51
|
Wang C, Tan J, Jin Y, Li Z, Yang J, Jia Y, Xia Y, Gong B, Dong Q, Zhao Q. A mitochondria-related genes associated neuroblastoma signature - based on bulk and single-cell transcriptome sequencing data analysis, and experimental validation. Front Immunol 2024; 15:1415736. [PMID: 38962012 PMCID: PMC11220120 DOI: 10.3389/fimmu.2024.1415736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background Neuroblastoma (NB), characterized by its marked heterogeneity, is the most common extracranial solid tumor in children. The status and functionality of mitochondria are crucial in regulating NB cell behavior. While the significance of mitochondria-related genes (MRGs) in NB is still missing in key knowledge. Materials and methods This study leverages consensus clustering and machine learning algorithms to construct and validate an MRGs-related signature in NB. Single-cell data analysis and experimental validation were employed to characterize the pivotal role of FEN1 within NB cells. Results MRGs facilitated the classification of NB patients into 2 distinct clusters with considerable differences. The constructed MRGs-related signature and its quantitative indicators, mtScore and mtRisk, effectively characterize the MRGs-related patient clusters. Notably, the MRGs-related signature outperformed MYCN in predicting NB patient prognosis and was adept at representing the tumor microenvironment (TME), tumor cell stemness, and sensitivity to the chemotherapeutic agents Cisplatin, Topotecan, and Irinotecan. FEN1, identified as the most contributory gene within the MRGs-related signature, was found to play a crucial role in the communication between NB cells and the TME, and in the developmental trajectory of NB cells. Experimental validations confirmed FEN1's significant influence on NB cell proliferation, apoptosis, cell cycle, and invasiveness. Conclusion The MRGs-related signature developed in this study offers a novel predictive tool for assessing NB patient prognosis, immune infiltration, stemness, and chemotherapeutic sensitivity. Our findings unveil the critical function of FEN1 in NB, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Chaoyu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiaxiong Tan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zongyang Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiaxing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yubin Jia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuren Xia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baocheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiuping Dong
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
52
|
Hakobyan M, Binder H, Arakelyan A. Pan-cancer analysis of telomere maintenance mechanisms. J Biol Chem 2024; 300:107392. [PMID: 38763334 PMCID: PMC11225560 DOI: 10.1016/j.jbc.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Telomeres, protective caps at chromosome ends, maintain genomic stability and control cell lifespan. Dysregulated telomere maintenance mechanisms (TMMs) are cancer hallmarks, enabling unchecked cell proliferation. We conducted a pan-cancer evaluation of TMM using RNA sequencing data from The Cancer Genome Atlas for 33 different cancer types and analyzed the activities of telomerase-dependent (TEL) and alternative lengthening of telomeres (ALT) TMM pathways in detail. To further characterize the TMM profiles, we categorized the tumors based on their ALT and TEL TMM pathway activities into five major phenotypes: ALT high TEL low, ALT low TEL low, ALT middle TEL middle, ALT high TEL high, and ALT low TEL high. These phenotypes refer to variations in telomere maintenance strategies, shedding light on the heterogeneous nature of telomere regulation in cancer. Moreover, we investigated the clinical implications of TMM phenotypes by examining their associations with clinical characteristics and patient outcomes. Specific TMM profiles were linked to specific survival patterns, emphasizing the potential of TMM profiling as a prognostic indicator and aiding in personalized cancer treatment strategies. Gene ontology analysis of the TMM phenotypes unveiled enriched biological processes associated with cell cycle regulation (both TEL and ALT), DNA replication (TEL), and chromosome dynamics (ALT) showing that telomere maintenance is tightly intertwined with cellular processes governing proliferation and genomic stability. Overall, our study provides an overview of the complexity of transcriptional regulation of telomere maintenance mechanisms in cancer.
Collapse
Affiliation(s)
- Meline Hakobyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan, Armenia.
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany; Armenian Bioinformatics Institute, Yerevan, Armenia
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| |
Collapse
|
53
|
Vedunova M, Borysova O, Kozlov G, Zharova AM, Morgunov I, Moskalev A. Candidate molecular targets uncovered in mouse lifespan extension studies. Expert Opin Ther Targets 2024; 28:513-528. [PMID: 38656034 DOI: 10.1080/14728222.2024.2346597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multiple interventions have demonstrated an increase in mouse lifespan. However, non-standardized controls, sex or strain-specific factors, and insufficient focus on targets, hinder the translation of these findings into clinical applications. AREAS COVERED We examined the effects of genetic and drug-based interventions on mice from databases DrugAge, GenAge, the Mouse Phenome Database, and publications from PubMed that led to a lifespan extension of more than 10%, identifying specific molecular targets that were manipulated to achieve the maximum lifespan in mice. Subsequently, we characterized 10 molecular targets influenced by these interventions, with particular attention given to clinical trials and potential indications for each. EXPERT OPINION To increase the translational potential of mice life-extension studies to clinical research several factors are crucial: standardization of mice lifespan research approaches, the development of clear criteria for control and experimental groups, the establishment of criteria for potential geroprotectors, and focusing on targets and their clinical application. Pinpointing the targets affected by geroprotectors helps in understanding species-specific differences and identifying potential side effects, ensuring the safety and effectiveness of clinical trials. Additionally, target review facilitates the optimization of treatment protocols and the evaluation of the clinical feasibility of translating research findings into practical therapies for humans.
Collapse
Affiliation(s)
- Maria Vedunova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Grigory Kozlov
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | - Anna-Maria Zharova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Alexey Moskalev
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Longaevus Technologies LTD, London, United Kingdom
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
54
|
Shaban NZ, Hegazy WA, Abu-Serie MM, Talaat IM, Awad OM, Habashy NH. Seedless black Vitis vinifera polyphenols suppress hepatocellular carcinoma in vitro and in vivo by targeting apoptosis, cancer stem cells, and proliferation. Biomed Pharmacother 2024; 175:116638. [PMID: 38688169 DOI: 10.1016/j.biopha.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor and one of the most challenging cancers to treat. Here, we evaluated the in vitro and in vivo ameliorating impacts of seedless black Vitis vinifera (VV) polyphenols on HCC. Following the preparation of the VV crude extract (VVCE) from seedless VV (pulp and skin), three fractions (VVF1, VVF2, and VVF3) were prepared. The anticancer potencies of the prepared fractions, compared to 5-FU, were assessed against HepG2 and Huh7 cells. In addition, the effects of these fractions on p-dimethylaminoazobenzene-induced HCC in mice were evaluated. The predicted impacts of selected phenolic constituents of VV fractions on the activity of essential HCC-associated enzymes (NADPH oxidase "NADPH-NOX2", histone deacetylase 1 "HDAC1", and sepiapterin reductase "SepR") were analyzed using molecular docking. The results showed that VVCE and its fractions induced apoptosis and collapsed CD133+ stem cells in the studied cancer cell lines with an efficiency greater than 5-FU. VVF1 and VVF2 exhibited the most effective anticancer fractions in vitro; therefore, we evaluated their influences in mice. VVF1 and VVF2 improved liver morphology and function, induced apoptosis, and lowered the fold expression of various crucial genes that regulate cancer stem cells and other vital pathways for HCC progression. For most of the examined parameters, VVF1 and VVF2 had higher potency than 5-FU, and VVF1 showed more efficiency than VVF2. The selected phenolic compounds displayed competitive inhibitory action on NADPH-NOX2, HDAC1, and SepR. In conclusion, these findings declare that VV polyphenolic fractions, particularly VVF1, could be promising safe anti-HCC agents.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Walaa A Hegazy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Clinical Sciences Department, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Olfat M Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
55
|
Gao Z, Santos RB, Rupert J, Van Drunen R, Yu Y, Eckel‐Mahan K, Kolonin MG. Endothelial-specific telomerase inactivation causes telomere-independent cell senescence and multi-organ dysfunction characteristic of aging. Aging Cell 2024; 23:e14138. [PMID: 38475941 PMCID: PMC11296101 DOI: 10.1111/acel.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rafael Bravo Santos
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph Rupert
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rachel Van Drunen
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Kristin Eckel‐Mahan
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| |
Collapse
|
56
|
Huang M, Liu M, Wang R, Man Y, Zhou H, Xu ZX, Wang Y. The crosstalk between glucose metabolism and telomerase regulation in cancer. Biomed Pharmacother 2024; 175:116643. [PMID: 38696988 DOI: 10.1016/j.biopha.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024] Open
Abstract
Accumulated alterations in metabolic control provide energy and anabolic demands for enhanced cancer cell proliferation. Exemplified by the Warburg effect, changes in glucose metabolism during cancer progression are widely recognized as a characteristic of metabolic disorders. Since telomerases are a vital factor in maintaining DNA integrity and stability, any damage threatening telomerases could have a severe impact on DNA and, subsequently, whole-cell homeostasis. However, it remains unclear whether the regulation of glucose metabolism in cancer is connected to the regulation of telomerase. In this review, we present the latest insights into the crosstalk between telomerase function and glucose metabolism in cancer cells. However, at this moment this subject is not well investigated that the association is mostly indirectly regulations and few explicit regulating pathways were identified between telomerase and glucose metabolism. Therefore, the information presented in this review can provide a scientific basis for further research on the detail mechanism and the clinical application of cancer therapy, which could be valuable in improving the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Mingrui Huang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China
| | - Ruijia Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yifan Man
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
57
|
Liu X, Wang J, Wu LJ, Trinh B, Tsai RYL. IMPDH Inhibition Decreases TERT Expression and Synergizes the Cytotoxic Effect of Chemotherapeutic Agents in Glioblastoma Cells. Int J Mol Sci 2024; 25:5992. [PMID: 38892179 PMCID: PMC11172490 DOI: 10.3390/ijms25115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Laura J. Wu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Britni Trinh
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Robert Y. L. Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
58
|
Drobyshev A, Modestov A, Suntsova M, Poddubskaya E, Seryakov A, Moisseev A, Sorokin M, Tkachev V, Zakharova G, Simonov A, Zolotovskaia MA, Buzdin A. Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase ( TERT) gene expression status. Front Genet 2024; 15:1401100. [PMID: 38859942 PMCID: PMC11163056 DOI: 10.3389/fgene.2024.1401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.
