51
|
The Salivary Microbiota, Cytokines, and Metabolome in Patients with Ankylosing Spondylitis Are Altered and More Proinflammatory than Those in Healthy Controls. mSystems 2021; 6:e0117320. [PMID: 34156295 PMCID: PMC8269253 DOI: 10.1128/msystems.01173-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear but appears to be associated with heredity and the environment. The mouth links the external environment to the gut and lungs. In the present study, compared to that observed in healthy controls (HCs), AS saliva was depleted of Bacilli such as Streptococcus, enriched with Clostridia such as Veillonellaceae, and enriched with opportunistic pathogens from Proteobacteria such as Brucella spp. and Campylobacter concisus. AS saliva was enriched with 16 cytokines related to inflammation, such as soluble IL-6 receptor α (sIL-6Rα), interleukin 2 (IL-2), IL-10, IL-11, IL-12p40, IL-12p70, IL-20, IL-26, IL-27, IL-28A, IL-29, alpha 2 interferon (IFN-α2), IFN-β, and matrix metalloproteinase 3 (MMP-3). AS saliva was also enriched with hazardous compounds, such as cadaverine and putrescine. AS-altered salivary bacteria, compounds, and cytokines are closely linked with disease indicators. Oral cleaning reduced the levels of proinflammatory cytokines and hazardous compounds in AS saliva compared with HC saliva. AS saliva induced the production of more proinflammatory cytokines, such as IL-12p70 and IL-8, by THP-1 monocyte-derived macrophages, than did HC saliva. The results highlight the importance of salivary microbes, cytokines, and compounds in the development and treatment of AS and provide new ideas for the pathogenesis and treatment of AS. IMPORTANCE Ankylosing spondylitis (AS) affects as much as 0.32% of the population in some districts and causes work disability in one-third of these patients. Microbes are considered to play important roles in AS pathogenesis, and the mouth links the environment to the lungs and the gut. Our results showed that opportunistic pathogens such as Brucella and Campylobacter are enriched in the saliva of AS patients with ankylosing spondylitis. In addition, proinflammatory cytokines and hazardous materials such as putrescine were also enriched in the saliva of AS patients.[AQ1 sentence edit] Interestingly, the opportunistic pathogens and hazardous materials detected in the saliva of AS patients were associated with disease indexes. The saliva of AS patients was shown to induce immune cells to secrete proinflammatory cytokines in vitro. Reducing the levels of salivary microbes can significantly reduce the hazardous materials present in the saliva of AS patients. Our results provide a new perspective on the potential role of salivary microbes, cytokines, and hazardous compounds in the pathogenesis and treatment of AS.
Collapse
|
52
|
Howard KC, Gonzalez OA, Garneau-Tsodikova S. Porphyromonas gingivalis: where do we stand in our battle against this oral pathogen? RSC Med Chem 2021; 12:666-704. [PMID: 34124669 PMCID: PMC8152699 DOI: 10.1039/d0md00424c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontal diseases, such as gingivitis and periodontitis, are inflammatory diseases triggered by pathogenic bacteria that lead to damage of the soft tissue and bone supporting the teeth. Amongst the identified oral periodontopathogenic bacteria, Porphyromonas gingivalis is able to enhance oral dysbiosis, which is an imbalance in the beneficial commensal and periodontal pathogenic bacteria that induces chronic inflammation. Given the critical role of oral pathogenic bacteria like P. gingivalis in the pathogenesis of periodontitis, local and/or systemic antibacterial therapy has been suggested to treat this disease, especially in its severe or refractory forms. Nevertheless, the majority of the antibacterial agents currently used for the treatment of periodontal diseases are broad-spectrum, which harms beneficial bacterial species that are critical in health, inhibit the growth of pathogenic bacteria, contribute in protecting the periodontal tissues to damage and aid in its healing. Thus, the development of more effective and specific antibacterial agents is needed to control oral pathogens in a polymicrobial environment. The strategies for the development of novel antibacterial agents include natural product isolation as well as synthetic and semi-synthetic methodologies. This review presents an overview of the periodontal diseases gingivitis and periodontitis along with current antibacterial treatment options (i.e., classes of antibacterial agents and the mechanism(s) of resistance that hinder their usage) used in periodontal diseases that specifically target oral pathogens such as P. gingivalis. In addition, to help medicinal chemists gain a better understanding of potentially promising scaffolds, this review provides an in-depth coverage of the various families of small molecules that have been investigated as potential anti-P. gingivalis agents, including novel families of compounds, repositioned drugs, as well as natural products.
Collapse
Affiliation(s)
- Kaitlind C Howard
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA +1 859 218 1686
| | - Octavio A Gonzalez
- College of Dentistry, Center for Oral Health Research and Division of Periodontics, University of Kentucky Lexington KY 40536-0305 USA
| | - Sylvie Garneau-Tsodikova
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA +1 859 218 1686
| |
Collapse
|
53
|
Takahashi Y, Vaidya A, Kakizaki H. Campylobacter concisus as a pathogen of primary canaliculitis: a case report. Orbit 2021; 41:653-656. [PMID: 33938367 DOI: 10.1080/01676830.2021.1918180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A 73-year-old woman presented to our hospital with a 1-year history of epiphora associated with discharge on the left eye. On the first examination, there was a swelling in the medial part of the left lower eyelid associated with a cystic change along the lacrimal canaliculus. On digital compression, there was an expression of a yellow mucopurulent discharge from the left-lower punctum. A culture test of the discharge showed Campylobacter concisus (1+), Gemella morbillorum (1+), Fusobacterium nucleatum (1+), and Porphyromonas gingivalis (2+). Complete removal of the canaliculoliths was done with a curette. Dacryoendoscopic examination showed a substantially dilated horizontal canaliculus accompanied with granulation and fibrous tissues on the left-lower side. An ofloxacin ointment-coated bicanalicular tube was inserted. Also, an oral antibiotic was administered for 14 days after surgery. At a 3-month follow-up, the patient did not have any symptoms associated with canaliculitis.
