51
|
Li Z, Liu Y, Huang X, Wang Q, Fu R, Wen X, Liu J, Zhang L. F. Nucleatum enhances oral squamous cell carcinoma proliferation via E-cadherin/β-Catenin pathway. BMC Oral Health 2024; 24:518. [PMID: 38698370 PMCID: PMC11064238 DOI: 10.1186/s12903-024-04252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is a microbial risk factor whose presence increases the risk of oral squamous cell carcinoma (OSCC) progression. However, whether it can promote the proliferation of OSCC cells remains unknown. METHODS In this study, we investigated F. nucleatum effect on OSCC cell proliferation using in vitro and in vivo experiments. RESULTS Our results showed that F. nucleatum promoted OSCC cell proliferation, doubling the cell count after 72 h (CCK-8 assay). Cell cycle analysis revealed G2/M phase arrest. F. nucleatum interaction with CDH1 triggered phosphorylation, upregulating downstream protein β-catenin and activating cyclinD1 and Myc. Notably, F. nucleatum did not affect noncancerous cells, unrelated to CDH1 expression levels in CAL27 cells. Overexpression of phosphorylated CDH1 in 293T cells did not upregulate β-catenin and cycle-related genes. In vivo BALB/c nude experiments showed increased tumor volume and Ki-67 proliferation index after F. nucleatum intervention. CONCLUSION Our study suggests that F. nucleatum promotes OSCC cell proliferation through the CDH1/β-catenin pathway, advancing our understanding of its role in OSCC progression and highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Ji'an Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai, China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China.
| |
Collapse
|
52
|
Geistlinger L, Mirzayi C, Zohra F, Azhar R, Elsafoury S, Grieve C, Wokaty J, Gamboa-Tuz SD, Sengupta P, Hecht I, Ravikrishnan A, Gonçalves RS, Franzosa E, Raman K, Carey V, Dowd JB, Jones HE, Davis S, Segata N, Huttenhower C, Waldron L. BugSigDB captures patterns of differential abundance across a broad range of host-associated microbial signatures. Nat Biotechnol 2024; 42:790-802. [PMID: 37697152 PMCID: PMC11098749 DOI: 10.1038/s41587-023-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The literature of human and other host-associated microbiome studies is expanding rapidly, but systematic comparisons among published results of host-associated microbiome signatures of differential abundance remain difficult. We present BugSigDB, a community-editable database of manually curated microbial signatures from published differential abundance studies accompanied by information on study geography, health outcomes, host body site and experimental, epidemiological and statistical methods using controlled vocabulary. The initial release of the database contains >2,500 manually curated signatures from >600 published studies on three host species, enabling high-throughput analysis of signature similarity, taxon enrichment, co-occurrence and coexclusion and consensus signatures. These data allow assessment of microbiome differential abundance within and across experimental conditions, environments or body sites. Database-wide analysis reveals experimental conditions with the highest level of consistency in signatures reported by independent studies and identifies commonalities among disease-associated signatures, including frequent introgression of oral pathobionts into the gut.
Collapse
Affiliation(s)
- Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Chloe Mirzayi
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Fatima Zohra
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Rimsha Azhar
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Clare Grieve
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Jennifer Wokaty
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Samuel David Gamboa-Tuz
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rafael S Gonçalves
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Eric Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Vincent Carey
- Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Sean Davis
- Departments of Biomedical Informatics and Medicine, University of Colorado Anschutz School of Medicine, Denver, CO, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Istituto Europeo di Oncologia (IEO) IRCSS, Milan, Italy
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA.
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA.
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
53
|
Zhang W, Yin Y, Jiang Y, Yang Y, Wang W, Wang X, Ge Y, Liu B, Yao L. Relationship between vaginal and oral microbiome in patients of human papillomavirus (HPV) infection and cervical cancer. J Transl Med 2024; 22:396. [PMID: 38685022 PMCID: PMC11059664 DOI: 10.1186/s12967-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the microbial variations and biomarkers in the vaginal and oral environments of patients with human papillomavirus (HPV) and cervical cancer (CC) and to develop novel prediction models. MATERIALS AND METHODS This study included 164 samples collected from both the vaginal tract and oral subgingival plaque of 82 women. The participants were divided into four distinct groups based on their vaginal and oral samples: the control group (Z/KZ, n = 22), abortion group (AB/KAB, n = 17), HPV-infected group (HP/KHP, n = 21), and cervical cancer group (CC/KCC, n = 22). Microbiota analysis was conducted using full-length 16S rDNA gene sequencing with the PacBio platform. RESULTS The vaginal bacterial community in the Z and AB groups exhibited a relatively simple structure predominantly dominated by Lactobacillus. However, CC group shows high abundances of anaerobic bacteria and alpha diversity. Biomarkers such as Bacteroides, Mycoplasma, Bacillus, Dialister, Porphyromonas, Anaerococcus, and Prevotella were identified as indicators of CC. Correlations were established between elevated blood C-reactive protein (CRP) levels and local/systemic inflammation, pregnancy, childbirth, and abortion, which contribute to unevenness in the vaginal microenvironment. The altered microbial diversity in the CC group was confirmed by amino acid metabolism. Oral microbial diversity exhibited an inverse pattern to that of the vaginal microbiome, indicating a unique relationship. The microbial diversity of the KCC group was significantly lower than that of the KZ group, indicating a link between oral health and cancer development. Several microbes, including Fusobacterium, Campylobacter, Capnocytophaga, Veillonella, Streptococcus, Lachnoanaerobaculum, Propionibacterium, Prevotella, Lactobacillus, and Neisseria, were identified as CC biomarkers. Moreover, periodontal pathogens were associated with blood CRP levels and oral hygiene conditions. Elevated oral microbial amino acid metabolism in the CC group was closely linked to the presence of pathogens. Positive correlations indicated a synergistic relationship between vaginal and oral bacteria. CONCLUSION HPV infection and CC impact both the vaginal and oral microenvironments, affecting systemic metabolism and the synergy between bacteria. This suggests that the use of oral flora markers is a potential screening tool for the diagnosis of CC.
Collapse
Affiliation(s)
- Wei Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yanfei Yin
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yisha Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yangyang Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wentao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaoya Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Ge
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gynecology, Lanzhou University First Hospital, Lanzhou, China
| | - Bin Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| | - Lihe Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Department of Neurology, Lanzhou University First Hospital, Lanzhou, China.
| |
Collapse
|
54
|
Lund Håheim AL. Oral anaerobe bacteria-a common risk for cardiovascular disease and mortality and some forms of cancer? FRONTIERS IN ORAL HEALTH 2024; 5:1348946. [PMID: 38774039 PMCID: PMC11107091 DOI: 10.3389/froh.2024.1348946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 05/24/2024] Open
Abstract
This review explores the results of research on oral health concerning cardiovascular diseases and some forms of cancer and is based on results from published systematic reviews and some studies. The research results will have a strong focus on exploring the relationship between different aspects of oral infections. The relationship between oral health parameters, cardiovascular diseases (CVD), and certain cancers was examined from different angles, including prospective analyses, in a population-based health study in Oslo from the year 2000 (Oslo II study). A major finding was that low levels of antibodies to the oral anaerobe Tannerella forsythia predict both CVD mortality in men with a history of myocardial infarction and incidence of bladder cancer in a random sample of men in the study. Low levels of antibodies to Treponea denticola predict the incidence of bladder and colon cancer in a random sample of men in the study. Both anaerobe bacteria are part of the so-called red complex of bacteria in chronic periodontitis together with Pophyromonas gingivalis. These three bacteria have different properties and are causal in chronic periodontitis. They migrate into the local tissues by adhering to the oral epithelium, break down soft and hard tissues, and spread via the circulation to organs distant from the mouth. This paper will give an overview of which oral health measures have been explored and associated with different CVD and cancer diagnoses and what scientific literature supports or contravenes our hypothesis. The oral microbiome is described with the most relevant bacteria related to microbiology, serum, autopsies, and associated causes such as alcohol. There will be a mention of the possibilities and limitations of different study designs. There seems to be a causal relationship between oral anaerobe bacteria and systemic diseases regulated by the immune system. This is seen alongside other well-known risk factors, especially for CVD. The prospective finding of a relation to the incidence of certain cancers and CVD is particularly intriguing. However, further research is needed to determine the biological mechanisms underpinning these associations.
