51
|
Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, Ueda M. Ruegeria sp. Strains Isolated from the Reef-Building Coral Galaxea fascicularis Inhibit Growth of the Temperature-Dependent Pathogen Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:1-8. [PMID: 30194504 DOI: 10.1007/s10126-018-9853-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The coral microbiome has attracted increased attention because of its potential roles in host protection against deadly diseases. However, little is known about the role of coral-associated bacteria against the temperature-dependent opportunistic pathogen Vibrio coralliilyticus. In this study, we tested whether bacteria associated with the reef-building coral Galaxea fascicularis could inhibit the growth of V. coralliilyticus. Twenty-nine cultivable bacteria were successfully isolated from a healthy colony of G. fascicularis kept in an aquarium. Among the bacterial isolates, three Ruegeria sp. strains inhibited the growth of V. coralliilyticus P1 as a reference strain and Vibrio sp. isolated in this study. Ruegeria sp. strains were also detected from other G. fascicularis colonies in the aquarium and in previous field studies by 16S rRNA amplicon sequencing, suggesting that Ruegeria sp. strains are common among G. fascicularis colonies. These results illuminate the potential role of Ruegeria sp. in protecting corals against pathogenic Vibrio species.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshiyuki Takagi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Shunsuke Aburaya
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sho Watanabe
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
52
|
Gardner SG, Camp EF, Smith DJ, Kahlke T, Osman EO, Gendron G, Hume BCC, Pogoreutz C, Voolstra CR, Suggett DJ. Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecol Evol 2019; 9:938-956. [PMID: 30805132 PMCID: PMC6374667 DOI: 10.1002/ece3.4662] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022] Open
Abstract
Repeat marine heat wave-induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral-associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad-scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2-sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host-specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching-resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome-environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles.
Collapse
Affiliation(s)
| | - Emma F. Camp
- University of Technology SydneyClimate Change ClusterUltimo NSW 2007Australia
| | - David J. Smith
- Coral Reef Research Unit, School of Biological SciencesUniversity of EssexColchesterUK
| | - Tim Kahlke
- University of Technology SydneyClimate Change ClusterUltimo NSW 2007Australia
| | - Eslam O. Osman
- Coral Reef Research Unit, School of Biological SciencesUniversity of EssexColchesterUK
- Marine Biology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
| | | | - Benjamin C. C. Hume
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - David J. Suggett
- University of Technology SydneyClimate Change ClusterUltimo NSW 2007Australia
| |
Collapse
|
53
|
Balbi T, Auguste M, Cortese K, Montagna M, Borello A, Pruzzo C, Vezzulli L, Canesi L. Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:352-360. [PMID: 30300739 DOI: 10.1016/j.fsi.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 05/24/2023]
Abstract
Vibrio coralliilyticus has emerged as a coral pathogen of concern throughout the Indo-Pacific reef. The interest towards understanding its ecology and pathogenic potential has increased since V. coralliilyticus was shown to be strongly virulent also for other species; in particular, it represents a serious threat for bivalve aquaculture, being one of the most important emerging pathogen responsible for oyster larval mortalities worldwide. V. coralliilyticus has a tightly regulated temperature-dependent virulence and it has been related to mass mortalities events of benthic invertebrates also in the temperate northwestern Mediterranean Sea. However, no data are available on the effects of V. coralliilyticus in the mussel Mytilus galloprovincialis, the most abundant aquacultured species in this area. In this work, responses of M. galloprovincialis to challenge with V. coralliilyticus (ATCC BAA-450) were investigated. In vitro, short term responses of mussel hemocytes were evaluated in terms of lysosomal membrane stability, bactericidal activity, lysozyme release, ROS and NO production, and ultrastructural changes, evaluated by TEM. In vivo, hemolymph parameters were measured in mussels challenged with V. coralliilyticus at 24h p.i. Moreover, the effects of V. coralliilyticus on mussel early embryo development (at 48 hpf) were evaluated. The results show that both in vitro and in vivo, mussels were unable to activate immune response towards V. coralliilyticus, and that challenge mainly induced lysosomal stress in the hemocytes. Moreover, V. coralliilyticus showed a strong and concentration-dependent embryotoxicity. Overall, the results indicate that, although M. galloprovincialis is considered a resistant species to vibrio infections, the emerging pathogen V. coralliilyticus can represent a potential threat to mussel aquaculture.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy.