Collapse
Affiliation(s)
- Yasuhiro Takahashi
- Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Aric Vaidya
- Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Japan.,Rapti Eye Hospital, Dang, Nepal
| | - Hirohiko Kakizaki
- Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
54
|
Tam PCK, Leong LEX, Theodossi M, Gordon DL. Intra-abdominal infection with Campylobacter curvus: case report and review of the literature. Access Microbiol 2021; 3:000227. [PMID: 34151177 PMCID: PMC8208764 DOI: 10.1099/acmi.0.000227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Campylobacter curvus is a Gram-negative bacteria associated with periodontal disease in humans. Cases of extra-oral manifestations of infection are rare with only six reported cases of extra-oral infection including this report that have been identified in the current literature. Molecular methods are generally used to identify C. curvus while optimal antibiotic choice and duration to treat extra-oral infections for this pathogen is unknown. Case presentation A 63-year-old male with a background history of alcoholic pancreatitis presented with fever and malaise who was found to have radiological intra-abdominal collections. Drainage of these collections identified C. curvus via matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometry with high probability and identification further confirmed by whole-genome sequencing. Antibiotic susceptibility testing to erythromycin and ciprofloxacin of C. curvus was performed using E-test diffusion methods along with investigation for the presence of resistance genes. The patient was treated with intravenous piperacillin-tazobactam followed by ciprofloxacin for 4 weeks total with good clinical recovery. Conclusions Extra-oral manifestations with the pathogen C. curvus are rare with few cases described in the literature. There is minimal data on susceptibility patterns, optimal antibiotic treatment and duration. Treatment of extraintestinal C. curvus infections in humans should encompass both adequate source control and antibiotic therapy.
Collapse
Affiliation(s)
- Patrick C K Tam
- Departments of Microbiology and Infectious Diseases, Flinders Medical Centre, Adelaide, South Australia, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lex E X Leong
- SA Pathology, Adelaide, South Australia, Australia.,Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Microbiome Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Maria Theodossi
- Departments of Microbiology and Infectious Diseases, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - David L Gordon
- Departments of Microbiology and Infectious Diseases, Flinders Medical Centre, Adelaide, South Australia, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
55
|
Wirth R, Maróti G, Lipták L, Mester M, Al Ayoubi A, Pap B, Madléna M, Minárovits J, Kovács KL. Microbiomes in supragingival biofilms and saliva of adolescents with gingivitis and gingival health. Oral Dis 2021; 28:2000-2014. [PMID: 33876475 DOI: 10.1111/odi.13883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Important alterations exist in the microbiomes of supragingival biofilm and saliva samples from adolescent patients developing induced or spontaneous gingivitis relative to healthy controls. These and the relationships to dental health are not fully understood yet. SUBJECTS AND METHODS Supragingival biofilm samples (n = 36) were collected from the teeth of 9 adolescents with gingivitis induced by orthodontic appliances, as well as dental plaques (n = 40) from 10 adolescents with spontaneous gingivitis, in addition to similar samples (n = 36) from 9 healthy controls. The bacterial metagenomes were analyzed by 16S rRNA gene amplicon sequencing. Salivary microbiomes of the same persons were characterized by shotgun metagenome sequencing. The data sets were examined using advanced bioinformatics workflows and two reference databases. RESULTS The composition and diversity of bacterial communities did not differ extensively among the three study groups. Nevertheless, the relative abundances of the genera Fusobacterium, Akkermansia, Treponema, and Campylobacter were prominently higher in gingivitis patients versus controls. In contrast, the genera Lautropia, Kingella, Neisseria, Actinomyces, and Rothia were significantly more abundant in controls than in either of the two gingivitis groups. CONCLUSIONS The abundance pattern of certain taxa rather than individual strains shows characteristic features of potential diagnostic value. Stringent bioinformatics treatment of the sequencing data is mandatory to avoid unintentional misinterpretations.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Lídia Lipták
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Mónika Mester
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Alaa Al Ayoubi
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Melinda Madléna
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
56
|
Ishaq AR, Manzoor M, Hussain A, Altaf J, Rehman SU, Javed Z, Afzal I, Noor A, Noor F. Prospect of microbial food borne diseases in Pakistan: a review. BRAZ J BIOL 2021; 81:940-953. [PMID: 33605364 DOI: 10.1590/1519-6984.232466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Nowadays food borne illness is most common in people due to their epidemic nature. These diseases affect the human digestive system through bacteria, viruses and parasites. The agents of illness are transmitted in our body through various types of food items, water and uncooked. Pathogens show drastic changes in immunosuppressant people. This review gives general insights to harmful microbial life. Pakistan is a developed country and because of its improper food management, a lot of gastrointestinal problems are noted in many patients. Bacteria are most common agents to spread diarrhoea, villi infection, constipation and dysenteric disease in human and induce the rejection of organ transplant. Enhancement of their lifestyle, properly cooked food should be used and to overcome the outbreak of the diseases.
Collapse
Affiliation(s)
- A R Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - M Manzoor
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - J Altaf
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - S Ur Rehman
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Z Javed
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - I Afzal
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Noor
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - F Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
57
|
Byrd KM, Gulati AS. The "Gum-Gut" Axis in Inflammatory Bowel Diseases: A Hypothesis-Driven Review of Associations and Advances. Front Immunol 2021; 12:620124. [PMID: 33679761 PMCID: PMC7933581 DOI: 10.3389/fimmu.2021.620124] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
In modern medicine, the oral cavity has often been viewed as a passive conduit to the upper airways and gastrointestinal tract; however, its connection to the rest of the body has been increasingly explored over the last 40 years. For several diseases, the periodontium and gingiva are at the center of this oral-systemic link. Over 50 systemic conditions have been specifically associated with gingival and periodontal inflammation, including inflammatory bowel diseases (IBD), which have recently been elevated from simple "associations" to elegant, mechanistic investigations. IBD and periodontitis have been reported to impact each other's progression via a bidirectional relationship whereby chronic oral or intestinal inflammation can impact the other; however, the precise mechanisms for how this occurs remain unclear. Classically, the etiology of gingival inflammation (gingivitis) is oral microbial dysbiosis in the subgingival crevice that can lead to destructive periodontal disease (periodontitis); however, the current understanding of gingival involvement in IBD is that it may represent a separate disease entity from classical gingivitis, arising from mechanisms related to systemic inflammatory activation of niche-resident immune cells. Synthesizing available evidence, we hypothesize that once established, IBD can be driven by microbiomial and inflammatory changes originating specifically from the gingival niche through saliva, thereby worsening IBD outcomes and thus perpetuating a vicious cycle. In this review, we introduce the concept of the "gum-gut axis" as a framework for examining this reciprocal relationship between the periodontium and the gastrointestinal tract. To support and explore this gum-gut axis, we 1) provide a narrative review of historical studies reporting gingival and periodontal manifestations in IBD, 2) describe the current understanding and advances for the gum-gut axis, and 3) underscore the importance of collaborative treatment and research plans between oral and GI practitioners to benefit this patient population.