Collapse
|
55
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
56
|
Guo X, Bian X, Li Y, Zhu X, Zhou X. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167098. [PMID: 38412927 DOI: 10.1016/j.bbadis.2024.167098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaonan Bian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yitong Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
57
|
Liu W, Pi Z, Wang X, Shang C, Song C, Wang R, He Z, Zhang X, Wan Y, Mao W. Microbiome and lung cancer: carcinogenic mechanisms, early cancer diagnosis, and promising microbial therapies. Crit Rev Oncol Hematol 2024; 196:104322. [PMID: 38460928 DOI: 10.1016/j.critrevonc.2024.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Microbiomes in the lung, gut, and oral cavity are correlated with lung cancer initiation and progression. While correlations have been preliminarily established in earlier studies, delving into microbe-mediated carcinogenic mechanisms will extend our understanding from correlation to causation. Building upon the causative relationships between microbiome and lung cancer, a novel concept of microbial biomarkers has emerged, mainly encompassing cancer-specific bacteria and circulating microbiome DNA. They might function as noninvasive liquid biopsy techniques for lung cancer early detection. Furthermore, potential microbial therapies have displayed initial efficacy in lung cancer treatment, providing multiple avenues for therapeutic intervention. Herein, we will discuss the molecular mechanisms and signaling pathways through which microbes influence lung cancer initiation and development. Additionally, we will summarize recent findings on microbial biomarkers as a member of tumor liquid biopsy techniques and provide an overview of the latest advances in various microbe-assisted/mediated therapeutic approaches for lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xiaokun Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenwei Shang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Yuan Wan
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| |
Collapse
|
58
|
Min J, Mashimo C, Nambu T, Maruyama H, Takigawa H, Okinaga T. Resveratrol is an inhibitory polyphenol of epithelial-mesenchymal transition induced by Fusobacterium nucleatum. Arch Oral Biol 2024; 160:105897. [PMID: 38290225 DOI: 10.1016/j.archoralbio.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Resveratrol is a natural phytoalexin that has anti-inflammatory properties, reverses doxorubicin resistance, and inhibits epithelial-mesenchymal transition (EMT) in many types of cancer cells. Fusobacterium nucleatum is reportedly enriched in oral squamous cell carcinoma (OSCC) tissues compared to adjacent normal tissues, sparking interest in the relationship between F. nucleatum and OSCC. Recently, F. nucleatum was shown to be associated with EMT in OSCC. In the present study, we aimed to investigate the effects of the natural plant compound resveratrol on F. nucleatum-induced EMT in OSCC. DESIGN F. nucleatum was co-cultured with OSCC cells, with a multiplicity of infection (MOI) of 300:1. Resveratrol was used at a concentration of 10 μM. Cell Counting Kit-8 and wound healing assays were performed to examine the viability and migratory ability of OSCC cells. Subsequently, real-time RT-PCR was performed to investigate the gene expression of EMT-related markers. Western blotting and immunofluorescence analyses were used to further analyze the expression of the epithelial marker E-cadherin and the EMT transcription factor SNAI1. RESULTS Co-cultivation with F. nucleatum did not significantly enhance cell viability. The co-cultured cells displayed similarities to the positive control of EMT, exhibiting enhanced migration and expression changes in EMT-related markers. SNAI1 was significantly upregulated, whereas E-cadherin, was significantly downregulated. Notably, resveratrol inhibited F. nucleatum-induced cell migration, decreasing the expression of SNAI1. CONCLUSIONS Resveratrol inhibited F. nucleatum-induced EMT by downregulating SNAI1, which may provide a target for OSCC treatment.
Collapse
Affiliation(s)
- Jie Min
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Hiroki Takigawa
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
59
|
Zhou Y, Qin Y, Ma J, Li Z, Heng W, Zhang L, Liu H, Li R, Zhang M, Peng Q, Ye P, Duan N, Liu T, Wang W, Wang X. Heat-killed Prevotella intermedia promotes the progression of oral squamous cell carcinoma by inhibiting the expression of tumor suppressors and affecting the tumor microenvironment. Exp Hematol Oncol 2024; 13:33. [PMID: 38515216 PMCID: PMC10956211 DOI: 10.1186/s40164-024-00500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Our previous study showed that Prevotella intermedia (P. intermedia) were enriched in the oral mucosal surface, plaque, and saliva of patients with OSCC. Intratumoral microbiome could reshape the immune system and influence the development of various tumors. However, the invasion status of human OSCC tissues by P. intermedia and the pathway through which intratumoral P. intermedia potentiates tumor progression remain unexplored. METHODS P. intermedia in human OSCC or normal tissues was detected by FISH. A mouse OSCC cell line SCC7 was adopted to investigate the effects of heat-killed P. intermedia treatment on cell proliferation, invasion, and cytokine release by using CCK-8 assay, transwell invasion assay and ELISA. Moreover, we established a mouse transplanted tumor model by using SCC7 cells, injected heat-killed P. intermedia into tumor tissues, and investigated the effects of heat-killed P. intermedia on tumor growth, invasion, cytokine levels, immune cell infiltrations, and expression levels by using gross observation, H&E staining, ELISA, immunohistochemistry, mRNA sequencing, and transcriptomic analysis. RESULTS Our results indicated that P. intermedia were abundant in OSCC and surrounding muscle tissues. Heat-killed P. intermedia promoted SCC7 cell proliferation, invasion and proinflammatory cytokine secretions, accelerated transplanted tumor growth in mice, exacerbate muscle and perineural invasion of OSCC, elevated the serum levels of IL-17A, IL-6, TNF-α, IFN-γ, and PD-L1, induced Treg cells M2 type macrophages in mouse transplanted tumors. The data of transcriptomic analysis revealed that heat-killed P. intermedia increased the expression levels of inflammatory cytokines and chemokines while reduced the expression levels of some tumor suppressor genes in mouse transplanted tumors. Additionally, IL-17 signaling pathway was upregulated whereas GABAergic system was downregulated by heat-killed P. intermedia treatment. CONCLUSIONS Taken together, our results suggest that P. intermedia could inhibit the expression of tumor suppressors, alter the tumor microenvironment, and promote the progression of OSCC.
Collapse
Affiliation(s)
- Yifan Zhou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yao Qin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jingjing Ma
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhiyuan Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Weiwei Heng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lei Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Hong Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ruowei Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Miaomiao Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiao Peng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Pei Ye
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
60
|
Monteiro JS, Kaushik K, de Arruda JAA, Georgakopoulou E, Vieira AT, Silva TA, Devadiga D, Anyanechi CE, Shetty S. Fungal footprints in oral cancer: unveiling the oral mycobiome. FRONTIERS IN ORAL HEALTH 2024; 5:1360340. [PMID: 38550775 PMCID: PMC10973146 DOI: 10.3389/froh.2024.1360340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer, with a high mortality rate. There is growing evidence supporting a link between oral cancer and the microbiome. The microbiome can impact various aspects of cancer, such as pathogenesis, diagnosis, treatment, and prognosis. While there is existing information on bacteria and its connection to oral cancer, the fungi residing in the oral cavity represent a significant component of the microbiome that remains in its early stages of exploration and understanding. Fungi comprise a minuscule part of the human microbiome called the mycobiome. Mycobiome is ubiquitous in the human body but a weakened immune system offers a leeway space for fungi to showcase its virulence. The role of mycobiome as a colonizer, facilitator, or driver of carcinogenesis is still ambiguous. Reactivating the mycobiome that undergoes collateral damage associated with cancer treatment can be watershed event in cancer research. The coordinated, virulent, non-virulent behavior of the fungi once they reach a critical density must be hacked, considering its diagnostic, prognostic and therapeutic implications in cancer. This review highlights the diversity of the mycobiome and its potential role in oral cancer.
