51
|
Gour A, Boergens KM, Heike N, Hua Y, Laserstein P, Song K, Helmstaedter M. Postnatal connectomic development of inhibition in mouse barrel cortex. Science 2020; 371:science.abb4534. [PMID: 33273061 DOI: 10.1126/science.abb4534] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.
Collapse
Affiliation(s)
- Anjali Gour
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kevin M Boergens
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Natalie Heike
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Yunfeng Hua
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Philip Laserstein
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kun Song
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
52
|
Ikawa F, Tanaka S, Harada K, Hide I, Maruyama H, Sakai N. Detailed neuronal distribution of GPR3 and its co-expression with EF-hand calcium-binding proteins in the mouse central nervous system. Brain Res 2020; 1750:147166. [PMID: 33075309 DOI: 10.1016/j.brainres.2020.147166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The G-protein coupled receptor 3 (GPR3), a member of the class A rhodopsin-type GPR family, constitutively activates Gαs proteins without any ligands. Although there have been several reports concerning the functions of GPR3 in neurons, the physiological roles of GPR3 have not been fully elucidated. To address this issue, we analyzed GPR3 distribution in detail using fluorescence-based X-gal staining in heterozygous GPR3 knockout/LacZ knock-in mice, and further investigated the types of GPR3-expressing neurons using fluorescent double labeling with various EF-hand Ca2+-binding proteins. In addition to the previously reported GPR3-expressing areas, we identified GPR3 expression in the basal ganglia and in many nuclei of the cranial nerves, in regions related to olfactory, auditory, emotional, and motor functions. In addition, GPR3 was not only observed in excitatory neurons in layer V of the cerebral cortex, the CA2 region of the hippocampus, and the lateral nucleus of the thalamus, but also in γ-aminobutyric acid (GABA)-ergic interneurons in the cortex, hippocampus, thalamus, striatum, and cerebellum. GPR3 was frequently co-expressed with neuronal Ca2+-binding protein 2 (NECAB2) in neurons in various regions of the central nervous system, especially in the hippocampal CA2, medial habenular nucleus, lateral thalamic nucleus, dorsolateral striatum, brainstem, and spinal cord anterior horn. Furthermore, GPR3 also co-localized with NECAB2 at the tips of neurites in differentiated PC12 cells. These results suggest that GPR3 and NECAB2 are highly co-expressed in specific neurons, and that GPR3 may modulate Ca2+ signaling by interacting with NECAB2 in specific areas of the central nervous system.
Collapse
Affiliation(s)
- Fumiaki Ikawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
53
|
Liu X, Dimidschstein J, Fishell G, Carter AG. Hippocampal inputs engage CCK+ interneurons to mediate endocannabinoid-modulated feed-forward inhibition in the prefrontal cortex. eLife 2020; 9:e55267. [PMID: 33034285 PMCID: PMC7609047 DOI: 10.7554/elife.55267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Connections from the ventral hippocampus (vHPC) to the prefrontal cortex (PFC) regulate cognition, emotion, and memory. These functions are also tightly controlled by inhibitory networks in the PFC, whose disruption is thought to contribute to mental health disorders. However, relatively little is known about how the vHPC engages different populations of interneurons in the PFC. Here we use slice physiology and optogenetics to study vHPC-evoked feed-forward inhibition in the mouse PFC. We first show that cholecystokinin (CCK+), parvalbumin (PV+), and somatostatin (SOM+) expressing interneurons are prominent in layer 5 (L5) of infralimbic PFC. We then show that vHPC inputs primarily activate CCK+ and PV+ interneurons, with weaker connections onto SOM+ interneurons. CCK+ interneurons make stronger synapses onto pyramidal tract (PT) cells over nearby intratelencephalic (IT) cells. However, CCK+ inputs undergo depolarization-induced suppression of inhibition (DSI) and CB1 receptor modulation only at IT cells. Moreover, vHPC-evoked feed-forward inhibition undergoes DSI only at IT cells, confirming a central role for CCK+ interneurons. Together, our findings show how vHPC directly engages multiple populations of inhibitory cells in deep layers of the infralimbic PFC, highlighting unexpected roles for both CCK+ interneurons and endocannabinoid modulation in hippocampal-prefrontal communication.