| | - Manon Auguste
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Katia Cortese
- Dept. of Experimental Medicine (DIMES), University of Genoa, Italy
| | - Michele Montagna
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Alessio Borello
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Carla Pruzzo
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Luigi Vezzulli
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy
| |
Collapse
|
54
|
King WL, Jenkins C, Seymour JR, Labbate M. Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment. MARINE ENVIRONMENTAL RESEARCH 2019; 143:124-140. [PMID: 30482397 DOI: 10.1016/j.marenvres.2018.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Shifting environmental conditions are known to be important triggers of oyster diseases. The mechanism(s) behind these synergistic effects (interplay between host, environment and pathogen/s) are often not clear, although there is evidence that shifts in environmental conditions can affect oyster immunity, and pathogen growth and virulence. However, the impact of shifting environmental parameters on the oyster microbiome and how this affects oyster health and susceptibility to infectious pathogens remains understudied. In this review, we summarise the major diseases afflicting oysters with a focus on the role of environmental factors that can catalyse or amplify disease outbreaks. We also consider the potential role of the oyster microbiome in buffering or augmenting oyster disease outbreaks and suggest that a deeper understanding of the oyster microbiome, its links to the environment and its effect on oyster health and disease susceptibility, is required to develop new frameworks for the prevention and management of oyster diseases.
Collapse
Affiliation(s)
- William L King
- The School of Life Sciences, University of Technology Sydney, NSW, Australia; Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Cheryl Jenkins
- Elizabeth Macarthur Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Maurizio Labbate
- The School of Life Sciences, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
55
|
Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME JOURNAL 2018; 13:989-1003. [PMID: 30542077 PMCID: PMC6462045 DOI: 10.1038/s41396-018-0327-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/22/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022]
Abstract
Under homoeostatic conditions, the relationship between the coral Pocillopora damicornis and Vibrio coralliilyticus is commensal. An increase in temperature, or in the abundance of V. coralliilyticus, can turn this association pathogenic, causing tissue lysis, expulsion of the corals’ symbiotic algae (genus Symbiodinium), and eventually coral death. Using a combination of microfluidics, fluorescence microscopy, stable isotopes, electron microscopy and NanoSIMS isotopic imaging, we provide insights into the onset and progression of V. coralliilyticus infection in the daytime and at night, at the tissue and (sub-)cellular level. The objective of our study was to connect the macro-scale behavioural response of the coral to the micro-scale nutritional interactions that occur between the host and its symbiont. In the daytime, polyps enhanced their mucus production, and actively spewed pathogens. Vibrio infection primarily resulted in the formation of tissue lesions in the coenosarc. NanoSIMS analysis revealed infection reduced 13C-assimilation in Symbiodinium, but increased 13C-assimilation in the host. In the night incubations, no mucus spewing was observed, and a mucus film was formed on the coral surface. Vibrio inoculation and infection at night showed reduced 13C-turnover in Symbiodinium, but did not impact host 13C-turnover. Our results show that both the nutritional interactions that occur between the two symbiotic partners and the behavioural response of the host organism play key roles in determining the progression and severity of host-pathogen interactions. More generally, our approach provides a new means of studying interactions (ranging from behavioural to metabolic scales) between partners involved in complex holobiont systems, under both homoeostatic and pathogenic conditions.
Collapse
|
56
|
Hadaidi G, Ziegler M, Shore-Maggio A, Jensen T, Aeby G, Voolstra CR. Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ 2018; 6:e5169. [PMID: 30013839 PMCID: PMC6046197 DOI: 10.7717/peerj.5169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/16/2018] [Indexed: 11/20/2022] Open
Abstract
Black Band Disease (BBD) is a widely distributed and destructive coral disease that has been studied on a global scale, but baseline data on coral diseases is missing from many areas of the Arabian Seas. Here we report on the broad distribution and prevalence of BBD in the Red Sea in addition to documenting a bleaching-associated outbreak of BBD with subsequent microbial community characterization of BBD microbial mats at this reef site in the southern central Red Sea. Coral colonies with BBD were found at roughly a third of our 22 survey sites with an overall prevalence of 0.04%. Nine coral genera were infected including Astreopora, Coelastrea, Dipsastraea, Gardineroseris, Goniopora, Montipora, Pavona, Platygyra, and Psammocora. For a southern central Red Sea outbreak site, overall prevalence was 40 times higher than baseline (1.7%). Differential susceptibility to BBD was apparent among coral genera with Dipsastraea (prevalence 6.1%), having more diseased colonies than was expected based on its abundance within transects. Analysis of the microbial community associated with the BBD mat showed that it is dominated by a consortium of cyanobacteria and heterotrophic bacteria. We detected the three main indicators for BBD (filamentous cyanobacteria, sulfate-reducing bacteria (SRB), and sulfide-oxidizing bacteria (SOB)), with high similarity to BBD-associated microbes found worldwide. More specifically, the microbial consortium of BBD-diseased coral colonies in the Red Sea consisted of Oscillatoria sp. (cyanobacteria), Desulfovibrio sp. (SRB), and Arcobacter sp. (SOB). Given the similarity of associated bacteria worldwide, our data suggest that BBD represents a global coral disease with predictable etiology. Furthermore, we provide a baseline assessment of BBD disease prevalence in the Red Sea, a still understudied region.