Collapse
Affiliation(s)
- Jessica Sonal Monteiro
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Kriti Kaushik
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, India
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eleni Georgakopoulou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcilia A. Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Darshana Devadiga
- Department of Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Charles E. Anyanechi
- Department of Oral and Maxillofacial Surgery, University of Calabar/University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, India
| |
Collapse
|
61
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 PMCID: PMC10933493 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
62
|
Jaimes J, Patiño LH, Herrera G, Cruz C, Pérez J, Correa-Cárdenas CA, Muñoz M, Ramírez JD. Prokaryotic and eukaryotic skin microbiota modifications triggered by Leishmania infection in localized Cutaneous Leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0012029. [PMID: 38478569 PMCID: PMC10962849 DOI: 10.1371/journal.pntd.0012029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Cutaneous Leishmaniasis (CL) is a tropical disease characterized by cutaneous ulcers, sometimes with satellite lesions and nodular lymphangitis. Leishmania parasites, transmitted by sandfly vectors, cause this widespread public health challenge affecting millions worldwide. CL's complexity stems from diverse Leishmania species and intricate host interactions. Therefore, this study aims to shed light on the spatial-temporal distribution of Leishmania species and exploring the influence of skin microbiota on disease progression. We analyzed 40 samples from CL patients at three military bases across Colombia. Using Oxford Nanopore's Heat Shock Protein 70 sequencing, we identified Leishmania species and profiled microbiota in CL lesions and corresponding healthy limbs. Illumina sequencing of 16S-rRNA and 18S-rRNA genes helped analyze prokaryotic and eukaryotic communities. Our research uncovered a spatial-temporal overlap between regions of high CL incidence and our sampling locations, indicating the coexistence of various Leishmania species. L. naiffi emerged as a noteworthy discovery. In addition, our study delved into the changes in skin microbiota associated with CL lesions sampled by scraping compared with healthy skin sampled by brushing of upper and lower limbs. We observed alterations in microbial diversity, both in prokaryotic and eukaryotic communities, within the lesioned areas, signifying the potential role of microbiota in CL pathogenesis. The significant increase in specific bacterial families, such as Staphylococcaceae and Streptococcaceae, within CL lesions indicates their contribution to local inflammation. In essence, our study contributes to the ongoing research into CL, highlighting the need for a multifaceted approach to decipher the intricate interactions between Leishmaniasis and the skin microbiota.
Collapse
Affiliation(s)
- Jesús Jaimes
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Cruz
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Julie Pérez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Camilo A. Correa-Cárdenas
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia e Investigación, Dirección de Sanidad Ejército, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
63
|
Pappalardo VY, Azarang L, Zaura E, Brandt BW, de Menezes RX. A new approach to describe the taxonomic structure of microbiome and its application to assess the relationship between microbial niches. BMC Bioinformatics 2024; 25:58. [PMID: 38317062 PMCID: PMC10840258 DOI: 10.1186/s12859-023-05575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Data from microbiomes from multiple niches is often collected, but methods to analyse these often ignore associations between niches. One interesting case is that of the oral microbiome. Its composition is receiving increasing attention due to reports on its associations with general health. While the oral cavity includes different niches, multi-niche microbiome data analysis is conducted using a single niche at a time and, therefore, ignores other niches that could act as confounding variables. Understanding the interaction between niches would assist interpretation of the results, and help improve our understanding of multi-niche microbiomes. METHODS In this study, we used a machine learning technique called latent Dirichlet allocation (LDA) on two microbiome datasets consisting of several niches. LDA was used on both individual niches and all niches simultaneously. On individual niches, LDA was used to decompose each niche into bacterial sub-communities unveiling their taxonomic structure. These sub-communities were then used to assess the relationship between microbial niches using the global test. On all niches simultaneously, LDA allowed us to extract meaningful microbial patterns. Sets of co-occurring operational taxonomic units (OTUs) comprising those patterns were then used to predict the original location of each sample. RESULTS Our approach showed that the per-niche sub-communities displayed a strong association between supragingival plaque and saliva, as well as between the anterior and posterior tongue. In addition, the LDA-derived microbial signatures were able to predict the original sample niche illustrating the meaningfulness of our sub-communities. For the multi-niche oral microbiome dataset we had an overall accuracy of 76%, and per-niche sensitivity of up to 83%. Finally, for a second multi-niche microbiome dataset from the entire body, microbial niches from the oral cavity displayed stronger associations to each other than with those from other parts of the body, such as niches within the vagina and the skin. CONCLUSION Our LDA-based approach produces sets of co-occurring taxa that can describe niche composition. LDA-derived microbial signatures can also be instrumental in summarizing microbiome data, for both descriptions as well as prediction.
Collapse
Affiliation(s)
- Vincent Y Pappalardo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Biostatistics Centre, Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leyla Azarang
- Biostatistics Centre, Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Renée X de Menezes
- Biostatistics Centre, Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
64
|
Gu Z, Liu Y. A bibliometric and visualized in oral microbiota and cancer research from 2013 to 2022. Discov Oncol 2024; 15:24. [PMID: 38302656 PMCID: PMC10834930 DOI: 10.1007/s12672-024-00878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Numerous studies have highlighted the implication of oral microbiota in various cancers. However, no bibliometric analysis has been conducted on the relationship between oral microbiota and cancer. This bibliometric analysis aimed to identify the research hotspots in oral microbiota and cancer research, as well as predict future research trends. The literature published relating to oral microbiota and cancer was searched from the Web of Science Core Collection database (WoSCC) from 2013 to 2022. VOSviewer or Citespace software was used to perform the bibliometric analysis, focusing on countries, institutions, authors, journals, keywords and references. A total of 1516 publications were included in the analysis. The number of publications related oral microbiota and cancer increased annually, reaching its peak in 2022 with 287 papers. The United States (456) and China (370) were the countries with the most publications and made significant contributions to the field. Sears CL and Zhou XD were the most productive authors. The high frequency of keywords revealed key topics, including cancer (colorectal cancer, oral cancer), oral microbiota (Fusobacterium nucleatum, Porphyromonas gingivalis), and inflammation (periodontal disease). The latest trend keywords were F. nucleatum, dysbiosis, prognosis, tumor microenvironment, gastric microbiota, complications and survival, suggesting a new hotspot in the field of oral microbiota and cancer. Our study provides a comprehensive analysis of oral microbiota and cancer research, revealing an increase in publications in recent years. Future research directions will continue to focus on the diversity of oral microbiota impacted by cancers and the underlying mechanism connecting them, providing new ideas for targeted therapy of tumorigenesis.
Collapse
Affiliation(s)
- Zhiyu Gu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yunkun Liu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
65
|
Wen Z, Zhang Y, Gao B, Chen X. Baicalin induces ferroptosis in oral squamous cell carcinoma by suppressing the activity of FTH1. J Gene Med 2024; 26:e3669. [PMID: 38380717 DOI: 10.1002/jgm.3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND This study investigated the role of the ferroptosis-related gene FTH1 in oral squamous cell carcinoma (OSCC) and evaluated the therapeutic potential of baicalin in OSCC cell treatment. METHODS A prognostic model was established by bioinformatic analysis, consisting of 12 ferroptosis related genes (FRGs), and FTH1 was selected as the most significantly up-regulated FRGs. The clinical correlation of FTH1 in OSCC samples was evaluated by both immunohistochemical and bioinformatic characterizations. The effects of FTH1 on migration, invasion, epithelial-mesenchymal transition (EMT) and proliferation were determined by wound healing assays, transwell assays, western blotting and 5'-ethynl 2'-deoxyuridine proliferation assays, respectively. The effects of FTH1 on ferroptosis were tested via ferroptosis markers and Mito Tracker staining. In addition, the therapeutic effects of baicalin on OSCC cells were confirmed using EMT, migration, invasion, proliferation and ferroptosis assays. RESULTS The 12 FRGs were predictive of the prognosis for OSCC patients, and FTH1 expression was identified as significantly up-regulated in OSCC samples, which was highly associated with survival, immune cell infiltration and drug sensitivity. Moreover, knocking down FTH1 inhibited cell proliferation, EMT and invasive phenotypes, but induced ferroptosis in OSCC cells (Cal27 and SCC25). Furthermore, baicalin directly suppressed expression of FTH1 in OSCC cells, and effectively promoted ferroptosis and inhibited the proliferation as well as EMT by directly targeting FTH1. CONCLUSIONS This study has demonstrated that FTH1 is a therapeutic target for OSCC treatment, and has provided evidence that baicalin offers a promising alternative for OSCC treatment.
Collapse
Affiliation(s)
- Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Bo Gao
- Kunming Medical University, Kunming, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
66
|
Yu L, Hong Y, Maishi N, Matsuda AY, Hida Y, Hasebe A, Kitagawa Y, Hida K. Oral bacterium Streptococcus mutans promotes tumor metastasis through thrombosis formation. Cancer Sci 2024; 115:648-659. [PMID: 38096871 PMCID: PMC10859626 DOI: 10.1111/cas.16010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 02/13/2024] Open
Abstract
Thrombosis is a well-known cardiovascular disease (CVD) complication that has caused death in many patients with cancer. Oral bacteria have been reported to contribute to systemic diseases, including CVDs, and tumor metastasis. However, whether oral bacteria-induced thrombosis induces tumor metastasis remains poorly understood. In this study, the cariogenic oral bacterium Streptococcus mutans was used to examine thrombosis in vitro and in vivo. Investigation of tumor metastasis to the lungs was undertaken by intravenous S. mutans implantation using a murine breast cancer metastasis model. The results indicated that platelet activation, aggregation, and coagulation were significantly altered in S. mutans-stimulated endothelial cells (ECs), with elevated neutrophil migration, thereby inducing thrombosis formation. Streptococcus mutans stimulation significantly enhances platelet and tumor cell adhesion to the inflamed ECs. Furthermore, S. mutans-induced pulmonary thrombosis promotes breast cancer cell metastasis to the lungs in vivo, which can be reduced by using aspirin, an antiplatelet drug. Our findings indicate that oral bacteria promote tumor metastasis through thrombosis formation. Oral health management is important to prevent CVDs, tumor metastasis, and their associated death.