Collapse
Affiliation(s)
- Xingchen Liu
- Center for Neural Science, New York University, New York, United States
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, United States
| | - Gordon Fishell
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, United States
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Adam G Carter
- Center for Neural Science, New York University, New York, United States
| |
Collapse
|
54
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
55
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
56
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Pentylenetetrazol kindling induces cortical astrocytosis and increased expression of extracellular matrix molecules in mice. Brain Res Bull 2020; 163:120-134. [PMID: 32726668 DOI: 10.1016/j.brainresbull.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Although epilepsy is one of the most common chronic neurological disorders with a prevalence of approximately 1.0 %, the underlying pathophysiology remains to be elucidated. Understanding the molecular and cellular mechanisms involved in the development of epilepsy is important for the development of appropriate therapeutic strategy. In this study, we investigated the effects of status epilepticus on astrocytes, microglia, and extracellular matrix (ECM) molecules in the somatosensory cortex and piriform cortex of mice. Activation of astrocytes was observed in many cortices except the retrosplenial granular cortex after pentylenetetrazol (PTZ)-induced kindling in mice. Activated astrocytes in the cortex were found in layers 1-3 but not in layers 4-6. In the somatosensory and piriform cortices, no change was observed in the number of parvalbumin (PV)-positive neurons and PV-positive neurons covered with perineuronal nets. However, the amount of ECM in the extracellular space increased. The expression of VGLUT1- and GAD67-positive synapses also increased. Thus, in the PTZ-kindling epilepsy mice model, an increase in the number of ECM molecules and activation of astrocytes were observed in the somatosensory cortex and piriform cortex. These results indicate that PTZ-induced seizures affect not only the hippocampus but also other cortical areas. Our study findings may help to develop new therapeutic approaches to prevent seizures or their sequelae.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, 701-0193, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| |
Collapse
|
57
|
Cho Y, Hwang H, Rahman MA, Chung C, Rhim H. Elevated O-GlcNAcylation induces an antidepressant-like phenotype and decreased inhibitory transmission in medial prefrontal cortex. Sci Rep 2020; 10:6924. [PMID: 32332789 PMCID: PMC7181662 DOI: 10.1038/s41598-020-63819-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Depression is a devastating mental disorder affected by multiple factors that can have genetic, environmental, or metabolic causes. Although previous studies have reported an association of dysregulated glucose metabolism with depression, its underlying mechanism remains elusive at the molecular level. A small percentage of glucose is converted into uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) via the hexosamine biosynthetic pathway, which serves as an immediate donor for protein O-GlcNAc modification. O-GlcNAcylation is a particularly common post-translational modification (PTM) in the brain, and the functional significance of O-GlcNAcylation in neurodegenerative diseases has been extensively reported. However, whether the degree of O-GlcNAc modification is associated with depressive disorder has not been examined. In this study, we show that increased O-GlcNAcylation levels reduce inhibitory synaptic transmission in the medial prefrontal cortex (mPFC), and that Oga+/− mice with chronically elevated O-GlcNAcylation levels exhibit an antidepressant-like phenotype. Moreover, we found that virus-mediated expression of OGA in the mPFC restored both antidepressant-like behavior and inhibitory synaptic transmission. Therefore, our results suggest that O-GlcNAc modification in the mPFC plays a significant role in regulating antidepressant-like behavior, highlighting that the modulation of O-GlcNAcylation levels in the brain may serve as a novel therapeutic candidate for antidepressants.
Collapse
Affiliation(s)
- Yoonjeong Cho
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - ChiHye Chung
- Department of Biological Science, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
58
|
Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M, Wang XJ, Inoue W, Poulter MO, Martinez-Trujillo J. Changes in the Proportion of Inhibitory Interneuron Types from Sensory to Executive Areas of the Primate Neocortex: Implications for the Origins of Working Memory Representations. Cereb Cortex 2020; 30:4544-4562. [PMID: 32227119 DOI: 10.1093/cercor/bhaa056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuronal spiking activity encoding working memory (WM) is robust in primate association cortices but weak or absent in early sensory cortices. This may be linked to changes in the proportion of neuronal types across areas that influence circuits' ability to generate recurrent excitation. We recorded neuronal activity from areas middle temporal (MT), medial superior temporal (MST), and the lateral prefrontal cortex (LPFC) of monkeys performing a WM task and classified neurons as narrow (NS) and broad spiking (BS). The ratio NS/BS decreased from MT > MST > LPFC. We analyzed the Allen Institute database of ex vivo mice/human intracellular recordings to interpret our data. Our analysis suggests that NS neurons correspond to parvalbumin (PV) or somatostatin (SST) interneurons while BS neurons are pyramidal (P) cells or vasoactive intestinal peptide (VIP) interneurons. We labeled neurons in monkey tissue sections of MT/MST and LPFC and found that the proportion of PV in cortical layers 2/3 decreased, while the proportion of CR cells increased from MT/MST to LPFC. Assuming that primate CR/CB/PV cells perform similar computations as mice VIP/SST/PV cells, our results suggest that changes in the proportion of CR and PV neurons in layers 2/3 cells may favor the emergence of activity encoding WM in association areas.
