51
|
Cuthbert BJ, Ross W, Rohlfing AE, Dove SL, Gourse RL, Brennan RG, Schumacher MA. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev 2017; 31:1549-1560. [PMID: 28864445 PMCID: PMC5630020 DOI: 10.1101/gad.303701.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022]
Abstract
Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.
Collapse
Affiliation(s)
- Bonnie J Cuthbert
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy E Rohlfing
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
52
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
53
|
Marecic V, Shevchuk O, Ozanic M, Mihelcic M, Steinert M, Jurak Begonja A, Abu Kwaik Y, Santic M. Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages. Front Cell Infect Microbiol 2017; 7:303. [PMID: 28725638 PMCID: PMC5496951 DOI: 10.3389/fcimb.2017.00303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022] Open
Abstract
Francisella is a gram-negative bacterial pathogen, which causes tularemia in humans and animals. A crucial step of Francisella infection is its invasion of macrophage cells. Biogenesis of the Francisella-containing phagosome (FCP) is arrested for ~15 min at the endosomal stage, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient presence of the bacterium within phagosome. Isolation of FCPs for further studies has been challenging due to the short period of time of bacterial residence in it and the characteristics of the FCP. Here, we will for the first time present the method for isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs). For elimination of lysosomal compartment these organelles were pre-loaded with dextran coated colloidal iron particles prior infection and eliminated by magnetic separation of the post-nuclear supernatant (PNS). We encountered the challenge that mitochondria has similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate dehydrogenase into formazan, leading to increased density of the mitochondria and allowing separation by the discontinuous sucrose density gradient ultracentrifugation. The purity of the FCP preparation and its acquisition of early endosomal markers was confirmed by Western blots, confocal and transmission electron microscopy. Our strategy to isolate highly pure FCPs from macrophages should facilitate studies on the FCP and its biogenesis.
Collapse
Affiliation(s)
- Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Olga Shevchuk
- Department of Microbiology, Institut für Mikrobiologie, Technische Universität Braunschweig and Helmholtz Center for Infection ResearchBraunschweig, Germany.,Department of Biotechnology, University of RijekaRijeka, Croatia
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Mirna Mihelcic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Michael Steinert
- Department of Microbiology, Institut für Mikrobiologie, Technische Universität Braunschweig and Helmholtz Center for Infection ResearchBraunschweig, Germany
| | | | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive MedicineLouisville, KY, United States
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| |
Collapse
|
54
|
Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 2017. [PMID: 28621333 PMCID: PMC5481754 DOI: 10.1038/ncomms15853] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen that causes the fatal zoonotic disease tularaemia. Critical for its pathogenesis is the ability of the phagocytosed bacteria to escape into the cell cytosol. For this, the bacteria use a non-canonical type VI secretion system (T6SS) encoded on the Francisella pathogenicity island (FPI). Here we show that in F. novicida T6SS assembly initiates at the bacterial poles both in vitro and within infected macrophages. T6SS dynamics and function depends on the general purpose ClpB unfoldase, which specifically colocalizes with contracted sheaths and is required for their disassembly. T6SS assembly depends on iglF, iglG, iglI and iglJ, whereas pdpC, pdpD, pdpE and anmK are dispensable. Importantly, strains lacking pdpC and pdpD are unable to escape from phagosome, activate AIM2 inflammasome or cause disease in mice. This suggests that PdpC and PdpD are T6SS effectors involved in phagosome rupture. The pathogenicity of Francisella species largely depends on their escape from phagosomes in macrophages, mediated by a type VI secretion system (T6SS). Here, the authors show dynamics of T6SS assembly and disassembly and identify the genes essential for phagosome escape and pathogenicity in mice.
Collapse
|
55
|
Honn M, Lindgren H, Bharath GK, Sjöstedt A. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In vivo. Front Cell Infect Microbiol 2017; 7:14. [PMID: 28174696 PMCID: PMC5258697 DOI: 10.3389/fcimb.2017.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium and as such is expected to encounter a continuous attack by reactive oxygen species (ROS) in its intracellular habitat and efficiently coping with oxidative stress is therefore essential for its survival. The oxidative stress response system of F. tularensis is complex and includes multiple antioxidant enzymes and pathways, including the transcriptional regulator OxyR and the H2O2-decomposing enzyme catalase, encoded by katG. The latter is regulated by OxyR. A deletion of either of these genes, however, does not severely compromise the virulence of F. tularensis and we hypothesized that if the bacterium would be deficient of both catalase and OxyR, then the oxidative defense and virulence of F. tularensis would become severely hampered. To test this hypothesis, we generated a double deletion mutant, ΔoxyR/ΔkatG, of F. tularensis LVS and compared its phenotype to the parental LVS strain and the corresponding single deletion mutants. In accordance with the hypothesis, ΔoxyR/ΔkatG was distinctly more susceptible than ΔoxyR and ΔkatG to H2O2, ONOO−, and O2-, moreover, it hardly grew in mouse-derived BMDM or in mice, whereas ΔkatG and ΔoxyR grew as well as F. tularensis LVS in BMDM and exhibited only slight attenuation in mice. Altogether, the results demonstrate the importance of catalase and OxyR for a robust oxidative stress defense system and that they act cooperatively. The lack of both functions render F. tularensis severely crippled to handle oxidative stress and also much attenuated for intracellular growth and virulence.
Collapse
Affiliation(s)
- Marie Honn
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Helena Lindgren
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Gurram K Bharath
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Anders Sjöstedt
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| |
Collapse
|
56
|
Affiliation(s)
- Petra Spidlova
- a Department of Molecular Pathology and Biology , Faculty of Military Health Sciences, University of Defence , Hradec Kralove , Czech Republic
| | - Jiri Stulik
- a Department of Molecular Pathology and Biology , Faculty of Military Health Sciences, University of Defence , Hradec Kralove , Czech Republic
| |
Collapse
|
57
|
Bröms JE, Meyer L, Sjöstedt A. A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion. Virulence 2016; 8:821-847. [PMID: 27830989 PMCID: PMC5626337 DOI: 10.1080/21505594.2016.1258507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Francisella tularensis is the etiological agent of the zoonotic disease tularemia. Its life cycle is characterized by an ability to survive within phagocytic cells through phagosomal escape and replication in the cytosol, ultimately causing inflammasome activation and host cell death. Required for these processes is the Francisella Pathogenicity Island (FPI), which encodes a Type VI secretion system (T6SS) that is active during intracellular infection. In this study, we analyzed the role of the FPI-component IglE, a lipoprotein which we previously have shown to be secreted in a T6SS-dependent manner. We demonstrate that in F. tularensis LVS, IglE is an outer membrane protein. Upon infection of J774 cells, an ΔiglE mutant failed to escape from phagosomes, and subsequently, to multiply and cause cytopathogenicity. Moreover, ΔiglE was unable to activate the inflammasome, to inhibit LPS-stimulated secretion of TNF-α, and showed marked attenuation in the mouse model. In F. novicida, IglE was required for in vitro secretion of IglC and VgrG. A mutagenesis-based approach involving frameshift mutations and alanine substitution mutations within the first ∼ 38 residues of IglE revealed that drastic changes in the sequence of the extreme N-terminus (residues 2-6) were well tolerated and, intriguingly, caused hyper-secretion of IglE during intracellular infection, while even subtle mutations further downstream lead to impaired protein function. Taken together, this study highlights the importance of IglE in F. tularensis pathogenicity, and the contribution of the N-terminus for all of the above mentioned processes.