Collapse
Affiliation(s)
- Kevin M. Byrd
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, United States
| | - Ajay S. Gulati
- Division of Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
58
|
Song H, Kim J, Guk JH, Kim WH, Nam H, Suh JG, Seong JK, Cho S. Metagenomic Analysis of the Gut Microbiota of Wild Mice, a Newly Identified Reservoir of Campylobacter. Front Cell Infect Microbiol 2021; 10:596149. [PMID: 33604305 PMCID: PMC7884769 DOI: 10.3389/fcimb.2020.596149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter, the most common etiologic agent of zoonotic gastroenteritis in humans, is present in many reservoirs including livestock animals, wildlife, soil, and water. Previously, we reported a novel Campylobacter jejuni strain SCJK02 (MLST ST-8388) from the gut of wild mice (Micromys minutus) using culture-dependent methods. However, due to fastidious growth conditions and the presence of viable but non-culturable Campylobacter spp., it is unclear whether M. minutus is a Campylobacter reservoir. This study aimed to: 1) determine the distribution and proportion of Campylobacter spp. in the gut microbiota of wild mice using culture-independent methods and 2) investigate the gut microbiota of wild mice and the relationship of Campylobacter spp. with other gut microbes. The gut microbiota of 38 wild mice captured from perilla fields in Korea and without any clinical symptoms (18 M. minutus and 20 Mus musculus) were analyzed. Metagenomic analysis showed that 77.8% (14 of 18) of the captured M. minutus harbored Campylobacter spp. (0.24–32.92%) in the gut metagenome, whereas none of the captured M. musculus carried Campylobacter spp. in their guts. Notably, 75% (6 of 8) of M. minutus determined to be Campylobacter-negative using culture-dependent methods showed a high proportion of Campylobacter through metagenome analysis. The results of metagenome analysis and the absence of clinical symptoms suggest that Campylobacter may be a component of the normal gut flora of wild M. minutus. Furthermore, linear discriminant analysis (LDA) showed that Campylobacter was the most enriched genus in the gut microbiota of M. minutus (LDA score, 5.37), whereas Lactobacillus was the most enriched genus in M. musculus (LDA score, −5.96). The differences in the presence of Campylobacter between the two species of wild mice may be attributed to the differential abundance of Campylobacter and Lactobacillus in their respective gut microbiota. In conclusion, the results indicate that wild M. minutus may serve as a potential Campylobacter reservoir. This study presents the first metagenomics analysis of the M. minutus gut microbiota to explore its possible role as an environmental Campylobacter reservoir and provides a basis for future studies using culture-independent methods to determine the role of environmental reservoirs in Campylobacter transmission.
Collapse
Affiliation(s)
- Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Junhyung Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hajin Nam
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Je Kyung Seong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
59
|
Hlashwayo DF, Sigaúque B, Noormahomed EV, Afonso SMS, Mandomando IM, Bila CG. A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS One 2021; 16:e0245951. [PMID: 33503068 PMCID: PMC7840040 DOI: 10.1371/journal.pone.0245951] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Campylobacter spp. are zoonotic bacteria that cause gastroenteritis in humans worldwide, whose main symptom is diarrhea. In certain cases, extra intestinal manifestations may occur, such as Guillain Barré syndrome. The bacteria cause severe diarrhea mostly in children and in immunocompromised individuals. This review aims to address the prevalence of Campylobacter spp. in humans in sub-Saharan Africa. It also aims to understand the impact of HIV in the prevalence, as well as to report data on antibiotic resistance and propose research priorities. METHODS We followed PRISMA guidelines to find studies on the occurrence of Campylobacter spp. in humans in all countries from sub-Saharan Africa. Studies published between 2000 and 2020 were searched in PubMed, Cochrane Library, CINAHL, African Index Medicus, African Journals Online, Google Scholar and Science Direct. We have conducted a random-effect meta-analysis and calculated the proportion of resistant isolates to different antibiotics. RESULTS AND DISCUSSION We found 77 studies that described such occurrence in humans in 20 out of 53 sub-Saharan African countries. Campylobacter jejuni was the most prevalent species. Pooled prevalence was 9.9% (CI: 8.4%-11.6%). No major variations within the different sub-regions were found. Most studies reported Campylobacter spp. as the cause of diarrhea, mainly in children. Some studies reported the bacteria as a possible etiologic agent of acute flaccid paralysis and urinary tract infection. Campylobacter spp. presented a higher pooled prevalence in HIV infected patients, although not statistically significant. High proportions of resistant strains were reported for many antibiotics, including erythromycin and tetracycline. CONCLUSION Campylobacter spp. occur in sub-Saharan Africa, although information is scarce or inexistent for many countries. Research priorities should include investigation of the understudied species; extra intestinal manifestations; the impact of HIV infection and associated risk factors. Control strategies should be reinforced to contain the spread of this pathogen and drug resistance.
Collapse
Affiliation(s)
- Delfina F. Hlashwayo
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
- Faculty of Veterinary Science, Eduardo Mondlane University, Maputo, Mozambique
| | - Betuel Sigaúque
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Emília V. Noormahomed
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Infectious Disease Division, Department of Medicine, University of California, San Diego, San Diego, CA, United States of America
- Mozambique Institute for Health Education and Research (MIHER), Maputo, Mozambique
| | - Sónia M. S. Afonso
- Faculty of Veterinary Science, Eduardo Mondlane University, Maputo, Mozambique
| | - Inácio M. Mandomando
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Marracuene, Mozambique
| | - Custódio G. Bila
- Faculty of Veterinary Science, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
60
|
Aagaard MEY, Kirk KF, Nielsen H, Nielsen HL. High genetic diversity in Campylobacter concisus isolates from patients with microscopic colitis. Gut Pathog 2021; 13:3. [PMID: 33436056 PMCID: PMC7805038 DOI: 10.1186/s13099-020-00397-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
The emerging intestinal pathogen Campylobacter concisus has been associated with prolonged diarrhoea and classic inflammatory bowel diseases (IBD) and was recently also linked with microscopic colitis (MC). Previous reports have observed a high genetic diversity within isolates from diarrhoeic and IBD patients and from healthy controls (HC), and division of isolates into two major genomospecies (GS1 and GS2). The aim of this study was to describe genetic diversity in 80 recently cultivated MC biopsy and faecal isolates of C. concisus by multi-locus sequence typing (MLST); and to compare the phylogenetic relatedness to 102 isolates from diarrhoeic and IBD patients and HCs by k-mer-based distance estimation. MLST revealed high genetic diversity in MC isolates with 72 novel sequence types. K-mer divided MC isolates into two distinct clusters (cluster 1 n = 21, cluster 2 n = 49), with a significantly higher prevalence of cluster 2 isolates in biopsies than in faeces, p = 0.009. K-mer divided the 182 isolates into two major phylogenetic clusters: cluster 1 (GS1 isolates) and cluster 2 (GS2 isolates), which further differentiated into three subgroups. Cluster 1 and the three cluster 2 subgroups were each distinctive in mean genome size and GC count. Isolates from all disease phenotypes were present in cluster 1 and cluster 2 subgroup 2 and 3, whereas cluster 2 subgroup 1 only contained isolates restricted to patients with ulcerative colitis (n = 10) and HC (n = 4).
Collapse
Affiliation(s)
- Marta Emilie Yde Aagaard
- Department of Infectious Diseases, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark.