Collapse
Affiliation(s)
- Santiago Torres-Gomez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Jackson D Blonde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Kuebler
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Michelle Everest
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Xiao Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Michael O Poulter
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5B7, Canada
| |
Collapse
|
59
|
Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval. J Neurosci 2020; 40:2314-2331. [PMID: 32005764 DOI: 10.1523/jneurosci.1919-19.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Distinct components of working memory are coordinated by different classes of inhibitory interneurons in the PFC, but the role of cholecystokinin (CCK)-positive interneurons remains enigmatic. In humans, this major population of interneurons shows histological abnormalities in schizophrenia, an illness in which deficient working memory is a core defining symptom and the best predictor of long-term functional outcome. Yet, CCK interneurons as a molecularly distinct class have proved intractable to examination by typical molecular methods due to widespread expression of CCK in the pyramidal neuron population. Using an intersectional approach in mice of both sexes, we have succeeded in labeling, interrogating, and manipulating CCK interneurons in the mPFC. Here, we describe the anatomical distribution, electrophysiological properties, and postsynaptic connectivity of CCK interneurons, and evaluate their role in cognition. We found that CCK interneurons comprise a larger proportion of the mPFC interneurons compared with parvalbumin interneurons, targeting a wide range of neuronal subtypes with a distinct connectivity pattern. Phase-specific optogenetic inhibition revealed that CCK, but not parvalbumin, interneurons play a critical role in the retrieval of working memory. These findings shine new light on the relationship between cortical CCK interneurons and cognition and offer a new set of tools to investigate interneuron dysfunction and cognitive impairments associated with schizophrenia.SIGNIFICANCE STATEMENT Cholecystokinin-expressing interneurons outnumber other interneuron populations in key brain areas involved in cognition and memory, including the mPFC. However, they have proved intractable to examination as experimental techniques have lacked the necessary selectivity. To the best of our knowledge, the present study is the first to report detailed properties of cortical cholecystokinin interneurons, revealing their anatomical organization, electrophysiological properties, postsynaptic connectivity, and behavioral function in working memory.
Collapse
|
60
|
Bunda A, LaCarubba B, Bertolino M, Akiki M, Bath K, Lopez-Soto J, Lipscombe D, Andrade A. Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Mol Brain 2019; 12:81. [PMID: 31630675 PMCID: PMC6802325 DOI: 10.1186/s13041-019-0500-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Presynaptic CaV2.2 channels control calcium entry that triggers neurotransmitter release at both central and peripheral synapses. The Cacna1b gene encodes the α1-pore forming subunit of CaV2.2 channels. Distinct subsets of splice variants of CaV2.2 derived from cell-specific alternative splicing of the Cacna1b pre-mRNA are expressed in specific subpopulations of neurons. Four cell-specific sites of alternative splicing in Cacna1b that alter CaV2.2 channel function have been described in detail: three cassette exons (e18a, e24a, and e31a) and a pair of mutually exclusive exons (e37a/e37b). Cacna1b mRNAs containing e37a are highly enriched in a subpopulation of nociceptors where they influence nociception and morphine analgesia. E37a-Cacna1b mRNAs are also expressed in brain, but their cell-specific expression in this part of the nervous system, their functional consequences in central synapses and their role on complex behavior have not been studied. In this report, we show that e37a-Cacna1b mRNAs are expressed in excitatory projection neurons where CaV2.2 channels are known to influence transmitter release at excitatory inputs from entorhinal cortex (EC) to dentate gyrus (DG). By comparing behaviors of WT mice to those that only express e37b-CaV2.2 channels, we found evidence that e37a-CaV2.2 enhances behavioral responses to aversive stimuli. Our results suggest that alternative splicing of Cacna1b e37a influences excitatory transmitter release and couples to complex behaviors.
Collapse
Affiliation(s)
- Alexandra Bunda
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Brianna LaCarubba
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Melanie Bertolino
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Marie Akiki
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| | - Kevin Bath
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912 USA
| | - Javier Lopez-Soto
- Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Diane Lipscombe
- Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Arturo Andrade
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824 USA
| |
Collapse
|
61
|
Differential distributions of parvalbumin-positive interneurons in the sulci and gyri of the adult ferret cerebral cortex. Neuroreport 2019; 30:993-997. [PMID: 31464840 DOI: 10.1097/wnr.0000000000001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although accumulating evidence suggests that there are significant anatomical and histological differences between the sulci and gyri of the cerebral cortex, whether there is a difference in the distribution of interneurons between the two cortical regions remains largely unknown. In this study, we systematically compared the distributions of parvalbumin-positive interneurons among three neighboring gyrus and sulcus pairs-coronal gyrus and cruciate sulcus, anterior ectosylvian gyrus and rostral suprasylvian sulcus, and posterior ectosylvian gyrus and pseudosylvian sulcus-in the adult ferret cerebral cortex. We proposed a method to partition sulci and gyri into several specific subregions through the deepest points of the sulci and the highest points of gyri in the inner and outer cortical contours of coronal sections. We found that the density of parvalbumin-positive interneurons in the gyri was significantly higher than that in the sulci. Further study revealed that the density of PV interneurons in superficial cortical layers (layers 2/3 and layer 4) was comparable among the three pairs of sulci and gyri. However, the density of parvalbumin-positive interneurons in cortical layers 5/6 was significantly higher in gyri than in sulci. These results indicate that parvalbumin-positive interneurons are differently distributed in infragranular layers of cortical sulci and gyri.
