51
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
52
|
Cantini L, Pecci F, Merloni F, Lanese A, Lenci E, Paoloni F, Aerts JG, Berardi R. Old but gold: the role of drug combinations in improving response to immune check-point inhibitors in thoracic malignancies beyond NSCLC. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:1-25. [PMID: 36046087 PMCID: PMC9400728 DOI: 10.37349/etat.2021.00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) in non-oncogene addicted non-small cell lung cancer (NSCLC) has revolutionized the treatment scenario and led to a meaningful improvement in patient prognosis. Disappointingly, the success of ICI therapy in NSCLC has not been fully replicated in other thoracic malignancies as small cell lung cancer (SCLC), malignant pleural mesothelioma (MPM), and thymic epithelial tumors (TETs), due to the peculiar biological features of these disease and to the difficulties in the conduction of well-designed, biomarker-driven clinical trials. Therefore, combination strategies of ICIs plus conventional therapies (either chemotherapy, alternative ICIs or targeted agents) have been implemented. Although first approvals of ICI therapy have been recently granted in SCLC and MPM (in combination with chemotherapy and different ICIs), results remain somewhat modest and limited to a small proportion of patients. This work reviews the trial results of ICI therapy in mesothelioma, SCLC, and TETs and discusses the potential of combining ICIs with old drugs.
Collapse
Affiliation(s)
- Luca Cantini
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| | - Federica Pecci
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| | - Filippo Merloni
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| | - Andrea Lanese
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| | - Edoardo Lenci
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| | - Francesco Paoloni
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| | - Joachim G.J.V. Aerts
- Department of Pulmonary Medicine, Erasmus MC, 3015 CE Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | - Rossana Berardi
- Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy
| |
Collapse
|
53
|
Perniola R, Fierabracci A, Falorni A. Autoimmune Addison's Disease as Part of the Autoimmune Polyglandular Syndrome Type 1: Historical Overview and Current Evidence. Front Immunol 2021; 12:606860. [PMID: 33717087 PMCID: PMC7953157 DOI: 10.3389/fimmu.2021.606860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The autoimmune polyglandular syndrome type 1 (APS1) is caused by pathogenic variants of the autoimmune regulator (AIRE) gene, located in the chromosomal region 21q22.3. The related protein, AIRE, enhances thymic self-representation and immune self-tolerance by localization to chromatin and anchorage to multimolecular complexes involved in the initiation and post-initiation events of tissue-specific antigen-encoding gene transcription. Once synthesized, the self-antigens are presented to, and cause deletion of, the self-reactive thymocyte clones. The clinical diagnosis of APS1 is based on the classic triad idiopathic hypoparathyroidism (HPT)-chronic mucocutaneous candidiasis-autoimmune Addison's disease (AAD), though new criteria based on early non-endocrine manifestations have been proposed. HPT is in most cases the first endocrine component of the syndrome; however, APS1-associated AAD has received the most accurate biochemical, clinical, and immunological characterization. Here is a comprehensive review of the studies on APS1-associated AAD from initial case reports to the most recent scientific findings.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics-Neonatal Intensive Care, V. Fazzi Hospital, ASL LE, Lecce, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Falorni
- Section of Internal Medicine and Endocrinological and Metabolic Sciences, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
54
|
Santamaria JC, Borelli A, Irla M. Regulatory T Cell Heterogeneity in the Thymus: Impact on Their Functional Activities. Front Immunol 2021; 12:643153. [PMID: 33643324 PMCID: PMC7904894 DOI: 10.3389/fimmu.2021.643153] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Foxp3+ regulatory T cells (Treg) maintain the integrity of the organism by preventing excessive immune responses. These cells protect against autoimmune diseases but are also important regulators of other immune responses including inflammation, allergy, infection, and tumors. Furthermore, they exert non-immune functions such as tissue repair and regeneration. In the periphery, Foxp3+ Treg have emerged as a highly heterogeneous cell population with distinct molecular and functional properties. Foxp3+ Treg mainly develop within the thymus where they receive instructive signals for their differentiation. Recent studies have revealed that thymic Treg are also heterogeneous with two distinct precursors that give rise to mature Foxp3+ Treg exhibiting non-overlapping regulatory activities characterized by a differential ability to control different types of autoimmune reactions. Furthermore, the thymic Treg cell pool is not only composed of newly developing Treg, but also contain a large fraction of recirculating peripheral cells. Here, we review the two pathways of thymic Treg cell differentiation and their potential impact on Treg activity in the periphery. We also summarize our current knowledge on recirculating peripheral Treg in the thymus.
Collapse
Affiliation(s)
- Jérémy C Santamaria
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Alexia Borelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
55
|
GWAS for autoimmune Addison's disease identifies multiple risk loci and highlights AIRE in disease susceptibility. Nat Commun 2021; 12:959. [PMID: 33574239 PMCID: PMC7878795 DOI: 10.1038/s41467-021-21015-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune Addison's disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10-8). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR = 3.4 (2.7-4.3), P = 9.0 × 10-25) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35-41% of heritability (h2).
