution for the treatment of bacterial infections, especially those resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Andris Evans
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin A. Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
68
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
69
|
Monteiro H, Santos F, Paiva A, Duarte ARC, Ferreira RJ. Molecular Dynamics Studies of Therapeutic Liquid Mixtures and Their Binding to Mycobacteria. Front Pharmacol 2021; 12:626735. [PMID: 33959006 PMCID: PMC8096353 DOI: 10.3389/fphar.2021.626735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is an highly contagious disease still considered by the WHO as one of most infectious diseases worldwide. The therapeutic approach, used to prevent and treat tuberculosis targets the Mycobacterium tuberculosis complex, comprises a combination of drugs administrated for long periods of time, which, in many cases, could cause several adverse effects and, consequently, low compliance of the patient to the treatment and drug-resistance. Therefore, therapeutic liquid mixtures formulated with anti-tuberculosis drugs and/or adjuvants in tuberculosis therapy are an interesting approach to prevent toxic effects and resistance to anti-tuberculosis drugs. The herein formulated therapeutic liquid mixtures, including ethambutol, arginine, citric acid and water under different molar ratios, were studied through a molecular dynamics approach to understand how ethambutol and arginine could be stabilized by the presence of citric acid and/or water in the mixture. To gain insights on how the uptake of these mixtures into the mycobacteria cell may occur and how a mycobacterial ABC transporter could contribute to this transport, multiple simultaneous ligand docking was performed. Interactions between citric acid and ethambutol involving the carboxyl and hydroxyl groups of citric acid with the amines of ethambutol were identified as the most critical ones. Water molecules present in the mixture provides the necessary network of hydrogen bonds that stabilize the mixture. Molecular docking additionally provided an interesting hypothesis on how the different mixture components may favor binding of ethambutol to an ABC importer. The data presented in this work helps to better understand these mixtures as well as to provide cues on the mechanisms that allow them to cross the mycobacterial cell membrane.
Collapse
Affiliation(s)
- Hugo Monteiro
- LAQV, REQUIMTE, Chemistry Department of NOVA School of Science and Technology, Caparica, Portugal
| | - Filipa Santos
- LAQV, REQUIMTE, Chemistry Department of NOVA School of Science and Technology, Caparica, Portugal
| | - Alexandre Paiva
- LAQV, REQUIMTE, Chemistry Department of NOVA School of Science and Technology, Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV, REQUIMTE, Chemistry Department of NOVA School of Science and Technology, Caparica, Portugal
| | | |
Collapse
|
70
|
Singh P, Jamal S, Ahmed F, Saqib N, Mehra S, Ali W, Roy D, Ehtesham NZ, Hasnain SE. Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:2423-2446. [PMID: 34025934 PMCID: PMC8113780 DOI: 10.1016/j.csbj.2021.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) continues to be the leading cause of deaths due to its persistent drug resistance and the consequent ineffectiveness of anti-TB treatment. Recent years witnessed huge amount of sequencing data, revealing mutations responsible for drug resistance. However, the lack of an up-to-date repository remains a barrier towards utilization of these data and identifying major mutations-associated with resistance. Amongst all mutations, non-synonymous mutations alter the amino acid sequence of a protein and have a much greater effect on pathogenicity. Hence, this type of gene mutation is of prime interest of the present study. The purpose of this study is to develop an updated database comprising almost all reported substitutions within the Mycobacterium tuberculosis (M.tb) drug target genes rpoB, inhA, katG, pncA, gyrA and gyrB. Various bioinformatics prediction tools were used to assess the structural and biophysical impacts of the resistance causing non-synonymous single nucleotide polymorphisms (nsSNPs) at the molecular level. This was followed by evaluating the impact of these mutations on binding affinity of the drugs to target proteins. We have developed a comprehensive online resource named MycoTRAP-DB (Mycobacterium tuberculosis Resistance Associated Polymorphisms Database) that connects mutations in genes with their structural, functional and pathogenic implications on protein. This database is accessible at http://139.59.12.92. This integrated platform would enable comprehensive analysis and prioritization of SNPs for the development of improved diagnostics and antimycobacterial medications. Moreover, our study puts forward secondary mutations that can be important for prognostic assessments of drug-resistance mechanism and actionable anti-TB drugs.
Collapse
Affiliation(s)
- Pooja Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Salma Jamal
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Faraz Ahmed
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Najumu Saqib
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Seema Mehra
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Waseem Ali
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Deodutta Roy
- Department of Environmental and Occupational Health, Florida International University, Miami 33029, USA
| | - Nasreen Z. Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E. Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201301, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110016, India
| |
Collapse
|
71
|
Yang J, Zhang T, Xian X, Li Y, Wang R, Wang P, Zhang M, Wang J. Molecular Characteristics and Drug Resistance of Mycobacterium tuberculosis Isolate Circulating in Shaanxi Province, Northwestern China. Microb Drug Resist 2021; 27:1207-1217. [PMID: 33794134 DOI: 10.1089/mdr.2020.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Shaanxi is the most highly populated province with high burdens of tuberculosis in northwestern China. The aim of this study was to investigate the molecular characteristics and drug resistance of Mycobacterium tuberculosis isolates from Shaanxi province of China in 2018. Methods: Phenotypic drug susceptibility testing and spoligotyping methods were performed on 518 M. tuberculosis isolates; drug-resistant isolates were sequenced in 11 drug loci, including katG, inhA, oxyR-ahpC, rpoB, embB, rpsL, rrs1 (nucleotides 388-1084), gyrA, gyrB, rrs2 (nucleotides 1158-1674), and eis. Results: The prevalences of isoniazid, rifampicin, ethambutol, streptomycin, ofloxacin, and kanamycin resistance were 22.0%, 19.3%, 7.9%, 23.8%, 10.4%, and 3.3%, respectively. The Beijing family (82.8%) was the predominant genotype, followed by the T (9.3%), H (0.6%), CAS (0.4%), LAM (0.4%), and U (0.4%) families. The percentage of Beijing genotype in a central area (88.1%) was higher than in the south (77.3%) and the north area (80.1%) (p < 0.05), while the sex, age, and treatment history between Beijing and non-Beijing family were not statistically different. Mutation analysis found that the most prevalent mutations were katG315, rpoB531, embB306, rpsL43, gyrA94, and rrs1401; the Beijing family exhibited a high rate of isoniazid-resistant isolates carrying katG315 mutations (p < 0.05). Furthermore, compared with the phenotypic data, the sensitivities of isoniazid, rifampicin, ethambutol, streptomycin, ofloxacin, and kanamycin resistance by sequencing base on 11 loci were 85.1%, 94.0%, 53.7%, 74.8%, 77.8%, and 64.7%, respectively. Conclusions: Shaanxi has a serious epidemic of drug-resistant tuberculosis, Beijing family is the predominant genotype, and the distribution showed geographic diversity. The prevalence of Beijing genotypes has a tendency to promote the transmission of high-level isoniazid-resistant M. tuberculosis. Besides, the hot spot regions localized in the embB, rrs2, and eis gene appear not to serve as excellent biomarkers for predicting ethambutol and kanamycin resistance in Shaanxi.