Collapse
|
62
|
Bunda A, LaCarubba B, Akiki M, Andrade A. Tissue- and cell-specific expression of a splice variant in the II-III cytoplasmic loop of Cacna1b. FEBS Open Bio 2019; 9:1603-1616. [PMID: 31314171 PMCID: PMC6722902 DOI: 10.1002/2211-5463.12701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Presynaptic CaV2.2 (N‐type) channels are fundamental for transmitter release across the nervous system. The gene encoding CaV2.2 channels, Cacna1b, contains alternatively spliced exons that result in functionally distinct splice variants (e18a, e24a, e31a, and 37a/37b). Alternative splicing of the cassette exon 18a generates two mRNA transcripts (+e18a‐Cacna1b and ∆e18a‐Cacna1b). In this study, using novel mouse genetic models and in situ hybridization (BaseScope™), we confirmed that +e18a‐Cacna1b splice variants are expressed in monoaminergic regions of the midbrain. We expanded these studies and identified +e18a‐Cacna1b mRNA in deep cerebellar cells and spinal cord motor neurons. Furthermore, we determined that +e18a‐Cacna1b is enriched in cholecystokinin‐expressing interneurons. Our results provide key information to understand cell‐specific functions of CaV2.2 channels.
Collapse
Affiliation(s)
- Alexandra Bunda
- Department of Biological SciencesUniversity of New HampshireDurhamNHUSA
| | - Brianna LaCarubba
- Department of Biological SciencesUniversity of New HampshireDurhamNHUSA
| | - Marie Akiki
- Department of Biological SciencesUniversity of New HampshireDurhamNHUSA
| | - Arturo Andrade
- Department of Biological SciencesUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
63
|
Social defeat stress causes selective attenuation of neuronal activity in the ventromedial prefrontal cortex. Sci Rep 2019; 9:9447. [PMID: 31263153 PMCID: PMC6603183 DOI: 10.1038/s41598-019-45833-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/12/2019] [Indexed: 11/08/2022] Open
Abstract
The ventromedial prefrontal cortex (vmPFC) plays key roles in higher cognitive abilities, including mental representations and the regulation of emotion. Previous studies have reported that vmPFC activity is altered in depressed human patients, highlighting this subregion as a major site of dysfunction in neuropsychiatric diseases. To examine how neuronal activity at spike levels in the vmPFC is altered by social defeat stress, we performed electrophysiological multiunit recordings along the dorsoventral axis of the mPFC of freely moving mice. Chronic social defeat stress-susceptible mice showing an impairment in social interaction exhibited significant reductions in the overall spike frequencies of neurons in the vmPFC, but not in the dorsal mPFC. Analysis of local field potentials revealed that the vmPFC generated spatially constrained 20-40 Hz events lasting hundreds of milliseconds, with an average event frequency of 0.05 Hz; during these events, a subset of neurons were transiently inhibited. The frequency of 20-40 Hz events in the vmPFC was reduced in defeated stress-susceptible animals, and this decrease was reversed by systemic ketamine administration. The novel neurophysiological correlates of stress-induced changes in the vmPFC advance the understanding of the neural basis of stress-induced dysregulation of social behavior.