Collapse
|
56
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
57
|
Li JH, Wei TT, Guo L, Cao JH, Feng YK, Guo SN, Liu GH, Ding Y, Chai YR. Curcumin protects thymus against D-galactose-induced senescence in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:411-420. [PMID: 32686020 DOI: 10.1007/s00210-020-01945-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Senescence-related decline of thymus affects immune function in the elderly population and contributes to the prevalence of many relevant diseases like cancer, autoimmune diseases, and other chronic diseases. In this study, we investigated the therapeutic effects of curcumin, an agent that could counter aging, and explored its optimal intake and the alteration of autoimmune regulator (Aire) after curcumin treatment in the D-galactose (D-gal)-induced accelerated aging mice. ICR mice were intraperitoneally injected with D-gal for 8 weeks to establish the accelerated aging model and given curcumin with 50, 100, and 200 mg/kg body weight per day by gavage, respectively, for 6 weeks. It indicated that the D-gal-treated mice developed structural changes in the thymi compared with the control group without D-gal and curcumin treatment. As the supplements of curcumin, it resulted in a restoration of the normal thymic anatomy with an increase of proliferating cells and a reduction of apoptotic cells in the thymi of the D-gal-induced aging model mice. Curcumin administration could also expand the expression level of Aire from mRNA level and protein level. The current study demonstrated that curcumin could ameliorate senescence-related thymus involution via upregulating Aire expression, suggesting that curcumin can rejuvenate senescence-associated alterations of thymus induced by D-gal accumulation.
Collapse
Affiliation(s)
- Jie-Han Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Ting-Ting Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Li Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Jia-Hui Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Yuan-Kang Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Shu-Ning Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Guo-Hong Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
58
|
Abstract
The conventional perception asserts that immunology is the science of ‘discrimination’ between self and non-self. This concept is however no longer tenable as effector cells of the adaptive immune system are first conditioned to be tolerant to the body’s own antigens, collectively known as self until now. Only then attain these effectors the responsiveness to non-self. The acquisition of this essential state of tolerance to self occurs for T cells in the thymus, the last major organ of our body that revealed its intricate function in health and disease. The ‘thymus’ as an anatomical notion was first notably documented in Ancient Greece although our present understanding of the organ’s functions was only deciphered commencing in the 1960s. In the late 1980s, the thymus was identified as the site where clones of cells reactive to self, termed ‘forbidden’ thymocytes, are physically depleted as the result of a process now known as negative selection. The recognition of this mechanism further contributed to the belief that the central rationale of immunology as a science lies in the distinction between self and non-self. This review will discuss the evidence that the thymus serves as a unique lymphoid organ able to instruct T cells to recognize and be tolerant to harmless self before adopting the capacity to defend the body against potentially injurious non-self-antigens presented in the context of different challenges from infections to exposure to malignant cells. The emerging insight into the thymus’ cardinal functions now also provides an opportunity to exploit this knowledge to develop novel strategies that specifically prevent or even treat organ-specific autoimmune diseases.
Collapse
|
59
|
Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, Anderson MS, Steinmetz LM. Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. eLife 2020; 9:60188. [PMID: 33226342 PMCID: PMC7771965 DOI: 10.7554/elife.60188] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) play a critical role in central immune tolerance by mediating negative selection of autoreactive T cells through the collective expression of the peripheral self-antigen compartment, including tissue-specific antigens (TSAs). Recent work has shown that gene-expression patterns within the mTEC compartment are heterogenous and include multiple differentiated cell states. To further define mTEC development and medullary epithelial lineage relationships, we combined lineage tracing and recovery from transient in vivo mTEC ablation with single-cell RNA-sequencing in Mus musculus. The combination of bioinformatic and experimental approaches revealed a non-stem transit-amplifying population of cycling mTECs that preceded Aire expression. We propose a branching model of mTEC development wherein a heterogeneous pool of transit-amplifying cells gives rise to Aire- and Ccl21a-expressing mTEC subsets. We further use experimental techniques to show that within the Aire-expressing developmental branch, TSA expression peaked as Aire expression decreased, implying Aire expression must be established before TSA expression can occur. Collectively, these data provide a roadmap of mTEC development and demonstrate the power of combinatorial approaches leveraging both in vivo models and high-dimensional datasets. Specialized cells in the immune system known as T cells protect the body from infection by destroying disease-causing microbes, such as bacteria or viruses. T cells use proteins on their surface called receptors to stick to infectious microbes and remove them from the body. Some newly developed T-cells, however, contain receptors that recognize and bind to cells that belong in the body. If these faulty T cells are released, they can attack healthy tissues and cause an autoimmune disease. After a new T cell is developed, it gets carried to a gland in the chest known as the thymus. Cells in the thymus called mTECs screen T cells for receptors that may bind to the body’s tissues. mTECs do this by presenting T cells with proteins that are commonly found on the surface of healthy cells in the body. If a T cell recognizes any of these ‘tissue specific proteins’, it is destroyed or given a new role in the body. Some faulty T cells, however, still manage to evade detection. One way to uncover why this might happen is to investigate how mTECs develop. Previous work showed that mTECs transition through various stages before reaching their final form. However, the order in which these events occur remained unclear. To gain a better understanding of these developmental steps, Wells, Miller et al. extracted mTECs from the thymus of mice and analyzed the genetic make-up of individual cells. This uncovered a missing link in mTEC development: a new type of cell that is the immediate predecessor of the final mTEC. These ‘predecessor’ cells were actively growing, highlighting that mTECs can be constantly generated in the body. By probing the genes that generate tissue-specific proteins in mTECs, Wells, Miller et al. revealed that these proteins were only produced for short periods and in the late stages of mTEC development. These findings contribute to our understanding of how mTECs develop to screen T cells. Mapping these developmental stages will make it easier to identify when faulty T cells are able to evade mTECs. This will lead to earlier detection of autoimmune diseases which could result in better treatments.