Collapse
Affiliation(s)
- Ghaida Hadaidi
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Amanda Shore-Maggio
- Institute of Marine and Environmental Technology (IMET), University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Thor Jensen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Greta Aeby
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
57
|
Environmental Controls of Oyster-Pathogenic Vibrio spp. in Oregon Estuaries and a Shellfish Hatchery. Appl Environ Microbiol 2018; 84:AEM.02156-17. [PMID: 29475863 PMCID: PMC5930336 DOI: 10.1128/aem.02156-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Vibrio spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state are poorly understood. Here, we present data tracking oyster-pathogenic Vibrio bacteria in Netarts Bay and Yaquina Bay in Oregon, USA, as well as in adjacent coastal waters and a local shellfish hatchery, through the 2015 upwelling season. Vibrio populations were quantified using a culture-independent approach of high-throughput Vibrio-specific 16S rRNA gene sequencing paired with droplet digital PCR, and abundances were analyzed in the context of local biogeochemistry. The most abundant putative pathogen in our samples was Vibrio coralliilyticus. Environmental concentrations of total Vibrio spp. and V. coralliilyticus were highest in Netarts Bay sediment samples and higher in seawater from Netarts Bay than from nearshore coastal waters or Yaquina Bay. In Netarts Bay, the highest V. coralliilyticus concentrations were observed during low tide, and abundances increased throughout the summer. We hypothesize that the warm shallow waters in estuarine mudflats facilitate the local growth of the V. coralliilyticus pathogen. Samples from larval oyster tanks in Whiskey Creek Shellfish Hatchery, which uses seawater pumped directly from Netarts Bay, contained significantly lower total Vibrio species concentrations, but roughly similar V. coralliilyticus concentrations, than did the bay water, resulting in a 30-fold increase in the relative abundance of the V. coralliilyticus pathogen in hatchery tanks. This suggests that the V. coralliilyticus pathogen is able to grow or persist under hatchery conditions. IMPORTANCE It has been argued that oyster-pathogenic Vibrio spp. have contributed to recent mortality events in U.S. shellfish hatcheries (R. A. Elston, H. Hasegawa, K. L. Humphrey, I. K. Polyak, and C. Häse, Dis Aquat Organ 82:119–134, 2008, https://doi.org/10.3354/dao01982); however, these events are often sporadic and unpredictable. The success of hatcheries is critically linked to the chemical and biological composition of inflowing seawater resources; thus, it is pertinent to understand the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state. Here, we show that Netarts Bay, the location of a local hatchery, is enriched in oyster-pathogenic V. coralliilyticus compared to coastal seawater, and we hypothesize that conditions in tidal flats promote the local growth of this pathogen. Furthermore, V. coralliilyticus appears to persist in seawater pumped into the local hatchery. These results improve our understanding of the ecology and environmental controls of the V. coralliilyticus pathogen and could be used to improve future aquaculture efforts, as multiple stressors impact hatchery success.