Collapse
Affiliation(s)
- Jeanette E Bröms
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| | - Lena Meyer
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| | - Anders Sjöstedt
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| |
Collapse
|
58
|
Bravo C, Martinez V. Whole-genome comparative analysis of the pathogen Piscirickettsia salmonis. Vet Microbiol 2016; 196:36-43. [PMID: 27939153 DOI: 10.1016/j.vetmic.2016.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/12/2022]
Abstract
The intracellular pathogen Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, the most important bacterial disease that affects the Chilean salmon industry. Despite its importance, little is known regarding the biology of the pathogen. In this study, recently published sequencing data was used in order to characterize the genome of P. salmonis, defining groups of genes associated with bacterial processes such as, invasion and intracellular survival. Moreover, one Chilean P. salmonis isolate, which is known to be virulent at in vitro and in vivo assays, was sequenced, assembled, annotated and functionally characterized. Whole-genome comparisons between public P. salmonis isolates confirmed the existence of two different genogroups associated with the LF-89 and EM-90 strains, and the bacterial pan and core genome were defined. Additionally, differences were observed at the genomic level between the P. salmonis reference strain and a Norwegian isolate, which is known to produce milder piscirickettsiosis outbreaks. Finally, candidate genes for invasion and intracellular survival were chosen from phylogenetically related bacteria, and annotated in P. salmonis using comparative genomics. These results showed the presence of several genes that might be related to bacterial pathogenesis, for example those of the type III, IV and VI secretion systems, in which some amino acidic differences within both genogroups and the Norwegian isolate were established. Altogether, these results will be relevant for understanding the host-pathogen interaction and further studies, aimed at generating new disease control strategies, should be devised using this information.
Collapse
Affiliation(s)
- Cristian Bravo
- FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avda. Santa Rosa, 11735, Santiago, Chile.
| | - Victor Martinez
- FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avda. Santa Rosa, 11735, Santiago, Chile.
| |
Collapse
|
59
|
Rigard M, Bröms JE, Mosnier A, Hologne M, Martin A, Lindgren L, Punginelli C, Lays C, Walker O, Charbit A, Telouk P, Conlan W, Terradot L, Sjöstedt A, Henry T. Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathog 2016; 12:e1005821. [PMID: 27602570 PMCID: PMC5014421 DOI: 10.1371/journal.ppat.1005821] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
The virulence of Francisella tularensis, the etiological agent of tularemia, relies on an atypical type VI secretion system (T6SS) encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). While the importance of the FPI in F. tularensis virulence is clearly established, the precise role of most of the FPI-encoded proteins remains to be deciphered. In this study, using highly virulent F. tularensis strains and the closely related species F. novicida, IglG was characterized as a protein featuring a unique α-helical N-terminal extension and a domain of unknown function (DUF4280), present in more than 250 bacterial species. Three dimensional modeling of IglG and of the DUF4280 consensus protein sequence indicates that these proteins adopt a PAAR-like fold, suggesting they could cap the T6SS in a similar way as the recently described PAAR proteins. The newly identified PAAR-like motif is characterized by four conserved cysteine residues, also present in IglG, which may bind a metal atom. We demonstrate that IglG binds metal ions and that each individual cysteine is required for T6SS-dependent secretion of IglG and of the Hcp homologue, IglC and for the F. novicida intracellular life cycle. In contrast, the Francisella-specific N-terminal α-helical extension is not required for IglG secretion, but is critical for F. novicida virulence and for the interaction of IglG with another FPI-encoded protein, IglF. Altogether, our data suggest that IglG is a PAAR-like protein acting as a bi-modal protein that may connect the tip of the Francisella T6SS with a putative T6SS effector, IglF. Francisella tularensis is a highly pathogenic bacterium causing tularemia. Its ability to cause disease is linked to its ability to replicate in the macrophage cytosol. The intracellular life cycle of Francisella is controlled by a type VI secretion system (T6SS), which is thought to inject effectors into the host cell to allow bacterial escape into the host cytosol. The molecular mechanisms behind this process are still largely unclear. In this work, we identify IglG as a protein with two important domains, one conserved in proteins from more than 250 bacterial species (DUF4280, renamed here as PAAR-like domain) and one specific for the Francisella genus. Using protein sequence analysis and three-dimensional structure predictions, comparative modeling and biochemistry approaches, our data demonstrate that IglG is a metal-binding protein that based on its PAAR-like domain might cap the VgrG spike of the T6SS and act as a membrane-puncturing protein. Furthermore, we identified that the Francisella-specific domain is directly involved in forming a protein complex with another virulence protein, IglF. This work, in addition to enhancing the molecular understanding of the Francisella T6SS, defines the features of the conserved DUF4280, a novel PAAR-like domain involved in type VI secretion (T6S) of many bacterial species.
Collapse
Affiliation(s)
- Mélanie Rigard
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jeanette E. Bröms
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Amandine Mosnier
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Maggy Hologne
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Amandine Martin
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Lena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Claire Punginelli
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Claire Lays
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Walker
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Philippe Telouk
- University of Lyon, Lyon, France
- Laboratoire de Geologie de Lyon; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Wayne Conlan
- National Research Council Canada, Human Health Therapeutics Portfolio, Ottawa, Ontario, Canada
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
- * E-mail: (LT); (AS); (TH)
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail: (LT); (AS); (TH)
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (LT); (AS); (TH)
| |
Collapse
|
60
|
Kinkead LC, Allen LAH. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev 2016; 273:266-81. [PMID: 27558340 PMCID: PMC5000853 DOI: 10.1111/imr.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Francisella tularensis in an intracellular bacterial pathogen that causes a potentially lethal disease called tularemia. Studies performed nearly 100 years ago revealed that neutrophil accumulation in infected tissues correlates directly with the extent of necrotic damage during F. tularensis infection. However, the dynamics and details of bacteria-neutrophil interactions have only recently been studied in detail. Herein, we review current understanding regarding the mechanisms that recruit neutrophils to F. tularensis-infected lungs, opsonization and phagocytosis, evasion and inhibition of neutrophil defense mechanisms, as well as the ability of F. tularensis to prolong neutrophil lifespan. In addition, we discuss distinctive features of the bacterium, including its ability to act at a distance to alter overall neutrophil responsiveness to exogenous stimuli, and the evidence which suggests that macrophages and neutrophils play distinct roles in tularemia pathogenesis, such that macrophages are major vehicles for intracellular growth and dissemination, whereas neutrophils drive tissue destruction by dysregulation of the inflammatory response.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa Iowa City, IA 52242
- VA Medical Center, Iowa City, IA 52242
| |
Collapse
|
61
|
Ramsey KM, Dove SL. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor. Mol Microbiol 2016; 101:688-700. [PMID: 27169554 PMCID: PMC5020902 DOI: 10.1111/mmi.13418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The orphan response regulator PmrA is essential for the intramacrophage growth and survival of Francisella tularensis. PmrA was thought to promote intramacrophage growth by binding directly to promoters on the Francisella Pathogenicity Island (FPI) and positively regulating the expression of FPI genes, which encode a Type VI secretion system required for intramacrophage growth. Using both ChIP-Seq and RNA-Seq we identify those regions of the F. tularensis chromosome occupied by PmrA and those genes that are regulated by PmrA. We find that PmrA associates with 252 distinct regions of the F. tularensis chromosome, but exerts regulatory effects at only a few of these locations. Rather than by functioning directly as an activator of FPI gene expression we present evidence that PmrA promotes intramacrophage growth by repressing the expression of a single target gene we refer to as priM (PmrA-repressed inhibitor of intramacrophage growth). Our findings thus indicate that the role of PmrA in facilitating intracellular growth is to repress a previously unknown anti-virulence factor. PriM is the first bacterially encoded factor to be described that can interfere with the intramacrophage growth and survival of F. tularensis.