Collapse
Affiliation(s)
- Kristen L Wells
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Corey N Miller
- Diabetes Center, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Andreas R Gschwind
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, United States
| | - Jonah D Phipps
- Diabetes Center, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Lars M Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, United States.,Stanford Genome Technology Center, Stanford University, Palo Alto, United States.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
60
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
61
|
Yuen CA, Rezania K, Park DM, Reder AT. Asymptomatic brainstem lesions and pachymeningeal enhancement after anti-PD-1 therapy. Immunotherapy 2020; 13:11-17. [PMID: 33023359 DOI: 10.2217/imt-2020-0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurological immune-related adverse events (irAEs) are rare toxicities that occur following immune checkpoint inhibitor therapy. We propose that patients with thymic malignancies and graft-versus-host disease (GVHD) are predisposed to irAEs. We present two asymptomatic patients, one with thymoma and another with GVHD, who developed abnormal brain MRIs after treatment with programmed cell death protein 1 inhibitors. The first patient, with thymic cancer and thymoma, developed pontine enhancing MRI lesions following treatment with pembrolizumab. The second patient, with prior GVHD, developed pachymeningeal enhancement following treatment with nivolumab. IrAEs with abnormal MRI studies, despite asymptomatology, have significant impact on the treatment strategy for these patients.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kourosh Rezania
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Deric M Park
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Anthony T Reder
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
62
|
Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat Rev Rheumatol 2020; 16:628-644. [PMID: 33009519 DOI: 10.1038/s41584-020-0503-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
In autoimmune rheumatic diseases, oestrogens can stimulate certain immune responses (including effects on B cells and innate immunity), but can also have dose-related anti-inflammatory effects on T cells, macrophages and other immune cells. By contrast, androgens and progesterone have predominantly immunosuppressive and anti-inflammatory effects. Hormone replacement therapies and oral contraception (and also pregnancy) enhance or decrease the severity of autoimmune rheumatic diseases at a genetic or epigenetic level. Serum androgen concentrations are often low in men and in women with autoimmune rheumatic diseases, suggesting that androgen-like compounds might be a promising therapeutic approach. However, androgen-to-oestrogen conversion (known as intracrinology) is enhanced in inflamed tissues, such as those present in patients with autoimmune rheumatic diseases. In addition, it is becoming evident that the gut microbiota differs between the sexes (known as the microgenderome) and leads to sex-dependent genetic and epigenetic changes in gastrointestinal inflammation, systemic immunity and, potentially, susceptibility to autoimmune or inflammatory rheumatic diseases. Future clinical research needs to focus on the therapeutic use of androgens and progestins or their downstream signalling cascades and on new oestrogenic compounds such as tissue-selective oestrogen complex to modulate altered immune responses.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine DIMI, University of Genova, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
63
|
Uddin MN, Yao Y, Manley K, Lawrence DA. Development, phenotypes of immune cells in BTBR T +Itpr3 tf/J mice. Cell Immunol 2020; 358:104223. [PMID: 33137646 DOI: 10.1016/j.cellimm.2020.104223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by a lack of social interaction, decreased verbal and non-verbal communication skills, and stereotyped repetitive behavior. There is strong evidence that a dysregulated immune response may influence neurodevelopment and thus may have a role in the development of ASD. This study focuses on the characterization of immune cell phenotypes in the BTBR T+Itpr3tf/J (BTBR) mouse strain, a widely used animal model for autism research. Our study demonstrated that BTBR mice have a different immune profile compared to C57BL/6J (B6) mice, which do not display ASD-like characteristics. Thymic cells of BTBR mice have more single positive (SP) CD4+ and CD8+ T cells and fewer double positive (DP) T cells than B6 mice. The development of T cells is increased in BTBR mice with regard to the double negative (DN4) population being much higher in BTBR mice. The spleens and blood of BTBR mice also have more T helper type 1 (Th1), T helper type 2 (Th2) and T regulatory (Treg) cells compared to B6 mice. Aire expression in the thymus and spleen of BTBR mice compared to B6 mice was equivalent and lower, respectively. The mature natural killer (NK) innate immune cell population in blood and spleen is lower in BTBR than B6 mice; NK cell development is blocked prior to the double positive (DN) CD11b+CD27+ stage in BTBR mice. Since BTBR mice have more CD4+ T cells and elevated numbers of Th1 (T-bet+) and Th2 (GATA3+) cells, their low defense against pathogen may be explained by the lower number of NK cells and the significantly lower Th1 to Th2 ratio. The elevated number of plasma cells and autoantibodies of BTBR mice may be due to less presence and function of splenic AIRE.