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| |
Collapse
|
61
|
Zhang X, Hoffman KL, Wei P, Elhor Gbito KY, Joseph R, Li F, Scheet P, Chang S, Petrosino JF, Daniel CR. Baseline Oral Microbiome and All-cancer Incidence in a Cohort of Nonsmoking Mexican American Women. Cancer Prev Res (Phila) 2020; 14:383-392. [PMID: 33277317 DOI: 10.1158/1940-6207.capr-20-0405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Given the increasing evidence that the oral microbiome is involved in obesity, diabetes, and cancer risk, we investigated baseline oral microbiota profiles in relation to all-cancer incidence among nonsmoking women enrolled in a Texas cohort of first- and second-generation immigrants of Mexican origin. We characterized the 16Sv4 rDNA microbiome in oral mouthwash samples collected at baseline from a representative subset of 305 nonsmoking women, ages 20-75 years. We evaluated within- (alpha) and between-sample (beta) diversity by incident cancer status and applied linear discriminant analysis (LDA) effect size analysis to assess differentially abundant taxa. Diversity and candidate taxa in relation to all-cancer incidence were evaluated in multivariable-adjusted Cox regression models. Over 8.8 median years of follow-up, 31 incident cancer cases were identified and verified. Advanced age, greater acculturation, and cardiometabolic risk factors were associated with all-cancer incidence. Higher alpha diversity (age-adjusted P difference < 0.01) and distinct biological communities (P difference = 0.002) were observed by incident cancer status. Each unit increase in the Shannon diversity index yielded >8-fold increase in all-cancer and obesity-related cancer risk [multivariable-adjusted HR (95% confidence interval), 8.11 (3.14-20.94) and 10.72 (3.30-34.84), respectively] with similar findings for the inverse Simpson index. Streptococcus was enriched among women who did not develop cancer, while Fusobacterium, Prevotella, Mogibacterium, Campylobacter, Lachnoanaerobaculum, Dialister, and Atopobium were higher among women who developed cancer (LDA score ≥ 3; q-value < 0.01). This initial study of oral microbiota and overall cancer risk in nonsmoking Mexican American women suggests the readily accessible oral microbiota as a promising biomarker. PREVENTION RELEVANCE: Mexican American women suffer a disproportionate burden of chronic health conditions that increase cancer risk. Few investigations of the microbiome, a key determinant of host health, have been conducted among this group. Oral microbiota profiles may provide early and accessible cancer biomarker data on invasive bacteria or community disruptions.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Dan L Duncan Comprehensive Cancer Center, Epidemiology & Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Peng Wei
- Division of Cancer Prevention and Population Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kplola Y Elhor Gbito
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reji Joseph
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fangyu Li
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shine Chang
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Carrie R Daniel
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
62
|
Charting Extracellular Transcriptomes in The Human Biofluid RNA Atlas. Cell Rep 2020; 33:108552. [PMID: 33378673 DOI: 10.1016/j.celrep.2020.108552] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. Where most studies focus on blood-derived fluids, other biofluids may be more informative. We present an atlas of messenger, circular, and small RNA transcriptomes of a comprehensive collection of 20 human biofluids. By means of synthetic spike-in controls, we compare RNA content across biofluids, revealing a 10,000-fold difference in concentration. The circular RNA fraction is increased in most biofluids compared to tissues. Each biofluid transcriptome is enriched for RNA molecules derived from specific tissues and cell types. Our atlas enables an informed selection of the most relevant biofluid to monitor particular diseases. To verify the biomarker potential in these biofluids, four validation cohorts representing a broad spectrum of diseases were profiled, revealing numerous differential RNAs between case and control subjects. Spike-normalized data are publicly available in the R2 web portal for further exploration.
Collapse
|
63
|
Schiaffino F, Kosek MN. Intestinal and Extra-Intestinal Manifestations of Campylobacter in the Immunocompromised Host. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
64
|
Masila NM, Ross KE, Gardner MG, Whiley H. Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians). Pathogens 2020; 9:pathogens9100799. [PMID: 32998205 PMCID: PMC7601876 DOI: 10.3390/pathogens9100799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
Campylobacter spp. is one of the most widespread infectious diseases of veterinary and public health significance. Globally, the incidence of campylobacteriosis has increased over the last decade in both developing and developed countries. Squamates (lizards, snakes and amphisbaenians) are a potential reservoir and source of transmission of campylobacteriosis to humans. This systematic review examined studies from the last 20 years that have reported squamate-associated human campylobacteriosis. It was found that C. fetus subsp. testudinum and C. fetus subsp. fetus were the most common species responsible for human campylobacteriosis from a squamate host. The common squamate hosts identified included bearded dragons (Pogona vitticeps), green iguana (Iguana iguana), western beaked gecko (Rhynchoedura ornate) and blotched blue-tongued skink (Tiliqua nigrolutea). People with underlying chronic illnesses, the immunocompromised and the elderly were identified as the most vulnerable population. Exposure to pet squamates, wild animals, consumption of reptilian cuisines and cross contamination with untreated water were risk factors associated with Campylobacter infections. Proper hand hygiene practices, responsible pet ownership, ‘One Health’ education and awareness on zoonotic diseases will help reduce the public health risks arising from Campylobacter exposure through squamates. Continued surveillance using molecular diagnostic methods will also enhance detection and response to squamate-linked campylobacteriosis.
Collapse
Affiliation(s)
- Nicodemus M Masila
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC), P.O. BOX 66290, Westlands, Nairobi 00800, Kenya
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
65
|
Yang G, Yan Y, Zhang L, Ruan Z, Hu X, Zhang S, Li X. Porcine circovirus type 2 (PCV2) and Campylobacter infection induce diarrhea in piglets: Microbial dysbiosis and intestinal disorder. ACTA ACUST UNITED AC 2020; 6:362-371. [PMID: 33005770 PMCID: PMC7503086 DOI: 10.1016/j.aninu.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Diarrhea is considered to be associated with microbial dysbiosis caused by infection of pathogens but poorly understood. We herein characterized the colonic microbiota of diarrheal early-weaning piglets infected with porcine circovirus type 2 (PCV2) and Campylobacter. Campylobacter infection significantly decreased species richness and Shannon diversity index of colonic microbiota together with a significant increase in the proportion of Campylobacter and Enterobacteriaceae, whereas no significant difference on the above indexes was observed in piglets infected with PCV2 compared with healthy piglets. PCV2 and Campylobacter infection could disturb the homeostasis of colonic microbiota through deterioration of ecological network within microbial community, and specially Campylobacter performed as a module hub in ecological networks. The microbial dysbiosis caused metabolic dysfunction and led to a remarkable reduction in production of short chain fatty acids, following by a higher pH level in colon cavity. Campylobacter infection disturbed the function of colonic tract barrier observed in terms of significant lower relative expression of claudin-1, occluding, and zonula occludens protein-1 genes, and PCV2 infection induced intestinal inflammation together with a higher permeability of colon. Generally, these results suggested that PCV2 and Campylobacter infection could induce microbial dysbiosis and metabolic dysfunction, and cause intestinal disorder, all of which finally were associated to contribute to the diarrhea of early-weaning piglets.