Collapse
|
64
|
Contreras A, Hines DJ, Hines RM. Molecular Specialization of GABAergic Synapses on the Soma and Axon in Cortical and Hippocampal Circuit Function and Dysfunction. Front Mol Neurosci 2019; 12:154. [PMID: 31297048 PMCID: PMC6607995 DOI: 10.3389/fnmol.2019.00154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The diversity of inhibitory interneurons allows for the coordination and modulation of excitatory principal cell firing. Interneurons that release GABA (γ-aminobutyric acid) onto the soma and axon exert powerful control by virtue of proximity to the site of action potential generation at the axon initial segment (AIS). Here, we review and examine the cellular and molecular regulation of soma and axon targeting GABAergic synapses in the cortex and hippocampus. We also describe their role in controlling network activity in normal and pathological states. Recent studies have demonstrated a specific role for postsynaptic dystroglycan in the formation and maintenance of cholecystokinin positive basket cell terminals contacting the soma, and postsynaptic collybistin in parvalbumin positive chandelier cell contacts onto the AIS. Unique presynaptic molecular contributors, LGI2 and FGF13, expressed in parvalbumin positive basket cells and chandelier cells, respectively, have also recently been identified. Mutations in the genes encoding proteins critical for somatic and AIS inhibitory synapses have been associated with human disorders of the nervous system. Dystroglycan dysfunction in some congenital muscular dystrophies is associated with developmental brain malformations, intellectual disability, and rare epilepsy. Collybistin dysfunction has been linked to hyperekplexia, epilepsy, intellectual disability, and developmental disorders. Both LGI2 and FGF13 mutations are implicated in syndromes with epilepsy as a component. Advancing our understanding of the powerful roles of somatic and axonic GABAergic contacts in controlling activity patterns in the cortex and hippocampus will provide insight into the pathogenesis of epilepsy and other nervous system disorders.
Collapse
Affiliation(s)
- April Contreras
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dustin J Hines
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
65
|
Cholecystokinin release triggered by NMDA receptors produces LTP and sound-sound associative memory. Proc Natl Acad Sci U S A 2019; 116:6397-6406. [PMID: 30850520 DOI: 10.1073/pnas.1816833116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue-cue associative memory.
Collapse
|
66
|
Whissell PD, Bang JY, Khan I, Xie YF, Parfitt GM, Grenon M, Plummer NW, Jensen P, Bonin RP, Kim JC. Selective Activation of Cholecystokinin-Expressing GABA (CCK-GABA) Neurons Enhances Memory and Cognition. eNeuro 2019; 6:ENEURO.0360-18.2019. [PMID: 30834305 PMCID: PMC6397954 DOI: 10.1523/eneuro.0360-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Cholecystokinin-expressing GABAergic (CCK-GABA) neurons are perisomatic inhibitory cells that have been argued to regulate emotion and sculpt the network oscillations associated with cognition. However, no study has selectively manipulated CCK-GABA neuron activity during behavior in freely-moving animals. To explore the behavioral effects of activating CCK-GABA neurons on emotion and cognition, we utilized a novel intersectional genetic mouse model coupled with a chemogenetic approach. Specifically, we generated triple transgenic CCK-Cre;Dlx5/6-Flpe;RC::FL-hM3Dq (CCK-GABA/hM3Dq) mice that expressed the synthetic excitatory hM3Dq receptor in CCK-GABA neurons. Results showed that clozapine-N-oxide (CNO)-mediated activation of CCK-GABA neurons did not alter open field (OF) or tail suspension (TS) performance and only slightly increased anxiety in the elevated plus maze (EPM). Although CNO treatment had only modestly affected emotional behavior, it significantly enhanced multiple cognitive and memory behaviors including social recognition, contextual fear conditioning, contextual discrimination, object recognition, and problem-solving in the puzzle box. Collectively, these findings suggest that systemic activation of CCK-GABA neurons minimally affects emotion but significantly enhances cognition and memory. Our results imply that CCK-GABA neurons are more functionally diverse than originally expected and could serve as a potential therapeutic target for the treatment of cognitive/memory disorders.
Collapse
Affiliation(s)
| | - Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G3
| | - Ikram Khan
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G3
| | - Yu-Feng Xie
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | | | - Martine Grenon
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G3
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Robert P. Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Jun Chul Kim
- Psychology
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G3
| |
Collapse
|
67
|
Modi B, Pimpinella D, Pazienti A, Zacchi P, Cherubini E, Griguoli M. Possible Implication of the CA2 Hippocampal Circuit in Social Cognition Deficits Observed in the Neuroligin 3 Knock-Out Mouse, a Non-Syndromic Animal Model of Autism. Front Psychiatry 2019; 10:513. [PMID: 31379628 PMCID: PMC6659102 DOI: 10.3389/fpsyt.2019.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASDs) comprise a heterogeneous group of neuro-developmental abnormalities with a strong genetic component, characterized by deficits in verbal and non-verbal communication, impaired social interactions, and stereotyped behaviors. In a small percentage of cases, ASDs are associated with alterations of genes involved in synaptic function. Among these, relatively frequent are mutations/deletions of genes encoding for neuroligins (NLGs). NLGs are postsynaptic adhesion molecules that, interacting with their presynaptic partners neurexins, ensure the cross talk between pre- and postsynaptic specializations and synaptic stabilization, a condition needed for maintaining a proper excitatory/inhibitory balance within local neuronal circuits. We have focused on mice lacking NLG3 (NLG3 knock-out mice), animal models of a non-syndromic form of autism, which exhibit deficits in social behavior reminiscent of those found in ASDs. Among different brain areas involved in social cognition, the CA2 region of the hippocampus has recently emerged as a central structure for social memory processing. Here, in vivo recordings from anesthetized animals and ex vivo recordings from hippocampal slices have been used to assess the dynamics of neuronal signaling in the CA2 hippocampal area. In vivo experiments from NLG3-deficient mice revealed a selective impairment of spike-related slow wave activity in the CA2 area and a significant reduction in oscillatory activity in the theta and gamma frequencies range in both CA2 and CA3 regions of the hippocampus. These network effects were associated with an increased neuronal excitability in the CA2 hippocampal area. Ex vivo recordings from CA2 principal cells in slices obtained from NLG3 knock-out animals unveiled a strong excitatory/inhibitory imbalance in this region accompanied by a strong reduction of perisomatic inhibition mediated by CCK-containing GABAergic interneurons. These data clearly suggest that the selective alterations in network dynamics and GABAergic signaling observed in the CA2 hippocampal region of NLG3 knock-out mice may account for deficits in social memory reminiscent of those observed in autistic patients.