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Yunyi Yao
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; University at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
64
|
Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front Immunol 2020; 11:1074. [PMID: 32587589 PMCID: PMC7297979 DOI: 10.3389/fimmu.2020.01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The thymus, a primary lymphoid organ, provides a complex environment essential for the generation of the T-cell repertoire. Thymic alterations occur during life either in the context of thymic involution upon aging or the pathophysiological context of Myasthenia Gravis (MG). These changes involve complicated regulatory networks, in which microRNAs (miRNAs) are key players. Here, we analyzed the role of miRNAs in thymocyte maturation and differentiation sustained by thymic epithelial cells. We compared data from the literature regarding the role of mouse thymic miRNAs and original data obtained from a human thymic miRnome study. We identified a set of highly expressed miRNAs defined as ThymiRs and investigated miRNA expression in infants as compared to adults to determine those associated with human thymic involution. Thymic changes are also frequently observed in MG, an autoimmune disease which results in the production of anti-acetylcholine receptor (AChR) antibodies that lead to muscle weaknesses. Alterations such as thymoma in late-onset MG patients and hyperplasia with ectopic germinal centers (GCs) in early-onset (EOMG) patients are found. Thymic miRNA expression has been studied in AChR-MG patients both in thymoma-associated MG (TAMG) and EOMG, and their function through their mRNA targets investigated. Most of the dysregulated thymic miRNAs in EOMG are associated with GC development, such as miR-7, miR-24, miR-139, miR-143, miR-145, miR-146, miR-150, miR-452, miR-548 or thymic inflammation, such as miR-125b, miR-146, or miR-29. Understanding these pathways may provide therapeutic targets or biomarkers of disease manifestations.
Collapse
Affiliation(s)
- Mélanie A Cron
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Émilie Guillochon
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
65
|
Oliveira EH, Assis AF, Speck-Hernandez CA, Duarte MJ, Passos GA. Aire Gene Influences the Length of the 3' UTR of mRNAs in Medullary Thymic Epithelial Cells. Front Immunol 2020; 11:1039. [PMID: 32547551 PMCID: PMC7270294 DOI: 10.3389/fimmu.2020.01039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Aire is a transcriptional controller in medullary thymic epithelial cells (mTECs) modulating a set of peripheral tissue antigens (PTAs) and non-PTA mRNAs as well as miRNAs. Even miRNAs exerting posttranscriptional control of mRNAs in mTECs, the composition of miRNA-mRNA networks may differ. Under reduction in Aire expression, networks exhibited greater miRNA diversity controlling mRNAs. Variations in the number of 3'UTR binding sites of Aire-dependent mRNAs may represent a crucial factor that influence the miRNA interaction. To test this hypothesis, we analyzed through bioinformatics the length of 3'UTRs of a large set of Aire-dependent mRNAs. The data were obtained from existing RNA-seq of mTECs of wild type or Aire-knockout (KO) mice. We used computational algorithms as FASTQC, STAR and HTSEQ for sequence alignment and counting reads, DESEQ2 for the differential expression, 3USS for the alternative 3'UTRs and TAPAS for the alternative polyadenylation sites. We identified 152 differentially expressed mRNAs between these samples comprising those that encode PTAs as well as transcription regulators. In Aire KO mTECs, most of these mRNAs featured an increase in the length of their 3'UTRs originating additional miRNA binding sites and new miRNA controllers. Results from the in silico analysis were statistically significant and the predicted miRNA-mRNA interactions were thermodynamically stable. Even with no in vivo or in vitro experiments, they were adequate to show that lack of Aire in mTECs might favor the downregulation of PTA mRNAs and transcription regulators via miRNA control. This could unbalance the overall transcriptional activity in mTECs and thus the self-representation.
Collapse
Affiliation(s)
- Ernna H. Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Cesar A. Speck-Hernandez
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Max Jordan Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Geraldo A. Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, Brazil
| |
Collapse
|
66
|
Virakul S, Somparn P, Pisitkun T, van der Spek PJ, Dalm VASH, Paridaens D, van Hagen PM, Hirankarn N, Palaga T, Dik WA. Integrative Analysis of Proteomics and DNA Methylation in Orbital Fibroblasts From Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:619989. [PMID: 33658982 PMCID: PMC7919747 DOI: 10.3389/fendo.2020.619989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Graves' ophthalmopathy (GO) is a frequent extrathyroidal complication of Graves' hyperthyroidism. Orbital fibroblasts contribute to both orbital tissue inflammation and remodeling in GO, and as such are crucial cellular elements in active GO and inactive GO. However, so far it is largely unknown whether GO disease progression is associated with functional reprogramming of the orbital fibroblast effector function. Therefore, the aim of this study was to compare both the proteome and global DNA methylation patterns between orbital fibroblasts isolated from active GO, inactive GO and healthy controls. METHODS Orbital fibroblasts from inactive GO (n=5), active GO (n=4) and controls (n=5) were cultured and total protein and DNA was isolated. Labelled and fractionated proteins were analyzed with a liquid chromatography tandem-mass spectrometer (LC-MS/MS). Data are available via ProteomeXchange with identifier PXD022257. Furthermore, bisulphite-treated DNA was analyzed for methylation pattern with the Illumina Infinium Human Methylation 450K beadchip. In addition, RNA was isolated from the orbital fibroblasts for real-time quantitative (RQ)-PCR. Network and pathway analyses were performed. RESULTS Orbital fibroblasts from active GO displayed overexpression of proteins that are typically involved in inflammation, cellular proliferation, hyaluronan synthesis and adipogenesis, while various proteins associated with extracellular matrix (ECM) biology and fibrotic disease, were typically overexpressed in orbital fibroblasts from inactive GO. Moreover, orbital fibroblasts from active GO displayed hypermethylation of genes that linked to inflammation and hypomethylated genes that linked to adipogenesis and autoimmunity. Further analysis revealed networks that contained molecules to which both hypermethylated and hypomethylated genes were linked, including NF-κB, ERK1/2, Alp, RNA polymerase II, Akt and IFNα. In addition, NF-κB, Akt and IFNα were also identified in networks that were derived from the differentially expressed proteins. Generally, poor correlation between protein expression, DNA methylation and mRNA expression was observed. CONCLUSIONS Both the proteomics and DNA methylation data support that orbital fibroblasts from active GO are involved in inflammation, adipogenesis, and glycosaminoglycan production, while orbital fibroblasts from inactive disease are more skewed towards an active role in extracellular matrix remodeling. This switch in orbital fibroblast effector function may have therapeutic implications and further studies into the underlying mechanism are thus warranted.