Collapse
Affiliation(s)
- Jian Yang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Clinical Laboratory and Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Tianhua Zhang
- Administration Office, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Xiaoping Xian
- Administration Office, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Yan Li
- Clinical Laboratory and Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Rui Wang
- Clinical Laboratory and Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Panting Wang
- Clinical Laboratory and Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Meng Zhang
- Clinical Laboratory and Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, China
| | - Junyang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
72
|
Chun ZM, Jun JQ. Drug-Resistant Mycobacterium tuberculosis Isolates from New and Previously Treated TB Patients in China, 2017-2019. Rev Soc Bras Med Trop 2021; 54:e0728-2020. [PMID: 33759925 PMCID: PMC8008859 DOI: 10.1590/0037-8682-0728-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Mycobacterium tuberculosis (MTB) is a causative agent of tuberculosis (TB) that causes death worldwide. METHODS MTB was subjected to phenotypic drug-susceptibility tests (DST), and drug-resistant genes were sequenced. RESULTS Previously treated patients were more likely to have positive smear results and exhibit drug resistance. New patients were more likely to be mono SM-resistant and less likely to be INH- and RIF-resistant. The most common mutations were katG (S315T), rpoB (S450L), rpsL (K43R), and embB (M306V). CONCLUSIONS The proportion of mono-SM-resistant TB among new patients was higher.
Collapse
Affiliation(s)
- Zeng Mei Chun
- Zhejiang University, College of Medicine, The First Affiliated Hospital, Department of Pathology, Hangzhou, Zhejiang, China
| | - Jia Qing Jun
- Hangzhou Center for Disease Control and Prevention, Department of TB Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
73
|
Profiling of Potential Antibacterial Compounds of Lactic Acid Bacteria against Extremely Drug Resistant (XDR) Acinetobacter baumannii. Molecules 2021; 26:molecules26061727. [PMID: 33808805 PMCID: PMC8003687 DOI: 10.3390/molecules26061727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
A total of 20 of isolates of lactic acid bacteria (LAB) were selected and screened for antagonistic activity against clinical strains of 30 clinical isolates of extremely drug-resistant (XDR) Acinetobacter baumannii using the well diffusion assay method. Results showed that 50% of the highly LAB strains possessed inhibitory activity against (up to 66%) of the XDR A. baumannii strains tested. The supernatant of the twenty LAB strains was subjected to gas chromatography mass spectrometry (GCMS) revealed that the common compound found in the active isolates against XDR A. baumannii was 3-Isobutyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, a known potential diketopiperazine group. The molecular docking study against potential antibacterial targets with selected ligands was performed to predict the binding mode of interactions, which is responsible for antibacterial activity. The docking analysis of the potent compounds supported the potential antibacterial activity exhibiting high inhibition constant and binding affinity in silico.
Collapse
|
74
|
Bedaquiline: Current status and future perspectives. J Glob Antimicrob Resist 2021; 25:48-59. [PMID: 33684606 DOI: 10.1016/j.jgar.2021.02.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
The development of drug-resistant tuberculosis (TB) is a major threat worldwide. Based on World Health Organization (WHO) reports, it is estimated that more than 500 000 new cases of drug-resistant TB occur annually. In addition, there are alarming reports of increasing multidrug-resistant TB (MDR-TB) and the emergence of extensively drug-resistant TB (XDR-TB) from different countries of the world. Therefore, new options for TB therapy are required. Bedaquiline (BDQ), a novel anti-TB drug, has significant minimum inhibitory concentrations (MICs) both against drug-susceptible and drug-resistant TB. Moreover, BDQ was recently approved for therapy of MDR-TB. The current narrative review summarises the available data on BDQ resistance, describes its antimicrobial properties, and provides new perspectives on clinical use of this novel anti-TB agent.
Collapse
|
75
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
76
|
Verma H, Nagar S, Vohra S, Pandey S, Lal D, Negi RK, Lal R, Rawat CD. Genome analyses of 174 strains of Mycobacterium tuberculosis provide insight into the evolution of drug resistance and reveal potential drug targets. Microb Genom 2021; 7:mgen000542. [PMID: 33750515 PMCID: PMC8190606 DOI: 10.1099/mgen.0.000542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis is a known human pathogen that causes the airborne infectious disease tuberculosis (TB). Every year TB infects millions of people worldwide. The emergence of multi-drug resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis strains against the first- and second-line anti-TB drugs has created an urgent need for the development and implementation of new drug strategies. In this study, the complete genomes of 174 strains of M. tuberculosis are analysed to understand the evolution of molecular drug target (MDT) genes. Phylogenomic placements of M. tuberculosis strains depicted close association and temporal clustering. Selection pressure analysis by deducing the ratio of non-synonymous to synonymous substitution rates (dN/dS) in 51 MDT genes of the 174 M. tuberculosis strains led to categorizing these genes into diversifying (D, dN/dS>0.70), moderately diversifying (MD, dN/dS=0.35-0.70) and stabilized (S, dN/dS<0.35) genes. The genes rpsL, gidB, pncA and ahpC were identified as diversifying, and Rv0488, kasA, ndh, ethR, ethA, embR and ddn were identified as stabilized genes. Furthermore, sequence similarity networks were drawn that supported these divisions. In the multiple sequence alignments of diversifying and stabilized proteins, previously reported resistance mutations were checked to predict sensitive and resistant strains of M. tuberculosis. Finally, to delineate the potential of stabilized or least diversified genes/proteins as anti-TB drug targets, protein-protein interactions of MDT proteins with human proteins were analysed. We predict that kasA (dN/dS=0.29), a stabilized gene that encodes the most host-interacting protein, KasA, should serve as a potential drug target for the treatment of TB.