Collapse
Affiliation(s)
- Aleksey Drobyshev
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Modestov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Clinical Center Vitamed, Moscow, Russia
| | | | - Aleksey Moisseev
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Galina Zakharova
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksander Simonov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
| | - Anton Buzdin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
59
|
Xu X, Mo L, Liao Y, Zhang KS, Zhang H, Liu L, Liu Y, Tang A, Yang P, Liu X. An association between elevated telomerase reverse transcriptase expression and the immune tolerance disruption of dendritic cells. Cell Commun Signal 2024; 22:284. [PMID: 38783329 PMCID: PMC11112790 DOI: 10.1186/s12964-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND To elucidate the mechanism of dysfunction of tolerogenic dendritic cells (DCs) is of significance. Telomerase involves the regulation of the cell fate and activities. The objective of this study is to investigate the role of telomerase reverse transcriptase (TERT) in regulating the tolerogenic feature of DCs. METHODS The telomerase was assessed in DCs, which were collected from patients with allergic rhinitis (AR), healthy control (HC) subjects, and mice. RNAs were extracted from DCs, and analyzed by RNA sequencing (RNAseq), real-time quantitative RT-PCR, and Western blotting. RESULTS The results showed that expression of TERT was higher in peripheral DCs of AR patients. The expression of IL10 in DCs was negatively correlated with the levels of TERT expression. Importantly, the levels of TERT mRNA in DCs were associated with the AR response in patients with AR. Endoplasmic reticulum (ER) stress promoted the expression of Tert in DCs. Sensitization with the ovalbumin-aluminum hydroxide protocol increased the expression of Tert in DCs by exacerbating ER stress. TERT interacting with c-Maf (the transcription factor of IL-10) inducing protein (CMIP) in DCs resulted in CMIP ubiquitination and degradation, and thus, suppressed the production of IL-10. Inhibition of Tert in DCs mitigated experimental AR. CONCLUSIONS Elevated amounts of TERT were detected in DCs of patients with AR. The tolerogenic feature of DCs was impacted by TERT. Inhibited TERT attenuated experimental AR.
Collapse
Affiliation(s)
- Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
| | - Lihua Mo
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yun Liao
- Shenzhen Clinical College, Guangzhou University of Chinese Traditional Medicine & Pharmaceutics, Guangzhou, China
| | | | - Hanqing Zhang
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
| | - Le Liu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
| | - Yu Liu
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China.
| | - Xiaoyu Liu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China.
| |
Collapse
|
60
|
de Queiroz LF, Silva MSDME, de Souza HSP, Rosas SLB, Carvalho MDGDC. hTERT gene methylation in circulating DNA, tumor, and surrounding tissue in breast cancer: a prospective study. SAO PAULO MED J 2024; 142:e2023140. [PMID: 38747873 PMCID: PMC11087006 DOI: 10.1590/1516-3180.2023.0140.r1.04032024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The human telomerase reverse transcriptase (hTERT) enzyme, encoded by the hTERT gene, synthesizes protective telomeric sequences on chromosomes and plays a fundamental role in cancer formation. Methylation of the hTERT gene has an upregulatory effect, increasing hTERT enzyme synthesis and allowing continuous tumor cell division. OBJECTIVE In a group of patients with breast cancer, we aimed to analyze the methylation status of hTERT in the tumor, surrounding tissue, and circulating free deoxyribonucleic acid (cfDNA) of blood collected on the day of mastectomy and then approximately one year later. DESIGN AND SETTING A prospective study was conducted at a university hospital in Rio de Janeiro, Brazil. METHODS Samples were collected from 15 women with breast cancer on the day of mastectomy and approximately one year postoperatively. cfDNA was analyzed by sodium bisulfite conversion, followed by polymerase chain reaction, electrophoresis, and silver nitrate staining. RESULTS Methylation of hTERT was detected in the tumors and surrounding tissues of all 15 patients. Five patients displayed hTERT methylation in the cfDNA from the blood of the first collection. Of the ten patients who returned for the second collection, three showed methylation. Two patients with methylation in the first collection did not display methylation in the second collection. One patient with no methylation in the first collection displayed methylation in the second collection, and one patient had a diminished level of methylation in the second collection. CONCLUSION Only one-third of patients displayed methylation in their cfDNA, which may be related to the success of chemotherapy.
Collapse
Affiliation(s)
- Luiz Fernando de Queiroz
- MD, PhD. Molecular Biologist, Department of Pathology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcelo Soares da Mota e Silva
- MD, PhD. Molecular Biologist, Department of Pathology, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Heitor Siffert Pereira de Souza
- MD, PhD. Physician and Full Professor, Department of Internal Medicine, School of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Siane Lopes Bittencourt Rosas
- MD, PhD. Molecular Biologist, Department of Internal Medicine, School of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Maria da Glória da Costa Carvalho
- MD, PhD. Physician and Associate Professor, Department of Pathology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| |
Collapse
|
61
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
62
|
Gomatou G, Masaoutis C, Vamvakaris I, Kotteas E, Bouros E, Tzilas V, Bouros D. Differential immunohistochemical expression of hTERT in lung cancer patients with and without idiopathic pulmonary fibrosis. Pulmonology 2024; 30:214-221. [PMID: 35153179 DOI: 10.1016/j.pulmoe.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase enzyme, which adds nucleotides to telomeres and counteracts their length shortening. The development of a telomere maintenance mechanism represents a hallmark of cancer. On the other hand, idiopathic pulmonary fibrosis (IPF) is associated with mutations in telomerase genes and shorter telomeres. IPF is frequently complicated with lung cancer. AIM To investigate the expression of hTERT in lung cancer with co-existing IPF and to compare with lung cancer without fibrosis. METHODS Diagnostic lung cancerous biopsies were retrieved from 18 patients with lung cancer and concomitant IPF, as well as 18 age and gender matched controls with lung cancer without pulmonary fibrosis. The expression of hTERT was studied with immunohistochemistry. ImajeJ software was used to quantitate subcellular stain intensity. Immunohistochemical investigation of two senescence-associated markers, p16 and p21, was also performed in all 36 cases. RESULTS Both groups highly expressed hTERT, without significant difference (100% vs 95%, p = 0.521). Evaluation of p16 and p21 immunostaining revealed negative to minimal immunoreactivity in both groups. hTERT localization exhibited higher median nuclear intensity in the group of lung cancer with IPF (0.62 vs 0.45, p = 0.016), while cytoplasmic intensity did not differ significantly (0.17 vs 0.15, p = 0.463). Higher median nuclear intensity was also correlated with small cell lung cancer subtype in the whole study sample (0.69 vs 0.45, p = 0.09). CONCLUSION hTERT is highly expressed in lung cancer with concomitant IPF, but with differential localization compared to lung cancer without IPF, implying differences in pathogenicity and requiring further investigation.
Collapse
Affiliation(s)
- G Gomatou
- Interstitial Lung Diseases Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece; Oncology Unit, Third Department of Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece.