Collapse
Affiliation(s)
- Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
62
|
Ozanic M, Gobin I, Brezovec M, Marecic V, Trobonjaca Z, Abu Kwaik Y, Santic M. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice. Front Cell Infect Microbiol 2016; 6:56. [PMID: 27242974 PMCID: PMC4870235 DOI: 10.3389/fcimb.2016.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia.
Collapse
Affiliation(s)
- Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Martin Brezovec
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Zlatko Trobonjaca
- Department of Physiology and Immunology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive Medicine, College of Medicine, University of LouisvilleLouisville, KY, USA
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| |
Collapse
|
63
|
Elkins KL, Kurtz SL, De Pascalis R. Progress, challenges, and opportunities in Francisella vaccine development. Expert Rev Vaccines 2016; 15:1183-96. [PMID: 27010448 DOI: 10.1586/14760584.2016.1170601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Renewed interest in Francisella tularensis has resulted in substantial new information about its pathogenesis and immunology, along with development of useful animal models. While understanding of protective immunity against Francisella remains incomplete, data in both animals and humans suggest that inducing T cell-mediated immunity is crucial for successful vaccination with current candidates such as the Live Vaccine Strain (LVS), with specific antibodies and immune B cells playing supporting roles. Consistent with this idea, recent results indicate that measurements of T cell functions and relative gene expression by immune T cells predict vaccine-induced protection in animal models. Because field trials of new vaccines will be difficult to design, using such measurements to derive potential correlates of protection may be important to bridge between animal efficacy studies and people.
Collapse
Affiliation(s)
- Karen L Elkins
- a Division of Bacterial, Parasitic, and Allergenic Products, CBER/FDA , Silver Spring , MD , USA
| | - Sherry L Kurtz
- a Division of Bacterial, Parasitic, and Allergenic Products, CBER/FDA , Silver Spring , MD , USA
| | - Roberto De Pascalis
- a Division of Bacterial, Parasitic, and Allergenic Products, CBER/FDA , Silver Spring , MD , USA
| |
Collapse
|
64
|
Qin A, Zhang Y, Clark ME, Moore EA, Rabideau MM, Moreau GB, Mann BJ. Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein. Virulence 2016; 7:882-894. [PMID: 27028889 PMCID: PMC5160417 DOI: 10.1080/21505594.2016.1168550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
FipB, an essential virulence factor in the highly virulent Schu S4 strain of F. tularensis subsp. tularensis, shares sequence similarity with Disulfide Bond formation (Dsb) proteins, which can have oxidoreductase, isomerase, or chaperone activity. To further explore FipB's role in virulence potential substrates were identified by co-purification and 2D gel electrophoresis, followed by protein sequencing using mass spectrometry. A total of 119 potential substrates were identified. Proteins with predicted enzymatic activity were prevalent, and there were 19 proteins that had been previously identified as impacting virulence. Among the potential substrates were IglC, IglB, and PdpB, three components of the Francisella Type Six Secretion System (T6SS), which is also essential for virulence. T6SS are widespread in Gram-negative pathogens, but have not been reported to be dependent on Dsb-like proteins for assembly or function. The presented results suggest that FipB affects IglB and IglC substrates differently. In a fipB mutant there were differences in free sulfhydryl accessibility of IglC, but not IglB, when compared to wild-type bacteria. However, for both proteins FipB appears to act as a chaperone that facilitates proper folding and conformation. Understanding the role FipB plays the assembly and structure in this T6SS may reveal critical aspects of assembly that are common and novel among this widely distributed class of secretion systems.
Collapse
Affiliation(s)
- Aiping Qin
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Yan Zhang
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Melinda E Clark
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Emily A Moore
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Meaghan M Rabideau
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - G Brett Moreau
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| | - Barbara J Mann
- a Department of Medicine , Division of Infectious Diseases, University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
65
|
Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080. [PMID: 26979785 PMCID: PMC4793230 DOI: 10.1038/srep23080] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/24/2016] [Indexed: 01/08/2023] Open
Abstract
Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems’ components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SSiii and T9SS were restricted to Bacteroidetes, and T6SSii to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems.
Collapse
|
66
|
Abstract
Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.
Collapse
|
67
|
Wallqvist A, Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Yu C, Hoover TA, Reifman J. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors. BMC Genomics 2015; 16:1106. [PMID: 26714771 PMCID: PMC4696196 DOI: 10.1186/s12864-015-2351-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. Results We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Conclusions Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2351-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | | | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, MD, 20850, USA.
| | - Chenggang Yu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Timothy A Hoover
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
68
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
69
|
Dining in: intracellular bacterial pathogen interplay with autophagy. Curr Opin Microbiol 2015; 29:9-14. [PMID: 26462048 DOI: 10.1016/j.mib.2015.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/21/2015] [Indexed: 12/30/2022]
Abstract
Intracellular bacterial pathogens have evolved many ways to manipulate host cells for successful infection. Many of these pathogens use specialized secretion systems to inject bacterial proteins into the host cytosol that manipulate cellular processes to favor infection. Autophagy is a eukaryotic cellular remodeling process with a critical role in many diseases, including bacterial clearance. A growing field of research highlights mechanisms used by intracellular bacteria to manipulate autophagy as a pro-survival strategy. This review focuses on a select group of bacterial pathogens with diverse intracellular lifestyles that exploit autophagy-derived nutrients and membrane for survival. This group of pathogens uses secretion systems and specific effectors to subvert distinct components of autophagy. By understanding how intracellular pathogens manipulate autophagy, we gain insight not only into bacterial pathogenesis but also host cell signaling and autophagolysosome maturation.