Collapse
|
58
|
Pootakham W, Mhuantong W, Putchim L, Yoocha T, Sonthirod C, Kongkachana W, Sangsrakru D, Naktang C, Jomchai N, Thongtham N, Tangphatsornruang S. Dynamics of coral-associated microbiomes during a thermal bleaching event. Microbiologyopen 2018; 7:e00604. [PMID: 29573244 PMCID: PMC6182559 DOI: 10.1002/mbo3.604] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 02/01/2023] Open
Abstract
Coral‐associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral‐associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea‐associated bacterial and algal communities throughout a natural bleaching event, using full‐length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral‐associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
59
|
Beatty DS, Clements CS, Stewart FJ, Hay ME. Intergenerational effects of macroalgae on a reef coral: major declines in larval survival but subtle changes in microbiomes. MARINE ECOLOGY PROGRESS SERIES 2018; 589:97-114. [PMID: 30505048 PMCID: PMC6261492 DOI: 10.3354/meps12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tropical reefs are shifting from coral to macroalgal dominance, with macroalgae suppressing coral recovery, potentially via effects on coral microbiomes. Understanding how macroalgae affect corals and their microbiomes requires comparing algae- versus coral-dominated reefs without confounding aspects of time and geography. We compared survival, settlement, and post-settlement survival of larvae, as well as the microbiomes of larvae and adults, of the Pacific coral Pocillopora damicornis between an Marine Protected Area (MPA) dominated by corals versus an adjacent fished area dominated by macroalgae. Microbiome composition in adult coral, larval coral, and seawater did not differ between the MPA and fished area. However, microbiomes of adult coral were more variable in the fished area and Vibrionaceae bacteria, including strains most closely related to the pathogen Vibrio shilonii, were significantly enriched, but rare, in adult and larval coral from the fished area. Larvae from the macroalgae-dominated area exhibited higher pre-settlement mortality and reduced settlement compared to those from the coral-dominated area. Juveniles planted into a coral-dominated area survived better than those placed into a fished area dominated by macroalgae. Differential survival depended on whether macroalgae were immediately adjacent to juvenile coral rather than on traits of the areas per se. Contrary to our expectations, coral microbiomes were relatively uniform at the community level despite dramatic differences in macroalgal cover between the MPA (~2% cover) and fished (~90%) area. Reducing macroalgae may elicit declines in rare but potentially harmful microbes in coral and their larvae, as well as positive intergenerational effects on offspring survival.
Collapse
Affiliation(s)
- Deanna S. Beatty
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Cody S. Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Frank J. Stewart
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Mark E. Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center Georgia Institute of Technology, Atlanta, GA 30332-0230
| |
Collapse
|
60
|
Showalter GM, Deming JW. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:92-101. [PMID: 29235725 DOI: 10.1111/1758-2229.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein.
Collapse
Affiliation(s)
- G M Showalter
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - J W Deming
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
61
|
Abundance and Multilocus Sequence Analysis of Vibrio Bacteria Associated with Diseased Elkhorn Coral (Acropora palmata) of the Florida Keys. Appl Environ Microbiol 2018; 84:AEM.01035-17. [PMID: 29079623 DOI: 10.1128/aem.01035-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022] Open
Abstract
The critically endangered elkhorn coral (Acropora palmata) is affected by white pox disease (WPX) throughout the Florida Reef Tract and wider Caribbean. The bacterium Serratia marcescens was previously identified as one etiologic agent of WPX but is no longer consistently detected in contemporary outbreaks. It is now believed that multiple etiologic agents cause WPX; however, to date, no other potential pathogens have been thoroughly investigated. This study examined the association of Vibrio bacteria with WPX occurrence from August 2012 to 2014 at Looe Key Reef in the Florida Keys, USA. The concentration of cultivable Vibrio was consistently greater in WPX samples than in healthy samples. The abundance of Vibrio bacteria relative to total bacteria was four times higher in samples from WPX lesions than in adjacent apparently healthy regions of diseased corals based on quantitative PCR (qPCR). Multilocus sequence analysis (MLSA) was used to assess the diversity of 69 Vibrio isolates collected from diseased and apparently healthy A. palmata colonies and the surrounding seawater. Vibrio species with known pathogenicity to corals were detected in both apparently healthy and diseased samples. While the causative agent(s) of contemporary WPX outbreaks remains elusive, our results suggest that Vibrio spp. may be part of a nonspecific heterotrophic bacterial bloom rather than acting as primary pathogens. This study highlights the need for highly resolved temporal sampling in situ to further elucidate the role of Vibrio during WPX onset and progression.IMPORTANCE Coral diseases are increasing worldwide and are now considered a major contributor to coral reef decline. In particular, the Caribbean has been noted as a coral disease hot spot, owing to the dramatic loss of framework-building acroporid corals due to tissue loss diseases. The pathogenesis of contemporary white pox disease (WPX) outbreaks in Acropora palmata remains poorly understood. This study investigates the association of Vibrio bacteria with WPX.