Collapse
Affiliation(s)
- Helianthous Verma
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Shivani Vohra
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Shubhanshu Pandey
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | | | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India
| | - Charu Dogra Rawat
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| |
Collapse
|
77
|
Ultra-short-course and intermittent TB47-containing oral regimens produce stable cure against Buruli ulcer in a murine model and prevent the emergence of resistance for Mycobacterium ulcerans. Acta Pharm Sin B 2021; 11:738-749. [PMID: 33777679 PMCID: PMC7982501 DOI: 10.1016/j.apsb.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with rifampin-streptomycin or rifampin-clarithromycin daily for 8 weeks recommended by World Health Organization (WHO). These options are lengthy with severe side effects. A new anti-tuberculosis drug, TB47, targeting QcrB in cytochrome bc1:aa3 complex is being developed in China. TB47-containing regimens were evaluated in a well-established murine model using an autoluminescent M. ulcerans strain. High-level TB47-resistant spontaneous M. ulcerans mutants were selected and their qcrB genes were sequenced. The in vivo activities of TB47 against both low-level and high-level TB47-resistant mutants were tested in BU murine model. Here, we show that TB47-containing oral 3-drug regimens can completely cure BU in ≤2 weeks for daily use or in ≤3 weeks given twice per week (6 doses in total). All high-level TB47-resistant mutants could only be selected using the low-level mutants which were still sensitive to TB47 in mice. This is the first report of double mutations in QcrB in mycobacteria. In summary, TB47-containing regimens have promise to cure BU highly effectively and prevent the emergence of drug resistance. Novel QcrB mutations found here may guide the potential clinical molecular diagnosis of resistance and the discovery of new drugs against the high-level resistant mutants.
Collapse
|
78
|
Wang R, Li K, Yu J, Deng J, Chen Y. Mutations of folC cause increased susceptibility to sulfamethoxazole in Mycobacterium tuberculosis. Sci Rep 2021; 11:1352. [PMID: 33446754 PMCID: PMC7809127 DOI: 10.1038/s41598-020-80213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Previous studies showed that mutation of folC caused decreased expression of the dihydropteroate synthase encoding gene folP2 in Mycobacterium tuberculosis (M. tuberculosis). We speculated that mutation of folC in M. tuberculosis might affect the susceptibility to sulfamethoxazole (SMX). To prove this, 53 clinical isolates with folC mutations were selected and two folC mutants (I43A, I43T) were constructed based on M. tuberculosis H37Ra. The results showed that 42 of the 53 clinical isolates (79.2%) and the two lab-constructed folC mutants were more sensitive to SMX. To probe the mechanism by which folC mutations make M. tuberculosis more sensitive to SMX, folP2 was deleted in H37Ra, and expression levels of folP2 were compared between H37Ra and the two folC mutants. Although deletion of folP2 resulted in increased susceptibility to SMX, no difference in folP2 expression was observed. Furthermore, production levels of para-aminobenzoic acid (pABA) were compared between the folC mutants and the wild-type strain, and results showed that folC mutation resulted in decreased production of pABA. Taken together, we show that folC mutation leads to decreased production of pABA in M. tuberculosis and thus affects its susceptibility to SMX, which broadens our understanding of mechanisms of susceptibilities to antifolates in this bacterium.
Collapse
Affiliation(s)
- Ruiqi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Kun Li
- School of Life Sciences, Southwest University, Chongqing, People's Republic of China.,Central Laboratory, Chongqing Public Health Medical Center, Chongqing, 400036, People's Republic of China
| | - Jifang Yu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| | - Yaokai Chen
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, 400036, People's Republic of China.
| |
Collapse
|
79
|
Identification of Mutations Conferring Tryptanthrin Resistance to Mycobacterium smegmatis. Antibiotics (Basel) 2020; 10:antibiotics10010006. [PMID: 33374765 PMCID: PMC7823563 DOI: 10.3390/antibiotics10010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a global burden, responsible for over 1 million deaths annually. The emergence and spread of drug-resistant M. tuberculosis strains (MDR-, XDR- and TDR-TB) is the main challenge in global TB-control, requiring the development of novel drugs acting on new biotargets, thus able to overcome the drug-resistance. Tryptanthrin is a natural alkaloid, with great therapeutic potential due to its simple way of synthesis and wide spectrum of biological activities including high bactericidal activity on both drug-susceptible and MDR M. tuberculosis strains. InhA was suggested as the target of tryptanthrins by in silico modeling, making it a promising alternative to isoniazid, able to overcome drug resistance provided by katG mutations. However, neither the mechanism of action of tryptanthrin nor the mechanism of resistance to tryptanthrins was ever confirmed in vitro. We show that the MmpS5-MmpL5 efflux system is able to provide resistance to tryptanthrins using an in-house test-system. Comparative genomic analysis of spontaneous tryptanthrin-resistant M. smegmatis mutants showed that mutations in MSMEG_1963 (EmbR transcriptional regulator) lead to a high-level resistance, while those in MSMEG_5597 (TetR transcriptional regulator) to a low-level one. Mutations in an MFS transporter gene (MSMEG_4427) were also observed, which might be involved in providing a basal level of tryptanthrins-resistance.
Collapse
|
80
|
De Siena B, Campolattano N, D'Abrosca G, Russo L, Cantillon D, Marasco R, Muscariello L, Waddell SJ, Sacco M. Characterization of the Mycobacterial MSMEG-3762/63 Efflux Pump in Mycobacterium smegmatis Drug Efflux. Front Microbiol 2020; 11:575828. [PMID: 33343518 PMCID: PMC7744416 DOI: 10.3389/fmicb.2020.575828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies.
Collapse
Affiliation(s)
- Barbara De Siena
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Nicoletta Campolattano
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Gianluca D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Margherita Sacco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
81
|
Abstract
CRISPR-Cas systems, widespread in bacteria and archaea, are mainly responsible for adaptive cellular immunity against exogenous DNA (plasmid and phage). However, the latest research shows their involvement in other functions, such as gene expression regulation, DNA repair and virulence. In recent years, they have undergone intensive research as convenient tools for genomic editing, with Cas9 being the most commonly used nuclease. Gene editing may be of interest in biotechnology, medicine (treatment of inherited disorders, cancer, etc.), and in the development of model systems for various genetic diseases. The dCas9 system, based on a modified Cas9 devoid of nuclease activity, called CRISPRi, is widely used to control gene expression in bacteria for new drug biotargets validation and is also promising for therapy of genetic diseases. In addition to direct use for genomic editing in medicine, CRISPR-Cas can also be used in diagnostics, for microorganisms’ genotyping, controlling the spread of drug resistance, or even directly as “smart” antibiotics. This review focuses on the main applications of CRISPR-Cas in medicine, and challenges and perspectives of these approaches.