Collapse
|
70
|
Li J, Yao Y, Xu HH, Hao L, Deng Z, Rajakumar K, Ou HY. SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol 2015; 17:2196-202. [DOI: 10.1111/1462-2920.12794] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jun Li
- State Key Laboratory for Microbial Metabolism and School of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai 200030 China
| | - Yufeng Yao
- Laboratory of Bacterial Pathogenesis; Department of Medical Microbiology and Parasitology; Institutes of Medical Sciences; Shanghai Jiaotong University School of Medicine; Shanghai 200025 China
| | - H. Howard Xu
- Department of Biological Sciences; California State University; Los Angeles CA 90032 USA
| | - Limin Hao
- Quartermaster Equipment Institute of the General Logistics Department; People's Liberation Army; Beijing 100010 China
| | - Zixin Deng
- State Key Laboratory for Microbial Metabolism and School of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai 200030 China
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Hong-Yu Ou
- State Key Laboratory for Microbial Metabolism and School of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai 200030 China
| |
Collapse
|
71
|
Structural and Biochemical Characterization of the Francisella tularensis Pathogenicity Regulator, Macrophage Locus Protein A (MglA). PLoS One 2015; 10:e0128225. [PMID: 26121147 PMCID: PMC4488300 DOI: 10.1371/journal.pone.0128225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/10/2015] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is one of the most infectious bacteria known and is the etiologic agent of tularemia. Francisella virulence arises from a 33 kilobase (Kb) pathogenicity island (FPI) that is regulated by the macrophage locus protein A (MglA) and the stringent starvation protein A (SspA). These proteins interact with both RNA polymerase (RNAP) and the pathogenicity island gene regulator (PigR) to activate FPI transcription. However, the molecular mechanisms involved are not well understood. Indeed, while most bacterial SspA proteins function as homodimers to activate transcription, F. tularensis SspA forms a heterodimer with the MglA protein, which is unique to F. tularensis. To gain insight into MglA function, we performed structural and biochemical studies. The MglA structure revealed that it contains a fold similar to the SspA protein family. Unexpectedly, MglA also formed a homodimer in the crystal. Chemical crosslinking and size exclusion chromatography (SEC) studies showed that MglA is able to self-associate in solution to form a dimer but that it preferentially heterodimerizes with SspA. Finally, the MglA structure revealed malate, which was used in crystallization, bound in an open pocket formed by the dimer, suggesting the possibility that this cleft could function in small molecule ligand binding. The location of this binding region relative to recently mapped PigR and RNAP interacting sites suggest possible roles for small molecule binding in MglA and SspA•MglA function.
Collapse
|
72
|
Microinjection of Francisella tularensis and Listeria monocytogenes reveals the importance of bacterial and host factors for successful replication. Infect Immun 2015; 83:3233-42. [PMID: 26034213 DOI: 10.1128/iai.00416-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
Certain intracellular bacteria use the host cell cytosol as the replicative niche. Although it has been hypothesized that the successful exploitation of this compartment requires a unique metabolic adaptation, supportive evidence is lacking. For Francisella tularensis, many genes of the Francisella pathogenicity island (FPI) are essential for intracellular growth, and therefore, FPI mutants are useful tools for understanding the prerequisites of intracytosolic replication. We compared the growth of bacteria taken up by phagocytic or nonphagocytic cells with that of bacteria microinjected directly into the host cytosol, using the live vaccine strain (LVS) of F. tularensis; five selected FPI mutants thereof, i.e., ΔiglA, ΔiglÇ ΔiglG, ΔiglI, and ΔpdpE strains; and Listeria monocytogenes. After uptake in bone marrow-derived macrophages (BMDM), ASC(-/-) BMDM, MyD88(-/-) BMDM, J774 cells, or HeLa cells, LVS, ΔpdpE and ΔiglG mutants, and L. monocytogenes replicated efficiently in all five cell types, whereas the ΔiglA and ΔiglC mutants showed no replication. After microinjection, all 7 strains showed effective replication in J774 macrophages, ASC(-/-) BMDM, and HeLa cells. In contrast to the rapid replication in other cell types, L. monocytogenes showed no replication in MyD88(-/-) BMDM and LVS showed no replication in either BMDM or MyD88(-/-) BMDM after microinjection. Our data suggest that the mechanisms of bacterial uptake as well as the permissiveness of the cytosolic compartment per se are important factors for the intracytosolic replication. Notably, none of the investigated FPI proteins was found to be essential for intracytosolic replication after microinjection.
Collapse
|
73
|
Identifying Francisella tularensis genes required for growth in host cells. Infect Immun 2015; 83:3015-25. [PMID: 25987704 DOI: 10.1128/iai.00004-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence.
Collapse
|
74
|
Larson MA, Nalbantoglu U, Sayood K, Zentz EB, Bartling AM, Francesconi SC, Fey PD, Dempsey MP, Hinrichs SH. Francisella tularensis Subtype A.II Genomic Plasticity in Comparison with Subtype A.I. PLoS One 2015; 10:e0124906. [PMID: 25918839 PMCID: PMC4412822 DOI: 10.1371/journal.pone.0124906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022] Open
Abstract
Although Francisella tularensis is considered a monomorphic intracellular pathogen, molecular genotyping and virulence studies have demonstrated important differences within the tularensis subspecies (type A). To evaluate genetic variation within type A strains, sequencing and assembly of a new subtype A.II genome was achieved for comparison to other completed F. tularensis type A genomes. In contrast with the F. tularensis A.I strains (SCHU S4, FSC198, NE061598, and TI0902), substantial genomic variation was observed between the newly sequenced F. tularensis A.II strain (WY-00W4114) and the only other publically available A.II strain (WY96-3418). Genome differences between WY-00W4114 and WY96-3418 included three major chromosomal translocations, 1580 indels, and 286 nucleotide substitutions of which 159 were observed in predicted open reading frames and 127 were located in intergenic regions. The majority of WY-00W4114 nucleotide deletions occurred in intergenic regions, whereas most of the insertions and substitutions occurred in predicted genes. Of the nucleotide substitutions, 48 (30%) were synonymous and 111 (70%) were nonsynonymous. WY-00W4114 and WY96-3418 nucleotide polymorphisms were predominantly G/C to A/T allelic mutations, with WY-00W4114 having more A+T enrichment. In addition, the A.II genomes contained a considerably higher number of intact genes and longer repetitive sequences, including transposon remnants than the A.I genomes. Together these findings support the premise that F. tularensis A.II may have a fitness advantage compared to the A.I subtype due to the higher abundance of functional genes and repeated chromosomal sequences. A better understanding of the selective forces driving F. tularensis genetic diversity and plasticity is needed.