Collapse
Affiliation(s)
- Li Yu
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yuying Hong
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Aya Yanagawa Matsuda
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yasuhiro Hida
- Advanced Robotic and Endoscopic Surgery, School of MedicineFujita Health UniversityToyoakeJapan
| | - Akira Hasebe
- Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
67
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
68
|
Omori Y, Noguchi K, Kitamura M, Makihara Y, Omae T, Hanawa S, Yoshikawa K, Takaoka K, Kishimoto H. Bacterial Lipopolysaccharide Induces PD-L1 Expression and an Invasive Phenotype of Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2024; 16:343. [PMID: 38254832 PMCID: PMC10813992 DOI: 10.3390/cancers16020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Expression of programmed death ligand-1 (PD-L1) is related to the prognosis of many solid malignancies, including oral squamous cell carcinoma (OSCC), but the mechanism of PD-L1 induction remains obscure. In this study, we examined the expression of PD-L1 and partial epithelial-mesenchymal transition (pEMT) induced by bacterial lipopolysaccharide (LPS) in OSCC. METHODS The expression of Toll-like receptor 4 (TLR4) recognizing LPS in OSCC cell lines was analyzed. Moreover, the induction of PD-L1 expression by Porphyromonas gingivalis (P.g) or Escherichia coli (E. coli) LPS and EMT was analyzed by western blotting and RT-PCR. Morphology, proliferation, migration, and invasion capacities were examined upon addition of LPS. PD-L1 within EXOs was examined. RESULTS PD-L1 expression and pEMT induced by LPS of P.g or E. coli in TLR4-expressing OSCC cell lines were observed. Addition of LPS did not change migration, proliferation, or cell morphology, but increased invasive ability. Moreover, higher expression of PD-L1 was observed in OSCC EXOs with LPS. CONCLUSION Oral bacterial LPS is involved in enhanced invasive potential in OSCC cells, causing PD-L1 expression and induction of pEMT. The enhancement of PD-L1 expression after addition of LPS may be mediated by EXOs.
Collapse
Affiliation(s)
| | - Kazuma Noguchi
- Departments of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, Mukogawa-cho1-1, Nishinomiya 663-8501, Japan; (Y.O.); (M.K.); (Y.M.); (T.O.); (S.H.); (K.Y.); (K.T.); (H.K.)
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Cui X, Du X, Cui X, Fan R, Pan J, Wang Z. Oral microbiome characteristics in patients with pediatric solid tumor. Front Microbiol 2024; 14:1286522. [PMID: 38249475 PMCID: PMC10797044 DOI: 10.3389/fmicb.2023.1286522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pediatric solid tumor, the abnormal proliferation of solid tissues in children resulting in the formation of tumors, represent a prevailing malignant ailment among the younger population. Extensive literature highlights the inseparable association linking oral microbiome and adult tumors, but due to differences in age of onset, characteristics of onset, etc., there are many differences between Pediatric solid tumors and adult tumors, and therefore, studying the relationship between Pediatric solid tumor and the oral microbiota is also essential. Methods To unravel the distinct characteristics of the oral microbiota within Pediatric solid tumor patients, 43 saliva samples, encompassing 23 Pediatric solid tumor patients and 20 healthy controls, were diligently procured. A meticulous screening process ensued, and conducted microbial MiSeq sequencing after screening. Results We documented the oral microbiome attributes among pediatric diagnosed with solid tumors (PST), and meanwhile, we observed a significant trend of decreased oral microbiota diversity in the pediatric solid tumor group. There were notable disparities in microbial communities observed between the two groups, 18 genera including Veillonellaceae, Firmicutes unclassified, Coriobacteriia, Atopobiaceae, Negativicutes, were significantly enriched in PST patients, while 29 genera, including Gammaproteobacteria, Proteobacteria, Burkholderiales, Neisseriaceae, were dominant in the HCs group. It was found that PST group had 16 gene functions, including Amino acid metabolism, Cysteine and methionine metabolism, Photosynthesis antenna proteins, Arginine and proline metabolism, and Aminoacyl tRNA biosynthesi, were significantly dominant, while 29 gene functions that prevailed in HCs. Conclusion This study characterized the oral microbiota of Pediatric solid tumor patients for the first time, and importantly, targeted biomarkers of oral microbiota may serve as powerful and non-invasive diagnostic tools for pediatric solid tumor patients.
Collapse
Affiliation(s)
- Xichun Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoran Du
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongrong Fan
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juntao Pan
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifang Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
70
|
Ma Y, Yu Y, Yin Y, Wang L, Yang H, Luo S, Zheng Q, Pan Y, Zhang D. Potential role of epithelial-mesenchymal transition induced by periodontal pathogens in oral cancer. J Cell Mol Med 2024; 28:e18064. [PMID: 38031653 PMCID: PMC10805513 DOI: 10.1111/jcmm.18064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yingyi Yu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yuqing Yin
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Liu Wang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Huishun Yang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Shiyin Luo
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Qifan Zheng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
71
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
72
|
Constantin M, Chifiriuc MC, Mihaescu G, Vrancianu CO, Dobre EG, Cristian RE, Bleotu C, Bertesteanu SV, Grigore R, Serban B, Cirstoiu C. Implications of oral dysbiosis and HPV infection in head and neck cancer: from molecular and cellular mechanisms to early diagnosis and therapy. Front Oncol 2023; 13:1273516. [PMID: 38179168 PMCID: PMC10765588 DOI: 10.3389/fonc.2023.1273516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations. Thus, novel microbiome-derived biomarkers and interventions could significantly contribute to achieving the desideratum of personalized management of oncologic patients, regarding both early diagnosis and treatment. The results reported by different studies are not always congruent regarding the variations in the abundance of different taxons in HNCs. However, there is a consistent reporting of a higher abundance of Gram-negative species such as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis, Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas, Enterobacterales, which are probably responsible of chronic inflammation and modulation of tumor microenvironment. Candida albicans is the dominant fungi found in oral carcinoma being also associated with shorter survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes and Peptostreptococcus) have been associated with later stages and larger tumor, suggesting their potential to be used as biomarkers for tumor stratification and prognosis. On the other hand, increased abundance of Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of HNC. Microbiome could also provide biomarkers for differentiating between oropharyngeal and hypopharyngeal cancers as well as between HPV-positive and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive tests for microbiome-derived biomarkers detection in oral and throat cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis could also impact the HNCs therapy and associated side-effects of radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors harbor fewer mutations, as well as different DNA methylation pattern and tumor microenvironment. Therefore, elucidation of the molecular mechanisms by which oral microbiota and HPV infection influence the HNC initiation and progression, screening for HPV infection and vaccination against HPV, adopting a good oral hygiene, and preventing oral dysbiosis are important tools for advancing in the battle with this public health global challenge.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Romanian Academy, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena-Georgiana Dobre
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca Grigore
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
73
|
Yang Y, Li Q, Qiao Q, Zhao N, Huang H, Zhou Y, Guo C, Guo Y. Bacterial distribution and inflammatory cytokines associated with oral cancer with and without jawbone invasion-a pilot study. Clin Oral Investig 2023; 27:7285-7293. [PMID: 37874389 DOI: 10.1007/s00784-023-05319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To explore the bacterial and inflammatory variations in oral cancer patients with and without jawbone invasion. MATERIALS AND METHODS A total of 20 specimens of fresh tumor tissue, including 10 from the tumor-invaded jawbone (JIOC group) and 10 without jawbone invasion (NJIOC group), were collected from oral cancer patients. Meanwhile, 10 specimens from normal oral mucosa were collected from healthy patients (control group). The microbiomic content of each sample was analyzed by 16S rRNA gene sequencing, while the expression of inflammatory cytokines was assessed using protein microarray analysis. RESULTS There was a significant difference in β diversity between JIOC and NJIOC groups (P < 0.05), but no difference between NJIOC and control groups. The average relative abundance of Fusobacteria and Spirochaetes was higher, while Firmicutes was lower in the JIOC group than in the NJIOC group (all P < 0.05). The expression of pro-inflammatory cytokines like interleukin (IL)-1α, IL-1β, IL-4, and IL-8 was upregulated in the JIOC group compared with the NJIOC group, while MCP-1 was decreased (all P < 0.05). Slackia spp. and Howardella spp. were positively correlated with IL-4; Odoribacter spp. and Acidaminococcaceae spp. were negatively correlated with IL-4, and Clostridium XIVa spp. was negatively correlated with IL-1α and IL-1β. CONCLUSION Bacterial and inflammatory differences were observed in oral cancer patients with and without jawbone invasion, where the relative abundance of the differential bacteria was associated with the expression of the inflammatory cytokines. CLINICAL RELEVANCE This study investigated the changes in the flora during jawbone invasion in oral cancer and its effect on inflammatory factors, elucidating the possible mechanisms of jawbone invasion caused by oral cancer, which may lead to new ideas for the clinical prevention and treatment of jawbone invasion in oral cancer.