Collapse
Affiliation(s)
- Brijesh Modi
- European Brain Research Institute (EBRI), Rome, Italy.,Department of Psychology, Sapienza University of Rome, Italy
| | - Domenico Pimpinella
- European Brain Research Institute (EBRI), Rome, Italy.,Department of Psychology, Sapienza University of Rome, Italy
| | - Antonio Pazienti
- European Brain Research Institute (EBRI), Rome, Italy.,National Center for Radiation Protection and Computational Physics, Italian National Institute of Health, Rome, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Rome, Italy.,Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | | |
Collapse
|
68
|
Nakao K, Jeevakumar V, Jiang SZ, Fujita Y, Diaz NB, Pretell Annan CA, Eskow Jaunarajs KL, Hashimoto K, Belforte JE, Nakazawa K. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction. Schizophr Bull 2019; 45:138-147. [PMID: 29394409 PMCID: PMC6293233 DOI: 10.1093/schbul/sby003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Kazuhito Nakao
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Vivek Jeevakumar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Sunny Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Noelia B Diaz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires and Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Pretell Annan
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires and Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Juan E Belforte
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires and Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kazu Nakazawa
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, US; tel: 205-996-6877, e-mail:
| |
Collapse
|
69
|
Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018; 100:294-313. [PMID: 30359598 PMCID: PMC6290988 DOI: 10.1016/j.neuron.2018.10.009] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
In the cerebral cortex, GABAergic interneurons have evolved as a highly heterogeneous collection of cell types that are characterized by their unique spatial and temporal capabilities to influence neuronal circuits. Current estimates suggest that up to 50 different types of GABAergic neurons may populate the cerebral cortex, all derived from progenitor cells in the subpallium, the ventral aspect of the embryonic telencephalon. In this review, we provide an overview of the mechanisms underlying the generation of the distinct types of interneurons and their integration in cortical circuits. Interneuron diversity seems to emerge through the implementation of cell-intrinsic genetic programs in progenitor cells, which unfold over a protracted period of time until interneurons acquire mature characteristics. The developmental trajectory of interneurons is also modulated by activity-dependent, non-cell-autonomous mechanisms that influence their ability to integrate in nascent circuits and sculpt their final distribution in the adult cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
70
|
Keller D, Erö C, Markram H. Cell Densities in the Mouse Brain: A Systematic Review. Front Neuroanat 2018; 12:83. [PMID: 30405363 PMCID: PMC6205984 DOI: 10.3389/fnana.2018.00083] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/20/2018] [Indexed: 11/29/2022] Open
Abstract
The mouse brain is the most extensively studied brain of all species. We performed an exhaustive review of the literature to establish our current state of knowledge on cell numbers in mouse brain regions, arguably the most fundamental property to measure when attempting to understand a brain. The synthesized information, collected in one place, can be used by both theorists and experimentalists. Although for commonly-studied regions cell densities could be obtained for principal cell types, overall we know very little about how many cells are present in most brain regions and even less about cell-type specific densities. There is also substantial variation in cell density values obtained from different sources. This suggests that we need a new approach to obtain cell density datasets for the mouse brain.