Collapse
|
62
|
How Does the Coral Microbiome Cause, Respond to, or Modulate the Bleaching Process? ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
63
|
Shiu JH, Keshavmurthy S, Chiang PW, Chen HJ, Lou SP, Tseng CH, Justin Hsieh H, Allen Chen C, Tang SL. Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep 2017; 7:14933. [PMID: 29097716 PMCID: PMC5668310 DOI: 10.1038/s41598-017-14927-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 11/08/2022] Open
Abstract
Seasonal variation in temperature fluctuations may provide corals and their algal symbionts varying abilities to acclimate to changing temperatures. We hypothesized that different temperature ranges between seasons may promote temperature-tolerance of corals, which would increase stability of a bacterial community following thermal stress. Acropora muricata coral colonies were collected in summer and winter (water temperatures were 23.4-30.2 and 12.1-23.1 °C, respectively) from the Penghu Archipelago in Taiwan, then exposed to 6 temperature treatments (10-33 °C). Changes in coral-associated bacteria were determined after 12, 24, and 48 h. Based on 16S rRNA gene amplicons and Illumina sequencing, bacterial communities differed between seasons and treatments altered the dominant bacteria. Cold stress caused slower shifts in the bacterial community in winter than in summer, whereas a more rapid shift occurred under heat stress in both seasons. Results supported our hypothesis that bacterial community composition of corals in winter are more stable in cold temperatures but changed rapidly in hot temperatures, with opposite results for the bacterial communities in summer. We infer that the thermal tolerance ranges of coral-associated bacteria, with a stable community composition, are associated with their short-term (3 mo) seawater thermal history. Therefore, seasonal acclimation may increase tolerance of coral-associated bacteria to temperature fluctuations.
Collapse
Affiliation(s)
- Jia-Ho Shiu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shueh-Ping Lou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu, 880, Taiwan
| | | | - Sen-Lin Tang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan.
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
64
|
Zhou Z, Wu Y, Zhang C, Li C, Chen G, Yu X, Shi X, Xu Y, Wang L, Huang B. Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress. FISH & SHELLFISH IMMUNOLOGY 2017; 67:322-330. [PMID: 28606864 DOI: 10.1016/j.fsi.2017.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| | - Yibo Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Chengkai Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Can Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Guangmei Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiaopeng Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | | | - Yanlai Xu
- Qingdao First Sanitarium of Jinan Military Region, Qingdao 266071, China
| | - Lingui Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Bo Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
65
|
Damjanovic K, Blackall LL, Webster NS, van Oppen MJH. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb Biotechnol 2017; 10:1236-1243. [PMID: 28696067 PMCID: PMC5609283 DOI: 10.1111/1751-7915.12769] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection.
![]()
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| |
Collapse
|
66
|
Izumiya H, Furukawa M, Ogata K, Isobe J, Watanabe S, Sasaki M, Ichinose K, Arakawa E, Morita M, Kurane I, Ohnishi M. A double-quadratic model for predicting Vibrio species in water environments of Japan. Arch Microbiol 2017. [PMID: 28646477 DOI: 10.1007/s00203-017-1402-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vibrio spp. are natural inhabitants of marine and estuarine environments. Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus are the major infectious agents for humans. Their densities are affected by environmental factors such as water temperature and salinity. The detailed contribution of each factor still remains to be elucidated. Here we conducted multi-coastal study in a 21-month period to examine relationships between environmental factors and V. cholerae, V. parahaemolyticus and V. vulnificus densities in sea surface water in eight coastal sites of four prefectures in Japan. Vibrio densities were measured by a most-probable-number with PCR method which is highly sensitive and quantitative (3/100 ml of detection limit). Vibrio densities were analyzed with environmental factors including water temperature, salinity, total dissolved substance, and pH, and their quadratics. A linear regression model suited best for prediction of V. cholerae density. A novel double-quadratic model suited best for the prediction of V. parahaemolyticus and V. vulnificus densities.
Collapse
Affiliation(s)
| | - Masato Furukawa
- Kumamoto Prefectural Institute of Public-Health and Environmental Science, Kumamoto, Japan
| | - Kikuyo Ogata
- Oita Prefectural Institute of Health and Environment, Oita, Japan
| | | | - Setsu Watanabe
- Miyagi Prefectural Institute of Public Health and Environment, Miyagi, Japan
| | - Mari Sasaki
- Oita Prefectural Institute of Health and Environment, Oita, Japan
| | - Kazuya Ichinose
- Oita Prefectural Institute of Health and Environment, Oita, Japan
| | - Eiji Arakawa
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Ichiro Kurane
- National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
67
|
Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, Pan Z, Yao Q, Wang W, Wu Z. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress. Front Microbiol 2017. [PMID: 28642738 PMCID: PMC5462945 DOI: 10.3389/fmicb.2017.00979] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Ziliang Pan
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Qiucui Yao
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Wenhuan Wang
- Coral Reef Research Center of China, Guangxi UniversityNanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China SeaNanning, China.,School of Marine Sciences, Guangxi UniversityNanning, China
| | - Zhengchao Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
68
|
Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, Hubbs SL, Vega Thurber RL. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 2017; 5:e3315. [PMID: 28584701 PMCID: PMC5455293 DOI: 10.7717/peerj.3315] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/14/2017] [Indexed: 12/26/2022] Open
Abstract
Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species), and reduced stability (increased beta-diversity). Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales) increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM) to a maximum mean relative abundance of 48.75% (±0.14 SEM) in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by consuming foreign or "alien" gram negative bacteria. Halobacteriovorax inoculation also altered the microbiome but to a lesser degree than V. coralliilyticus, and Halobacteriovorax were never detected after inoculation. Simultaneous challenge with both V. coralliilyticus and predatory Halobacteriovorax eliminated the increase in V. coralliilyticus, ameliorated changes to the rest of the coral microbiome, and prevented the secondary blooms of opportunistic Rhodobacterales and Cytophagales seen in the V. coralliilyticus challenge. These data suggest that, under certain circumstances, host-associated bacterial predators may mitigate the ability of other bacteria to destabilize the microbiome.