Collapse
|
82
|
Tan ZM, Lai GP, Pandey M, Srichana T, Pichika MR, Gorain B, Bhattamishra SK, Choudhury H. Novel Approaches for the Treatment of Pulmonary Tuberculosis. Pharmaceutics 2020; 12:pharmaceutics12121196. [PMID: 33321797 PMCID: PMC7763148 DOI: 10.3390/pharmaceutics12121196] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a contagious airborne disease caused by Mycobacterium tuberculosis, which primarily affects human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become worldwide challenge in eliminating TB. The limitations of conventional TB treatment including frequent dosing and prolonged treatment, which results in patient’s noncompliance to the treatment because of treatment-related adverse effects. The non-invasive pulmonary drug administration provides the advantages of targeted-site delivery and avoids first-pass metabolism, which reduced the dose requirement and systemic adverse effects of the therapeutics. With the modification of the drugs with advanced carriers, the formulations may possess sustained released property, which helps in reducing the dosing frequency and enhanced patients’ compliances. The dry powder inhaler formulation is easy to handle and storage as it is relatively stable compared to liquids and suspension. This review mainly highlights the aerosolization properties of dry powder inhalable formulations with different anti-TB agents to understand and estimate the deposition manner of the drug in the lungs. Moreover, the safety profile of the novel dry powder inhaler formulations has been discussed. The results of the studies demonstrated that dry powder inhaler formulation has the potential in enhancing treatment efficacy.
Collapse
Affiliation(s)
- Zhi Ming Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (Z.M.T.); (G.P.L.)
| | - Gui Ping Lai
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (Z.M.T.); (G.P.L.)
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence: (M.P.); (H.C.)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand;
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Science, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence: (M.P.); (H.C.)
| |
Collapse
|
83
|
Dhameliya TM, Patel KI, Tiwari R, Vagolu SK, Panda D, Sriram D, Chakraborti AK. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem 2020; 107:104538. [PMID: 33349456 DOI: 10.1016/j.bioorg.2020.104538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/17/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NH4Cl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using H37Rv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 μg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 μg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Rishu Tiwari
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India; Department of Chemistry, Indian Institute of Technology - Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
84
|
In Silico Analysis of S315T and S315R Mutations of Multidrug-resistant Mycobacterium tuberculosis Clinical Isolates from Karachi, Pakistan. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Tuberculosis is one of the most frequent and persistent global diseases causing millions of deaths every year. Pakistan lies at number 6 among the 22 most dominant countries, with multidrug resistance up to 15%. Isoniazid-resistant strains of Mycobacterium tuberculosis are gradually rising and seem to be more prevalent in developing countries. Mutations in the katG gene are considered to be responsible for the accusation of isoniazid resistance in M. tuberculosis. Objectives: The current study was designed to investigate the structural and functional associations of KatG gene mutations (S315R and S315T) and multidrug resistance in M. tuberculosis isolates from Karachi, Pakistan. Results: The present study revealed conformational changes in the structure of the KatG enzyme due to observed mutations, which led to induced alterations in isoniazid binding residues at the active site of the KatG enzyme. Furthermore, substantial changes were observed in interaction energy, ligand-receptor energy, electrostatic energy, salvation energy, and ligand-receptor conformational entropy. All these resultant modifications due to S315R and S315T mutations ultimately reduced the flexibility and stability of proteins at isoniazid-binding residues. Conclusions: This deviation in the consistency of protein texture eventually compromises the enzyme activity. It is well expected that the outcomes of the current study would provide a better understanding of the consequences of these mutations and provide a detailed insight into some previously unknown features.
Collapse
|
85
|
Loss of U1498 methylation in 16S rRNA by RsmE methyltransferase associates its role with aminoglycoside resistance in mycobacteria. J Glob Antimicrob Resist 2020; 23:359-369. [PMID: 33186785 DOI: 10.1016/j.jgar.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Modulation of methylation pattern through mutations in ribosomal methyltransferases is a key mechanism of bacterial drug resistance. However, RsmG (GidB), which specifically methylates G527 in 16S rRNA, remains the only conserved methyltransferase known to be associated with low-level drug resistance in mycobacterial isolates. The mycobacterial RsmE homologue methylates U1498 in 16S rRNA in a highly specific manner. U1498 lies in the vicinity of the binding site for various aminoglycosides in the ribosome. However, the association of methylation at U1498 with altered drug response remains poorly understood. METHODS A deletion mutant of the RsmE homologue in Mycobacterium smegmatis was generated by a suicidal vector strategy and drug susceptibility assays were performed on wild-type, knockout and complemented strains with varying concentrations of ribosomal- and non-ribosomal-targeting drugs. RESULTS Deletion of the RsmE homologue of M. smegmatis led to an at least two-fold increase in the minimum inhibitory concentrations (MICs) of aminoglycosides that bind in the decoding centre proximal to U1498 in the 30S subunit. The change in MICs was highly specific and reproducible and did not show any cross-resistance to other drug classes. Surprisingly, Rv2372c, the RsmE homologue of Mycobacterium tuberculosis, has the largest number of mutations among conserved ribosomal methyltransferases, after gidB, highlighting the role of mutations in RsmE methyltransferase as a key emerging mechanism of resistance in clinical strains. CONCLUSION We present the first evidence of an association of methylation of U1498 in 16S rRNA with development of low-level resistance in mycobacteria that must be tackled in a timely manner.
Collapse
|
86
|
Reedoy KS, Loots DT, Beukes D, Reenen MV, Pillay B, Pillay M. Mycobacterium tuberculosis curli pili (MTP) is associated with significant host metabolic pathways in an A549 epithelial cell infection model and contributes to the pathogenicity of Mycobacterium tuberculosis. Metabolomics 2020; 16:116. [PMID: 33084984 DOI: 10.1007/s11306-020-01736-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A clear understanding of the metabolome of Mycobacterium tuberculosis and its target host cell during infection is fundamental for the development of novel diagnostic tools, effective drugs and vaccines required to combat tuberculosis. The surface-located Mycobacterium tuberculosis curli pili (MTP) adhesin forms initial contact with the host cell and is therefore important for the establishment of infection. OBJECTIVE The aim of this investigation was to determine the role of MTP in modulating pathogen and host metabolic pathways in A549 epithelial cells infected with MTP proficient and deficient strains of M. tuberculosis. METHODS Uninfected A549 epithelial cells, and those infected with M. tuberculosis V9124 wild-type strain, Δmtp and the mtp-complemented strains, were subjected to metabolite extraction, two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS) and bioinformatic analyses. Univariate and multivariate statistical tests were used to identify metabolites that were significantly differentially produced in the WT-infected and ∆mtp-infected A549 epithelial cell models, comparatively. RESULTS A total of 46 metabolites occurred in significantly lower relative concentrations in the Δmtp-infected cells, indicating a reduction in nucleic acid synthesis, amino acid metabolism, glutathione metabolism, oxidative stress, lipid metabolism and peptidoglycan, compared to those cells infected with the WT strain. CONCLUSION The absence of MTP was associated with significant changes to the host metabolome, suggesting that this adhesin is an important contributor to the pathogenicity of M. tuberculosis, and supports previous findings of its potential as a suitable drug, vaccine and diagnostic target.