Collapse
Affiliation(s)
- Marilynn A. Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Ufuk Nalbantoglu
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Khalid Sayood
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Emily B. Zentz
- OpGen Inc., Gaithersburg, Maryland, United States of America
| | - Amanda M. Bartling
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael P. Dempsey
- United States Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Steven H. Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
75
|
Dhariwala MO, Anderson DM. Bacterial programming of host responses: coordination between type I interferon and cell death. Front Microbiol 2014; 5:545. [PMID: 25389418 PMCID: PMC4211556 DOI: 10.3389/fmicb.2014.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023] Open
Abstract
During mammalian infection, bacteria induce cell death from an extracellular or intracellular niche that can protect or hurt the host. Data is accumulating that associate type I interferon (IFN) signaling activated by intracellular bacteria with programmed death of immune effector cells and enhanced virulence. Multiple pathways leading to IFN-dependent host cell death have been described, and in some cases it is becoming clear how these mechanisms contribute to virulence. Yet common mechanisms of IFN-enhanced bacterial pathogenesis are not obvious and no specific interferon stimulated genes have yet been identified that cause sensitivity to pathogen-induced cell death. In this review, we will summarize some bacterial infections caused by facultative intracellular pathogens and what is known about how type I IFN signaling may promote the replication of extracellular bacteria rather than stimulate protection. Each of these pathogens can survive phagocytosis but their intracellular life cycles are very different, they express distinct virulence factors and trigger different pathways of immune activation and crosstalk. These differences likely lead to widely varying amounts of type I IFN expression and a different inflammatory environment, but these may not be important to the pathologic effects on the host. Instead, each pathogen induces programmed cell death of key immune cells that have been sensitized by the activation of the type I IFN response. We will discuss how IFN-dependent host cell death may increase host susceptibility and try to understand common pathways of pathogenesis that lead to IFN-enhanced bacterial virulence.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
76
|
Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol Microbiol 2014; 94:926-44. [PMID: 25257164 DOI: 10.1111/mmi.12808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Bacterial pathogens are exposed to toxic molecules inside the host and require efficient systems to form and maintain correct disulfide bonds for protein stability and function. The intracellular pathogen Francisella tularensis encodes a disulfide bond formation protein ortholog, DsbA, which previously was reported to be required for infection of macrophages and mice. However, the molecular mechanisms by which F. tularensis DsbA contributes to virulence are unknown. Here, we demonstrate that F. tularensis DsbA is a bifunctional protein that oxidizes and, more importantly, isomerizes complex disulfide connectivity in substrates. A single amino acid in the conserved cis-proline loop of the DsbA thioredoxin domain was shown to modulate both isomerase activity and F. tularensis virulence. Trapping experiments in F. tularensis identified over 50 F. tularensis DsbA substrates, including outer membrane proteins, virulence factors, and many hypothetical proteins. Six of these hypothetical proteins were randomly selected and deleted, revealing two novel proteins, FTL_1548 and FTL_1709, which are required for F. tularensis virulence. We propose that the extreme virulence of F. tularensis is partially due to the bifunctional nature of DsbA, that many of the newly identified substrates are required for virulence, and that the development of future DsbA inhibitors could have broad anti-bacterial implications.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | | | | |
Collapse
|
77
|
Lenco J, Tambor V, Link M, Klimentova J, Dresler J, Peterek M, Charbit A, Stulik J. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics 2014; 14:2400-9. [PMID: 25156581 DOI: 10.1002/pmic.201400198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022]
Abstract
The posttranscriptional regulatory protein Hfq was shown to be an important determinant of the stress resistance and full virulence in the dangerous human pathogen Francisella tularensis. Transcriptomics brought rather limited clues to the precise contribution of Hfq in virulence. To reveal the molecular basis of the attenuation caused by hfq inactivation, we employed iTRAQ in the present study and compared proteomes of the parent and isogenic Δhfq strains. We show that Hfq modulates the level of 76 proteins. Most of them show decreased abundance in the ∆hfq mutant, thereby indicating that Hfq widely acts rather as a positive regulator of Francisella gene expression. Several key Francisella virulence factors including those encoded within the Francisella pathogenicity island were found among the downregulated proteins, which is in a good agreement with the attenuated phenotype of the Δhfq strain. To further validate the iTRAQ exploratory findings, we subsequently performed targeted LC-SRM analysis of selected proteins. This accurate quantification method corroborated the trends found in the iTRAQ data.
Collapse
Affiliation(s)
- Juraj Lenco
- Faculty of Military Health Sciences, Institute of Molecular Pathology, University of Defense, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Hare RF, Hueffer K. Francisella novicida pathogenicity island encoded proteins were secreted during infection of macrophage-like cells. PLoS One 2014; 9:e105773. [PMID: 25158041 PMCID: PMC4144950 DOI: 10.1371/journal.pone.0105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 01/13/2023] Open
Abstract
Intracellular pathogens and other organisms have evolved mechanisms to exploit host cells for their life cycles. Virulence genes of some intracellular bacteria responsible for these mechanisms are located in pathogenicity islands, such as secretion systems that secrete effector proteins. The Francisella pathogenicity island is required for phagosomal escape, intracellular replication, evasion of host immune responses, virulence, and encodes a type 6 secretion system. We hypothesize that some Francisella novicida pathogenicity island proteins are secreted during infection of host cells. To test this hypothesis, expression plasmids for all Francisella novicida FPI-encoded proteins with C-terminal and N-terminal epitope FLAG tags were developed. These plasmids expressed their respective epitope FLAG-tagged proteins at their predicted molecular weights. J774 murine macrophage-like cells were infected with Francisella novicida containing these plasmids. The FPI proteins expressed from these plasmids successfully restored the intramacrophage growth phenotype in mutants of the respective genes that were deficient for intramacrophage growth. Using these expression plasmids, the localization of the Francisella pathogenicity island proteins were examined via immuno-fluorescence microscopy within infected macrophage-like cells. Several Francisella pathogenicity island encoded proteins (IglABCDEFGHIJ, PdpACE, DotU and VgrG) were detected extracellularly and they were co-localized with the bacteria, while PdpBD and Anmk were not detected and thus remained inside bacteria. Proteins that were co-localized with bacteria had different patterns of localization. The localization of IglC was dependent on the type 6 secretion system. This suggests that some Francisella pathogenicity island proteins were secreted while others remain within the bacterium during infection of host cells as structural components of the secretion system and were necessary for secretion.
Collapse
Affiliation(s)
- Rebekah F. Hare
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- * E-mail:
| |
Collapse
|
79
|
Law HT, Sriram A, Fevang C, Nix EB, Nano FE, Guttman JA. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells. PLoS One 2014; 9:e104881. [PMID: 25115488 PMCID: PMC4130613 DOI: 10.1371/journal.pone.0104881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023] Open
Abstract
The highly infectious bacteria, Francisella tularensis, colonize a variety of organs and replicate within both phagocytic as well as non-phagocytic cells, to cause the disease tularemia. These microbes contain a conserved cluster of important virulence genes referred to as the Francisella Pathogenicity Island (FPI). Two of the most characterized FPI genes, iglC and pdpA, play a central role in bacterial survival and proliferation within phagocytes, but do not influence bacterial internalization. Yet, their involvement in non-phagocytic epithelial cell infections remains unexplored. To examine the functions of IglC and PdpA on bacterial invasion and replication during epithelial cell infections, we infected liver and lung epithelial cells with F. novicida and F. tularensis 'Type B' Live Vaccine Strain (LVS) deletion mutants (ΔiglC and ΔpdpA) as well as their respective gene complements. We found that deletion of either gene significantly reduced their ability to invade and replicate in epithelial cells. Gene complementation of iglC and pdpA partially rescued bacterial invasion and intracellular growth. Additionally, substantial LAMP1-association with both deletion mutants was observed up to 12 h suggesting that the absence of IglC and PdpA caused deficiencies in their ability to dissociate from LAMP1-positive Francisella Containing Vacuoles (FCVs). This work provides the first evidence that IglC and PdpA are important pathogenic factors for invasion and intracellular growth of Francisella in epithelial cells, and further highlights the discrete mechanisms involved in Francisella infections between phagocytic and non-phagocytic cells.