Collapse
Affiliation(s)
- Sita Virakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dion Paridaens
- Rotterdam Eye Hospital, Rotterdam, Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
| | - P. Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Eye Hospital, Rotterdam, Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Willem A. Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Willem A. Dik,
| |
Collapse
|
67
|
Rheumatological manifestations in inborn errors of immunity. Pediatr Res 2020; 87:293-299. [PMID: 31581173 DOI: 10.1038/s41390-019-0600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Rare monogenetic diseases serve as natural models to dissect the molecular pathophysiology of the complex disease traits. Rheumatologic disorders by their nature are considered complex diseases with partially genetic origin, as illustrated by their heterogeneous genetic background and variable phenotypic presentation. Recent advances in genetic technologies have helped uncover multiple variants associated with disease susceptibility; however, a precise understanding of genotype-phenotype relationships is still missing. Inborn errors of immunity (IEIs), in addition to recurrent infections, may also present with autoimmune and autoinflammatory rheumatologic manifestations and have provided insights for understanding the underlying the principles of immune system homeostasis and mechanisms of immune dysregulation. This review discusses the rheumatologic manifestations in IEIs with overlapping and differentiating features in immunodeficiencies and rheumatologic disorders.
Collapse
|
68
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
69
|
Chen P, Guo Z, Chen C, Tian S, Bai X, Zhai G, Ma Z, Wu H, Zhang K. Identification of dual histone modification-binding protein interaction by combining mass spectrometry and isothermal titration calorimetric analysis. J Adv Res 2019; 22:35-46. [PMID: 31956440 PMCID: PMC6961217 DOI: 10.1016/j.jare.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
The interaction between combinatorial histone modifications and tandem-domain reader proteins was identified. Four tandem-domain proteins (BPTF-PB, CBP-BP, TRIM24-PB, TAF1-BB) could read the peptides with dual-modifications. The binding affinities were detected by isothermal titration calorimetry. The interaction between BPTF-PB and peptides with PTMs is the strongest. The binding proteins to the tandem-domains were quantified. 78 enriched proteins were further characterized. The molecule network of “histone modification-reader-binding proteins” was analyzed.
Histone posttranslational modifications (HPTMs) play important roles in eukaryotic transcriptional regulation. Recently, it has been suggested that combinatorial modification codes that comprise two or more HPTMs can recruit readers of HPTMs, performing complex regulation of gene expression. However, the characterization of the multiplex interactions remains challenging, especially for the molecular network of histone PTMs, readers and binding complexes. Here, we developed an integrated method that combines a peptide library, affinity enrichment, mass spectrometry (MS) and bioinformatics analysis for the identification of the interaction between HPTMs and their binding proteins. Five tandem-domain-reader proteins (BPTF, CBP, TAF1, TRIM24 and TRIM33) were designed and prepared as the enriched probes, and a group of histone peptides with multiple PTMs were synthesized as the target peptide library. First, the domain probes were used to pull down the PTM peptides from the library, and then the resulting product was characterized by MS. The binding interactions between PTM peptides and domains were further validated and measured by isothermal titration calorimetry analysis (ITC). Meanwhile, the binding proteins were enriched by domain probes and identified by HPLC-MS/MS. The interaction network of histone PTMs-readers-binding complexes was finally analyzed via informatics tools. Our results showed that the integrated approach combining MS analysis with ITC assay enables us to understand the interaction between the combinatorial HPTMs and reading domains. The identified network of “HPTMs-reader proteins-binding complexes” provided potential clues to reveal HPTM functions and their regulatory mechanisms.