Collapse
Affiliation(s)
- Rory M Welsh
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | - Jesse R Zaneveld
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.,Department of Biological Sciences, University of Washington Bothell, Bothell, WA, USA
| | - Jérôme P Payet
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Steven L Hubbs
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
69
|
Water flow buffers shifts in bacterial community structure in heat-stressed Acropora muricata. Sci Rep 2017; 7:43600. [PMID: 28240318 PMCID: PMC5327421 DOI: 10.1038/srep43600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 11/16/2022] Open
Abstract
Deterioration of coral health and associated change in the coral holobiont’s bacterial community are often a result of different environmental stressors acting synergistically. There is evidence that water flow is important for a coral’s resistance to elevated seawater temperature, but there is no information on how water flow affects the coral-associated bacterial community under these conditions. In a laboratory cross-design experiment, Acropora muricata nubbins were subjected to interactive effects of seawater temperature (27 °C to 31 °C) and water flow (0.20 m s−1 and 0.03 m s−1). In an in situ experiment, water flow manipulation was conducted with three colonies of A. muricata during the winter and summer, by partially enclosing each colony in a clear plastic mesh box. 16S rRNA amplicon pyrosequencing showed an increase in the relative abundance of Flavobacteriales and Rhodobacterales in the laboratory experiment, and Vibrio spp. in the in situ experiment when corals were exposed to elevated temperature and slow water flow. In contrast, corals that were exposed to faster water flow under laboratory and in situ conditions had a stable bacterial community. These findings indicate that water flow plays an important role in the maintenance of specific coral-bacteria associations during times of elevated thermal stress.
Collapse
|
70
|
Guzman C, Conaco C. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response. PLoS One 2016; 11:e0165368. [PMID: 27788197 PMCID: PMC5082814 DOI: 10.1371/journal.pone.0165368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.
Collapse
Affiliation(s)
- Christine Guzman
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
- * E-mail:
| |
Collapse
|
71
|
Amin AKMR, Feng G, Al-Saari N, Meirelles PM, Yamazaki Y, Mino S, Thompson FL, Sawabe T, Sawabe T. The First Temporal and Spatial Assessment of Vibrio Diversity of the Surrounding Seawater of Coral Reefs in Ishigaki, Japan. Front Microbiol 2016; 7:1185. [PMID: 27551278 PMCID: PMC4976104 DOI: 10.3389/fmicb.2016.01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023] Open
Abstract
Coral reefs perform a major role in regulating marine biodiversity and serve as hotspot for highly dynamic and diverse microbiomes as holobionts. Corals around Ishigaki, however, are at risk due to tremendous stressors including elevation of seawater temperature, eutrophication and so on. However, no information is currently available on how Vibrio diversity fluctuates spatially and temporally due to environmental determinants in Ishigaki coral reef ecosystems. The aim of this study is to elucidate spatiotemporal Vibrio diversity dynamic at both community and population levels and to assess the environmental drivers correlated to Vibrio abundance and diversity. The Vibrio community identified based on pyrH gene phylogeny of 685 isolates from seawater directly connecting to Ishigaki coral holobionts consisted of 22 known and 12 potential novel Vibrionaceae species. The most prominent species were V. hyugaensis, V. owensii and V. harveyi followed by V. maritimus/V. variabillis, V. campbellii, V. coralliilyticus, and Photobacterium rosenbergii. The Vibrio community fluctuations, assessed by PCoA with UniFrac distance and clustering with Euclidiean distance were varied less not only by year but also by site. Interestingly, significant positive correlation was observed between rising seawater temperature and the abundance of V. campbellii (r = 0.62; P < 0.05) whereas the opposite was observed for V. owensii (r = -0.58; P < 0.05) and the C6 group of V. hyugaensis (r = -0.62; P < 0.05). AdaptML-based microhabitat differentiation revealed that V. harveyi, V. campbellii, P. rosenbergii, and V. coralliilyticus populations were less-ecologically distinctive whereas V. astriarenae and V. ishigakensis were ecologically diverse. This knowledge could be important clue for the future actions of coral conservation.