Collapse
Affiliation(s)
- K S Reedoy
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa
| | - D T Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - D Beukes
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - M van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - B Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - M Pillay
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
87
|
TB47 and clofazimine form a highly synergistic sterilizing block in a second-line regimen for tuberculosis in mice. Biomed Pharmacother 2020; 131:110782. [PMID: 33152940 DOI: 10.1016/j.biopha.2020.110782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) remains a serious public health threat worldwide. To date, the anti-TB activity of TB47 (T), an imidazopyridine amide class of antibiotics targeting QcrB in the electron transport chain, has not been systematically evaluated, especially in a new regimen against MDR-TB. This study employed both macrophage infection and a mouse model to test the activity of T alone or in combination with other antimicrobial agents. Different regimens containing amikacin (A), levofloxacin (L), ethambutol (E), and pyrazinamide (Z) + clofazimine (C)/T were evaluated in the mouse model. The bacterial burdens of mice from different groups were monitored at different time points while relapse was assessed 6 months after treatment cessation. Colonies obtained at relapse underwent drug susceptibility testing. We found that T exhibited highly synergistic bactericidal activity with C in all models. Adding T to ALEZC might shorten the MDR-TB treatment duration from ≥ 9 months to ≤ 5months, as five months of treatment with ALEZCT achieved zero relapse rates in 2 animal experiments. These findings indicate that T exhibits a highly synergistic sterilizing activity when combined with C. All isolates from relapsing mice remained sensitive to each drug, suggesting that the relapse was not due to drug resistance but rather associated with the type of regimen.
Collapse
|
88
|
Khodadadian A, Darzi S, Haghi-Daredeh S, Sadat Eshaghi F, Babakhanzadeh E, Mirabutalebi SH, Nazari M. Genomics and Transcriptomics: The Powerful Technologies in Precision Medicine. Int J Gen Med 2020; 13:627-640. [PMID: 32982380 PMCID: PMC7509479 DOI: 10.2147/ijgm.s249970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
In a clinical trial, people with the same disease can show different responses after treatment with the same drug and exactly under the same conditions. Some of them may improve, some may not show any response, and occasionally side effects may be observed. In other words, people with the same disease process under the same therapeutic conditions may have different responses. Today, some diseases are resistant to conventional (standard) treatment procedures. Why do people with the same disease show different responses to the treatment with the same drug? This is primarily due to differences in molecular pathways (especially genetic variations) associated with the disease. On the other hand, designing and delivery of a new drug is a time-consuming and costly process, so any mistake in any stage of this process can have irreparable consequences for pharmaceutical companies and consumer patients. Therefore, we can achieve more accurate and reliable treatments by acquiring precise insight into different aspects of precision medicine including genomics and transcriptomics. The aim of this paper is to address the role of genomics and transcriptomics in precision medicine.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somaye Darzi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Haghi-Daredeh
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Farzaneh Sadat Eshaghi
- Department of Medical Genetics, Biotechnology Research Center, International Campus, Shahid Sadoughi University of Science, Yazd, Iran
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Majid Nazari
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
89
|
Smith TC, Pullen KM, Olson MC, McNellis ME, Richardson I, Hu S, Larkins-Ford J, Wang X, Freundlich JS, Ando DM, Aldridge BB. Morphological profiling of tubercle bacilli identifies drug pathways of action. Proc Natl Acad Sci U S A 2020; 117:18744-18753. [PMID: 32680963 PMCID: PMC7414088 DOI: 10.1073/pnas.2002738117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Morphological profiling is a method to classify target pathways of antibacterials based on how bacteria respond to treatment through changes to cellular shape and spatial organization. Here we utilized the cell-to-cell variation in morphological features of Mycobacterium tuberculosis bacilli to develop a rapid profiling platform called Morphological Evaluation and Understanding of Stress (MorphEUS). MorphEUS classified 94% of tested drugs correctly into broad categories according to modes of action previously identified in the literature. In the other 6%, MorphEUS pointed to key off-target activities. We observed cell wall damage induced by bedaquiline and moxifloxacin through secondary effects downstream from their main target pathways. We implemented MorphEUS to correctly classify three compounds in a blinded study and identified an off-target effect for one compound that was not readily apparent in previous studies. We anticipate that the ability of MorphEUS to rapidly identify pathways of drug action and the proximal cause of cellular damage in tubercle bacilli will make it applicable to other pathogens and cell types where morphological responses are subtle and heterogeneous.
Collapse
Affiliation(s)
- Trever C Smith
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA 02111
| | - Krista M Pullen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Morgan E McNellis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Ian Richardson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Roxbury Latin School, West Roxbury, MA 02132
| | - Sophia Hu
- Department of Bioinformatics and Computational Biology, University of Maryland, Baltimore County, Baltimore, MD 21250
| | - Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Tufts University School of Graduate Biomedical Sciences, Boston, MA 02111
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103
- Division of Infectious Disease, Department of Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103
- Ruy V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103
| | - D Michael Ando
- Applied Science Team, Google Research, Mountain View, CA 94043
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111;
- Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA 02111
- Tufts University School of Graduate Biomedical Sciences, Boston, MA 02111
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155
| |
Collapse
|
90
|
Swain SS, Paidesetty SK, Padhy RN, Hussain T. Isoniazid-phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. Chem Biol Drug Des 2020; 96:714-730. [PMID: 32237023 DOI: 10.1111/cbdd.13685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of the most grievous pandemic infectious diseases, tuberculosis (TB), with long-term morbidity and high mortality. The emergence of drug-resistant Mtb strains, and the co-infection with human immunodeficiency virus, challenges the current WHO-TB stewardship programs. The first-line anti-TB drugs, isoniazid (INH) and rifampicin (RIF), have become extensively obsolete in TB control from chromosomal mutations during the last decades. However, based on clinical trial statistics, the production of well-tolerated anti-TB drug(s) is miserably low. Alternately, semi-synthesis or structural modifications of first-line obsolete antitubercular drugs remain as the versatile approach for getting some potential medicines. The use of any suitable phytochemicals with INH in a hybrid formulation could be an ideal approach for the development of potent anti-TB drug(s). The primary objective of this review was to highlight and analyze available INH-phytochemical hybrid research works. The utilization of phytochemicals through chemical conjugation is a new trend toward the development of safer/non-toxic anti-TB drugs.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India.,Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
91
|
Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics (Basel) 2020; 9:antibiotics9040170. [PMID: 32290036 PMCID: PMC7235868 DOI: 10.3390/antibiotics9040170] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases that are caused by bacteria are an important cause of mortality and morbidity in all regions of the world. Bacterial drug resistance has grown in the last decades, but the rate of discovery of new antibiotics has steadily decreased. Therefore, the search for new effective antibacterial agents has become a top priority. The plant kingdom seems to be a deep well for searching for novel antimicrobial agents. This is due to the many attractive features of plants: they are readily available and cheap, extracts or compounds from plant sources often demonstrate high-level activity against pathogens, and they rarely have severe side effects. The huge variety of plant-derived compounds provides very diverse chemical structures that may supply both the novel mechanisms of antimicrobial action and provide us with new targets within the bacterial cell. In addition, the rapid development of modern biotechnologies opens up the way for obtaining bioactive compounds in environmentally friendly and low-toxic conditions. In this short review, we ask the question: do antibacterial agents derived from plants have a chance to become a panacea against infectious diseases in the "post-antibiotics era".