Collapse
Affiliation(s)
- Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Cong Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyi Ma
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Huiyuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
70
|
Melo‐Lima BL, Poras I, Passos GA, Carosella ED, Donadi EA, Moreau P. The Autoimmune Regulator (Aire) transactivates HLA-G gene expression in thymic epithelial cells. Immunology 2019; 158:121-135. [PMID: 31322727 PMCID: PMC6742766 DOI: 10.1111/imm.13099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The Autoimmune Regulator (Aire) protein coordinates the negative selection of developing thymocytes by inducing the expression of hundreds of tissue-specific antigens within the thymic medulla, which is also a primary site of the expression of the immune checkpoint HLA-G molecule. Considering the immunomodulatory properties of Aire and HLA-G, and considering that the role of the constitutive thymus expression of HLA-G has not been elucidated, we studied the effect of AIRE cDNA transfection on HLA-G expression in 4D6 thymic cells and in the HLA-G-positive JEG-3 choriocarcinoma cells. Aire promoted the transactivation of HLA-G gene by increasing the overall transcription, inducing the transcription of at least G1 and G2/G4 isoforms, and incrementing the occurrence and distribution of intracellular HLA-G protein solely in 4D6 thymic cells. Luciferase-based assays and chromatin immunoprecipitation experiments performed in 4D6 cells revealed that Aire targeted at least two regions within the 5'-untranslated regulatory region (5'-URR) extending 1·4 kb from the first ATG initiation codon. The interaction occurs independently of three putative Aire-binding sites. These results indicate that the Aire-induced upregulation of HLA-G in thymic cells is likely to act through the interaction of Aire with specific HLA-G 5'-URR DNA-binding factors. Such a multimeric transcriptional complex might operate in the thymus during the process of promiscuous gene expression.
Collapse
Affiliation(s)
- Breno Luiz Melo‐Lima
- Direction de la Recherche FondamentaleInstitut de Biologie François JacobService de Recherches en Hémato‐ImmunologieHôpital Saint‐LouisCommissariat à l'Energie Atomique et aux Energies AlternativesParisFrance
- Institut de Recherche Saint‐LouisUniversité de ParisUMR976 HIPIHôpital Saint‐LouisUniversité Paris‐DiderotParisFrance
- Division of Clinical ImmunologyDepartment of MedicineRibeirao Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | - Isabelle Poras
- Direction de la Recherche FondamentaleInstitut de Biologie François JacobService de Recherches en Hémato‐ImmunologieHôpital Saint‐LouisCommissariat à l'Energie Atomique et aux Energies AlternativesParisFrance
- Institut de Recherche Saint‐LouisUniversité de ParisUMR976 HIPIHôpital Saint‐LouisUniversité Paris‐DiderotParisFrance
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | - Edgardo D. Carosella
- Direction de la Recherche FondamentaleInstitut de Biologie François JacobService de Recherches en Hémato‐ImmunologieHôpital Saint‐LouisCommissariat à l'Energie Atomique et aux Energies AlternativesParisFrance
- Institut de Recherche Saint‐LouisUniversité de ParisUMR976 HIPIHôpital Saint‐LouisUniversité Paris‐DiderotParisFrance
| | - Eduardo Antonio Donadi
- Division of Clinical ImmunologyDepartment of MedicineRibeirao Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | - Philippe Moreau
- Direction de la Recherche FondamentaleInstitut de Biologie François JacobService de Recherches en Hémato‐ImmunologieHôpital Saint‐LouisCommissariat à l'Energie Atomique et aux Energies AlternativesParisFrance
- Institut de Recherche Saint‐LouisUniversité de ParisUMR976 HIPIHôpital Saint‐LouisUniversité Paris‐DiderotParisFrance
| |
Collapse
|
71
|
Rajan A, Zhao C. Deciphering the biology of thymic epithelial tumors. MEDIASTINUM (HONG KONG, CHINA) 2019; 3:36. [PMID: 31608319 PMCID: PMC6788633 DOI: 10.21037/med.2019.08.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 12/25/2022]
Abstract
Thymic cancers arise from epithelial cells of the thymus and have a predilection for intrathoracic spread. Clinical behavior varies from relatively indolent to highly aggressive with a capacity to metastasize widely and adversely affect survival. Paraneoplastic autoimmune disorders are frequently observed in association with thymoma and have a significant impact on quality of life. Underlying immune deficits associated with thymic epithelial tumors (TETs) increase the risk for development of opportunistic infections and emergence of extrathymic malignancies. Advances in the molecular characterization of thymic tumors have revealed the lowest tumor mutation burden among all adult cancers and the occurrence of distinct molecular subtypes of these diseases. Mutations in general transcription factor IIi (GTF2I) are unique to TETs and are rarely observed in other malignancies. The infrequency of actionable mutations has created obstacles for the development of biologic therapies and has spurred research to uncover druggable genomic targets. Persistence of autoreactive T cells due to altered thymic function increases the risk for development of severe immune-related toxicity and limits opportunities for use of immune-based therapies, especially in patients with thymoma. In this paper we review emerging data on the molecular characterization and immunobiology of thymic tumors and highlight clinical implications of these discoveries.