Collapse
Affiliation(s)
- A K M R Amin
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Gao Feng
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Nurhidayu Al-Saari
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Pedro M Meirelles
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro Brazil
| | - Yohei Yamazaki
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Fabiano L Thompson
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro Brazil
| | - Toko Sawabe
- Department of Nutrition, Hakodate Junior College, Hakodate Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| |
Collapse
|
72
|
Egan S, Gardiner M. Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems. Front Microbiol 2016; 7:991. [PMID: 27446031 PMCID: PMC4914501 DOI: 10.3389/fmicb.2016.00991] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
With growing environmental pressures placed on our marine habitats there is concern that the prevalence and severity of diseases affecting marine organisms will increase. Yet relative to terrestrial systems, we know little about the underlying causes of many of these diseases. Moreover, factors such as saprophytic colonizers and a lack of baseline data on healthy individuals make it difficult to accurately assess the role of specific microbial pathogens in disease states. Emerging evidence in the field of medicine suggests that a growing number of human diseases result from a microbiome imbalance (or dysbiosis), questioning the traditional view of a singular pathogenic agent. Here we discuss the possibility that many diseases seen in marine systems are, similarly, the result of microbial dysbiosis and the rise of opportunistic or polymicrobial infections. Thus, understanding and managing disease in the future will require us to also rethink definitions of disease and pathogenesis for marine systems. We suggest that a targeted, multidisciplinary approach that addresses the questions of microbial symbiosis in both healthy and diseased states, and at that the level of the holobiont, will be key to progress in this area.
Collapse
Affiliation(s)
- Suhelen Egan
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, SydneyNSW, Australia
| | | |
Collapse
|
73
|
Li J, Azam F, Zhang S. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogenVibrio shiloniiAK1. Environ Microbiol 2016; 18:3850-3866. [DOI: 10.1111/1462-2920.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego; La Jolla CA USA
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| |
Collapse
|
74
|
Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 2016; 7:11833. [PMID: 27270557 PMCID: PMC4899628 DOI: 10.1038/ncomms11833] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. Overfishing and nutrient pollution can damage coral reefs in part by increasing coral-algal competition. Here the authors simulate these stressors in a three year field experiment, and show that they interact to enhance sensitivity to temperature, predation and bacterial opportunism.
Collapse
|
75
|
Siboni N, Balaraju V, Carney R, Labbate M, Seymour JR. Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary. Front Microbiol 2016; 7:460. [PMID: 27148171 PMCID: PMC4829023 DOI: 10.3389/fmicb.2016.00460] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/21/2016] [Indexed: 01/22/2023] Open
Abstract
Vibrio are a genus of marine bacteria that have substantial environmental and human health importance, and there is evidence that their impact may be increasing as a consequence of changing environmental conditions. We investigated the abundance and composition of the Vibrio community within the Sydney Harbour estuary, one of the most densely populated coastal areas in Australia, and a region currently experiencing rapidly changing environmental conditions. Using quantitative PCR (qPCR) and Vibrio-specific 16S rRNA amplicon sequencing approaches we observed significant spatial and seasonal variation in the abundance and composition of the Vibrio community. Total Vibrio spp. abundance, derived from qPCR analysis, was higher during the late summer than winter and within locations with mid-range salinity (5-26 ppt). In addition we targeted three clinically important pathogens: Vibrio cholerae, V. Vulnificus, and V. parahaemolyticus. While toxigenic strains of V. cholerae were not detected in any samples, non-toxigenic strains were detected in 71% of samples, spanning a salinity range of 0-37 ppt and were observed during both late summer and winter. In contrast, pathogenic V. vulnificus was only detected in 14% of samples, with its occurrence restricted to the late summer and a salinity range of 5-26 ppt. V. parahaemolyticus was not observed at any site or time point. A Vibrio-specific 16S rRNA amplicon sequencing approach revealed clear shifts in Vibrio community composition across sites and between seasons, with several Vibrio operational taxonomic units (OTUs) displaying marked spatial patterns and seasonal trends. Shifts in the composition of the Vibrio community between seasons were primarily driven by changes in temperature, salinity and NO2, while a range of factors including pH, salinity, dissolved oxygen (DO) and NOx (Nitrogen Oxides) explained the observed spatial variation. Our evidence for the presence of a spatiotemporally dynamic Vibrio community within Sydney Harbour is notable given the high levels of human use of this waterway, and the significant increases in seawater temperature predicted for this region.