| | - C Masaoutis
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - I Vamvakaris
- Department of Pathology, "Sotiria" Hospital for Diseases of the Chest, Athens, Greece
| | - E Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece
| | - E Bouros
- Interstitial Lung Diseases Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece
| | - V Tzilas
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| | - D Bouros
- Interstitial Lung Diseases Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece; Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| |
Collapse
|
63
|
Mason CE, Sierra MA, Feng HJ, Bailey SM. Telomeres and aging: on and off the planet! Biogerontology 2024; 25:313-327. [PMID: 38581556 PMCID: PMC10998805 DOI: 10.1007/s10522-024-10098-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/08/2024]
Abstract
Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective "caps" at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the "end-replication problem" first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Henry J Feng
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
64
|
Bartoszewska E, Molik K, Woźniak M, Choromańska A. Telomerase Inhibition in the Treatment of Leukemia: A Comprehensive Review. Antioxidants (Basel) 2024; 13:427. [PMID: 38671875 PMCID: PMC11047729 DOI: 10.3390/antiox13040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Leukemia, characterized by the uncontrolled proliferation and differentiation blockage of myeloid or lymphoid precursor cells, presents significant therapeutic challenges despite current treatment modalities like chemotherapy and stem cell transplantation. Pursuing novel therapeutic strategies that selectively target leukemic cells is critical for improving patient outcomes. Natural products offer a promising avenue for developing effective chemotherapy and preventive measures against leukemia, providing a rich source of biologically active compounds. Telomerase, a key enzyme involved in chromosome stabilization and mainly active in cancer cells, presents an attractive target for intervention. In this review article, we focus on the anti-leukemic potential of natural substances, emphasizing vitamins (such as A, D, and E) and polyphenols (including curcumin and indole-3-carbinol), which, in combination with telomerase inhibition, demonstrate reduced cytotoxicity compared to conventional chemotherapies. We discuss the role of human telomerase reverse transcriptase (hTERT), particularly its mRNA expression, as a potential therapeutic target, highlighting the promise of natural compounds in leukemia treatment and prevention.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
65
|
Cao W, Lan J, Hu C, Kong J, Xiang L, Zhang Z, Sun Y, Zeng Z, Lei S. Predicting the prognosis of glioma patients with TERT promoter mutations and guiding the specific immune profile of immune checkpoint blockade therapy. Aging (Albany NY) 2024; 16:5618-5633. [PMID: 38499392 PMCID: PMC11006486 DOI: 10.18632/aging.205668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 03/20/2024]
Abstract
The telomerase reverse transcriptase promoter (TERTp) is frequently mutated in gliomas. This study sought to identify immune biomarkers of gliomas with TERTp mutations. Data from TCGA were used to identify and validate survival-associated gene signatures, and immune and stromal scores were calculated using the ESTIMATE algorithm. High stromal or immune scores in patients with TERTp-mutant gliomas correlated with shorter overall survival compared to cases with low stromal or immune scores. Among TERTp-mutant gliomas with both high immune and high stromal scores, 213 commonly shared DEGs were identified. Among 71 interacting DEGs representing candidate hub genes in a PPI network, HOXC6, WT1, CD70, and OTP showed significant ability in establishing subgroups of high- and low-risk patients. A risk model based on these 4 genes showed strong prognostic potential for gliomas with mutated TERTp, but was inapplicable for TERTp-wild-type gliomas. TERTp-mutant gliomas with high-risk scores displayed a greater percentage of naïve B cells, plasma cells, naïve CD4 T cells, and activated mast cells than low-risk score gliomas. TIDE analysis indicated that immune checkpoint blockade (ICB) therapy may benefit glioma patients with TERTp mutations. The present risk model can help predict prognosis of glioma patients with TERTp mutations and aid ICB treatment options.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jinzhi Lan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chujiao Hu
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang, Guizhou 550025, China
| | - Jinping Kong
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Limin Xiang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhixue Zhang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yating Sun
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| |
Collapse
|
66
|
Zhang D, Li J, Lu T, Zhao F, Guo P, Li Z, Duan X, Li Y, Li S, Li J. Illuminating Shared Genetic Associations Between Oesophageal Carcinoma and Pulmonary Carcinoma Risk. J Cancer 2024; 15:2412-2423. [PMID: 38495498 PMCID: PMC10937272 DOI: 10.7150/jca.92899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Lung cancer and oesophageal cancer are prevalent malignancies with rising incidence and mortality worldwide. While some environmental and behavioural risk factors for these cancers are established, the contribution of genetic factors to their pathogenesis remains incompletely defined. This study aimed to interrogate the intricate genetic relationship between lung cancer and oesophageal cancer and their potential comorbidity. Methods: We utilised linkage disequilibrium score regression (LDSC) to analyse the genetic correlation between oesophageal carcinoma and lung carcinoma. We then employed several approaches, including pleiotropic analysis under the composite null hypothesis (PLACO), multi-marker analysis of genomic annotation (MAGMA), cis-expression quantitative trait loci (eQTL) analysis, and a pan-cancer assessment to identify pleiotropic loci and genes. Finally, we performed bidirectional Mendelian randomisation (MR) to evaluate the causal relationship between these malignancies. Results: LDSC revealed a significant genetic correlation between oesophageal carcinoma and lung carcinoma. Further analysis identified shared gene loci including PGBD1, ZNF323, and WNK1 using PLACO. MAGMA identified enriched pathways and 9 pleiotropic genes including HIST1H1B, HIST1H4L, and HIST1H2BL. eQTL analysis integrating oesophageal, lung, and blood tissues revealed 26 shared genes including TERT, NKAPL, RAD52, BTN3A2, GABBR1, CLPTM1L, and TRIM27. A pan-cancer exploration of the identified genes was undertaken. MR analysis showed no evidence for a bidirectional causal relationship between oesophageal carcinoma and lung carcinoma. Conclusions: This study provides salient insights into the intricate genetic links between lung carcinoma and oesophageal carcinoma. Utilising multiple approaches for genetic correlation, locus and gene analysis, and causal assessment, we identify shared genetic susceptibilities and regulatory mechanisms. These findings reveal new leads and targets to further elucidate the genetic basis of lung and oesophageal carcinoma, aiding development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianxing Lu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhirong Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoliang Duan
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhang Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| |
Collapse
|
67
|
Liu B, Liu XY, Wang GP, Chen YX. The immune cell infiltration-associated molecular subtypes and gene signature predict prognosis for osteosarcoma patients. Sci Rep 2024; 14:5184. [PMID: 38431660 PMCID: PMC10908810 DOI: 10.1038/s41598-024-55890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Host immune dysregulation involves in the initiation and development of osteosarcoma (OS). However, the exact role of immune cells in OS remains unknown. We aimed to distinguish the molecular subtypes and establish a prognostic model in OS patients based on immunocyte infiltration. The gene expression profile and corresponding clinical feature of OS patients were obtained from TARGET and GSE21257 datasets. MCP-counter and univariate Cox regression analyses were applied to identify immune cell infiltration-related molecular subgroups. Functional enrichment analysis and immunocyte infiltration analysis were performed between two subgroups. Furthermore, Cox regression and LASSO analyses were performed to establish the prognostic model for the prediction of prognosis and metastasis in OS patients. The subgroup with low infiltration of monocytic lineage (ML) was related to bad prognosis in OS patients. 435 DEGs were screened between the two subgroups. Functional enrichment analysis revealed these DEGs were involved in immune- and inflammation-related pathways. Three important genes (including TERT, CCDC26, and IL2RA) were identified to establish the prognostic model. The risk model had good prognostic performance for the prediction of metastasis and overall survival in OS patients. A novel stratification system was established based on ML-related signature. The risk model could predict the metastasis and prognosis in OS patients. Our findings offered a novel sight for the prognosis and development of OS.
Collapse
Affiliation(s)
- Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Xiang-Yang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Guo-Ping Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Yi-Xin Chen
- Department of Rehabilitation Medicine, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
68
|
Ohni S, Yamaguchi H, Hirotani Y, Nakanishi Y, Midorikawa Y, Sugitani M, Nakayama T, Makishima M, Esumi M. Complex phenotypic heterogeneity of combined hepatocellular-cholangiocarcinoma with a homogenous TERT promoter mutation. Am J Transl Res 2024; 16:690-699. [PMID: 38463590 PMCID: PMC10918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
To clarify the mechanism underlying the development and poor prognosis of combined hepatocellular-cholangiocarcinoma (cHCC-CCA), we characterized liver cancer driver mutations and poor prognostic markers in both the HCC and intrahepatic CCA (iCCA) components of a cHCC-CCA tumor. The telomerase reverse transcriptase (TERT) promoter mutation C228T was quantified by digital polymerase chain reaction using DNA from multiple microdissected cancer components of a single cHCC-CCA nodule. The protein expression of cancer-related markers, including TERT, was examined by serial thin-section immunohistochemistry and double-staining immunofluorescence. TERT promoter mutation and TERT protein expression were detected in all cancer components but not in noncancer regions. TERT promoter mutation frequencies were similar among components; those of TERT protein-positive cancer cells were higher in iCCA and mixed components than in HCC. The frequencies of Ki67- and p53-positive cells were similarly higher in iCCA and mixed components than in HCC. However, double-positive cells for the three proteins were unexpectedly rare; single-positive cells dominated, indicating phenotypic microheterogeneity in cancer cells within a component. Interestingly, HCC and CCA marker protein immunohistochemistry suggested dedifferentiation of HCC and transdifferentiation from HCC to iCCA in HCC and iCCA components, respectively. Such phenotypic intercomponent heterogeneity and intracomponent microheterogeneity were detected in a tumor nodule of cHCC-CCA uniformly carrying the early HCC driver mutation. Moreover, poor prognostic markers were randomly expressed without a regular pattern, consistent with the poor prognosis.
Collapse
Affiliation(s)
- Sumie Ohni
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Hiromi Yamaguchi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| | - Yukari Hirotani
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Surgery, Nihon University School of Medicine Tokyo, Japan
| | - Masahiko Sugitani
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Clinical Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| | - Mariko Esumi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| |
Collapse
|
69
|
Pangjantuk A, Kaokaen P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. 3D culture of alginate-hyaluronic acid hydrogel supports the stemness of human mesenchymal stem cells. Sci Rep 2024; 14:4436. [PMID: 38396088 PMCID: PMC10891100 DOI: 10.1038/s41598-024-54912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
The three-dimensional (3D) cell culture system is being employed more frequently to investigate cell engineering and tissue repair due to its close mimicry of in vivo microenvironments. In this study, we developed natural biomaterials, including hyaluronic acid, alginate, and gelatin, to mimic the creation of a 3D human mesenchymal stem cell (hMSC) extracellular environment and selected hydrogels with high proliferation capacity for 3D MSC culture. Human mesenchymal stem cells were encapsulated within hydrogels, and an investigation was conducted into the effects on cell viability and proliferation, stemness properties, and telomere activity compared to the 2D monolayer culture. Hydrogel characterization, cell proliferation, Live/Dead cell viability assay, gene expression, telomere relative length, and MSC stemness-related proteins by immunofluorescence staining were examined. The results showed that 3D alginate-hyaluronic acid (AL-HA) hydrogels increased cell proliferation, and the cells were grown as cellular spheroids within hydrogels and presented a high survival rate of 77.36% during the culture period of 14 days. Furthermore, the 3D alginate-hyaluronic acid (AL-HA) hydrogels increased the expression of stemness-related genes (OCT-4, NANOG, SOX2, and SIRT1), tissue growth and development genes (YAP and TAZ), and cell proliferation gene (Ki67) after culture for 14 days. Moreover, the telomere activity of the 3D MSCs was enhanced, as indicated by the upregulation of the human telomerase reverse transcriptase gene (hTERT) and the relative telomere length (T/S ratio) compared to the 2D monolayer culture. Altogether, these data suggest that the 3D alginate-hyaluronic acid (AL-HA) hydrogels could serve as a promising material for maintaining stem cell properties and might be a suitable carrier for tissue engineering proposals.