Collapse
Affiliation(s)
- Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chen Zhao
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
72
|
Zhang J, Wang Y, Aili A, Sun X, Pang X, Ge Q, Zhang Y, Jin R. Th1 Biased Progressive Autoimmunity in Aged Aire-Deficient Mice Accelerated Thymic Epithelial Cell Senescence. Aging Dis 2019; 10:497-509. [PMID: 31164995 PMCID: PMC6538216 DOI: 10.14336/ad.2018.0608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/08/2018] [Indexed: 01/09/2023] Open
Abstract
Although autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, are frequently associated with premature aging of the thymus, a direct link is missing between autoimmunity and thymic atrophy. Here we monitored the progression of thymic involution in Aire-deficient mice, in which defective negative selection causes spontaneous and progressive development of autoimmunity. In young and middle-aged mice, Aire deficiency appeared to be protective as supported by the reduced β-gal+ epithelial cells and the enhanced thymic output. However, once the autoimmune phenotype was fully developed in aged Aire-deficient mice, their thymuses underwent accelerated involution. In comparison to the age-matched wildtype littermates, old Aire-deficient mice showed lower numbers of total thymocytes and recent thymic emigrants but more β-gal+ thymic epithelial cells. This phenomenon may partly be attributable to the increased number of activated Th1 cells homing to the thymus. This speculation was further supported by the enhanced thymic aging following repeated challenges with complete Freund’s adjuvant immunization. Taken together, the present study highlights a unique mechanism by which autoimmunity facilitates the senescence of thymic epithelial cells through returning Th1 cells.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Yuqing Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Abudureyimujiang Aili
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing 100191, China
| |
Collapse
|
73
|
Treeful AE, Rendahl AK, Friedenberg SG. DLA class II haplotypes show sex-specific associations with primary hypoadrenocorticism in Standard Poodle dogs. Immunogenetics 2019; 71:373-382. [PMID: 30968193 DOI: 10.1007/s00251-019-01113-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Addison's disease (AD) is a life-threatening endocrine disorder that occurs spontaneously in both humans and dogs. Associations between MHC class II genes and AD have been shown in several human studies. Our goal was to identify MHC class II associations with AD in a large population of Standard Poodles, a breed highly predisposed to AD. We sequenced exon 2 of the class II genes DLA-DRB1, DLA-DQA1, and DLA-DQB1 in 110 affected and 101 unaffected Standard Poodles and tested for association with AD. After correcting for population structure, two haplotypes were found to confer risk of developing AD in a sex-specific manner: DLA-DRB1*015:01-DQA1*006:01-DQB1*023:01 in males (x2p = 0.03, OR 2.1) and DLA-DRB1*009:01-DQA1*001:01-DQB1*008:01:1 in females (x2p = 0.02, OR 8.43). Sex-specific associations have been previously described in human populations, but this is the first report of this kind in dogs. Consistent with findings in other studies, we found the DLA-DQA1*006:01 allele (x2p = 0.04) to be associated with AD in males independent of haplotype. In females, the haplotype DLA-DRB1*009:01-DQA1*001:01-DQB1*008:01:1 confers a very high risk for developing AD, although its frequency was rare (9 of 124 females) in our study population. Further studies are warranted to validate the findings of this exploratory dataset and to assess the usefulness of this haplotype as a risk marker for AD in female Standard Poodles. Our results highlight the importance of evaluating MHC class II disease associations in large populations, and accounting for both biological sex and population structure.
Collapse
Affiliation(s)
- Amy E Treeful
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Aaron K Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
74
|
Marcovecchio GE, Bortolomai I, Ferrua F, Fontana E, Imberti L, Conforti E, Amodio D, Bergante S, Macchiarulo G, D'Oria V, Conti F, Di Cesare S, Fousteri G, Carotti A, Giamberti A, Poliani PL, Notarangelo LD, Cancrini C, Villa A, Bosticardo M. Thymic Epithelium Abnormalities in DiGeorge and Down Syndrome Patients Contribute to Dysregulation in T Cell Development. Front Immunol 2019; 10:447. [PMID: 30949166 PMCID: PMC6436073 DOI: 10.3389/fimmu.2019.00447] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 01/22/2023] Open
Abstract
The thymus plays a fundamental role in establishing and maintaining central and peripheral tolerance and defects in thymic architecture or AIRE expression result in the development of autoreactive lymphocytes. Patients with partial DiGeorge Syndrome (pDGS) and Down Syndrome (DS) present alterations in size and architecture of the thymus and higher risk to develop autoimmunity. We sought to evaluate thymic architecture and thymocyte development in DGS and DS patients and to determine the extent to which thymic defects result in immune dysregulation and T cell homeostasis perturbation in these patients. Thymi from pediatric patients and age-matched controls were obtained to evaluate cortex and medullary compartments, AIRE expression and thymocyte development. In the same patients we also characterized immunophenotype of peripheral T cells. Phenotypic and functional characterization of thymic and peripheral regulatory T (Treg) cells was finally assessed. Histologic analysis revealed peculiar alterations in thymic medulla size and maturation in DGS and DS patients. Perturbed distribution of thymocytes and altered thymic output was also observed. DGS patients showed lower mature CD4+ and CD8+ T cell frequency, associated with reduced proportion and function of Tregs both in thymus and peripheral blood. DS patients showed increased frequency of single positive (SP) thymocytes and thymic Treg cells. However, Tregs isolated both from thymus and peripheral blood of DS patients showed reduced suppressive ability. Our results provide novel insights on thymic defects associated with DGS and DS and their impact on peripheral immune dysregulation. Indeed, thymic abnormalities and defect in thymocyte development, in particular in Treg cell number and function could contribute in the pathogenesis of the immunodysregulation present in pDGS and in DS patients.