Collapse
Affiliation(s)
- Yuanning Yang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Hongyuan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Ying Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, NO, 22, Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
- National Clinical Research Center for Oral Diseases, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, People's Republic of China.
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
74
|
Medeiros MCD, The S, Bellile E, Russo N, Schmitd L, Danella E, Singh P, Banerjee R, Bassis C, Murphy GR, Sartor MA, Lombaert I, Schmidt TM, Eisbruch A, Murdoch-Kinch CA, Rozek L, Wolf GT, Li G, Chen GY, D'Silva NJ. Salivary microbiome changes distinguish response to chemoradiotherapy in patients with oral cancer. MICROBIOME 2023; 11:268. [PMID: 38037123 PMCID: PMC10687843 DOI: 10.1186/s40168-023-01677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/26/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (SCC) is associated with oral microbial dysbiosis. In this unique study, we compared pre- to post-treatment salivary microbiome in patients with SCC by 16S rRNA gene sequencing and examined how microbiome changes correlated with the expression of an anti-microbial protein. RESULTS Treatment of SCC was associated with a reduction in overall bacterial richness and diversity. There were significant changes in the microbial community structure, including a decrease in the abundance of Porphyromonaceae and Prevotellaceae and an increase in Lactobacillaceae. There were also significant changes in the microbial community structure before and after treatment with chemoradiotherapy, but not with surgery alone. In patients treated with chemoradiotherapy alone, several bacterial populations were differentially abundant between responders and non-responders before and after therapy. Microbiome changes were associated with a change in the expression of DMBT1, an anti-microbial protein in human saliva. Additionally, we found that salivary DMBT1, which increases after treatment, could serve as a post-treatment salivary biomarker that links to microbial changes. Specifically, post-treatment increases in human salivary DMBT1 correlated with increased abundance of Gemella spp., Pasteurellaceae spp., Lactobacillus spp., and Oribacterium spp. This is the first longitudinal study to investigate treatment-associated changes (chemoradiotherapy and surgery) in the oral microbiome in patients with SCC along with changes in expression of an anti-microbial protein in saliva. CONCLUSIONS The composition of the oral microbiota may predict treatment responses; salivary DMBT1 may have a role in modulating the oral microbiome in patients with SCC. After completion of treatment, 6 months after diagnosis, patients had a less diverse and less rich oral microbiome. Leptotrichia was a highly prevalent bacteria genus associated with disease. Expression of DMBT1 was higher after treatment and associated with microbiome changes, the most prominent genus being Gemella Video Abstract.
Collapse
Affiliation(s)
- Marcell Costa de Medeiros
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Stephanie The
- Cancer Data Science Shared Resource, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Emily Bellile
- Cancer Data Science Shared Resource, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Nickole Russo
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Ligia Schmitd
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Erika Danella
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Priyanka Singh
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Rajat Banerjee
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Christine Bassis
- Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI, 331248109, USA
| | - George R Murphy
- Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
- Biointerfaces Institute, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Computational Medicine and Bioinformatics, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Isabelle Lombaert
- Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
- Biointerfaces Institute, Ann Arbor, MI, USA
| | - Thomas M Schmidt
- Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Avi Eisbruch
- Radiation Oncology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Carol Anne Murdoch-Kinch
- Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, 1011 North Michigan St, Indianapolis, IN, USA
| | - Laura Rozek
- Environmental Health Sciences, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Gregory T Wolf
- Otolaryngology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Gen Li
- Biostatistics, University of Michigan School of Public Health, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Grace Y Chen
- Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI, 331248109, USA.
| | - Nisha J D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.
- Pathology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA.
- Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
75
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
76
|
Pei S, Feng L, Zhang Y, Liu J, Li J, Zheng Q, Liu X, Luo B, Ruan Y, Li H, Hu W, Niu J, Tian T. Effects of long-term metal exposure on the structure and co-occurrence patterns of the oral microbiota of residents around a mining area. Front Microbiol 2023; 14:1264619. [PMID: 37928665 PMCID: PMC10620801 DOI: 10.3389/fmicb.2023.1264619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives The aim of our study was to investigate the impact of long-term exposure to heavy metals on the microbiome of the buccal mucosa, to unveil the link between environmental contamination and the oral microbial ecosystem, and to comprehend its potential health implications. Methods Subjects were divided into two groups: the exposure group and the control group. We collected samples of buccal mucosa, soil, and blood, and conducted microbial diversity analysis on both groups of oral samples using 16S rRNA gene sequencing. The concentrations of heavy metals in blood and soil samples were also determined. Additionally, microbial networks were constructed for the purpose of topological analysis. Results Due to long-term exposure to heavy metals, the relative abundance of Rhodococcus, Delftia, Fusobacterium, and Peptostreptococcus increased, while the abundance of Streptococcus, Gemella, Prevotella, Granulicatella, and Porphyromonas decreased. The concentrations of heavy metals in the blood (Pb, Cd, Hg, and Mo) were associated with the growth of Rhodococcus, Delftia, Porphyromonas, and Gemella. In addition, the relative abundances of some pathogenic bacteria, such as Streptococcus anginosus, S. gordonii, and S. mutans, were found to be enriched in the exposure group. Compared to the exposure group network, the control group network had a greater number of nodes, modules, interactive species, and keystone taxa. Module hubs and connectors in the control group converted into peripherals in the exposure group, indicating that keystone taxa changed. Metals in the blood (Pb, Cd, Hg, and Mo) were drivers of the microbial network of the buccal mucosa, which can have adverse effects on the network, thus providing conditions for the occurrence of certain diseases. Conclusion Long-term exposure to multiple metals perturbs normal bacterial communities in the buccal mucosa of residents in contaminated areas. This exposure reduces the complexity and stability of the microbial network and increases the risk of developing various diseases.
Collapse
Affiliation(s)
- Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lu Feng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yonghua Zhang
- Child Health Department, Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
77
|
Leonov GE, Varaeva YR, Livantsova EN, Starodubova AV. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023; 11:2749. [PMID: 37893122 PMCID: PMC10604844 DOI: 10.3390/biomedicines11102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The human oral microbiome has emerged as a focal point of research due to its profound implications for human health. The involvement of short-chain fatty acids in oral microbiome composition, oral health, and chronic inflammation is gaining increasing attention. In this narrative review, the results of early in vitro, in vivo, and pilot clinical studies and research projects are presented in order to define the boundaries of this new complicated issue. According to the results, the current research data are disputable and ambiguous. When investigating the role of SCFAs in human health and disease, it is crucial to distinguish between their local GI effects and the systemic influences. Locally, SCFAs are a part of normal oral microbiota metabolism, but the increased formation of SCFAs usually attribute to dysbiosis; excess SCFAs participate in the development of local oral diseases and in oral biota gut colonization and dysbiosis. On the other hand, a number of studies have established the positive impact of SCFAs on human health as a whole, including the reduction of chronic systemic inflammation, improvement of metabolic processes, and decrease of some types of cancer incidence. Thus, a complex and sophisticated approach with consideration of origin and localization for SCFA function assessment is demanded. Therefore, more research, especially clinical research, is needed to investigate the complicated relationship of SCFAs with health and disease and their potential role in prevention and treatment.