Collapse
Affiliation(s)
- Cyrill L. Gorlenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Herman Yu. Kiselev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Elena V. Budanova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.A.Z.J.); (L.N.I.); Tel.: +7-495-622-98-43 (A.A.Z.J.); +7-910-472-01-49 (L.N.I.)
| | - Larisa N. Ikryannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (C.L.G.); (H.Y.K.); (E.V.B.)
- Correspondence: (A.A.Z.J.); (L.N.I.); Tel.: +7-495-622-98-43 (A.A.Z.J.); +7-910-472-01-49 (L.N.I.)
| |
Collapse
|
92
|
Abstract
The control of tuberculosis (TB) is hampered by the emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, defined as resistant to at least isoniazid and rifampin, the two bactericidal drugs essential for the treatment of the disease. Due to the worldwide estimate of almost half a million incident cases of MDR/rifampin-resistant TB, it is important to continuously update the knowledge on the mechanisms involved in the development of this phenomenon. Clinical, biological and microbiological reasons account for the generation of resistance, including: (i) nonadherence of patients to their therapy, and/or errors of physicians in therapy management, (ii) complexity and poor vascularization of granulomatous lesions, which obstruct drug distribution to some sites, resulting in resistance development, (iii) intrinsic drug resistance of tubercle bacilli, (iv) formation of non-replicating, drug-tolerant bacilli inside the granulomas, (v) development of mutations in Mtb genes, which are the most important molecular mechanisms of resistance. This review provides a comprehensive overview of these issues, and releases up-dated information on the therapeutic strategies recently endorsed and recommended by the World Health Organization to facilitate the clinical and microbiological management of drug-resistant TB at the global level, with attention also to the most recent diagnostic methods.
Collapse
|
93
|
Islam MM, Tan Y, Hameed HMA, Liu Y, Chhotaray C, Cai X, Liu Z, Lu Z, Wang S, Cai X, Su B, Li X, Tan S, Liu J, Zhang T. Prevalence and molecular characterization of amikacin resistance among Mycobacterium tuberculosis clinical isolates from southern China. J Glob Antimicrob Resist 2020; 22:290-295. [PMID: 32142951 DOI: 10.1016/j.jgar.2020.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVES Amikacin is the only second-line injectable antituberculosis (anti-TB) drug still recommended for multidrug-resistant tuberculosis (MDR-TB) treatment when a short MDR-TB regimen is designed. Mutations in rrs and eis are reported to be associated with resistance to amikacin. In this study, we investigated the incidence of rrs, eis, tap and whiB7 mutations in amikacin-resistant Mycobacterium tuberculosis clinical isolates to find the proportion of different mutations related to amikacin resistance. METHODS A total of 395 clinical isolates of M. tuberculosis were used for phenotypic drug susceptibility testing (DST) to 10 drugs with the Löwenstein-Jensen (L-J) method. We sequenced rrs, eis, tap and whiB7 genes in 178 M. tuberculosis clinical isolates (89 amikacin-resistant isolates and 89 of 306 amikacin-susceptible isolates). RESULTS Our data showed that 22.53% (89/395) M. tuberculosis clinical isolates were resistant to amikacin. Of the 89 amikacin-resistant isolates, 89.89% (80/89) were MDR-TB, of which 12.36% (11/89) were pre-extensively drug-resistant TB (pre-XDR-TB) and 77.53% (69/89) were XDR-TB. The rrs mutations were found in 82% (73/89) in amikacin-resistant M. tuberculosis clinical isolates. The A1401G alteration in the rrs gene was the most dominant mutation (80.90%; 72/89). Five mutations were detected as new in rrs, tap and whiB7. Notably, 13.48% (12/89) amikacin-resistant isolates had no known mutation in these genes. CONCLUSIONS Our data reveal that the rrs mutation is a predominant molecular marker of amikacin resistance in southern China. Analysis of the rrs gene mutations will significantly reduce the time and cost to diagnose amikacin resistance in TB patients. Other unknown amikacin resistance mechanism(s) exist.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Xiaoyin Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Xingshan Cai
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.
| |
Collapse
|
94
|
Ivanchenko DA, Hrytsenko LM. In vitro synergy testing of prodigiosin in combination with inhibitors of cell wall synthesis against Mycobacterium smegmatis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell wall is not a target of currently used therapeutics as Mycobacterium are considered naturally resistant to most β-lactam antibiotics. Therefore, combinations of conventional antibiotics with antibiotic activity-enhancing compounds offer a productive treatment strategy and address the widespread emergence of antibiotic-resistant strains. The first area of research was the study of a comparative analysis of disk diffusion testing and the broth dilution method for evaluating the susceptibility of M. smegmatis to antimicrobial agents. A comparative analysis of the susceptibility to antimicrobial agents alone showed that M. smegmatis was the most susceptible to ceftriaxone and kanamycin, and moderately sensitive to vancomycin and prodigiosin. Compared to the susceptibility of the antibacterial combinations, the isolate was not susceptible to antibacterial combinations with prodigiosin in disk diffusion testing. The second area of research was the study of the synergic activity of prodigiosin of S. marcescens and inhibitors of cell wall synthesis manifested by their simultaneous effect on M. smegmatis. The greatest increase in the sensitivity of test-culture of mycobacteria occurred with ampicillin, benzylpenicillin, cephazolin and ceftriaxone in combination with prodigiosin of S. marcescens. The presented combination of antibiotics and prodigiosin reduce the required concentration of the antibiotic and by amplifying the effect of compounds inhibiting cell wall synthesis, thereby giving lower FICI values. These data indicate the possibility of using prodigiosin as a promising candidate for the development of "accompaniment-preparations" for antibiotics for the additional therapy of infectious diseases caused by Mycobacterium spp. and can suspend the likelihood of developing resistance to antibiotics.