Collapse
Affiliation(s)
- Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
70
|
Gorria T, Crous C, Pineda E, Hernandez A, Domenech M, Sanz C, Jares P, Muñoz-Mármol AM, Arpí-Llucía O, Melendez B, Gut M, Esteve A, Esteve-Codina A, Parra G, Alameda F, Carrato C, Aldecoa I, Mallo M, de la Iglesia N, Balana C. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers (Basel) 2024; 16:735. [PMID: 38398126 PMCID: PMC10886885 DOI: 10.3390/cancers16040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
Collapse
Affiliation(s)
- Teresa Gorria
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Carme Crous
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Pedro Jares
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Ana María Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Oriol Arpí-Llucía
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Bárbara Melendez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45007 Toledo, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Carmen Balana
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| |
Collapse
|
71
|
farrukh S, Baig S, Hussain R, Imad R, kulsoom O, Yousaf Rana M. Identification of polymorphic alleles in TERC and TERT gene reprogramming the telomeres of newborn and legacy with parental health. Saudi J Biol Sci 2024; 31:103897. [PMID: 38192544 PMCID: PMC10772381 DOI: 10.1016/j.sjbs.2023.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Telomere and telomerase genes (TERC and TERT) highlighted many novel genetic polymorphisms related to common diseases. This study explored the polymorphic alleles of TERC and TERT gene in parents-newborn (triad) and its association with telomere length (TL) and parental diseases (mother: Gestational Diabetes Mellitus (GDM), Preeclampsia, fathers: Diabetes, Hypertension). In this cross-sectional study, the blood samples (n = 612) were collected from parents-newborn triad (204 each) for TL (T/S ratio) quantification by using qPCR, and gene (TERC and TERT) polymorphism was detected by Sanger sequencing. The correlation analysis was used to find an association between paternal TL (T/S ratio) and newborn TL. The multivariate linear regression was applied to determine the effect of parents genes and diseases on newborn TL. A positive association (r = 0.42,0.39) (p < 0.0001) among parents and newborn TL was observed. In the diseased group, both TERC (rs10936599) and TERT (rs2736100) genes had a high frequency of allele C in newborns (OR = 0.94, P = 0.90, OR = 4.24, P = 0.012). However, among parents, TERT gene [Mother CC (B = 0.575; P = 0.196), Father CC (B = -0.739; P = 0.071)] was found significant contributing factor for Newborn TL. Diseased parents with T/T and A/C genotypes had longer newborn TL (2.82 ± 2.43, p < 0.022; 1.80 ± 1.20, p < 0.00) than the C/C genotype. Therefore, the study, confirmed that major allele C of TERC and TERT genes is associated with smaller TL in diseased parents-newborns of the targeted population.
Collapse
Affiliation(s)
- Sadia farrukh
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
- Department of Community Health Sciences, The Agha Khan University, Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Rubina Hussain
- Department Gynecology and obstetrician, Ziauddin university and hospitals, Karachi, Pakistan
| | - Rehan Imad
- Department of Molecular medicine, Ziauddin University Karachi, Pakistan
| | - Ome kulsoom
- Department Gynecology and obstetrician, Ziauddin hospital, Karachi, Pakistan
| | - Mehreen Yousaf Rana
- Department Gynecology and obstetrician, Ziauddin hospital, Karachi, Pakistan
| |
Collapse
|
72
|
Liu M, Fan Y, Ni N, Yu T, Mao Z, Huang H, Zhang J, Tang Y, He H, Meng F, You Y, Zhou Q. TERT mediates the U-shape of glucocorticoids effects in modulation of hippocampal neural stem cells and associated brain function. CNS Neurosci Ther 2024; 30:e14577. [PMID: 38421107 PMCID: PMC10850922 DOI: 10.1111/cns.14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are steroidal hormones produced by the adrenal cortex. A physiological-level GCs have a crucial function in maintaining many cognitive processes, like cognition, memory, and mood, however, both insufficient and excessive GCs impair these functions. Although this phenomenon could be explained by the U-shape of GC effects, the underlying mechanisms are still not clear. Therefore, understanding the underlying mechanisms of GCs may provide insight into the treatments for cognitive and mood-related disorders. METHODS Consecutive administration of corticosterone (CORT, 10 mg/kg, i.g.) proceeded for 28 days to mimic excessive GCs condition. Adrenalectomy (ADX) surgery was performed to ablate endogenous GCs in mice. Microinjection of 1 μL of Ad-mTERT-GFP virus into mouse hippocampus dentate gyrus (DG) and behavioral alterations in mice were observed 4 weeks later. RESULTS Different concentrations of GCs were shown to affect the cell growth and development of neural stem cells (NSCs) in a U-shaped manner. The physiological level of GCs (0.01 μM) promoted NSC proliferation in vitro, while the stress level of GCs (10 μM) inhibited it. The glucocorticoid synthesis blocker metyrapone (100 mg/kg, i.p.) and ADX surgery both decreased the quantity and morphological development of doublecortin (DCX)-positive immature cells in the DG. The physiological level of GCs activated mineralocorticoid receptor and then promoted the production of telomerase reverse transcriptase (TERT); in contrast, the stress level of GCs activated glucocorticoid receptor and then reduced the expression of TERT. Overexpression of TERT by AD-mTERT-GFP reversed both chronic stresses- and ADX-induced deficiency of TERT and the proliferation and development of NSCs, chronic stresses-associated depressive symptoms, and ADX-associated learning and memory impairment. CONCLUSION The bidirectional regulation of TERT by different GCs concentrations is a key mechanism mediating the U-shape of GC effects in modulation of hippocampal NSCs and associated brain function. Replenishment of TERT could be a common treatment strategy for GC dysfunction-associated diseases.
Collapse
Affiliation(s)
- Meng‐Ying Liu
- Department of Pharmacy, Nanjing Drum Tower HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yixin Fan
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Ningjie Ni
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tao Yu
- School of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhiyuan Mao
- Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Department of Human Anatomy, Research Centre for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Hanyu Huang
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yulin Tang
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Hongliang He
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Fan Meng
- Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yongping You
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi‐Gang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
- Department of Pharmacy, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
- Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
73
|
Peng L, Dan J, Huang W, Sang L, Tian H, Li Z, Li W, Liu J, Luo Y. The dual effects of Congea chinensis Moldenke on inhibiting tumor cell proliferation and delaying aging by activating TERT transcriptional activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117103. [PMID: 37673201 DOI: 10.1016/j.jep.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural medicinal plants, also named herbs, have attracted considerable research attention for their potential pharmacological activities, such as antitumor and longevity-promoting activities. Our previous review proposed that maintaining the homeostatic balance between aging and cancer may benefit organisms to enable tumor-free longevity. Congea chinensis Moldenke (CCM) is a plant species that grows on the border of Yunnan Province of China. Its medicinal value has been few reports until now. Thus, screening and extraction the ingredients from CCM that are both active tumor suppressors and TERT activators is a therapeutic strategy for improving tumor-free longevity. AIM OF THE STUDY To extract and evaluate the cytotoxic antitumor and TERT transcription-promoting activities of the plant CCM. MATERIALS AND METHODS The ingredients extracted from CCM were tested for transcriptional activation of p53 using pGL4-p53-GFP cells and for TERT expression using a real-time PCR assay. In vitro antitumor activity was detected by sulforhodamine B (SRB) assay and Annexin V/PI staining assay. The cell-permeable probe H2DCFDA was used to detect intracellular reactive oxygen species (ROS). Western blot was performed to verify predicated proteins regulated by the ingredients. RNA-sequence analysis was applied to predicate the underlying mechanism of CCM. RESULTS Both CCM and MPRC2-8, two novel extracts of Congea chinensis Moldenke, activated the expression of p53 and TERT and were selectively cytotoxic toward tumor cells. In addition, the cytotoxic mechanism of MPRC2-8 was identified as ROS generation-induced apoptosis. Interestingly, MPRC2-8 showed opposite regulatory effects on the SIRT1-p53 axis in A549 and HT-29 cells, which have different p53 statuses. RNA-seq analysis showed that CCM and MPRC2-8 induced the p53, apoptosis and ROS signaling pathways, consistent with the results of cellular experiments in vitro. CONCLUSION Our study reveals that CCM and MPRC2-8 have two complementary activities, antitumor activity and TERT-activating activity, with potential antitumor and longevity-improving effects.