Collapse
Affiliation(s)
- Genni Enza Marcovecchio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ileana Bortolomai
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Francesca Ferrua
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luisa Imberti
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Erika Conforti
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Milan, Italy
| | - Donato Amodio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sonia Bergante
- Laboratory of Stem Cells for Tissue Engineering, Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San Donato, Milan, Italy
| | - Giulia Macchiarulo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica D'Oria
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, Milan, Italy
| | - Francesca Conti
- University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiac Surgery, IRCCS Bambino Gesú Children's Hospital, Rome, Italy
| | - Alessandro Giamberti
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,University Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Villa
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,The Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Marita Bosticardo
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
75
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
76
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
77
|
Genetische Ursachen der prämaturen Ovarialinsuffizienz. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
78
|
Farias TDJ, Augusto DG, de Almeida RC, Malheiros D, Petzl-Erler ML. Screening the full leucocyte receptor complex genomic region revealed associations with pemphigus that might be explained by gene regulation. Immunology 2018; 156:86-93. [PMID: 30216441 DOI: 10.1111/imm.13003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Pemphigus foliaceus (PF) is a blistering autoimmune skin disease rare in most of the world but endemic in certain regions of Brazil. PF is characterized by the detachment of epidermal cells and the presence of autoantibodies against desmoglein 1. In previous studies, we have shown that genetic polymorphisms and variable expression levels of certain leucocyte receptor complex (LRC) genes were associated with PF. However, the role of the LRC on PF susceptibility remained to be investigated. Here, we analysed 527 tag single nucleotide polymorphisms (SNPs) distributed within the 1·5 Mb LRC. After quality control, a total of 176 SNPs were analysed in 229 patients with PF and 194 controls. Three SNPs were associated with differential susceptibility to PF. The intergenic variant rs465169 [odds ratio (OR) = 1·50; P = 0·004] is located in a region that might regulate several immune-related genes, including VSTM1, LILRB1/2, LAIR1/2, LILRA3/4 and LENG8. The rs35336528 (OR = 3·44; P = 0·009) and rs1865097 (OR = 0·57; P = 0·005) SNPs in LENG8 and FCAR genes, respectively, were also associated with PF. Moreover, we found four haplotypes with SNPs within the KIR3DL2/3, LAIR2 and LILRB1 genes associated with PF (P < 0·05), which corroborate previously reported associations. Thus, our results confirm the importance of the LRC for differential susceptibility to PF and reveal new markers that might influence expression levels of several LRC genes, as well as candidates for further functional studies.
Collapse
Affiliation(s)
| | - Danillo G Augusto
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil.,Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Malheiros
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
79
|
Zhao B, Chang L, Fu H, Sun G, Yang W. The Role of Autoimmune Regulator (AIRE) in Peripheral Tolerance. J Immunol Res 2018; 2018:3930750. [PMID: 30255105 PMCID: PMC6142728 DOI: 10.1155/2018/3930750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023] Open
Abstract
Autoimmune regulator (AIRE), whose gene mutation is considered to be a causative factor of autoimmune polyglandular syndrome type 1 (APS1), is an important transcriptional regulator. Studies on the role of AIRE in the central immune system have demonstrated that AIRE can eliminate autoreactive T cells by regulating the expression of a series of tissue specific antigens promiscuously in medullary thymic epithelial cells (mTECs) and induce regulatory T cell (Treg) production to maintain central immune tolerance. However, the related research of AIRE in peripheral tolerance is few. In order to understand the current research progress on AIRE in peripheral tolerance, this review mainly focuses on the expression and distribution of AIRE in peripheral tissues and organs, and the role of AIRE in peripheral immune tolerance such as regulating Toll-like receptor (TLR) expression and the maturation status of antigen presenting cells (APCs), inducing T cell tolerance and differentiation. This review will show us that AIRE also plays an indispensable role in the periphery.
Collapse
Affiliation(s)
- Bingjie Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lu Chang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Haiying Fu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guangyu Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
80
|
Barbetti F, D'Annunzio G. Genetic causes and treatment of neonatal diabetes and early childhood diabetes. Best Pract Res Clin Endocrinol Metab 2018; 32:575-591. [PMID: 30086875 DOI: 10.1016/j.beem.2018.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus and impaired fasting glucose associated with single gene mutations are less rare than previously thought and may account for more than 6% of patients attending a pediatric diabetes clinic. The number of loci involved in monogenic diabetes exceed 25, and appropriate genetic diagnosis is crucial to direct therapy, for genetic counseling and for prognosis of short- and long-term complications. Among patients with neonatal diabetes (i.e. with onset within first 6 months of life) and patients with Maturity Onset Diabetes of the Young (MODY; an autosomal dominant form of diabetes), those carrying mutations in KCNJ11, ABCC8, HNF1A and HNF4A genes usually respond to oral therapy with sulphonylurea, while those bearing GCK mutations do not necessitate any treatment. Sensor-augmented continuous subcutaneous insulin infusion has been successfully employed in neonatal diabetes, and long-lasting effectiveness of sulfonylurea in KCNJ11 mutation carriers with neonatal diabetes well documented.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier, 100133 Rome, Italy; S. Pietro Fatebenefratelli Hospital, 00189 Rome, Italy.
| | - Giuseppe D'Annunzio
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy.
| |
Collapse
|