Collapse
Affiliation(s)
- Georgy E Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Yurgita R Varaeva
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Elena N Livantsova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
78
|
Chen H, Ma Y, Li M, Li Q, Zhang M, Wang Z, Liu H, Wang J, Tong X, Zeng Y. Tongue-coating microbiome reflects cardiovascular health and determines outcome in blood pressure intervention. J Genet Genomics 2023; 50:803-806. [PMID: 36682540 DOI: 10.1016/j.jgg.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Affiliation(s)
- Hairong Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingwei Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengya Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixiong Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Liu
- Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center, Beijing 100176, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yixin Zeng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
79
|
Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb Pathog 2023; 183:106324. [PMID: 37633504 DOI: 10.1016/j.micpath.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.
Collapse
Affiliation(s)
- Yimtar L Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, Tamil Nadu, India
| | - Santhiyagu Prakash
- Marine Biotechnology Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, (OMR Campus), Tamilnadu Dr. J. Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai - 603 103, Tamil Nadu, India.
| |
Collapse
|
80
|
Jeddy N, Saravanan R, Natrajan R, Sai Lakshmi LJ, Ashwath V, Singhal I. Comparison of the effectiveness of red ginseng herbal mouth rinse with chlorhexidine and saline in oral cancer patients: A pilot double-blinded randomized control trial. J Oral Maxillofac Pathol 2023; 27:778. [PMID: 38304493 PMCID: PMC10829445 DOI: 10.4103/jomfp.jomfp_473_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024] Open
Abstract
Background Red ginseng is an herb with many medicinal properties and aids as a mouth rinse with fewer side effects than chlorhexidine. Aim The study aimed to compare the efficacy of red ginseng herbal mouth rinses with those of chlorhexidine and saline in oral cancer patients. Materials and Methods The present pilot study was a double-blinded randomized control trial with 45 histopathologically diagnosed oral squamous cell carcinoma patients divided into three groups: two intervention groups (herbal and chlorhexidine mouth rinse) and one control group (saline). Saliva samples for each patient were collected at baseline and after 14 days of using the mouth rinses. A microbiological examination of salivary samples was done by analysing total oral bacterial load along with specific counts for Porphyromonas gingivalis and Fusobacterium nucleatum at baseline and after the usage of mouth rinse. Statistical Analysis The data normality was analysed using the Shapiro-Wilk test, and following the normal distribution of data, parametric tests were employed. Paired t-test and one-way analysis of variance, followed by post hoc Bonferroni test, were used for inter-group and intra-group differences. Result There was a significant mean difference in total colony count, Fusobacterium nucleatum, and Porphyromonas gingivalis with oral hygiene index and gingival index improvement in the red ginseng herbal mouth rinse group when compared to the chlorhexidine and saline groups. Conclusion In this study, red ginseng mouth rinse exhibited an increased antibacterial effect compared to chlorhexidine and saline. Hence, red ginseng mouth rinse can be used in oral cancer patients to maintain oral health, thereby improving the prognosis of these patients.
Collapse
Affiliation(s)
- Nadeem Jeddy
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - R. Saravanan
- Department of Orthodontics, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - RajVikram Natrajan
- Department of Orthodontics, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - L. J. Sai Lakshmi
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - V. Ashwath
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - Ishita Singhal
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy, and Topical Team Member at the European Space Agency, Europe
| |
Collapse
|
81
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
82
|
Bohn B, Chalupova M, Staley C, Holtan S, Maakaron J, Bachanova V, El Jurdi N. Temporal variation in oral microbiome composition of patients undergoing autologous hematopoietic cell transplantation with keratinocyte growth factor. BMC Microbiol 2023; 23:258. [PMID: 37704974 PMCID: PMC10500729 DOI: 10.1186/s12866-023-03000-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
INTRODUCTION Autologous hematopoietic cell transplantation (AHCT) is a well-established treatment for lymphoma. Unintended effects of this therapy include oral mucositis (OM) and gastrointestinal toxicities, resulting in poor clinical outcomes. The gut microbiome has been previously linked to transplant toxicities among allogeneic recipients, but little is known about the effects of AHCT on the oral microbiome. METHODS Seven patients with non-Hodgkin or Hodgkin lymphoma undergoing AHCT with palifermin (keratinocyte growth factor) were included. Buccal swab samples were collected at baseline and 14- and 28-days post-treatment. Oral microbial communities were characterized with 16 S rRNA amplicon sequencing. Temporal trends in community composition, alpha diversity, and beta diversity were investigated. RESULTS A significant reduction in the relative abundance of the genera Gemella and Actinomyces were observed from baseline. No significant temporal differences in alpha diversity were observed. Significant changes in beta diversity were recorded. CONCLUSION Results of this pilot study suggest treatment with AHCT and palifermin affects the oral microbiome, resulting in temporal shifts in oral microbial community composition. Future studies are warranted to confirm these trends and further investigate the effects of AHCT on the oral microbiome and how these shifts may affect health outcomes.
Collapse
Affiliation(s)
- Bruno Bohn
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, 1300 S 2nd St, Minneapolis, MN, 55455, USA.
| | - Miroslava Chalupova
- Department of Stomatology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Plzen, Czech Republic
| | - Christopher Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Shernan Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Najla El Jurdi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
83
|
Nagakubo D, Kaibori Y. Oral Microbiota: The Influences and Interactions of Saliva, IgA, and Dietary Factors in Health and Disease. Microorganisms 2023; 11:2307. [PMID: 37764151 PMCID: PMC10535076 DOI: 10.3390/microorganisms11092307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Recent advances in metagenomic analyses have made it easier to analyze microbiota. The microbiota, a symbiotic community of microorganisms including bacteria, archaea, fungi, and viruses within a specific environment in tissues such as the digestive tract and skin, has a complex relationship with the host. Recent studies have revealed that microbiota composition and balance particularly affect the health of the host and the onset of disease. Influences such as diet, food preferences, and sanitation play crucial roles in microbiota composition. The oral cavity is where the digestive tract directly communicates with the outside. Stable temperature and humidity provide optimal growth environments for many bacteria. However, the oral cavity is a unique environment that is susceptible to pH changes, salinity, food nutrients, and external pathogens. Recent studies have emphasized the importance of the oral microbiota, as changes in bacterial composition and balance could contribute to the development of systemic diseases. This review focuses on saliva, IgA, and fermented foods because they play critical roles in maintaining the oral bacterial environment by regulating its composition and balance. More attention should be paid to the oral microbiota and its regulatory factors in oral and systemic health.
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata-shi 573-0101, Osaka, Japan;
| |
Collapse
|
84
|
Aitmanaitė L, Širmonaitis K, Russo G. Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap. Int J Mol Sci 2023; 24:13786. [PMID: 37762088 PMCID: PMC10531294 DOI: 10.3390/ijms241813786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the microbial communities in the human body and the onset and progression of cancer has not been investigated until recently. The vast majority of the metagenomics research in this area has concentrated on the composition of microbiomes, attempting to link the overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour, and its resistance to therapies. However, studies elucidating the functional implications of the microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of studies assessing such implications directly, through analysis of the transcriptome of the bacterial community. This review summarises the contributions of metagenomics and metatranscriptomics to the knowledge of the microbial environment associated with several cancers; most importantly, it highlights all the advantages that metatranscriptomics has over metagenomics and suggests how such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
Collapse
Affiliation(s)
| | | | - Giancarlo Russo
- EMBL Partnership Institute for Gene Editing, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (L.A.); (K.Š.)
| |
Collapse
|
85
|
Daneste H, Mohammadzadeh Boukani L, Ramezani N, Asadi F, Zaidan HK, Sadeghzade A, Ehsannia M, Azarashk A, Gholizadeh N. Combination therapy along with mesenchymal stem cells in wound healing; the state of the art. Adv Med Sci 2023; 68:441-449. [PMID: 37924749 DOI: 10.1016/j.advms.2023.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/23/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are being increasingly used in various therapeutic applications including skin tissue repair and wound healing. The positive effects of the MSCs therapy are largely elicited by immunomodulation, increasing angiogenesis, supporting extracellular matrix (ECM) and thus favoring skin structure. However, the therapeutic competences of MSC-based therapies are somewhat hindered by their apparent modest clinical merits, conferring the need for methods that would rise the efficacy of such therapies. A plethora of reports have shown that therapeutic properties of MSCs could be enhanced with other strategies and compounds like biomaterial and platelet-rich plasma (PRP) to target key possessions of MSCs and properties of adjacent tissues concurrently. Manipulation of cellular stress-response mechanisms to improve cell resistance to oxidative stress prior to or during MSC injection could also improve therapeutic efficacy of MSCs. In the current review, we shed light on the recent advances in MSCs combination therapy with other ingredients and procedures to sustain MSCs-mediated effects in wound healing.