Collapse
Affiliation(s)
- Lei Peng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenhui Huang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Sang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Tian
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Zhiming Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Wanyi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
74
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
75
|
Shi Y, Wu S, Zhang X, Cao Y, Zhang L. Diverse cell death patterns-related signature for predicting prognosis and drug sensitivity of osteosarcoma patients. J Gene Med 2024; 26:e3613. [PMID: 37861176 DOI: 10.1002/jgm.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Programmed cell death (PCD) is a natural process in which cells undergo controlled self-destruction, which plays a crucial role in maintaining tissue homeostasis and eliminating damaged or unnecessary cells. The connection between PCD and osteosarcoma was explored in the present study. METHODS Twelve types of PCD were collected for developing a prognostic signature in osteosarcoma using machine learning algorithms. The prognostic value, pathway annotation and drug prediction of the signature were explored. RESULTS Telomerase reverse transcriptase (TERT) was found to be a potent hazardous marker in osteosarcoma and could facilitate the proliferation and migration of osteosarcoma. CONCLUSIONS In summary, the present study has developed a prognostic signature for osteosarcoma and identifies TERT as a potent hazardous gene. The study suggests that further research is needed to address the underlying mechanism of how TERT affects the immune response in osteosarcoma.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yangbo Cao
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
76
|
Uggerly ASV, Cummins DD, Nguyen MP, Saggi S, Aghi MK, Morshed RA. Correlation of Brain Metastasis Genomic Alterations with Preoperative Imaging Features. World Neurosurg 2024; 181:e475-e482. [PMID: 37879437 DOI: 10.1016/j.wneu.2023.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The aim of this study was to examine associations between genomic alterations in brain metastases and common preoperative imaging findings including overt intratumoral hemorrhage, cystic features, and edema. METHODS A single-center, retrospective study was performed including patients who underwent surgical resection of brain metastasis with available preoperative magnetic resonance imaging (MRI). Next-generation sequencing of more than 500 coding genes was performed on the resected brain metastases. Preoperative MRI was reviewed to identify the presence of intratumoral hemorrhage, cystic features, and edema in the resected brain metastasis. Genomic data were then correlated with the imaging features using univariate and multivariate nominal logistic regression analyses. RESULTS We included 144 brain metastases from 141 patients in the study cohort. Half (72) of the metastases had an intratumoral hemorrhage, 26 (18%) had cystic features, and 130 (90%) had edema. Mutations in TP53 were associated with a reduced risk of intratumoral hemorrhage (odds ratio [OR] 0.2, 95% confidence interval [CI] 0.07-0.5, P < 0.001). Mutations in RB1 and CCND1 were associated with elevated risk of the metastasis having cystic features (OR 10.3, 95% CI 2.0-52.6, P = 0.005, OR 18.4, 95% CI 2.2-155.3, P = 0.008, respectively). PIK3CA mutations were associated with a reduced risk of peritumoral edema (OR 0.2, 95% CI 0.04-0.8, P = 0.03). CONCLUSIONS Several genomic alterations in brain metastases are associated with MRI features including hemorrhage, cystic features, and edema. These results provide insight into tumor biology and patients at risk of developing these imaging features.
Collapse
Affiliation(s)
- Amalie S V Uggerly
- Department of Neurosurgery, Odense University Hospital, Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Odense C, Denmark; Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Daniel D Cummins
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Minh P Nguyen
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Satvir Saggi
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA.
| |
Collapse
|
77
|
Lu Y, Chen X, Zeng W, Hua P, Shen Y, Qiu Y, He X, Zhang H. COL1A1::PDGFB fusion uterine sarcoma with a TERT promoter mutation. Genes Chromosomes Cancer 2024; 63:e23210. [PMID: 37870859 DOI: 10.1002/gcc.23210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023] Open
Abstract
COL1A1::PDGFB fusion uterine sarcoma is a rare uterine mesenchymal tumor with some clinicopathological features that overlap with those of soft tissue dermatofibrosarcoma protuberans. However, the varied clinicopathologic and genetic characteristics have not been fully revealed, which may be a potential pitfall for diagnosis. Here, we present a case of COL1A1::PDGFB fusion-positive uterine sarcoma in a 49-years-old female. Histologically, the tumor from the initial marginal excision predominantly exhibited high-grade fibrosarcomatous and myxofibrosarcoma-like appearances, while a low-grade focal area displaying storiform growth was identified in the residual tumor after subsequently extended resection. Immunohistochemically, the high-grade components mainly exhibited focal positivity for CD34 and mutated-type p53 immunoreactivity, whereas the low-grade component showed diffuse positivity for CD34 and wild-type p53 staining. The COL1A1::PDGFB fusion was confirmed by fluorescence in situ hybridization and next-generation sequencing. In addition, the TERT-124 C > T mutation was further identified in this lesion's fibrosarcomatous and classic storiform components. To the best of our knowledge, this is the first described case of COL1A1::PDGFB fusion uterine sarcoma with a TERT promoter mutation, which might be a novel genetic finding associated with tumorigenesis of this rare tumor.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Chen
- Department of Pathology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Wenjing Zeng
- Department of Pathology, Longchang People's Hospital, Sichuan, China
| | - Ping Hua
- Department of Pathology, Chengdu Women's and Children's Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangmei Shen
- Department of pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
78
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
79
|
Wang W, Peng H, Zeng M, Liu J, Liang G, He Z. Endothelial progenitor cells systemic administration alleviates multi-organ senescence by down-regulating USP7/p300 pathway in chronic obstructive pulmonary disease. J Transl Med 2023; 21:881. [PMID: 38057857 PMCID: PMC10699081 DOI: 10.1186/s12967-023-04735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has impacted approximately 390 million people worldwide and the morbidity is increasing every year. However, due to the poor treatment efficacy of COPD, exploring novel treatment has become the hotpot of study on COPD. Endothelial progenitor cells (EPCs) aging is a possible molecular way for COPD development. We aimed to explore the effector whether intravenous administration of EPCs has therapeutic effects in COPD mice. METHODS COPD mice model was induced by cigarette smoke exposure and EPCs were injected intravenously to investigate their effects on COPD mice. At day 127, heart, liver, spleen, lung and kidney tissues of mice were harvested. The histological effects of EPCs intervention on multiple organs of COPD mice were detected by morphology assay. Quantitative real-time PCR and Western blotting were used to detect the effect of EPCs intervention on the expression of multi-organ senescence-related indicators. And we explored the effect of EPCs systematically intervening on senescence-related USP7/p300 pathway. RESULTS Compared with COPD group, senescence-associated β-galactosidase activity was decreased, protein and mRNA expression of p16 was down-regulated, while protein and mRNA expression of cyclin D1 and TERT were up-regulated of multiple organs, including lung, heart, liver, spleen and kidney in COPD mice after EPCs system intervention. But the morphological alterations of the tissues described above in COPD mice failed to be reversed. Mechanistically, EPCs systemic administration inhibited the expression of mRNA and protein of USP7 and p300 in multiple organs of COPD mice, exerting therapeutic effects. CONCLUSIONS EPCs administration significantly inhibited the senescence of multiple organs in COPD mice via down-regulating USP7/p300 pathway, which presents a possibility of EPCs therapy for COPD.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huaihuai Peng
- Department of Intensive Care Unit, Hunan Province Directly Affiliated Traditional Chinese Medicine Hospital, Zhuzhou, Hunan, China
| | - Menghao Zeng
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Liu
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guibin Liang
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
80
|
Praiss AM, Marra A, Zhou Q, Rios-Doria E, Momeni-Boroujeni A, Iasonos A, Selenica P, Brown DN, Aghajanian C, Abu-Rustum NR, Ellenson LH, Weigelt B. TERT promoter mutations and gene amplification in endometrial cancer. Gynecol Oncol 2023; 179:16-23. [PMID: 37890416 PMCID: PMC10841990 DOI: 10.1016/j.ygyno.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE To assess the clinicopathologic, molecular profiles, and survival outcomes of patients with endometrial carcinomas (ECs) harboring telomerase reverse transcriptase (TERT) hotspot mutations or gene amplification. METHODS ECs harboring somatic TERT promoter hotspot mutations or gene amplification (TERT-altered) were identified from 1944 ECs that underwent clinical tumor-normal sequencing from 08/2016-12/2021. Clinicopathologic variables, somatic mutation profiles, and survival outcomes of TERT-alt and TERT-wild-type EC were assessed. RESULTS We identified 66 TERT-altered ECs (43 TERT-mutated and 23 TERT-amplified), representing 3% of the unselected ECs across histologic subtypes. Most TERT-altered ECs were of copy number (CN)-high/TP53abn molecular subtype (n = 40, 60%), followed by microsatellite-unstable (MSI-H) or CN-low/no specific molecular profile (NSMP)(n = 13, 20% each). TERT-amplified and TERT-mutated ECs were molecularly distinct, with TERT-amplified ECs being more genomically instable and more frequently harboring TP53 and PPP2R1A alterations (q < 0.1). Compared to TERT-wild-type ECs, TERT-altered ECs were more commonly of CN-H/TP53abn molecular subtype (31% vs 57%, p = 0.001), serous histology (10% vs 26%, p = 0.004), and were significantly enriched for TP53, CDKN2A/B, and DROSHA somatic genetic alterations (q < 0.1). Median progression-free survival was 18.7 months (95% CI 11.8-not estimable [NE]) for patients with TERT-altered EC and 80.9 months (65.8-NE) for patients with TERT-wild-type EC (HR 0.33, 95% CI 0.21-0.51, p < 0.001). Similarly, median overall survival was 46.7 months (95% CI 30-NE) for TERT-altered EC patients and not reached for TERT-wild-type EC patients (HR 0.24, 95% CI 0.13-0.44, p < 0.001). CONCLUSION TERT-altered ECs, although rare, are enriched for CN-high/TP53abn tumors, TP53, CDKN2A/B and DROSHA somatic mutations, and independently predict worse survival outcomes.