Collapse
Affiliation(s)
- Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | | | | |
Collapse
|
71
|
Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 2018; 1695:18-30. [DOI: 10.1016/j.brainres.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022]
|
72
|
Busquets-Garcia A, Oliveira da Cruz JF, Terral G, Pagano Zottola AC, Soria-Gómez E, Contini A, Martin H, Redon B, Varilh M, Ioannidou C, Drago F, Massa F, Fioramonti X, Trifilieff P, Ferreira G, Marsicano G. Hippocampal CB1 Receptors Control Incidental Associations. Neuron 2018; 99:1247-1259.e7. [DOI: 10.1016/j.neuron.2018.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/16/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
|
73
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
74
|
Oviedo HV. Connectivity motifs of inhibitory neurons in the mouse Auditory Cortex. Sci Rep 2017; 7:16987. [PMID: 29208907 PMCID: PMC5717100 DOI: 10.1038/s41598-017-16904-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
Connectivity determines the function of neural circuits and it is the gateway to behavioral output. The emergent properties of the Auditory Cortex (ACx) have been difficult to unravel partly due to our assumption that it is organized similarly to other sensory areas. But detailed investigations of its functional connectivity have begun to reveal significant differences from other cortical areas that perform different functions. Using Laser Scanning Photostimulation we previously discovered unique circuit features in the ACx. Specifically, we found that the functional asymmetry of the ACx (tonotopy and isofrequency axes) is reflected in the local circuitry of excitatory inputs to Layer 3 pyramidal neurons. In the present study we extend the functional wiring diagram of the ACx with an investigation of the connectivity patterns of inhibitory subclasses. We compared excitatory input to parvalbumin (PV) and somatostatin (SOM)-expressing interneurons and found distinct circuit-motifs between and within these subpopulations. Moreover, these connectivity motifs emerged as intrinsic differences between the left and right ACx. Our results support a functional circuit based approach to understand the role of inhibitory neurons in auditory processing.
Collapse
Affiliation(s)
- Hysell V Oviedo
- The City College of New York, Biology Department, New York, NY, USA.
| |
Collapse
|
75
|
Erchova I, Vasalauskaite A, Longo V, Sengpiel F. Enhancement of visual cortex plasticity by dark exposure. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0159. [PMID: 28093553 PMCID: PMC5247591 DOI: 10.1098/rstb.2016.0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 11/12/2022] Open
Abstract
Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory-inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice. Optical imaging of intrinsic signals revealed that ocular dominance in V1 of mice that had received DE recovered slightly more quickly than of mice that had not, but the level of recovery after three weeks was similar in both groups. Two-photon calcium imaging showed no significant difference in the recovery of orientation selectivity of excitatory neurons between the two groups. Parvalbumin-positive (PV+) interneurons exhibited a smaller ocular dominance shift during MD but again no differences in subsequent recovery. The percentage of PV+ cells surrounded by perineuronal nets, a structural brake on plasticity, was lower in mice with than those without DE. Overall, DE causes a modest enhancement of mouse visual cortex plasticity.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Irina Erchova
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Asta Vasalauskaite
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Valentina Longo
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Frank Sengpiel
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
76
|
Ketchesin KD, Huang NS, Seasholtz AF. Cell Type-Specific Expression of Corticotropin-Releasing Hormone-Binding Protein in GABAergic Interneurons in the Prefrontal Cortex. Front Neuroanat 2017; 11:90. [PMID: 29066956 PMCID: PMC5641307 DOI: 10.3389/fnana.2017.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/25/2017] [Indexed: 01/31/2023] Open
Abstract
Corticotropin-releasing hormone-binding protein (CRH-BP) is a secreted glycoprotein that binds CRH with very high affinity to modulate CRH receptor activity. CRH-BP is widely expressed throughout the brain, with particularly high expression in regions such as the amygdala, hippocampus, ventral tegmental area and prefrontal cortex (PFC). Recent studies suggest a role for CRH-BP in stress-related psychiatric disorders and addiction, with the PFC being a potential site of interest. However, the molecular phenotype of CRH-BP-expressing cells in this region has not been well-characterized. In the current study, we sought to determine the cell type-specific expression of CRH-BP in the PFC to begin to define the neural circuits in which this key regulator is acting. To characterize the expression of CRH-BP in excitatory and/or inhibitory neurons, we utilized dual in situ hybridization to examine the cellular colocalization of CRH-BP mRNA with vesicular glutamate transporter (VGLUT) or glutamic acid decarboxylase (GAD) mRNA in different subregions of the PFC. We show that CRH-BP is expressed predominantly in GABAergic interneurons of the PFC, as revealed by the high degree of colocalization (>85%) between CRH-BP and GAD. To further characterize the expression of CRH-BP in this heterogenous group of inhibitory neurons, we examined the colocalization of CRH-BP with various molecular markers of GABAergic interneurons, including parvalbumin (PV), somatostatin (SST), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK). We demonstrate that CRH-BP is colocalized predominantly with SST in the PFC, with lower levels of colocalization in PV- and CCK-expressing neurons. Our results provide a more comprehensive characterization of the cell type-specific expression of CRH-BP and begin to define its potential role within circuits of the PFC. These results will serve as the basis for future in vivo studies to manipulate CRH-BP in a cell type-specific manner to better understand its role in stress-related psychiatric disorders, including anxiety, depression and addiction.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas S Huang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Audrey F Seasholtz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
77
|
Menon N, Prabhavalkar KS, Bhatt LK. Neuropeptides: A promising target for treating seizures. Neuropeptides 2017; 65:63-70. [PMID: 28559061 DOI: 10.1016/j.npep.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 11/28/2022]
Abstract
Seizures are serious neurological disorders affecting nearly 50 million people worldwide. Seizures are characterized by abnormal, repetitive and synchronised firing of the neurons which is produced as a result of imbalance in the levels of the excitatory and inhibitory neurotransmitters. Neuropeptides are found to regulate seizures by rectifying this imbalance. These neuropeptides are stored in the dense core synaptic vesicles, and are released on excitation. This review focuses on certain neuropeptides which can alleviate both, the effects of seizures as well as epileptogenesis. Thus making it an attractive target for the management of seizures.