Collapse
Affiliation(s)
- Hossein Daneste
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Narges Ramezani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Izeh Branch, Islamic Azad University, Izeh, Iran
| | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Azita Sadeghzade
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Ehsannia
- Faculty of Basic Sciences, Islamic Azad University, Tehran East Branch, Tehran, Iran
| | - Ali Azarashk
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
86
|
Wei C, Lan X, Qiu M, Cui R, Fu Q, Shinge SAU, Muluh TA, Jiang O. Expanding the role of combined immunochemotherapy and immunoradiotherapy in the management of head and neck cancer (Review). Oncol Lett 2023; 26:372. [PMID: 37965160 PMCID: PMC10641411 DOI: 10.3892/ol.2023.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become one of the most promising approaches in tumor therapy, and there are numerous associated clinical trials in China. As an immunosuppressive tumor, head and neck squamous cell carcinoma (HNSCC) carries a high mutation burden, making immune checkpoint inhibitors promising candidates in this field due to their unique mechanism of action. The present review outlines a comprehensive multidisciplinary cancer treatment approach and elaborates on how combining immunochemotherapy and immunoradiotherapy guidelines could enhance clinical efficacy in patients with HNSCC. Furthermore, the present review explores the immunology of HNSCC, current immunotherapeutic strategies to enhance antitumor activity, ongoing clinical trials and the future direction of the current immune landscape in HNSCC. Advanced-stage HNSCC presents with a poor prognosis, low survival rates and minimal improvement in patient survival trends over time. Understanding the potential of immunotherapy and ways to combine it with surgery, chemotherapy and radiotherapy confers good prospects for the management of human papillomavirus (HPV)-positive HNSCC, as well as other HPV-positive malignancies. Understanding the immune system and its effect on HNSCC progression and metastasis will help to uncover novel biomarkers for the selection of patients and to enhance the efficacy of treatments. Further research on why current immune checkpoint inhibitors and targeted drugs are only effective for some patients in the clinic is needed; therefore, further research is required to improve the overall survival of affected patients.
Collapse
Affiliation(s)
- Chun Wei
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Xiaojun Lan
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Maona Qiu
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Ran Cui
- Department of Oncology, The First People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| | - Qiuxia Fu
- Department of General Medicine, The People's Hospital of Luzhou City, Luzhou, Sichuan 646000, P.R. China
| | - Shafiu A. Umar Shinge
- Department of Cardiothoracic Surgery, Sun Yat Sen Memorial Hospital, Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Ou Jiang
- Department of Oncology, The Second People's Hospital of Neijiang City, Neijiang, Sichuan 641000, P.R. China
| |
Collapse
|
87
|
De Luca P, Radici M, Camaioni A. The relationship between the upper aerodigestive microbiome axis and head and neck cancers: it is time to bet on it? Eur Arch Otorhinolaryngol 2023; 280:4299-4301. [PMID: 37310454 DOI: 10.1007/s00405-023-08037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Pietro De Luca
- Head and Neck Department, San Giovanni-Addolorata Hospital, Rome, Italy.
- Head and Neck Department, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy.
| | - Marco Radici
- Head and Neck Department, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Angelo Camaioni
- Head and Neck Department, San Giovanni-Addolorata Hospital, Rome, Italy
| |
Collapse
|
88
|
Mougeot JLC, Beckman MF, Morton DS, Noll J, Steuerwald NM, Brennan MT, Bahrani Mougeot F. Human oral mucosa and oral microbiome interactions following supragingival plaque reconstitution in healthy volunteers: a diet-controlled balanced design proof-of-concept model to investigate oral pathologies. J Oral Microbiol 2023; 15:2246279. [PMID: 37621744 PMCID: PMC10446812 DOI: 10.1080/20002297.2023.2246279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Changes in the oral microbiome may contribute to oral pathologies, especially in patients undergoing cancer therapy. Interactions between oral microbiome and oral mucosa may exacerbate inflammation. We determined whether probiotic-controlled plaque formation could impact proximal oral mucosa gene expression profiles in healthy volunteers. A 3-weeks balanced sample collection design from healthy volunteers (HVs) was implemented. At Week-1 plaques samples and labial mucosa brush biopsies were obtained from HVs in the morning (N = 4) and/or in the afternoon (N = 4), and groups were flipped at Week-3. A fruit yogurt and tea diet were given 2-4hrs before sample collection. mRNA gene expression analysis was completed using RNA-Seq and DESeq2. Bacterial taxa relative abundance was determined by 16S HOMINGS. Bacterial diversity changes and metabolic pathway enrichment were determined using PRIMERv7 and LEfSe programs. Alpha- and beta-diversities did not differ morning (AM) vs. afternoon (PM). The most affected KEGG pathway was Toll-like receptor signaling in oral mucosa. Eighteen human genes and nine bacterial genes were differentially expressed in plaque samples. Increased activity for 'caries-free' health-associated calcifying Corynebacterium matruchotii and reduced activity for Aggregatibacter aphrophilus, an opportunistic pathogen, were observed. Microbial diversity was not altered after 8 hours plaque formation in healthy individuals as opposed to gene expression.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Micaela F. Beckman
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Darla S. Morton
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Jenene Noll
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael T. Brennan
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
89
|
Mäkinen AI, Pappalardo VY, Buijs MJ, Brandt BW, Mäkitie AA, Meurman JH, Zaura E. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. MICROBIOME 2023; 11:171. [PMID: 37542310 PMCID: PMC10403937 DOI: 10.1186/s40168-023-01613-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Treating oral squamous cell carcinoma (OSCC) introduces new ecological environments in the oral cavity. This is expected to cause changes in the oral microbiome. The purpose of this study was to gain new information on the salivary microbiome of OSCC patients in order to improve the aftercare of OSCC patients. The aims of this study were to investigate possible changes in the salivary microbiome profiles of OSCC patients before and after cancer treatment and to compare these changes with the profiles of healthy controls. PATIENTS AND METHODS Paraffin-stimulated whole saliva samples were collected, and the salivary flow rate was measured from 99 OSCC patients prior to surgical resection of the tumor and other adjuvant therapy. After treatment, 28 OSCC patients were re-examined with a mean follow-up time of 48 months. In addition, 101 healthy controls were examined and sampled. After DNA extraction and purification, the V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using Illumina MiSeq. The merged read pairs were denoised using UNOISE3, mapped to zero-radius operational taxonomic units (zOTUs), and the representative zOTU sequences were assigned a taxonomy using HOMD. Descriptive statistics were used to study the differences in the microbial profiles of OSCC patients before and after treatment and in comparison to healthy controls. RESULTS At baseline, the OSCC patients showed a higher relative abundance of zOTUs classified as Streptococcus anginosus, Abiotrophia defectiva, and Fusobacterium nucleatum. The microbial profiles differed significantly between OSCC patients and healthy controls (F = 5.9, p < 0.001). Alpha diversity of the salivary microbiome of OSCC patients was decreased at the follow-up, and the microbial profiles differed significantly from the pre-treatment (p < 0.001) and from that of healthy controls (p < 0.001). CONCLUSIONS OSCC patients' salivary microbiome profile had a higher abundance of potentially pathogenic bacteria compared to healthy controls. Treatment of the OSCC caused a significant decrease in alpha diversity and increase in variability of the salivary microbiome, which was still evident after several years of follow-up. OSCC patients may benefit from preventive measures, such as the use of pre- or probiotics, salivary substitutes, or dietary counseling. Video Abstract.
Collapse
Affiliation(s)
- Anna I. Mäkinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 63, 00014 Helsinki, Finland
| | - Vincent Y. Pappalardo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, P.O. Box 63, 00014 Helsinki, Finland
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
90
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
91
|
Ge WJ, Huang H, Wang T, Zeng WH, Guo M, Ren CR, Fan TY, Liu F, Zeng X. Long non-coding RNAs in hepatocellular carcinoma. Pathol Res Pract 2023; 248:154604. [PMID: 37302276 DOI: 10.1016/j.prp.2023.154604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.
Collapse
Affiliation(s)
- Wen-Jun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hong Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chen-Ran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting-Yu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fang Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
92
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
93
|
Rocha ST, Shah DD, Zhu Q, Shrivastava A. The prevalence of motility within the human oral microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549387. [PMID: 37503047 PMCID: PMC10370060 DOI: 10.1101/2023.07.17.549387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial flagellar motility, Type 4 pilus driven twitching motility, and Type 9 Secretion system (T9SS) driven gliding motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane ß-barrel protein SprA of human oral microbes underwent horizontal evolution. Overall, we catalog motile microbes that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on shaping of the human oral microbiota.