Collapse
Affiliation(s)
- Nachshon Siboni
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| | - Varunan Balaraju
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
- School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia
| | - Richard Carney
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| | - Maurizio Labbate
- School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia
| | - Justin R. Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| |
Collapse
|
76
|
Ding JY, Shiu JH, Chen WM, Chiang YR, Tang SL. Genomic Insight into the Host-Endosymbiont Relationship of Endozoicomonas montiporae CL-33(T) with its Coral Host. Front Microbiol 2016; 7:251. [PMID: 27014194 PMCID: PMC4781883 DOI: 10.3389/fmicb.2016.00251] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33(T). Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral's Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host.
Collapse
Affiliation(s)
- Jiun-Yan Ding
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Jia-Ho Shiu
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Wen-Ming Chen
- Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University Kaohsiung, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica Taipei, Taiwan
| |
Collapse
|
77
|
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 2016; 34:14-29. [PMID: 26657897 DOI: 10.1016/j.biotechadv.2015.12.003] [Citation(s) in RCA: 569] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022]
Abstract
Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Byung-Hyuk Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Dae-Hyun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Mock Oh
- Bioenergy and Biochemical Research Center, KRIBB, Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
78
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
79
|
From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep 2015; 5:17889. [PMID: 26644037 PMCID: PMC4672265 DOI: 10.1038/srep17889] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022] Open
Abstract
Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.
Collapse
|
80
|
Temperature-induced behavioral switches in a bacterial coral pathogen. ISME JOURNAL 2015; 10:1363-72. [PMID: 26636553 DOI: 10.1038/ismej.2015.216] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/13/2023]
Abstract
Evidence to date indicates that elevated seawater temperatures increase the occurrence of coral disease, which is frequently microbial in origin. Microbial behaviors such as motility and chemotaxis are often implicated in coral colonization and infection, yet little is known about the effect of warming temperatures on these behaviors. Here we present data demonstrating that increasing water temperatures induce two behavioral switches in the coral pathogen Vibrio coralliilyticus that considerably augment the bacterium's performance in tracking the chemical signals of its coral host, Pocillopora damicornis. Coupling field-based heat-stress manipulations with laboratory-based observations in microfluidic devices, we recorded the swimming behavior of thousands of individual pathogen cells at different temperatures, associated with current and future climate scenarios. When temperature reached ⩾23 °C, we found that the pathogen's chemotactic ability toward coral mucus increased by >60%, denoting an enhanced capability to track host-derived chemical cues. Raising the temperature further, to 30 °C, increased the pathogen's chemokinetic ability by >57%, denoting an enhanced capability of cells to accelerate in favorable, mucus-rich chemical conditions. This work demonstrates that increasing temperature can have strong, multifarious effects that enhance the motile behaviors and host-seeking efficiency of a marine bacterial pathogen.
Collapse
|
81
|
Lee STM, Davy SK, Tang SL, Fan TY, Kench PS. Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 2015; 91:fiv142. [PMID: 26564958 DOI: 10.1093/femsec/fiv142] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/29/2022] Open
Abstract
The coral mucus may harbor commensal bacteria that inhibit growth of pathogens. Therefore, there is a need to understand the dynamics of bacterial communities between the coral mucus and tissues. Nubbins of Acropora muricata were subjected to increasing water temperatures of 26°C-33°C, to simultaneously explore the bacterial diversity in coral mucus and tissues by 16S rRNA gene amplicon sequencing. Photochemical efficiency of symbiotic dinoflagellates within the corals declined above 31°C. Both the mucus and tissues of healthy A. muricata were dominated by γ-Proteobacteria, but under thermal stress there was a shift towards bacteria from the Verrucomicrobiaceae and α-Proteobacteria. Members of Cyanobacteria, Flavobacteria and Sphingobacteria also become more prominent at higher temperatures. The relative abundance of Vibrio spp. in the coral mucus increased at 29°C, but at 31°C, there was a drop in the relative abundance of Vibrio spp. in the mucus, with a reciprocal increase in the tissues. On the other hand, during bleaching, the relative abundance of Endozoicomonas spp. decreased in the tissues with a reciprocal increase in the mucus. This is the first systematic experiment that shows the potential for a bacterial community shift between the coral surface mucus and tissues in a thermally stressed coral.
Collapse
Affiliation(s)
- Sonny T M Lee
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington. PO Box 600, Wellington 6140, New Zealand
| | - Sen-Lin Tang
- Microbial Lab, Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tung-Yung Fan
- Science Education Department and Industry Academia Collaboration Center, National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan
| | - Paul S Kench
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|