Collapse
Affiliation(s)
- Gang Yang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yali Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Zhang
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| | - Xiaozhen Li
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| |
Collapse
|
66
|
Clinical Detection of Chronic Rhinosinusitis through Next-Generation Sequencing of the Oral Microbiota. Microorganisms 2020; 8:microorganisms8060959. [PMID: 32604855 PMCID: PMC7356624 DOI: 10.3390/microorganisms8060959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is the chronic inflammation of the sinus cavities of the upper respiratory tract, which can be caused by a disrupted microbiome. However, the role of the oral microbiome in CRS is not well understood. Polymicrobial and anaerobic infections of CRS frequently increased the difficulty of cultured and antibiotic therapy. This study aimed to elucidate the patterns and clinical feasibility of the oral microbiome in CRS diagnosis. Matched saliva and nasal swabs were collected from 18 CRS patients and 37 saliva specimens from normal volunteers were collected for 16S rRNA sequencing. The α-diversity of the saliva displayed no significant difference between control and CRS patients, whereas the β-diversity was significantly different (p = 0.004). Taxonomic indices demonstrated that Veillonella dispar, Rothia mucilaginosa, and Porphyromonas endodontalis were enriched, while Campylobacter and Cardiobacterium were reduced in the saliva of CRS patients. These microbial markers could significantly distinguish CRS patients from control (AUC = 0.939). It is noted that the 16S rRNA results of the nasal swab were consistent with the nasopharynx aerobic culture, and additionally detected multiple pathogens in CRS patients. In summary, these results indicated these oral microbiomes may provide a novel signal for CRS detection and that NGS may be an alternative approach for CRS diagnosis.
Collapse
|
67
|
Aydin F, Abay M, Şahin O, Abay S, Karakaya E, Müştak İB, Müştak HK, Gümüşsoy KS, Kayman T. Species distribution, genetic diversity and antimicrobial susceptibility of Campylobacter isolates recovered from the preputial cavity of healthy rams in Turkey. J Appl Microbiol 2020; 129:1173-1184. [PMID: 32416023 DOI: 10.1111/jam.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022]
Abstract
AIMS Campylobacter sp. are important causes of reproductive disease in ruminants worldwide. Although healthy bulls are well-known carriers for infection of cows, the role of rams as a potential source for infecting ewes is unclear. This study aimed to determine prevalence, species distribution, genetic diversity and antimicrobial susceptibility profiles of Campylobacter sp. isolated from the preputial cavity of healthy rams. METHODS AND RESULTS The material of this prospective study comprised 191 swab samples taken from the preputial cavity of healthy rams. Enrichment and membrane filtration were employed for the isolation of Campylobacter. Presumptive isolates were confirmed as Campylobacter by phenotypic and molecular tests. 16S rRNA gene sequence analysis was used for the definitive identification of the isolates at species level, and genotyping was performed using pulsed-field gel electrophoresis (PFGE). The susceptibility of the Campylobacter sp. isolates to various antibiotics was determined by the disk diffusion test. In all, 27 of the 191 (14·13%) swab samples were found to be positive for Campylobacter sp. (28 isolates were recovered in total). Per phenotypic and genotypic analyses, one isolate was identified as Campylobacter mucosalis and the remaining 27 isolates were identified as Campylobacter sputorum bv. faecalis. The PFGE analysis of the C. sputorum biovar faecalis isolates produced 17 clusters and 24 different pulsotypes, indicating high genetic heterogeneity. All 28 isolates were found to be susceptible to all of the antibiotics tested. CONCLUSIONS Healthy rams may be an important reservoir of different Campylobacter species in the preputium. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated for the first time that healthy rams can carry different Campylobacter sp. including genetically diverse C. sputorum bv. faecalis and C. mucosalis in the preputial cavity. Further investigation on the potential implication of this finding on sheep reproductive health (e.g. infectious infertility, and abortion) and overall epidemiology of Campylobacter may be warranted.
Collapse
Affiliation(s)
- F Aydin
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - M Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - O Şahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - S Abay
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - E Karakaya
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - İ B Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - H K Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - K S Gümüşsoy
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - T Kayman
- Medical Microbiology Clinic, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
68
|
Steve M D, Lindsey B C, Byung Soo Y, Parth J P, David A J. Microbiome and Gastroesophageal Disease: Pathogenesis and Implications for Therapy. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.acgh.1001018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
69
|
Terefe Y, Deblais L, Ghanem M, Helmy YA, Mummed B, Chen D, Singh N, Ahyong V, Kalantar K, Yimer G, Yousuf Hassen J, Mohammed A, McKune SL, Manary MJ, Ordiz MI, Gebreyes W, Havelaar AH, Rajashekara G. Co-occurrence of Campylobacter Species in Children From Eastern Ethiopia, and Their Association With Environmental Enteric Dysfunction, Diarrhea, and Host Microbiome. Front Public Health 2020; 8:99. [PMID: 32351922 PMCID: PMC7174729 DOI: 10.3389/fpubh.2020.00099] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
High Campylobacter prevalence during early childhood has been associated with stunting and environmental enteric dysfunction (EED), especially in low resource settings. This study assessed the prevalence, diversity, abundance, and co-occurrence of Campylobacter spp. in stools from children in a rural area of eastern Ethiopia and their association with microbiome, diarrhea, and EED in children. Stool samples (n = 100) were collected from randomly selected children (age range: 360-498 days) in five kebeles in Haramaya District, Ethiopia. Diarrhea, compromised gut permeability, and gut inflammation were observed in 48, 45, and 57% of children, respectively. Campylobacter prevalence and species diversity were assessed using PCR and meta-total RNA sequencing (MeTRS). The prevalence of Campylobacter spp. in the children's stools was 50% (41-60%) by PCR and 88% (80-93.6%) by MeTRS (P < 0.01). Further, seven Campylobacter species (Campylobacter jejuni, Campylobacter upsaliensis, Campylobacter hyointestinalis, Campylobacter coli, Campylobacter sp. RM6137, uncultured Campylobacter sp., and Campylobacter sp. RM12175) were detected by MeTRS in at least 40% of children stools in high abundance (>1.76-log read per million per positive stool sample). Four clusters of Campylobacter species (5-12 species per cluster) co-occurred in the stool samples, suggesting that Campylobacter colonization of children may have occurred through multiple reservoirs or from a reservoir in which several Campylobacter species may co-inhabit. No associations between Campylobacter spp., EED, and diarrhea were detected in this cross-sectional study; however, characteristic microbiome profiles were identified based on the prevalence of Campylobacter spp., EED severity, and diarrhea. Forty-seven bacterial species were correlated with Campylobacter, and 13 of them also correlated with gut permeability, gut inflammation and/or EED severity. Forty-nine species not correlated with Campylobacter were correlated with gut permeability, gut inflammation, EED severity and/or diarrhea. This study demonstrated that (1) in addition to C. jejuni and C. coli, multiple non-thermophilic Campylobacter spp. (i.e., Campylobacter hyointestinalis, Campylobacter fetus, and Campylobacter concisus) were frequently detected in the children's stools and (2) the Campylobacter, gut permeability, gut inflammation, EED severity, and diarrhea were associated with characteristic microbiome composition. Additional spatial and longitudinal studies are needed to identify environmental reservoirs and sources of infection of children with disparate Campylobacter species and to better define their associations with EED in low-income countries.