Collapse
Affiliation(s)
- H. T. Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aarati Sriram
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charlotte Fevang
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eli B. Nix
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Francis E. Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
80
|
Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 2014; 16:227-236. [PMID: 25070807 DOI: 10.1016/j.chom.2014.07.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.
Collapse
Affiliation(s)
- Alistair B Russell
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Aaron G Wexler
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Brittany N Harding
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - John C Whitney
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Alan J Bohn
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Natasha A Barry
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Hongjin Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Seemay Chou
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
81
|
Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol 2014; 14:169. [PMID: 24961323 PMCID: PMC4230796 DOI: 10.1186/1471-2180-14-169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/19/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany. RESULTS We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067. CONCLUSIONS Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.
Collapse
|
82
|
Identification of mechanisms for attenuation of the FSC043 mutant of Francisella tularensis SCHU S4. Infect Immun 2014; 82:3622-35. [PMID: 24935978 DOI: 10.1128/iai.01406-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the ΔfupA mutant were <10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the ΔpdpC and ΔpdpC ΔpdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype.
Collapse
|
83
|
Screening for inhibition of Vibrio cholerae VipA-VipB interaction identifies small-molecule compounds active against type VI secretion. Antimicrob Agents Chemother 2014; 58:4123-30. [PMID: 24798289 DOI: 10.1128/aac.02819-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The type VI secretion system (T6SS) is the most prevalent bacterial secretion system and an important virulence mechanism utilized by Gram-negative bacteria, either to target eukaryotic cells or to combat other microbes. The components show much variability, but some appear essential for the function, and two homologues, denoted VipA and VipB in Vibrio cholerae, have been identified in all T6SSs described so far. Secretion is dependent on binding of an α-helical region of VipA to VipB, and in the absence of this binding, both components are degraded within minutes and secretion is ceased. The aim of the study was to investigate if this interaction could be blocked, and we hypothesized that such inhibition would lead to abrogation of T6S. A library of 9,600 small-molecule compounds was screened for their ability to block the binding of VipA-VipB in a bacterial two-hybrid system (B2H). After excluding compounds that showed cytotoxicity toward eukaryotic cells, that inhibited growth of Vibrio, or that inhibited an unrelated B2H interaction, 34 compounds were further investigated for effects on the T6SS-dependent secretion of hemolysin-coregulated protein (Hcp) or of phospholipase A1 activity. Two compounds, KS100 and KS200, showed intermediate or strong effects in both assays. Analogues were obtained, and compounds with potent inhibitory effects in the assays and desirable physicochemical properties as predicted by in silico analysis were identified. Since the compounds specifically target a virulence mechanism without affecting bacterial replication, they have the potential to mitigate the virulence with minimal risk for development of resistance.
Collapse
|
84
|
FTT0831c/FTL_0325 contributes to Francisella tularensis cell division, maintenance of cell shape, and structural integrity. Infect Immun 2014; 82:2935-48. [PMID: 24778115 DOI: 10.1128/iai.00102-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Francisella FTT0831c/FTL_0325 gene encodes amino acid motifs to suggest it is a lipoprotein and that it may interact with the bacterial cell wall as a member of the OmpA-like protein family. Previous studies have suggested that FTT0831c is surface exposed and required for virulence of Francisella tularensis by subverting the host innate immune response (M. Mahawar et al., J. Biol. Chem. 287:25216-25229, 2012). We also found that FTT0831c is required for murine pathogenesis and intramacrophage growth of Schu S4, but we propose a different model to account for the proinflammatory nature of the resultant mutants. First, inactivation of FTL_0325 from live vaccine strain (LVS) or FTT0831c from Schu S4 resulted in temperature-dependent defects in cell viability and morphology. Loss of FTT0831c was also associated with an unusual defect in lipopolysaccharide O-antigen synthesis, but loss of FTL_0325 was not. Full restoration of these properties was observed in complemented strains expressing FTT0831c in trans, but not in strains lacking the OmpA motif, suggesting that cell wall contact is required. Finally, growth of the LVS FTL_0325 mutant in Mueller-Hinton broth at 37°C resulted in the appearance of membrane blebs at the poles and midpoint, prior to the formation of enlarged round cells that showed evidence of compromised cellular membranes. Taken together, these data are more consistent with the known structural role of OmpA-like proteins in linking the OM to the cell wall and, as such, maintenance of structural integrity preventing altered surface exposure or release of Toll-like receptor 2 agonists during rapid growth of Francisella in vitro and in vivo.
Collapse
|
85
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| |
Collapse
|
86
|
Cunha LD, Zamboni DS. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:76. [PMID: 24324933 PMCID: PMC3840304 DOI: 10.3389/fcimb.2013.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP) Ribeirão Preto, Brazil
| | | |
Collapse
|
87
|
Pávková I, Brychta M, Strašková A, Schmidt M, Macela A, Stulík J. Comparative proteome profiling of host–pathogen interactions: insights into the adaptation mechanisms of Francisella tularensis in the host cell environment. Appl Microbiol Biotechnol 2013; 97:10103-15. [DOI: 10.1007/s00253-013-5321-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
|
88
|
Bent ZW, Brazel DM, Tran-Gyamfi MB, Hamblin RY, VanderNoot VA, Branda SS. Use of a capture-based pathogen transcript enrichment strategy for RNA-Seq analysis of the Francisella tularensis LVS transcriptome during infection of murine macrophages. PLoS One 2013; 8:e77834. [PMID: 24155975 PMCID: PMC3796476 DOI: 10.1371/journal.pone.0077834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Francisella tularensis is a zoonotic intracellular pathogen that is capable of causing potentially fatal human infections. Like all successful bacterial pathogens, F. tularensis rapidly responds to changes in its environment during infection of host cells, and upon encountering different microenvironments within those cells. This ability to appropriately respond to the challenges of infection requires rapid and global shifts in gene expression patterns. In this study, we use a novel pathogen transcript enrichment strategy and whole transcriptome sequencing (RNA-Seq) to perform a detailed characterization of the rapid and global shifts in F. tularensis LVS gene expression during infection of murine macrophages. We performed differential gene expression analysis on all bacterial genes at two key stages of infection: phagosomal escape, and cytosolic replication. By comparing the F. tularensis transcriptome at these two stages of infection to that of the bacteria grown in culture, we were able to identify sets of genes that are differentially expressed over the course of infection. This analysis revealed the temporally dynamic expression of a number of known and putative transcriptional regulators and virulence factors, providing insight into their role during infection. In addition, we identified several F. tularensis genes that are significantly up-regulated during infection but had not been previously identified as virulence factors. These unknown genes may make attractive therapeutic or vaccine targets.