Collapse
Affiliation(s)
- Aaron M Praiss
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
81
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
82
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
83
|
Yan W, Hou N, Zheng J, Zhai W. Predictive genomic biomarkers of therapeutic effects in renal cell carcinoma. Cell Oncol (Dordr) 2023; 46:1559-1575. [PMID: 37223875 DOI: 10.1007/s13402-023-00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In recent years, there have been great improvements in the therapy of renal cell carcinoma. Nevertheless, the therapeutic effect varies significantly from person to person. To discern the effective treatment for different populations, predictive molecular biomarkers in response to target, immunological, and combined therapies are widely studied. CONCLUSION This review summarized those studies from three perspectives (SNPs, mutation, and expression level) and listed the relationship between biomarkers and therapeutic effect, highlighting the great potential of predictive molecular biomarkers in metastatic RCC therapy. However, due to a series of reasons, most of these findings require further validation.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
84
|
Zhuang C, Liu Y, Gu R, Du S, Long Y. Prognostic signature of colorectal cancer based on uric acid-related genes. Heliyon 2023; 9:e22587. [PMID: 38213580 PMCID: PMC10782177 DOI: 10.1016/j.heliyon.2023.e22587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers worldwide. Numerous studies have reported a correlation between uric acid (UA) level and CRC risk. Here, we investigated the role and prognostic value of UA-related genes in CRC progression. CRC-associated gene expression and clinical data were retrieved from The Cancer Genome Atlas (TCGA), and UA-related genes were identified by overlapping the TCGA and GeneCards databases. The Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway, and Molecular Signatures Database dataset were subjected to gene set enrichment analysis. A prognostic model was constructed using the univariate and multivariate COX regression and least absolute shrinkage and selection operator (LASSO) analyses and validated using the Gene Expression Omnibus cohort. Competing endogenous RNA network, CellMiner, and Human Protein Atlas were used to detect the signature of 13 UA-related genes in the prediction model. The expression of five potential UA-related genes in CRC cell lines was confirmed via qPCR. CIBERSORT was used to evaluate immune cell infiltration in the TCGA-CRC dataset. Thirteen highly prognostic UA-related genes were used to construct a prognostic model of CRC with risk score accuracy and predictive efficacy. Abundance of activated M0 macrophages, monocytes, CD8+ T cells, and natural killer cells positively correlated with the risk score. Five promising UA-related genes showed higher expression levels in CRC than in colonic cell lines. Thus, our model posits a direct relationship between UA-related genes and CRC risk, offering novel insights into diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Chun Zhuang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Gu
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shanqing Du
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yin Long
- Department of Clinical Laboratory, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
85
|
Godoy PM, Oyedeji A, Mudd JL, Morikis VA, Zarov AP, Longmore GD, Fields RC, Kaufman CK. Functional analysis of recurrent CDC20 promoter variants in human melanoma. Commun Biol 2023; 6:1216. [PMID: 38030698 PMCID: PMC10686982 DOI: 10.1038/s42003-023-05526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Small nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, leading to changes in gene expression which can activate oncogenic gene regulatory networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic variation, including the well-characterized TERT promoter mutation. However, the compendium of regulatory non-coding variants is likely still functionally under-characterized. We developed a pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing putatively functional non-coding somatic variants that are located within predicted melanoma-specific regulatory regions. We identified hundreds of statistically significant hotspots, including the hotspot containing the TERT promoter variants, and focused on a hotspot in the promoter of CDC20. We found that variants in the promoter of CDC20, which putatively disrupt an ETS motif, lead to lower transcriptional activity in reporter assays. Using CRISPR/Cas9, we generated an indel in the CDC20 promoter in human A375 melanoma cell lines and observed decreased expression of CDC20, changes in migration capabilities, increased growth of xenografts, and an altered transcriptional state previously associated with a more proliferative and less migratory state. Overall, our analysis prioritized several recurrent functional non-coding variants that, through downregulation of CDC20, led to perturbation of key melanoma phenotypes.
Collapse
Affiliation(s)
- Paula M Godoy
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abimbola Oyedeji
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Vasilios A Morikis
- Departments of Medicine (Oncology) and Cell Biology and Physiology and the ICCE Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna P Zarov
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory D Longmore
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
- Departments of Medicine (Oncology) and Cell Biology and Physiology and the ICCE Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
86
|
Kouroukli AG, Rajaram N, Bashtrykov P, Kretzmer H, Siebert R, Jeltsch A, Bens S. Targeting oncogenic TERT promoter variants by allele-specific epigenome editing. Clin Epigenetics 2023; 15:183. [PMID: 37993930 PMCID: PMC10666398 DOI: 10.1186/s13148-023-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Activation of dominant oncogenes by small or structural genomic alterations is a common driver mechanism in many cancers. Silencing of such dominantly activated oncogenic alleles, thus, is a promising strategy to treat cancer. Recently, allele-specific epigenome editing (ASEE) has been described as a means to reduce transcription of genes in an allele-specific manner. In cancer, specificity to an oncogenic allele can be reached by either targeting directly a pathogenic single-nucleotide variant or a polymorphic single-nucleotide variant linked to the oncogenic allele. To investigate the potential of ASEE in cancer, we here explored this approach by targeting variants at the TERT promoter region. The TERT promoter region has been described as one of the most frequently mutated non-coding cancer drivers. RESULTS Sequencing of the TERT promoter in cancer cell lines showed 53% (41/77) to contain at least one heterozygous sequence variant allowing allele distinction. We chose the hepatoblastoma cell line Hep-G2 and the lung cancer cell line A-549 for this proof-of-principle study, as they contained two different kinds of variants, namely the activating mutation C228T in the TERT core promoter and the common SNP rs2853669 in the THOR region, respectively. These variants were targeted in an allele-specific manner using sgRNA-guided dCas9-DNMT3A-3L complexes. In both cell lines, we successfully introduced DNA methylation specifically to the on-target allele of the TERT promoter with limited background methylation on the off-target allele or an off-target locus (VEGFA), respectively. We observed a maximum CpG methylation gain of 39% and 76% on the target allele when targeting the activating mutation and the common SNP, respectively. The epigenome editing translated into reduced TERT RNA expression in Hep-G2. CONCLUSIONS We applied an ASEE-mediated approach to silence TERT allele specifically. Our results show that the concept of dominant oncogene inactivation by allele-specific epigenome editing can be successfully translated into cancer models. This new strategy may have important advantages in comparison with existing therapeutic approaches, e.g., targeting telomerase, especially with regard to reducing adverse side effects.
Collapse
Affiliation(s)
- Alexandra G Kouroukli
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nivethika Rajaram
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Helene Kretzmer
- Computational Genomics, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
87
|
Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello AL. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol 2023; 11:1286683. [PMID: 38033865 PMCID: PMC10684755 DOI: 10.3389/fcell.2023.1286683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
88
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
89
|
Yoo H, Kim HS. Clinicopathological and Prognostic Values of Telomerase Reverse Transcriptase ( TERT) Promoter Mutations in Ovarian Clear Cell Carcinoma for Predicting Tumor Recurrence, Platinum Resistance and Survival. Cancer Genomics Proteomics 2023; 20:626-636. [PMID: 37889060 PMCID: PMC10614067 DOI: 10.21873/cgp.20411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND/AIM A small subset of patients with ovarian clear cell carcinoma (OCCC) harbors telomerase reverse transcriptase promoter (TERTp) mutations. We aimed to analyze the clinicopathological and molecular characteristics of TERTp-mutant OCCC and investigate whether TERTp mutations are associated with the clinicopathological characteristics and outcomes of patients with OCCC. PATIENTS AND METHODS We included 11 OCCC cases in our study. Targeted sequencing was performed with a thorough review of pathology slides and electronic medical records. RESULTS Eleven OCCCs harbored two hotspot TERTp mutations: c.1-146C>T (6/11) and c.1-124C>T (5/11). All patients (11/11) who underwent postoperative adjuvant chemotherapy experienced tumor recurrence, and eight of them were classified as platinum-resistant. TERTp-mutant OCCC showed significantly higher frequencies of postoperative recurrence and relapse within six months of chemotherapy. TERTp mutations significantly predicted disease-free survival (DFS) in patients with OCCC. CONCLUSION We demonstrate that TERTp mutations have significant prognostic value for predicting tumor recurrence, platinum resistance, and worse DFS in patients with OCCC.