Collapse
Affiliation(s)
- Yitagele Terefe
- The Ohio State University, Columbus, OH, United States
- Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
- Global One Health Initiative, The Ohio State University, Addis Ababa, Ethiopia
| | - Loïc Deblais
- The Ohio State University, Columbus, OH, United States
- Global One Health Initiative, The Ohio State University, Addis Ababa, Ethiopia
| | - Mostafa Ghanem
- The Ohio State University, Columbus, OH, United States
- Global One Health Initiative, The Ohio State University, Addis Ababa, Ethiopia
| | | | - Bahar Mummed
- Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
| | - Dehao Chen
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Nitya Singh
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | | | - Getnet Yimer
- The Ohio State University, Columbus, OH, United States
- Global One Health Initiative, The Ohio State University, Addis Ababa, Ethiopia
| | - Jemal Yousuf Hassen
- Department of Rural Development and Agricultural Extension, Haramaya University, Dire Dawa, Ethiopia
| | | | - Sarah L. McKune
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Mark J. Manary
- Department of Pediatrics, Washington University, St. Louis, MI, United States
| | - Maria Isabel Ordiz
- Department of Pediatrics, Washington University, St. Louis, MI, United States
| | - Wondwossen Gebreyes
- The Ohio State University, Columbus, OH, United States
- Global One Health Initiative, The Ohio State University, Addis Ababa, Ethiopia
| | - Arie H. Havelaar
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Gireesh Rajashekara
- The Ohio State University, Columbus, OH, United States
- Global One Health Initiative, The Ohio State University, Addis Ababa, Ethiopia
| |
Collapse
|
70
|
Yeow M, Liu F, Ma R, Williams TJ, Riordan SM, Zhang L. Analyses of energy metabolism and stress defence provide insights into Campylobacter concisus growth and pathogenicity. Gut Pathog 2020; 12:13. [PMID: 32165925 PMCID: PMC7059363 DOI: 10.1186/s13099-020-00349-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/15/2020] [Indexed: 02/08/2023] Open
Abstract
Campylobacter concisus is an emerging enteric pathogen that is associated with inflammatory bowel disease. Previous studies demonstrated that C. concisus is non-saccharolytic and hydrogen gas (H2) is a critical factor for C. concisus growth. In order to understand the molecular basis of the non-saccharolytic and H2-dependent nature of C. concisus growth, in this study we examined the pathways involving energy metabolism and oxidative stress defence in C. concisus. Bioinformatic analysis of C. concisus genomes in comparison with the well-studied enteric pathogen Campylobacter jejuni was performed. This study found that C. concisus lacks a number of key enzymes in glycolysis, including glucokinase and phosphofructokinase, and the oxidative pentose phosphate pathway. C. concisus has an incomplete tricarboxylic acid cycle, with no identifiable succinyl-CoA synthase or fumarate hydratase. C. concisus was inferred to use fewer amino acids and have fewer candidate substrates as electron donors and acceptors compared to C. jejuni. The addition of DMSO or fumarate to media resulted in significantly increased growth of C. concisus in the presence of H2 as an electron donor, demonstrating that both can be used as electron acceptors. Catalase, an essential enzyme for oxidative stress defence in C. jejuni, and various nitrosative stress enzymes, were not found in the C. concisus genome. Overall, C. concisus is inferred to have a non-saccharolytic metabolism in which H2 is central to energy conservation, and a narrow selection of carboxylic acids and amino acids can be utilised as organic substrates. In conclusion, this study provides a molecular basis for the non-saccharolytic and hydrogen-dependent nature of C. concisus energy metabolism pathways, which provides insights into the growth requirements and pathogenicity of this species.
Collapse
Affiliation(s)
- Melissa Yeow
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Timothy J. Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| |
Collapse
|
71
|
Urvashi, Sharma D, Sharma S, Pal V, Lal R, Patil P, Grover V, Korpole S. Bacterial Populations in Subgingival Plaque Under Healthy and Diseased Conditions: Genomic Insights into Oral Adaptation Strategies by Lactobacillus sp. Strain DISK7. Indian J Microbiol 2020; 60:78-86. [PMID: 32089577 PMCID: PMC7000561 DOI: 10.1007/s12088-019-00828-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Human oral cavity is a complex habitat comprising about 700 microbial species and represents the most complex microbiota after gastrointestinal tract. In fact, oral microbiota directly influences health, metabolism and immune responses of the host. Metagenomic studies based on 16S rDNA profiling has reported the inhabitant bacteria mainly belonging to phyla Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, Spirochaetes and Bacteroidetes. Therefore, it is essential to isolate these strains and characterize in detail to understand their interaction. We have isolated strains from subgingival plaque from healthy to diseased individuals and the molecular characterization based on 16S rRNA gene sequence analysis showed predominance of Firmicutes, specifically members of the genus Streptococcus. Species of Lactobacillus and Veillonella were also found in significant number, which are considered as secondary colonizers. However, the population of Lactobacillus was decreased in diseased conditions with the increase in opportunistic pathogenic strains pertaining to genera like Campylobacter, Neisseria, Enterobacter, Pseudomonas and Morococcus. Further, we have also made an attempt to gain genomic insights on adaptation features and interactions of an isolate, Lactobacillus sp. strain DISK7 by performing whole genome sequencing and analysis, subsequently biochemical characterization to explore its functional and metabolic properties for the development as probiotic agent.