Collapse
Affiliation(s)
- Zachary W. Bent
- Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| | - David M. Brazel
- Sandia National Laboratories, Livermore, California, United States of America
| | - Mary B. Tran-Gyamfi
- Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Y. Hamblin
- Sandia National Laboratories, Livermore, California, United States of America
| | | | - Steven S. Branda
- Sandia National Laboratories, Livermore, California, United States of America
| |
Collapse
|
89
|
IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of type A Francisella tularensis. Infect Immun 2013; 81:4026-40. [PMID: 23959721 DOI: 10.1128/iai.00595-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under the control of the Francisella rpsL promoter, thereby establishing that the loss of iglE, and not polar effects on downstream vgrG gene expression, was responsible for the defect. IglE is exported to the Francisella outer membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [(3)H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using the iglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication of Francisella tularensis in J774A.1 macrophages. Thus, IglE is essential for Francisella tularensis virulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present.
Collapse
|
90
|
Dotson RJ, Rabadi SM, Westcott EL, Bradley S, Catlett SV, Banik S, Harton JA, Bakshi CS, Malik M. Repression of inflammasome by Francisella tularensis during early stages of infection. J Biol Chem 2013; 288:23844-57. [PMID: 23821549 DOI: 10.1074/jbc.m113.490086] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.
Collapse
Affiliation(s)
- Rachel J Dotson
- Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Walters KA, Olsufka R, Kuestner RE, Cho JH, Li H, Zornetzer GA, Wang K, Skerrett SJ, Ozinsky A. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One 2013; 8:e62412. [PMID: 23690939 PMCID: PMC3653966 DOI: 10.1371/journal.pone.0062412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4). Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis) and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa) pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.
Collapse
|
92
|
Ramond E, Gesbert G, Barel M, Charbit A. Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol 2013; 7:1255-68. [PMID: 23075445 DOI: 10.2217/fmb.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is a member of the γ-proteobacteria class of Gram-negative bacteria. This highly virulent bacterium can infect a large range of mammalian species and has been recognized as a human pathogen for a century. F. tularensis is able to survive in vitro in a variety of cell types. In vivo, the bacterium replicates mainly in infected macrophages, using the cytoplasmic compartment as a replicative niche. To successfully adapt to this stressful environment, F. tularensis must simultaneously: produce and regulate the expression of a series of dedicated virulence factors; adapt its metabolic needs to the nutritional context of the host cytosol; and control the innate immune cytosolic surveillance pathways to avoid premature cell death. We will focus here on the secretion or release of bacterial proteins in the host, as well as on the envelope proteins, involved in bacterial survival inside macrophages.
Collapse
Affiliation(s)
- Elodie Ramond
- Faculté de Médecine Necker, Université Paris Descartes, 156 Rue de Vaugirard, 75730 Paris, Cedex 15, France
| | | | | | | |
Collapse
|
93
|
Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis. Infect Immun 2013; 81:2076-84. [PMID: 23529623 DOI: 10.1128/iai.00275-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modulation of host cell death pathways appears to be a prerequisite for the successful lifestyles of many intracellular pathogens. The facultative intracellular bacterium Francisella tularensis is highly pathogenic, and effective proliferation in the macrophage cytosol leading to host cell death is a requirement for its virulence. To better understand the prerequisites of this cell death, macrophages were infected with the F. tularensis live vaccine strain (LVS), and the effects were compared to those resulting from infections with deletion mutants lacking expression of either of the pdpC, iglC, iglG, or iglI genes, which encode components of the Francisella pathogenicity island (FPI), a type VI secretion system. Within 12 h, a majority of the J774 cells infected with the LVS strain showed production of mitochondrial superoxide and, after 24 h, marked signs of mitochondrial damage, caspase-9 and caspase-3 activation, phosphatidylserine expression, nucleosome formation, and membrane leakage. In contrast, neither of these events occurred after infection with the ΔiglI or ΔiglC mutants, although the former strain replicated. The ΔiglG mutant replicated effectively but induced only marginal cytopathogenic effects after 24 h and intermediate effects after 48 h. In contrast, the ΔpdpC mutant showed no replication but induced marked mitochondrial superoxide production and mitochondrial damage, caspase-3 activation, nucleosome formation, and phosphatidylserine expression, although the effects were delayed compared to those obtained with LVS. The unique phenotypes of the mutants provide insights regarding the roles of individual FPI components for the modulation of the cytopathogenic effects resulting from the F. tularensis infection.
Collapse
|
94
|
Lindgren M, Bröms JE, Meyer L, Golovliov I, Sjöstedt A. The Francisella tularensis LVS ΔpdpC mutant exhibits a unique phenotype during intracellular infection. BMC Microbiol 2013; 13:20. [PMID: 23356941 PMCID: PMC3562505 DOI: 10.1186/1471-2180-13-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/21/2013] [Indexed: 02/08/2023] Open
Abstract
Background A prerequisite for the virulence of the facultative intracellular bacterium Francisella tularensis is effective intramacrophage proliferation, which is preceded by phagosomal escape into the cytosol, and ultimately leads to host cell death. Many components essential for the intracellular life cycle are encoded by a gene cluster, the Francisella pathogenicity island (FPI), constituting a type VI secretion system. Results We characterized the FPI mutant ΔpdpC of the live vaccine strain (LVS) of F. tularensis and found that it exhibited lack of intracellular replication, incomplete phagosomal escape, and marked attenuation in the mouse model, however, unlike a phagosomally contained FPI mutant, it triggered secretion of IL-1β, albeit lower than LVS, and markedly induced LDH release. Conclusions The phenotype of the ΔpdpC mutant appears to be unique compared to previously described F. tularensis FPI mutants.
Collapse
Affiliation(s)
- Marie Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå SE-901 85, Sweden
| | | | | | | | | |
Collapse
|
95
|
Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice and reveals a unique phenotype for pdpC. Infect Immun 2012; 81:850-61. [PMID: 23275090 DOI: 10.1128/iai.00822-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization of Francisella tularensis subsp. tularensis strain Schu S4 mutants that lack functional iglI, iglJ, or pdpC, three genes of the Francisella pathogenicity island. Our data demonstrate that these mutants were defective for replication in primary human monocyte-derived macrophages and murine J774 cells yet exhibited two distinct phenotypes. The iglI and iglJ mutants were similar to one another, exhibited profound defects in phagosome escape and intracellular growth, and appeared to be trapped in cathepsin D-positive phagolysosomes. Conversely, the pdpC mutant avoided trafficking to lysosomes, phagosome escape was diminished but not ablated, and these organisms replicated in a small subset of infected macrophages. The phenotype of each mutant strain was reversed by trans complementation. In vivo virulence was assessed by intranasal infection of BALB/c mice. The mutants appeared avirulent, as all mice survived infection with 10(8) CFU iglJ- or pdpC-deficient bacteria. Nevertheless, the pdpC mutant disseminated to the liver and spleen before being eliminated, whereas the iglJ mutant did not. Taken together, our data demonstrate that the pathogenicity island genes tested are essential for F. tularensis Schu S4 virulence and further suggest that pdpC may play a unique role in this process, as indicated by its distinct intermediate phenotype.