Collapse
|
94
|
Oh JM, Kim H. The effect of oral bacterial infection on DNA damage response in host cells. Am J Cancer Res 2023; 13:3157-3168. [PMID: 37559975 PMCID: PMC10408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Maintaining and transferring intact genomes from one generation to another plays a pivotal role in all living organisms. DNA damage caused by numerous endogenous and exogenous factors must be adequately repaired, as unrepaired and accumulated DNA mutations can cause severe deleterious effects, such as cell death and cancer. To prevent adverse consequences, cells have established DNA damage response mechanisms that address different forms of DNA damage, including DNA double-strand breaks, mismatches, nucleotide excision, and base excision. Among several sources of exogenous DNA damage, bacterial infections cause inflammation in the host, generating reactive oxygen species (ROS) and causing oxidative DNA damage. Recent studies have revealed the importance of the oral microbiome in inflammation and several systemic host diseases. Dysbiosis of oral bacteria can induce chronic inflammation, which enhances ROS-induced DNA damage, and improperly repaired damage can lead to carcinogenesis. This review describes the various DNA repair pathways that are affected by chronic inflammation and the discovery of the DNA damage response induced by oral bacteria such as Porphyromonas gingivalis and Fusobacterium nucleatum.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)Ulsan 44919, Republic of Korea
- Center for Genomic Integrity Institute for Basic Science (IBS), UNISTUlsan 44919, Republic of Korea
| |
Collapse
|
95
|
Bruno JS, Fregnani ER. Oral microbiome as a new research-target for supportive care and precision oncology. Curr Opin Oncol 2023; 35:276-281. [PMID: 37222190 DOI: 10.1097/cco.0000000000000947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE OF REVIEW A growing number of studies demonstrate the oral bacterial shift in cancer patients and the enrichment of oral bacteria in distant tumours. During the oncological treatment, opportunistic oral bacteria correlate with oral toxicities. This review focused on the most recent studies to identify which genera are the most mentioned and deserved further investigation. RECENT FINDINGS This review evaluated bacterial changes in patients with head and neck, colorectal, lung and breast cancer. Greater composition of disease-related genera (e.g., Fusobacterium , Porphyromonas , Lactobacillus , Streptococcus , and Parvimonas ) are present in the oral cavity of these groups of patients. The tumour specimen characterisation of head and neck, pancreatic and colorectal cancer also describes the presence of oral taxa. No evidence indicates that commensal oral bacteria have protective roles in distant tumours. Regardless, oral care is critical to prevent the growth of oral pathogens and reduce infection foci. SUMMARY Recent evidence suggests that oral microbiota is a potential biomarker for oncological clinical outcomes and oral toxicities. Currently, the literature presents a remarkable methodological variety - from the sample collection site to the preference of the data analysis tools. For the oral microbiome to achieve the stage of being used as a clinical tool in the oncological context, more studies are necessary.
Collapse
|
96
|
Ikryannikova LN, Gorokhovets NV, Belykh DA, Kurbatov LK, Zamyatnin AA. Bacterial Therapy of Cancer: A Way to the Dustbin of History or to the Medicine of the Future? Int J Mol Sci 2023; 24:ijms24119726. [PMID: 37298677 DOI: 10.3390/ijms24119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Bacteria are the constant companions of the human body throughout its life and even after its death. The history of a human disease such as cancer and the history of microorganisms, particularly bacteria, are believed to closely intertwined. This review was conceived to highlight the attempts of scientists from ancient times to the present day to discover the relationship between bacteria and the emergence or development of tumors in the human body. Challenges and achievements of 21st century science in forcing bacteria to serve for cancer treatment are considered. The future possibilities of bacterial cancer therapy, including the creation of bacterial microrobots, or "bacteriobots", are also discussed.
Collapse
Affiliation(s)
- Larisa N Ikryannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Neonila V Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Darya A Belykh
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Leonid K Kurbatov
- Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaya 10/8, 119991 Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1/73, 119234 Moscow, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119992 Moscow, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
97
|
刘 晨, 李 育, 董 振, 张 森, 皇 甫, 韩 悦, 常 淼. [Progress in the relationship between head and neck squamous cell carcinom and the microbial community]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2023; 37:498-502. [PMID: 37253529 PMCID: PMC10495794 DOI: 10.13201/j.issn.2096-7993.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Indexed: 06/01/2023]
Abstract
Microorganisms are one of the important factors which maintain the homeostasis of human health. Despite recent advances, the relationship between microorganisms and head and neck squamous cell carcinoma (HNSCC) is still unclear, and the impact of microorganisms on the incidence and prognosis of HNSCC cannot be neglected. Therefore, this article provides a systematic and comprehensive review summarizing the epidemiological evidence of microbial dysbiosis related to HNSCC and discusses the associations between them.
Collapse
Affiliation(s)
- 晨阳 刘
- 山西医科大学(太原,030001)Shanxi Medical University, Taiyuan, 030001, China
| | - 育军 李
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, the First Hospital of Shanxi Medical University
| | - 振 董
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, the First Hospital of Shanxi Medical University
| | - 森 张
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, the First Hospital of Shanxi Medical University
| | - 甫辉 皇
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otorhinolaryngology Head and Neck Surgery, the First Hospital of Shanxi Medical University
| | - 悦 韩
- 山西医科大学(太原,030001)Shanxi Medical University, Taiyuan, 030001, China
| | - 淼 常
- 山西医科大学(太原,030001)Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
98
|
Maier T. Oral Microbiome in Health and Disease: Maintaining a Healthy, Balanced Ecosystem and Reversing Dysbiosis. Microorganisms 2023; 11:1453. [PMID: 37374955 DOI: 10.3390/microorganisms11061453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The oral microbiome is a complex and dynamic assemblage of microorganisms that normally exist within the mouth, contributing to host health via a number of mechanisms, including exclusion of harmful microbes and immune optimization [...].
Collapse
Affiliation(s)
- Tom Maier
- Division of Biomaterial and Biomedical Sciences, Department Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Sciences University, Portland, OR 97201, USA
| |
Collapse
|
99
|
Narayanan A, Söder B, Meurman J, Lundmark A, Hu YOO, Neogi U, Yucel-Lindberg T. Composition of subgingival microbiota associated with periodontitis and diagnosis of malignancy-a cross-sectional study. Front Microbiol 2023; 14:1172340. [PMID: 37426027 PMCID: PMC10325785 DOI: 10.3389/fmicb.2023.1172340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023] Open
Abstract
Periodontitis is one of the world's most prevalent infectious conditions, affecting between 25 and 40% of the adult population. It is a consequence of the complex interactions between periodontal pathogens and their products, which trigger the host inflammatory response, chronic inflammation, and tissue destruction. Chronic systemic low-grade inflammation is involved in numerous diseases, and it is also known that long-lasting inflammation and chronic infections predispose one to cancer. Here, we characterized and compared the subgingival microbiota associated with periodontitis and diagnosis of malignancy in a longitudinal 10-year follow-up study. The study was conducted on 50 patients with periodontitis and 40 periodontally healthy individuals. The recorded clinical oral health parameters were periodontal attachment loss (AL), bleeding on probing (BOP), gingival index (GI), probing depth (PD), and plaque index (PI). Subgingival plaque was collected from each participant, from which DNA was extracted, and 16S rRNA gene amplicon sequencing performed. Cancer diagnoses data were collected between the years 2008-2018 from the Swedish Cancer Registry. The participants were categorized based on having cancer at the time of sample collection (CSC), having developed cancer later (DCL), and controls without any cancer. The most abundant phyla across all 90 samples were Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria. At the genus level, Treponema, Fretibacterium, and Prevotella were significantly more abundant in samples of periodontitis patients compared to non-periodontitis individuals. With regard to samples of cancer patients, Corynebacterium and Streptococcus were more abundant in the CSC group; Prevotella were more abundant in the DCL group; and Rothia, Neisseria, and Capnocytophaga were more abundant in the control group. In the CSC group, we also found that the presence of periodontal inflammation, in terms of BOP, GI, and PLI, significantly correlated with species belonging to the genera Prevotella, Treponema, and Mycoplasma. Our results revealed that several subgingival genera were differentially enriched among the studied groups. These findings underscore the need for further research to fully understand the role that oral pathogens may play in the development of cancer.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Söder
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jukka Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Lundmark
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yue O. O. Hu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
100
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|