Collapse
Affiliation(s)
- Urvashi
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Deepika Sharma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Shikha Sharma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Vijay Pal
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| | - Prabhu Patil
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Vishakha Grover
- Dr. HS Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| |
Collapse
|
72
|
Igwaran A, Okoh AI. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019; 5:e02814. [PMID: 31763476 PMCID: PMC6861584 DOI: 10.1016/j.heliyon.2019.e02814] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/07/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Campylobacter species are among the leading cause of bacterial foodborne and waterborne infections. In addition, Campylobacter is one of the major causative agent of bacterial gastrointestinal infections and the rise in the incidence of Campylobacter infections have been reported worldwide. Also, the emergence of some Campylobacter species as one of the main causative agent of diarrhea and the propensity of these bacteria species to resist the actions of antimicrobial agents; position them as a serious threat to the public health. This paper reviews Campylobacter pathogenicity, infections, isolation and diagnosis, their reservoirs, transmission pathways, epidemiology of Campylobacter outbreaks, prevention and treatment option, antibiotics resistance and control of antibiotics use.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
73
|
Calibrated interdental brushing for the prevention of periodontal pathogens infection in young adults - a randomized controlled clinical trial. Sci Rep 2019; 9:15127. [PMID: 31641199 PMCID: PMC6805917 DOI: 10.1038/s41598-019-51938-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Periodontal disease is clearly correlated with systemic disease. The presence of periodontal pathogens in interdental spaces in young, healthy adults is a strong indicator of the need to introduce daily interdental prophylaxis. Twenty-five subjects (aged 18–35 years), diagnosticated clinically as periodontally healthy, were enrolled in this study. One hundred interdental sites were included. Among these sites, 50 “test” sites were cleaned daily with calibrated interdental brushes (IDBs), whereas the other 50 sites were not cleaned and considered “controls”. The interdental biofilm at these interdental sites was collected at the beginning of the study (basal) and at 1 week, 2 weeks, 3 weeks, 4 weeks, and 3 months. Real-time polymerase chain reaction (PCR) methodology was used to quantify (i) 19 periodontal bacteria, including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, and (ii) total bacteria. In the test sites, the quantity of total bacteria decreased over time with the use of IDBs. The bacteria from the red and orange Socransky complexes, which are associated with periodontal disease, significantly decreased in the test sites but not in the control sites. Bacteria from the yellow, and purple Socransky complexes, which are associated with periodontal health, increased significantly in both groups whereas bacteria from the blue Socransky complex increased significantly only in the test sites. Furthermore, at basal, 66% of test sites and 68% of control sites bled during interdental brushing. These percentages decreased by 85% in 3 months for the test sites and by 27% in the control sites. In conclusion, the daily use of calibrated IDBs can reduce periodontal pathogens, reestablish symbiotic microbiota and, decrease interdental inflammation in interdental sites of healthy young adults.
Collapse
|
74
|
Acharya A, Chen T, Chan Y, Watt RM, Jin L, Mattheos N. Species-Level Salivary Microbial Indicators of Well-Resolved Periodontitis: A Preliminary Investigation. Front Cell Infect Microbiol 2019; 9:347. [PMID: 31681625 PMCID: PMC6797555 DOI: 10.3389/fcimb.2019.00347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/27/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: To profile the salivary microbiomes of a Hong Kong Chinese cohort at a species-level resolution and determine species that discriminated clinically resolved periodontitis from periodontally healthy cases. Methods: Salivary microbiomes of 35 Hong Kong Chinese subjects' under routine supportive dental care were analyzed. All subjects had been treated for any dental caries or periodontal disease with all restorative treatment completed at least 1 year ago and had ≤3 residual pockets. They were categorized based on a past diagnosis of chronic periodontitis into "healthy" (H) or "periodontitis" (P) categories. Unstimulated whole saliva was collected, genomic DNA was isolated, and high throughput Illumina MiSeq sequencing of 16S rRNA (V3-V4) gene amplicons was performed. The sequences were assigned taxonomy at the species level by using a BLASTN based algorithm that used a combined reference database of HOMD RefSeqV14.51, HOMD RefSeqExtended V1.1 and GreenGeneGold. Species-level OTUs were subjected to downstream analysis in QIIME and R. For P and H group comparisons, community diversity measures were compared, differentially abundant species were determined using DESeq2, and disease indicator species were determined using multi-level pattern analysis within the R package "indicspecies." Results: P subjects were significantly older than H subjects (p = 0.003) but not significantly different in their BOP scores (p = 0.82). No significant differences were noted in alpha diversity measures after adjusting for age, gender, and BOP or in the beta diversity estimates. Four species; Treponema sp. oral taxon 237, TM7 sp. Oral Taxon A56, Prevotella sp. oral taxon 314, Prevotella sp. oral taxon 304, and Capnocytophaga leadbetteri were significantly more abundant in P than in the H group. Indicator species analysis showed 7 significant indicators species of P group. Fusobacterium sp oral taxon 370 was the sole positive indicator of P group (positive predictive value = 0.9, p = 0.04). Significant indicators of the H category were Leptotrichia buccalis, Corynebacterium matruchotii, Leptotrichia hofstadii, and Streptococcus intermedius. Conclusion: This exploratory study showed salivary microbial species could discriminate treated, well-maintained chronic periodontitis from healthy controls with similar gingival inflammation levels. The findings suggest that certain salivary microbiome features may identify periodontitis-susceptible individuals despite clinical disease resolution.
Collapse
Affiliation(s)
- Aneesha Acharya
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, United States
| | - Yuki Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Rory M Watt
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Nikos Mattheos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
75
|
The role of Campylobacter spp. in chronic enteropathy in dogs. ACTA VET BRNO 2019. [DOI: 10.2754/avb201988030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to identifyCampylobacterspecies in a group of patients with chronic gastrointestinal problems and to investigate the relationship between the presence ofCampylobacterspp. in stool samples and as well as the severity of chronic enteropathy. Twenty-six dogs with chronic gastrointestinal problems were included in the prospective study. Each research subject had their stomach, duodenum, ileum, and colon examined endoscopically. A histopathological examination of the obtained biopsy samples was then performed, excluding other potential diseases. Stool samples were collected and then examined for the presence ofCampylobacterspp. To evaluate the relationship betweenCampylobacterspp. occurrence and the intensity of chronic enteropathy, patients were divided into two groups; animals in the first group presented with no to mild inflammation whereas research subjects in the second group suffered from moderate to severe inflammation. Subsequently, the patients were divided based on positive or negative test results forCampylobacterspp. cultures. No significant relationship between the presence ofCampylobacterspp. in stool samples and chronic enteropathy was found. In contrast to other previously published papers, our study showed a lower occurrence ofCampylobacter upsaliensis.
Collapse
|
76
|
Schiaffino F, Platts-Mills J, Kosek MN. A One Health approach to prevention, treatment, and control of campylobacteriosis. Curr Opin Infect Dis 2019; 32:453-460. [PMID: 31305492 DOI: 10.1097/qco.0000000000000570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To review recent findings regarding the control and treatment of campylobacteriosis. RECENT FINDINGS The application of improved diagnostics has led to an upward shift in the attributable burden of Campylobacter infections, in both the United States and Europe as well as in resource-poor settings. Increased focus has brought a fundamental feature of campylobacteriosis -- the ability to cause relapsing disease back into focus, and expanding data on antimicrobial resistance has lead from a switch in first-line therapy for severe diarrhea from quinolones to azithromycin in most contexts, even as evidence of expanding macrolide resistance emerges. SUMMARY Campylobacter spp. infection is a common infection worldwide. Antibiotic-resistant Campylobacter spp. has become an emerging threat with the increase in industrial poultry production, as well as the broad use of antibiotics in both animals and humans.