Collapse
|
96
|
Bröms JE, Meyer L, Sun K, Lavander M, Sjöstedt A. Unique substrates secreted by the type VI secretion system of Francisella tularensis during intramacrophage infection. PLoS One 2012; 7:e50473. [PMID: 23185631 PMCID: PMC3502320 DOI: 10.1371/journal.pone.0050473] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria have evolved sophisticated secretion machineries specialized for the secretion of macromolecules important for their life cycles. The Type VI secretion system (T6SS) is the most widely spread bacterial secretion machinery and is encoded by large, variable gene clusters, often found to be essential for virulence. The latter is true for the atypical T6SS encoded by the Francisella pathogenicity island (FPI) of the highly pathogenic, intracellular bacterium Francisella tularensis. We here undertook a comprehensive analysis of the intramacrophage secretion of the 17 FPI proteins of the live vaccine strain, LVS, of F. tularensis. All were expressed as fusions to the TEM β-lactamase and cleavage of the fluorescent substrate CCF2-AM, a direct consequence of the delivery of the proteins into the macrophage cytosol, was followed over time. The FPI proteins IglE, IglC, VgrG, IglI, PdpE, PdpA, IglJ and IglF were all secreted, which was dependent on the core components DotU, VgrG, and IglC, as well as IglG. In contrast, the method was not directly applicable on F. novicida U112, since it showed very intense native β-lactamase secretion due to FTN_1072. Its role was proven by ectopic expression in trans in LVS. We did not observe secretion of any of the LVS substrates VgrG, IglJ, IglF or IglI, when tested in a FTN_1072 deficient strain of F. novicida, whereas IglE, IglC, PdpA and even more so PdpE were all secreted. This suggests that there may be fundamental differences in the T6S mechanism among the Francisella subspecies. The findings further corroborate the unusual nature of the T6SS of F. tularensis since almost all of the identified substrates are unique to the species.
Collapse
Affiliation(s)
- Jeanette E Bröms
- Department of Clinical Microbiology, Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
97
|
Identification of a novel small RNA modulating Francisella tularensis pathogenicity. PLoS One 2012; 7:e41999. [PMID: 22848684 PMCID: PMC3405028 DOI: 10.1371/journal.pone.0041999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/28/2012] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensisRNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium.
Collapse
|
98
|
Mahawar M, Atianand MK, Dotson RJ, Mora V, Rabadi SM, Metzger DW, Huntley JF, Harton JA, Malik M, Bakshi CS. Identification of a novel Francisella tularensis factor required for intramacrophage survival and subversion of innate immune response. J Biol Chem 2012; 287:25216-29. [PMID: 22654100 DOI: 10.1074/jbc.m112.367672] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.
Collapse
Affiliation(s)
- Manish Mahawar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Bröms JE, Meyer L, Lavander M, Larsson P, Sjöstedt A. DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One 2012; 7:e34639. [PMID: 22514651 PMCID: PMC3326028 DOI: 10.1371/journal.pone.0034639] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/02/2012] [Indexed: 12/23/2022] Open
Abstract
The Gram-negative bacterium Francisella tularensis causes tularemia, a disease which requires bacterial escape from phagosomes of infected macrophages. Once in the cytosol, the bacterium rapidly multiplies, inhibits activation of the inflammasome and ultimately causes death of the host cell. Of importance for these processes is a 33-kb gene cluster, the Francisella pathogenicity island (FPI), which is believed to encode a type VI secretion system (T6SS). In this study, we analyzed the role of the FPI-encoded proteins VgrG and DotU, which are conserved components of type VI secretion (T6S) clusters. We demonstrate that in F. tularensis LVS, VgrG was shown to form multimers, consistent with its suggested role as a trimeric membrane puncturing device in T6SSs, while the inner membrane protein DotU was shown to stabilize PdpB/IcmF, another T6SS core component. Upon infection of J774 cells, both ΔvgrG and ΔdotU mutants did not escape from phagosomes, and subsequently, did not multiply or cause cytopathogenicity. They also showed impaired activation of the inflammasome and marked attenuation in the mouse model. Moreover, all of the DotU-dependent functions investigated here required the presence of three residues that are essentially conserved among all DotU homologues. Thus, in agreement with a core function in T6S clusters, VgrG and DotU play key roles for modulation of the intracellular host response as well as for the virulence of F. tularensis.
Collapse
Affiliation(s)
- Jeanette E Bröms
- Clinical Bacteriology, Department of Clinical Microbiology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
100
|
Tancred L, Telepnev MV, Golovliov I, Andersson B, Andersson H, Lindgren H, Sjöstedt A. Administration of a nitric oxide donor inhibits mglA expression by intracellular Francisella tularensis and counteracts phagosomal escape and subversion of TNF-α secretion. J Med Microbiol 2011; 60:1570-1583. [PMID: 21700740 DOI: 10.1099/jmm.0.032870-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium capable of rapid multiplication in phagocytic cells. Previous studies have revealed that activation of F. tularensis-infected macrophages leads to control of infection and reactive nitrogen and oxygen species make important contributions to the bacterial killing. We investigated the effects of adding S-nitroso-acetyl-penicillamine (SNAP), which generates nitric oxide, or 3-morpholinosydnonimine hydrochloride, which indirectly leads to formation of peroxynitrite, to J774 murine macrophage-like cell cultures infected with F. tularensis LVS. Addition of SNAP led to significantly increased colocalization between LAMP-1 and bacteria, indicating containment of F. tularensis in the phagosome within 2 h, although no killing occurred within 4 h. A specific inhibitory effect on bacterial transcription was observed since the gene encoding the global regulator MglA was inhibited 50-100-fold. F. tularensis-infected J774 cells were incapable of secreting TNF-α in response to Escherichia coli LPS but addition of SNAP almost completely reversed the suppression. Similarly, infection with an MglA mutant did not inhibit LPS-induced TNF-α secretion of J774 cells. Strong staining of nitrotyrosine was observed in SNAP-treated bacteria, and MS identified nitration of two ribosomal 50S proteins, a CBS domain pair protein and bacterioferritin. The results demonstrated that addition of SNAP initially did not affect the viability of intracellular F. tularensis LVS but led to containment of the bacteria in the phagosome. Moreover, the treatment resulted in modification by nitration of several F. tularensis proteins.
Collapse
Affiliation(s)
- Linda Tancred
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Maxim V Telepnev
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Blanka Andersson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Henrik Andersson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|