The cell wall is not a target of currently used therapeutics as Mycobacterium are considered naturally resistant to most β-lactam antibiotics. Therefore, combinations of conventional antibiotics with antibiotic activity-enhancing compounds offer a productive treatment strategy and address the widespread emergence of antibiotic-resistant strains. The first area of research was the study of a comparative analysis of disk diffusion testing and the broth dilution method for evaluating the susceptibility of M. smegmatis to antimicrobial agents. A comparative analysis of the susceptibility to antimicrobial agents alone showed that M. smegmatis was the most susceptible to ceftriaxone and kanamycin, and moderately sensitive to vancomycin and prodigiosin. Compared to the susceptibility of the antibacterial combinations, the isolate was not susceptible to antibacterial combinations with prodigiosin in disk diffusion testing. The second area of research was the study of the synergic activity of prodigiosin of S. marcescens and inhibitors of cell wall synthesis manifested by their simultaneous effect on M. smegmatis. The greatest increase in the sensitivity of test-culture of mycobacteria occurred with ampicillin, benzylpenicillin, cephazolin and ceftriaxone in combination with prodigiosin of S. marcescens. The presented combination of antibiotics and prodigiosin reduce the required concentration of the antibiotic and by amplifying the effect of compounds inhibiting cell wall synthesis, thereby giving lower FICI values. These data indicate the possibility of using prodigiosin as a promising candidate for the development of "accompaniment-preparations" for antibiotics for the additional therapy of infectious diseases caused by Mycobacterium spp. and can suspend the likelihood of developing resistance to antibiotics.
Collapse
|
95
|
Desikan P, Panwalkar N, Chaudhuri S, Khan Z, Punde RP, Pauranik A, Mirza SB, Ranjan R, Anand S, Sachdeva KS. Burden of baseline resistance of Mycobacterium tuberculosis to fluoroquinolones and second-line injectables in central India. Trans R Soc Trop Med Hyg 2020; 114:249-254. [DOI: 10.1093/trstmh/trz121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Drug-resistant TB is a serious public health problem in India. Pre-existing resistance to fluoroquinolones (FQs) and second-line injectable drugs (SLIDs) in strains of Mycobacterium tuberculosis (MTB) resistant to rifampicin (RIF) and/or isoniazid (INH) contributes to treatment failures and consequent transmission of drug-resistant TB. A baseline assessment of resistance of MTB to FQs and SLIDs may help guide policies to further improve management of drug-resistant TB in India. This study aims to determine the prevalence of resistance to FQs and SLIDs among MTB strains having RIF and/or INH resistance in central India.
Method
A total of 1032 smear positive sputum samples were subjected to line probe assay (GenoType MTBDRsl version 2) to test for resistance to FQs and SLIDs, according to the integrated diagnostic algorithm of the revised national TB control programme.
Results
Of 1032 samples, 92 (8.91%) were not interpretable and hence excluded, 295 (31.38%) were resistant to FQs alone, 13 (1.38%) were resistant to SLIDs alone, 15 (1.59%) were resistant to both FQs as well as SLIDs and 617 (65.63%) were sensitive to both FQs and SLIDs. The most common mutations in gyrA and gyrB genes were observed at codons D94G and E540V, respectively. Mutations at codon A1401G in rrs genes and in the C-14 T region of eis genes were most frequently observed.
Conclusion
High levels of FQ resistance points towards indiscriminate use of this class of drugs. Regulation for judicial use of FQs is an urgent requirement.
Collapse
Affiliation(s)
- Prabha Desikan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Nikita Panwalkar
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Shreya Chaudhuri
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Zeba Khan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Ram Prakash Punde
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Ankur Pauranik
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Shaina Beg Mirza
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Rajeev Ranjan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | | | - K S Sachdeva
- Central Tuberculosis Division, Ministry of Health and Family Welfare, New Delhi-110011, India
| |
Collapse
|
96
|
Islam MM, Tan Y, Hameed HMA, Chhotaray C, Liu Z, Liu Y, Lu Z, Wang S, Cai X, Gao Y, Cai X, Guo L, Li X, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Phenotypic and Genotypic Characterization of Streptomycin-Resistant Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Southern China. Microb Drug Resist 2020; 26:766-775. [PMID: 31976809 DOI: 10.1089/mdr.2019.0245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptomycin (STR) is the first antibiotic used in the treatment of tuberculosis (TB) and the earliest antituberculosis drug with acquired resistance developed by Mycobacterium tuberculosis. The high prevalence of such resistance in many parts of the world limits its use for treating multidrug-resistant (MDR) TB. The aims of this study are to characterize of mutations in rpsL, rrs, and gidB genes in MDR M. tuberculosis isolates originating from southern China and to investigate possible relationship between mutations and strain genotypes for precise diagnosis and treatment. Sequences of rpsL, rrs, and gidB genes and the resistance profiles were analyzed for 218 MDR M. tuberculosis isolates. Our study showed that 68.35% of MDR M. tuberculosis isolates were resistant to STR and 89.91% of STR-resistant (STRR) isolates were Beijing lineage strains. Mutations were observed in STRR MDR M. tuberculosis isolates at the following rates: 72.48% in rpsL, 36.91% in rrs, and 15.44% in gidB. Compared with the phenotypic data, the combination of mutations in rpsL, rrs, and gidB has sensitivity and specificity of 96.64% and 100.00%, respectively. The most common mutations in STRR isolates were rpsL128,263 and rrs514,1401, of which rpsL128 showed association with Beijing lineage (p < 0.001). It is noteworthy that a1401g mutation was present in rrs, while MDR M. tuberculosis isolates were resistant to both STR and amikacin. Twenty two novel mutations were found in STRR isolates. These findings could be helpful to develop rapid molecular diagnostic methods and understand STR resistance in China for developing TB precision medicine and disturbance of drug-resistant TB transmission.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Xiaoyin Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Xingshan Cai
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Lingmin Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
97
|
Hameed HA, Tan Y, Islam MM, Lu Z, Chhotaray C, Wang S, Liu Z, Fang C, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Detection of Novel Gene Mutations Associated with Pyrazinamide Resistance in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Southern China. Infect Drug Resist 2020; 13:217-227. [PMID: 32158237 PMCID: PMC6986415 DOI: 10.2147/idr.s230774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Pyrazinamide (PZA) is a cornerstone of modern tuberculosis regimens. This study aimed to investigate the performance of genotypic testing of pncA + upstream region, rpsA, panD, Rv2783c, and clpC1 genes to add insights for more accurate molecular diagnosis of PZA-resistant (R) Mycobacterium tuberculosis. Methods Drug susceptibility testing, sequencing analysis of PZA-related genes including the entire operon of pncA (Rv2044c-pncA-Rv2042c) and PZase assay were performed for 448 M. tuberculosis clinical isolates. Results Our data showed that among 448 M. tuberculosis clinical isolates, 113 were MDR, 195 pre-XDR and 70 XDR TB, while the remaining 70 strains had other combinations of drug-resistance. A total of 60.04% (269/448) M. tuberculosis clinical isolates were resistant to PZA, of which 78/113 were MDR, 119/195 pre-XDR and 29/70 XDR TB strains. PZAR isolates have predominance (83.3%) of Beijing genotype. Genotypic characterization of Rv2044c-pncA-Rv2042c revealed novel nonsynonymous mutations in Rv2044c with negative PZase activity which led to confer PZAR. Compared with phenotypic data, 84.38% (227/269) PZAR strains with mutations in pncA + upstream region exhibited 83.64% sensitivity but the combined evaluation of the mutations in rpsA 2.60% (7/269), panD 1.48% (4/269), Rv2783c 1.11% (3/269) and Rv2044c 0.74% (2/269) increased the sensitivity to 89.59%. Fifty-seven novel mutations were identified in this study. Interestingly, a frameshift deletion (C-114del) in upstream of pncAwt nullified the effect of A-11G mutation and induced positive PZase activity, divergent from five PZase negative A-11G PZAR mutants. Twenty-six PZAR strains having wild-type-sequenced genes with positive or negative PZase suggest the existence of unknown resistance mechanisms. Conclusion Our study revealed that PZAR rate in MDR and pre-XDR TB was markedly higher in southern China. The concomitant evaluation of pncA + UFR, rpsA, panD, Rv2783c, and Rv2044c provides more dependable genotypic results of PZA resistance. Fifty-seven novel mutations/indels in this study may play a vital role as diagnostic markers. The upstream region of pncA and PZase regulation are valuable to explore the unknown mechanism of PZA-resistance.