Collapse
Affiliation(s)
| | - James Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
77
|
Nielsen HL, Dalager-Pedersen M, Nielsen H. Risk of inflammatory bowel disease after Campylobacter jejuni and Campylobacter concisus infection: a population-based cohort study. Scand J Gastroenterol 2019; 54:265-272. [PMID: 30905214 DOI: 10.1080/00365521.2019.1578406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: In this population-based cohort study, we aimed to examine the risk of IBD following a positive stool culture with Campylobacter jejuni or Campylobacter concisus, as well as following culture-negative stool testing. Materials and methods: Patients with a first-time positive stool culture with C. jejuni or C. concisus, as well as negative stool testing, from 2009 through 2013 in North Denmark Region, Denmark, were identified. Patients diagnosed with IBD during follow-up (to 1 March 2018) were identified using national registries. For each case, we selected ten population comparisons matched by age, gender, and calendar-time. Results: We identified 1693 patients with C. jejuni, 910 C. concisus-positive patients, and 11,383 patients with culture-negative stools. During the first year of follow-up C. jejuni-positive patients had higher risk of IBD (HR 2.2, 95% CI 1.3-3.7) compared to population comparisons, but not after exclusion of the first year (HR 1.1, 95% CI 0.5-2.3). Campylobacter concisus-positive patients and culture-negative patients had similar risk of IBD (HR 12.9, 95% CI 7.2-22.9 and HR 8.7, 95% CI 7.5-10.2), during the first year, which decreased to (HR 3.3, 95% CI 1.3-8.5 and HR 3.2, 95% CI 2.6-4.0) after exclusion of the first year. Conclusions: This study does not support exposure of C. jejuni or C. concisus infection as a causal trigger in subsequent development of IBD, since culture-negative patients had similar risk for IBD on long term follow-up. Additional studies including C. concisus exposures for an evaluation of the specific risk of IBD are needed.
Collapse
Affiliation(s)
- Hans Linde Nielsen
- a Department of Clinical Microbiology , Aalborg University Hospital , Aalborg , Denmark.,b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Michael Dalager-Pedersen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| | - Henrik Nielsen
- b Department of Clinical Medicine , Aalborg University , Aalborg , Denmark.,c Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| |
Collapse
|
78
|
Tilmanne A, Kandet Yattara HM, Herpol M, Vlaes L, Retore P, Quach C, Vandenberg O, Hallin M, Martiny D. Multi-step optimization of the filtration method for the isolation of Campylobacter species from stool samples. Eur J Clin Microbiol Infect Dis 2019; 38:859-864. [PMID: 30715666 DOI: 10.1007/s10096-019-03479-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/03/2019] [Indexed: 01/22/2023]
Abstract
The filtration method (FM) is the most effective isolation technique for Epsilobacteriaceae from stool samples. FM's different adaptations make it difficult to compare data between studies. This study was performed in three phases to optimize FM from a routine laboratory perspective. In July-September 2014 (part I), FM was performed on Mueller-Hinton agar containing 5% sheep blood and Columbia agar containing 5% sheep blood. In July 2016 (part II), FM was performed using 0.60-μm pore size polycarbonate filters (0.6-PC filter) and 0.45-μm pore size cellulose acetate filters (0.45-AC filter); in January 2018 (part III), the addition of hydrogen to incubators was studied. On 1146 stools analyzed in part I, the positive samples that showed no growth on the Butzler medium (n = 22/72, 30.6%) had improved growth of Epsilobacteriaceae when using the Columbia instead of the Mueller-Hinton medium (21/22 strains vs. 11/22, p < 0.05). In part II, on 718 stools, 91 strains grew with FM (12.7%), more with 0.6-PC filter (90/91) than with 0.45-AC filter (44/91) (p < 0.05). In part III, 578 stools were cultured, 98 Epsilobacteriaceae strains grew with FM, and 7% hydrogen finding significantly more Epsilobacteriaceae than without hydrogen (90/98, 91.8%, vs. 72/98, 73.5%; p < 0.05). The use of a Columbia medium containing 5% sheep blood with 0.6-PC filters incubated at 37 °C in a 7% hydrogen-enriched atmosphere led to an almost fourfold increase in the isolation rate of Epsilobacteriaceae among the studied combinations. Reference centers for Campylobacter should use standardized protocols to enable the comparison of prevalence in space and time.
Collapse
Affiliation(s)
- Anne Tilmanne
- Division of Infection Prevention and Control, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium. .,Division of Pediatric Infectious Diseases, CHU Sainte Justine, Montreal, Quebec, Canada.
| | - Helga Marisca Kandet Yattara
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margaux Herpol
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium.,National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
| | - Linda Vlaes
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium.,National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
| | - Patricia Retore
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium.,National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
| | - Caroline Quach
- Division of Pediatric Infectious Diseases, CHU Sainte Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectious Diseases & Immunology, Université de Montréal, Montreal, Canada
| | - Olivier Vandenberg
- National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium.,Innovation and Business Development Unit, LHUB-ULB, Pole Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.,Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Hallin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium.,National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium.,Faculté de Médecine et Pharmacie, Université de Mons (UMONS), Mons, Belgium
| |
Collapse
|
79
|
Hagemann JB, Haverkamp S, Grüner B, Kuchenbauer F, Essig A. Pulmonary Campylobacter concisus infection in an immunocompromised patient with underlying mucormycosis. Int J Infect Dis 2018; 76:45-47. [PMID: 30201509 DOI: 10.1016/j.ijid.2018.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022] Open
Abstract
Campylobacter concisus is a rarely encountered agent of human infection. The first isolation of C. concisus from a pulmonary abscess in an immunocompromised patient who underwent allogeneic stem cell transplantation is reported here. This unusual case demonstrates the pathogenic potential of this bacterium and outlines species-immanent difficulties in gaining a reliable diagnosis. Molecular methods were a cornerstone for definite identification of the organism grown on anaerobic culture from surgically excised tissue. Antimicrobial susceptibility testing revealed unusual quinolone and macrolide resistance, and therefore antimicrobial therapy was based on β-lactam antibiotics.
Collapse
Affiliation(s)
- Jürgen Benjamin Hagemann
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Stephanie Haverkamp
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Beate Grüner
- Department of Internal Medicine III, Comprehensive Infectious Diseases Centre, University Hospital of Ulm, Ulm, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Andreas Essig
- Institute of Medical Microbiology and Hygiene, University Hospital of Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| |
Collapse
|