Collapse
Affiliation(s)
- Hyunwoo Yoo
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
90
|
Barford RG, Whittle E, Weir L, Fong FC, Goodman A, Hartley HE, Allinson LM, Tweddle DA. Use of Optical Genome Mapping to Detect Structural Variants in Neuroblastoma. Cancers (Basel) 2023; 15:5233. [PMID: 37958407 PMCID: PMC10647738 DOI: 10.3390/cancers15215233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid tumour in children, accounting for 15% of paediatric cancer deaths. Multiple genetic abnormalities have been identified as prognostically significant in neuroblastoma patients. Optical genome mapping (OGM) is a novel cytogenetic technique used to detect structural variants, which has not previously been tested in neuroblastoma. We used OGM to identify copy number and structural variants (SVs) in neuroblastoma which may have been missed by standard cytogenetic techniques. METHODS Five neuroblastoma cell lines (SH-SY5Y, NBLW, GI-ME-N, NB1691 and SK-N-BE2(C)) and two neuroblastoma tumours were analysed using OGM with the Bionano Saphyr® instrument. The results were analysed using Bionano Access software and compared to previous genetic analyses including G-band karyotyping, FISH (fluorescent in situ hybridisation), single-nucleotide polymorphism (SNP) array and RNA fusion panels for cell lines, and SNP arrays and whole genome sequencing (WGS) for tumours. RESULTS OGM detected copy number abnormalities found using previous methods and provided estimates for absolute copy numbers of amplified genes. OGM identified novel SVs, including fusion genes in two cell lines of potential clinical significance. CONCLUSIONS OGM can reliably detect clinically significant structural and copy number variations in a single test. OGM may prove to be more time- and cost-effective than current standard cytogenetic techniques for neuroblastoma.
Collapse
Affiliation(s)
- Ruby G. Barford
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Emily Whittle
- Newcastle Genetics Laboratory, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK; (E.W.); (L.W.); (A.G.)
| | - Laura Weir
- Newcastle Genetics Laboratory, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK; (E.W.); (L.W.); (A.G.)
| | - Fang Chyi Fong
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Angharad Goodman
- Newcastle Genetics Laboratory, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK; (E.W.); (L.W.); (A.G.)
| | - Hannah E. Hartley
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Lisa M. Allinson
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
| | - Deborah A. Tweddle
- Wolfson Childhood Cancer Research Centre, Translational & Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (R.G.B.); (F.C.F.); (H.E.H.); (L.M.A.)
- Great North Children’s Hospital, Newcastle upon Tyne NE1 4LP, UK
| |
Collapse
|
91
|
Seif Eldin WR, Saad EA, Monier A, Elshazli RM. Association of TERT (rs2736098 and rs2736100) genetic variants with elevated risk of hepatocellular carcinoma: a retrospective case-control study. Sci Rep 2023; 13:18382. [PMID: 37884663 PMCID: PMC10603040 DOI: 10.1038/s41598-023-45716-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammatory problematic issue with higher mortality among different ethnic populations. The telomerase reverse transcriptase (TERT) gene has an imperative role in the proliferation of various cancerous illnesses, particularly HCC. Moreover, the TERT (rs2736098 and rs2739100) variants were correlated with the HCC susceptibility and telomere shortening, but with unconvincing outcomes. The main purpose of this outward work is to assess the correlation between these significant variants within the TERT gene and the elevated risk of HCC with the aid of various computational bioinformatics tools. This study included 233 participants [125 cancer-free controls and 108 HCC patients] from the same locality. In addition, 81.5% of HCC patients were positive for HCV autoantibodies, while 73.1% of HCC patients were positive for cirrhotic liver. Genomic DNA of the TERT (rs2736098 and rs2736100) variants were characterized utilizing the PCR-RFLP method. Interestingly, the frequencies of TERT (rs2736098*A allele) and TERT (rs2736100*T allele) conferred a significant correlation with increased risk of HCC compared to healthy controls (p-value = 0.002, and 0.016, respectively). The TERT (rs2736098*A/A) genotype indicated a definite association with positive smoking and splenomegaly (p-value < 0.05), while the TERT (rs2736100*T/T) genotype observed a significant difference with higher levels of HCV autoantibodies (p-value = 0.009). In conclusion, this significant work confirmed the contribution of the TERT (rs2736098*A and rs2736100*T) alleles with elevated risk of HCC progression and telomere shortening among Egyptian subjects.
Collapse
Affiliation(s)
- Walaa R Seif Eldin
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Entsar A Saad
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| | - Ahmed Monier
- Department of Digestive Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34518, Egypt.
| |
Collapse
|
92
|
Brik A, Wichert K, Weber DG, Szafranski K, Rozynek P, Meier S, Ko YD, Büttner R, Gerwert K, Behrens T, Brüning T, Johnen G. Assessment of MYC and TERT copy number variations in lung cancer using digital PCR. BMC Res Notes 2023; 16:279. [PMID: 37858127 PMCID: PMC10585721 DOI: 10.1186/s13104-023-06566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE Lung cancer is the second most frequent cancer type and the most common cause of cancer-related deaths worldwide. Alteration of gene copy numbers are associated with lung cancer and the determination of copy number variations (CNV) is appropriate for the discrimination between tumor and non-tumor tissue in lung cancer. As telomerase reverse transcriptase (TERT) and v-myc avian myelocytomatosis viral oncogene homolog (MYC) play a role in lung cancer the aims of this study were the verification of our recent results analyzing MYC CNV in tumor and non-tumor tissue of lung cancer patients using an independent study group and the assessment of TERT CNV as an additional marker. RESULTS TERT and MYC status was analyzed using digital PCR (dPCR) in tumor and adjacent non-tumor tissue samples of 114 lung cancer patients. The difference between tumor and non-tumor samples were statistically significant (p < 0.0001) for TERT and MYC. Using a predefined specificity of 99% a sensitivity of 41% and 51% was observed for TERT and MYC, respectively. For the combination of TERT and MYC the overall sensitivity increased to 60% at 99% specificity. We demonstrated that a combination of markers increases the performance in comparison to individual markers. Additionally, the determination of CNV using dPCR might be an appropriate tool in precision medicine.
Collapse
Affiliation(s)
- Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany.
| | - Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Daniel G Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Katja Szafranski
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Peter Rozynek
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Swetlana Meier
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter-Kliniken Bonn GmbH, Bonn, Germany
| | - Reinhard Büttner
- Institute of Pathology, Medical Faculty and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics (PRODI), Department of Biophysics, Ruhr University Bochum, Bochum, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| |
Collapse
|
93
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
94
|
Liu W, Chen S, Xie W, Wang Q, Luo Q, Huang M, Gu M, Lan P, Chen D. MCCC2 is a novel mediator between mitochondria and telomere and functions as an oncogene in colorectal cancer. Cell Mol Biol Lett 2023; 28:80. [PMID: 37828426 PMCID: PMC10571261 DOI: 10.1186/s11658-023-00487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The mitochondrial gene MCCC2, a subunit of the heterodimer of 3-methylcrotonyl-CoA carboxylase, plays a pivotal role in catabolism of leucine and isovaleric acid. The molecular mechanisms and prognostic value still need to be explored in the context of specific cancers, including colorectal cancer (CRC). METHODS In vitro and in vivo cell-based assays were performed to explore the role of MCCC2 in CRC cell proliferation, invasion, and migration. Mitochondrial morphology, membrane potential, intracellular reactive oxygen species (ROS), telomerase activity, and telomere length were examined and analyzed accordingly. Protein complex formation was detected by co-immunoprecipitation (CO-IP). Mitochondrial morphology was observed by transmission electron microscopy (TEM). The Cancer Genome Atlas (TCGA) CRC cohort analysis, qRT-PCR, and immunohistochemistry (IHC) were used to examine the MCCC2 expression level. The association between MCCC2 expression and various clinical characteristics was analyzed by chi-square tests. CRC patients' overall survival (OS) was analyzed by Kaplan-Meier analysis. RESULTS Ectopic overexpression of MCCC2 promoted cell proliferation, invasion, and migration, while MCCC2 knockdown (KD) or knockout (KO) inhibited cell proliferation, invasion, and migration. MCCC2 KD or KO resulted in reduced mitochondria numbers, but did not affect the gross ATP production in the cells. Mitochondrial fusion markers MFN1, MFN2, and OPA1 were all upregulated in MCCC2 KD or KO cells, which is in line with a phenomenon of more prominent mitochondrial fusion. Interestingly, telomere lengths of MCCC2 KD or KO cells were reduced more than control cells. Furthermore, we found that MCCC2 could specifically form a complex with telomere binding protein TRF2, and MCCC2 KD or KO did not affect the expression or activity of telomerase reverse transcriptase (TERT). Finally, MCCC2 expression was heightened in CRC, and patients with higher MCCC2 expression had favorable prognosis. CONCLUSIONS Together, we identified MCCC2 as a novel mediator between mitochondria and telomeres, and provided an additional biomarker for CRC stratification.
Collapse
Affiliation(s)
- Wanjun Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Wenqing Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Wang
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Qianxin Luo
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Minghan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minyi Gu
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Scientific Journal Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China.