Collapse
Affiliation(s)
- Hm Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
98
|
Hameed HMA, Tan Y, Islam MM, Guo L, Chhotaray C, Wang S, Liu Z, Gao Y, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Phenotypic and genotypic characterization of levofloxacin- and moxifloxacin-resistant Mycobacterium tuberculosis clinical isolates in southern China. J Thorac Dis 2019; 11:4613-4625. [PMID: 31903250 DOI: 10.21037/jtd.2019.11.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Levofloxacin (LVX) and Moxifloxacin (MXF) are the cornerstones for treatment of multidrug-resistant tuberculosis (MDR-TB). China is one of the highest MDR- and fluoroquinolones (FQ)-resistant TB burdens countries. DNA gyrase encoded by gyr genes is the main target of FQ in Mycobacterium tuberculosis (MTB). The prevalence and molecular characterization of LVX- and MXF-resistant MTB strains from southern China were examined in this study. Methods Drug susceptibility testing (DST) of 400 MTB clinical isolates was evaluated by proportion method on Löwenstein-Jensen (LJ) medium against ten drugs. The sequencing of entire gyrA and gyrB genes and multiplex PCR were performed to distinguish the prevalence of mutant types in Beijing and non-Beijing genotypes. Results Three hundred and twenty-one out of four hundred (80.25%) drug-resistant isolates (resistant > one drug) were categorized as 83/321 (25.80%) MDR, 174/321 (54.20%) pre-XDR and 64/321 (19.93%) XDR-MTB. Overall, 303/400 (75.75%) LVX- and 292/400 (73.00%) MXF-resistant (R) MTB strains were identified. Two hundred seventy-one out of three hundred and three (89.43%) resistant strains carried mutations in gyrA and 91/303 (30.03%) in gyrB. Interestingly, 18 novel mutations were detected in gyrA and gyrB genes. Mutations at (A90, D94) and (T500, G510, G512) frequently existed in QRDR(s) of gyrA and gyrB respectively in 286/400 (71.50%) LVXRMXFR strains. The novel mutations in- and out-side the QRDR of gyrA (L105R, A126E, M127K, D151T, V165A) and gyrB (D461H, N499S, G520A) increased the sensitivity and consistency of genotypic tests. Notably, 25 LVXRMXFR strains were found with unknown resistance mechanisms. Conclusions Mutations in QRDR(s) were concomitantly associated with Beijing and non-Beijing genotypes. The prevalence of resistance and cross-resistance between LVX and MXF in MTB isolates from southern China was immensely higher than other countries. Our valuable findings provide the substantial implications to improve the reliability of genotypic diagnostic tests relying on potential resistance conferring mutations in entire gyr genes.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Lingmin Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.,University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
99
|
Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 2019; 128:1547-1567. [PMID: 31595643 DOI: 10.1111/jam.14478] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) along with acquired immune deficiency syndrome and malaria rank among the top three fatal infectious diseases which pose threat to global public health, especially in middle and low income countries. TB caused by Mycobacterium tuberculosis (Mtb) is an airborne infectious disease and one-third of the world's population gets infected with TB leading to nearly 1·6 million deaths annually. TB drugs are administered in different combinations of four first-line drugs (rifampicin, isoniazid, pyrazinamide and ethambutol) which form the core of treatment regimens in the initial treatment phase of 6-9 months. Several reasons account for the failure of TB therapy such as (i) late diagnosis, (ii) lack of timely and proper administration of effective drugs, (iii) lower availability of less toxic, inexpensive and effective drugs, (iv) long treatment duration, (v) nonadherence to drug regimen and (vi) evolution of drug-resistant TB strains. Drug-resistant TB poses a significant challenge to TB therapy and control programs. In the background of worldwide emergence of 558 000 new TB cases with resistance to rifampicin in the year 2017 and of them, 82% becoming multidrug-resistant TB (MDR-TB), it is essential to continuously update the knowledge on the mechanisms and molecular basis for evolution of Mtb drug resistance. This narrative and traditional review summarizes the progress on the anti-tubercular agents, their mode of action and drug resistance mechanisms in Mtb. The aim of this review is to provide recent updates on drug resistance mechanisms, newly developed/repurposed anti-TB agents in pipeline and international recommendations to manage MDR-TB. It is based on recent literature and WHO guidelines and aims to facilitate better understanding of drug resistance for effective TB therapy and clinical management.
Collapse
Affiliation(s)
- R Singh
- AIRF & Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S P Dwivedi
- IFTM University, Moradabad, Uttar Pradesh, India
| | - U S Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - R Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - P Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - T Prasad
- AIRF & Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
100
|
Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev 2019; 40:263-292. [PMID: 31254295 DOI: 10.1002/med.21602] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.
Collapse
Affiliation(s)
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|