Collapse
Affiliation(s)
- Neethi Menon
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India
| | - Kedar S Prabhavalkar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India.
| | - Lokesh K Bhatt
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India
| |
Collapse
|
78
|
Larimore J, Zlatic SA, Arnold M, Singleton KS, Cross R, Rudolph H, Bruegge MV, Sweetman A, Garza C, Whisnant E, Faundez V. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet 2017; 8:28. [PMID: 28344592 PMCID: PMC5344932 DOI: 10.3389/fgene.2017.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
The neurodevelopmental factor dysbindin is required for synapse function and GABA interneuron development. Dysbindin protein levels are reduced in the hippocampus of schizophrenia patients. Mouse dysbindin genetic defects and other mouse models of neurodevelopmental disorders share defective GABAergic neurotransmission and, in several instances, a loss of parvalbumin-positive interneuron phenotypes. This suggests that mechanisms downstream of dysbindin deficiency, such as those affecting GABA interneurons, could inform pathways contributing to or ameliorating diverse neurodevelopmental disorders. Here we define the transcriptome of developing wild type and dysbindin null Bloc1s8sdy/sdy mouse hippocampus in order to identify mechanisms downstream dysbindin defects. The dysbindin mutant transcriptome revealed previously reported GABA parvalbumin interneuron defects. However, the Bloc1s8sdy/sdy transcriptome additionally uncovered changes in the expression of molecules controlling cellular excitability such as the cation-chloride cotransporters NKCC1, KCC2, and NCKX2 as well as the potassium channel subunits Kcne2 and Kcnj13. Our results suggest that dysbindin deficiency phenotypes, such as GABAergic defects, are modulated by the expression of molecules controlling the magnitude and cadence of neuronal excitability.
Collapse
Affiliation(s)
| | | | - Miranda Arnold
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | | | - Rebecca Cross
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Hannah Rudolph
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | | | - Andrea Sweetman
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Cecilia Garza
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Eli Whisnant
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
79
|
Csabai D, Seress L, Varga Z, Ábrahám H, Miseta A, Wiborg O, Czéh B. Electron Microscopic Analysis of Hippocampal Axo-Somatic Synapses in a Chronic Stress Model for Depression. Hippocampus 2016; 27:17-27. [PMID: 27571571 PMCID: PMC5215622 DOI: 10.1002/hipo.22650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
Abstract
Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin‐positive (PV+) neurons in response to stress, while the density of cholecystokinin‐immunoreactive (CCK+) neurons was unaffected. We did a detailed electron microscopic analysis to quantify the frequency and morphology of perisomatic inhibitory synapses in the hippocampal CA1 area. We analyzed 1100 CA1 pyramidal neurons and 4800 perisomatic terminals in five control and four chronically stressed rats. In the control animals we observed the following parameters: Number of terminals/soma = 57; Number of terminals/100 µm cell perimeter = 10; Synapse/terminal ratio = 32%; Synapse number/100 terminal = 120; Average terminal length = 920nm. None of these parameters were affected by the stress exposure. Overall, these data indicate that despite the depressive‐like behavior and the decrease in the number of perisomatic PV+ neurons in the light microscopic preparations, the number of perisomatic inhibitory synapses on CA1 pyramidal cells was not affected by stress. In the electron microscope, PV+ neurons and the axon terminals appeared to be normal and we did not find any apoptotic or necrotic cells. This data is in sharp contrast to the remarkable remodeling of the excitatory synapses on spines that has been reported in response to stress and depressive‐like behavior. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dávid Csabai
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary
| | - László Seress
- Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Zsófia Varga
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, 7624, Hungary.,Department of Medical Biology, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Boldizsár Czéh
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, 7624, Hungary.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|