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
95
|
Dratwa M, Łacina P, Butrym A, Porzuczek D, Mazur G, Bogunia-Kubik K. Telomere length and hTERT genetic variants as potential prognostic markers in multiple myeloma. Sci Rep 2023; 13:15792. [PMID: 37737335 PMCID: PMC10517131 DOI: 10.1038/s41598-023-43141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
Telomere dysfunction is a notable event observed in many cancers contributing to their genomic instability. A major factor controlling telomere stability is the human telomerase reverse transcriptase catalytic subunit (hTERT). Telomere shortening has been observed in multiple myeloma (MM), a plasma cell malignancy with a complex and heterogeneous genetic background. In the present study, we aimed to analyse telomere length and hTERT genetic variants as potential markers of risk and survival in 251 MM patients. We found that telomere length was significantly shorter in MM patients than in healthy individuals, and patients with more advanced disease (stage III according to the International Staging System) had shorter telomeres than patients with less advanced disease. MM patients with hTERT allele rs2736100 T were characterized with significantly shorter progression-free survival (PFS). Moreover, allele rs2736100 T was also found to be less common in patients with disease progression in response to treatment. hTERT rs2853690 T was associated with higher haemoglobin blood levels and lower C-reactive protein. In conclusion, our results suggest that telomere length and hTERT genetic variability may affect MM development and can be potential prognostic markers in this disease.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wrocław, Poland
| | - Diana Porzuczek
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
96
|
Bhat GR, Jamwal RS, Sethi I, Bhat A, Shah R, Verma S, Sharma M, Sadida HQ, Al-Marzooqi SK, Masoodi T, Mirza S, Haris M, Macha MA, Akil ASA, Bhat AA, Kumar R. Associations between telomere attrition, genetic variants in telomere maintenance genes, and non-small cell lung cancer risk in the Jammu and Kashmir population of North India. BMC Cancer 2023; 23:874. [PMID: 37718447 PMCID: PMC10506276 DOI: 10.1186/s12885-023-11387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Telomeres are repetitive DNA sequences located at the ends of chromosomes, playing a vital role in maintaining chromosomal integrity and stability. Dysregulation of telomeres has been implicated in the development of various cancers, including non-small cell lung cancer (NSCLC), which is the most common type of lung cancer. Genetic variations within telomere maintenance genes may influence the risk of developing NSCLC. The present study aimed to evaluate the genetic associations of select variants within telomere maintenance genes in a population from Jammu and Kashmir, North India, and to investigate the relationship between telomere length and NSCLC risk. METHODS We employed the cost-effective and high-throughput MassARRAY MALDI-TOF platform to assess the genetic associations of select variants within telomere maintenance genes in a population from Jammu and Kashmir, North India. Additionally, we used TaqMan genotyping to validate our results. Furthermore, we investigated telomere length variation and its relation to NSCLC risk in the same population using dual-labeled fluorescence-based qPCR. RESULTS Our findings revealed significant associations of TERT rs10069690 and POT1 rs10228682 with NSCLC risk (adjusted p-values = 0.019 and 0.002, respectively), while TERF2 rs251796 and rs2975843 showed no significant associations. The TaqMan genotyping validation further substantiated the associations of TERT rs10069690 and rs2242652 with NSCLC risk (adjusted p-values = 0.02 and 0.003, respectively). Our results also demonstrated significantly shorter telomere lengths in NSCLC patients compared to controls (p = 0.0004). CONCLUSION This study highlights the crucial interplay between genetic variation in telomere maintenance genes, telomere attrition, and NSCLC risk in the Jammu and Kashmir population of North India. Our findings suggest that TERT and POT1 gene variants, along with telomere length, may serve as potential biomarkers and therapeutic targets for NSCLC in this population. Further research is warranted to elucidate the underlying mechanisms and to explore the potential clinical applications of these findings.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Rajeshwer Singh Jamwal
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir, 180001, India
| | - Amrita Bhat
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir, 180001, India
| | - Ruchi Shah
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sonali Verma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Minerva Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity & Cancer Program, Sidra Medicine, 26999, Doha, Qatar
| | - Sara K Al-Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity & Cancer Program, Sidra Medicine, 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, 26999, Doha, Qatar
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab , Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, 192122, Jammu and Kashmir, India
| | - Ammira S Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity & Cancer Program, Sidra Medicine, 26999, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity & Cancer Program, Sidra Medicine, 26999, Doha, Qatar.
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
97
|
Gorji L, Brown ZJ, Pawlik TM. Mutational Landscape and Precision Medicine in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4221. [PMID: 37686496 PMCID: PMC10487145 DOI: 10.3390/cancers15174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common malignancy worldwide and exhibits a universal burden as the incidence of the disease continues to rise. In addition to curative-intent therapies such as liver resection and transplantation, locoregional and systemic therapy options also exist. However, existing treatments carry a dismal prognosis, often plagued with high recurrence and mortality. For this reason, understanding the tumor microenvironment and mutational pathophysiology has become the center of investigation for disease control. The use of precision medicine and genetic analysis can supplement current treatment modalities to promote individualized management of HCC. In the search for personalized medicine, tools such as next-generation sequencing have been used to identify unique tumor mutations and improve targeted therapies. Furthermore, investigations are underway for specific HCC biomarkers to augment the diagnosis of malignancy, the prediction of whether the tumor environment is amenable to available therapies, the surveillance of treatment response, the monitoring for disease recurrence, and even the identification of novel therapeutic opportunities. Understanding the mutational landscape and biomarkers of the disease is imperative for tailored management of the malignancy. In this review, we summarize the molecular targets of HCC and discuss the current role of precision medicine in the treatment of HCC.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH 45405, USA;
| | - Zachary J. Brown
- Department of Surgery, Division of Surgical Oncology, New York University—Long Island, Mineola, NY 11501, USA;
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH 43210, USA
| |
Collapse
|
98
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
99
|
Tang F, Chen X, Liu JS, Liu ZY, Yang JZ, Wang ZF, Li ZQ. TERT mutations-associated alterations in clinical characteristics, immune environment and therapy response in glioblastomas. Discov Oncol 2023; 14:148. [PMID: 37566174 PMCID: PMC10421840 DOI: 10.1007/s12672-023-00760-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE TERT: is the most frequently mutated gene in adult glioblastomas (GBMs) defined by the 2021 World Health Organization classification system. The present study aims to explore differences in clinical characteristics and immune microenvironment between TERT mutant and wild-type GBM. METHODS Three GBM-related cohorts consisting of 205 GBM patients in our cohort, 463 GBM patients without immune checkpoint inhibitor(ICI) therapy and 1465 tumour patients (including 92 GBM cases) receiving ICI treatment in the MSK cohort were included. Retrospective analysis and immunohistochemistry assay were used for investigating the local (including tumour cells, local immune cells, and seizures) and systemic (including circulating immune cells, coagulation-related functions, and prognosis) effects of TERT mutations. Besides, differences in genetic alterations and immunotherapy responses between TERT mutant and wild-type GBMs were also explored. RESULTS We found that TERT mutant and wild-type GBMs possessed similar initial clinic symptoms, circulating immune microenvironment and immunotherapy response. With respect to that in TERT wild-type GBMs, mutations in TERT resulted in higher levels of tumour-infiltrating neutrophils, prolonged coagulation time, worse chemotherapy response and poorer overall survival. CONCLUSION Mutations in TERT alter the local immune environment and decrease the sensitivity of GBM to chemotherapy.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Sheng Liu
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen-Yuan Liu
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Zhou Yang
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
100
|
Lin F, Huang J, Zhu W, Jiang T, Guo J, Xia W, Chen M, Guo L, Deng W, Lin H. Prognostic value and immune landscapes of TERT promoter methylation in triple negative breast cancer. Front Immunol 2023; 14:1218987. [PMID: 37575241 PMCID: PMC10416624 DOI: 10.3389/fimmu.2023.1218987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Treatment options for patients with triple-negative breast cancer (TNBC) remain limited to mainstay therapies owing to a lack of efficacious therapeutic targets. Accordingly, there is an urgent need to discover and identify novel molecular targets for the treatment and diagnosis of this disease. In this study, we analyzed the correlation of telomerase reverse transcriptase (TERT) methylation status with TERT expression, prognosis, and immune infiltration in TNBC and identified the role of TERT methylation in the regulation TNBC prognosis and immunotherapy. Methods Data relating to the transcriptome, clinicopathological characteristics and methylation of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) database. TERT expression levels and differential methylation sites (DMSs) were detected. The correlations between TERT expression and DMSs were calculated. Kaplan-Meier curves was plotted to analyze the relationship between the survival of TNBC patients and the DMSs. The correlations of DMSs and TERT expression with several immunological characteristics of immune microenvironment (immune cell infiltration, immunomodulators, immune-related biological pathways, and immune checkpoints) were assessed. The results were validated using 40 TNBC patients from Sun Yat-sen University Cancer Center (SYSUCC). Results Six DMSs were identified. Among them, four sites (cg11625005, cg07380026, cg17166338, and cg26006951) were within the TERT promoter, in which two sites (cg07380026 and cg26006951) were significantly related to the prognosis of patients with TNBC. Further validation using 40 TNBC samples from SYSUCC showed that the high methylation of the cg26006951 CpG site was associated with poor survival prognosis (P=0.0022). TERT expression was significantly correlated with pathological N stage and clinical stage, and cg07380026 were significantly associated with pathological T and N stages in the TCGA cohort. Moreover, the methylation site cg26006951, cg07380026 and TERT expression were significantly correlated with immune cell infiltration, common immunomodulators, and the level of the immune checkpoint receptor lymphocyte activation gene 3 (LAG-3) in TNBC patients. Conclusion TERT promotertypermethylation plays an important role in TERT expression regulation and tumor microenvironment in TNBC. It is associated with overall survival and LAG-3 expression. TERT promoter hypermethylation may be a potential molecular biomarker for predicting response to the TERT inhibitors and immune checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|