51
|
Cinel C, Valeriani D, Poli R. Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects. Front Hum Neurosci 2019; 13:13. [PMID: 30766483 PMCID: PMC6365771 DOI: 10.3389/fnhum.2019.00013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Recent advances in neuroscience have paved the way to innovative applications that cognitively augment and enhance humans in a variety of contexts. This paper aims at providing a snapshot of the current state of the art and a motivated forecast of the most likely developments in the next two decades. Firstly, we survey the main neuroscience technologies for both observing and influencing brain activity, which are necessary ingredients for human cognitive augmentation. We also compare and contrast such technologies, as their individual characteristics (e.g., spatio-temporal resolution, invasiveness, portability, energy requirements, and cost) influence their current and future role in human cognitive augmentation. Secondly, we chart the state of the art on neurotechnologies for human cognitive augmentation, keeping an eye both on the applications that already exist and those that are emerging or are likely to emerge in the next two decades. Particularly, we consider applications in the areas of communication, cognitive enhancement, memory, attention monitoring/enhancement, situation awareness and complex problem solving, and we look at what fraction of the population might benefit from such technologies and at the demands they impose in terms of user training. Thirdly, we briefly review the ethical issues associated with current neuroscience technologies. These are important because they may differentially influence both present and future research on (and adoption of) neurotechnologies for human cognitive augmentation: an inferior technology with no significant ethical issues may thrive while a superior technology causing widespread ethical concerns may end up being outlawed. Finally, based on the lessons learned in our analysis, using past trends and considering other related forecasts, we attempt to forecast the most likely future developments of neuroscience technology for human cognitive augmentation and provide informed recommendations for promising future research and exploitation avenues.
Collapse
Affiliation(s)
- Caterina Cinel
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Davide Valeriani
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Riccardo Poli
- Brain Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| |
Collapse
|
52
|
Fusion of Motif- and Spectrum-Related Features for Improved EEG-Based Emotion Recognition. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:3076324. [PMID: 30800157 PMCID: PMC6360048 DOI: 10.1155/2019/3076324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022]
Abstract
Emotion recognition is a burgeoning field allowing for more natural human-machine interactions and interfaces. Electroencephalography (EEG) has shown to be a useful modality with which user emotional states can be measured and monitored, particularly primitives such as valence and arousal. In this paper, we propose the use of ordinal pattern analysis, also called motifs, for improved EEG-based emotion recognition. Motifs capture recurring structures in time series and are inherently robust to noise, thus are well suited for the task at hand. Several connectivity, asymmetry, and graph-theoretic features are proposed and extracted from the motifs to be used for affective state recognition. Experiments with a widely used public database are conducted, and results show the proposed features outperforming benchmark spectrum-based features, as well as other more recent nonmotif-based graph-theoretic features and amplitude modulation-based connectivity/asymmetry measures. Feature and score-level fusion suggest complementarity between the proposed and benchmark spectrum-based measures. When combined, the fused models can provide up to 9% improvement relative to benchmark features alone and up to 16% to nonmotif-based graph-theoretic features.
Collapse
|
53
|
Rovetti J, Goy H, Pichora-Fuller MK, Russo FA. Functional Near-Infrared Spectroscopy as a Measure of Listening Effort in Older Adults Who Use Hearing Aids. Trends Hear 2019; 23:2331216519886722. [PMID: 31722613 PMCID: PMC6856975 DOI: 10.1177/2331216519886722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Listening effort may be reduced when hearing aids improve access to the acoustic signal. However, this possibility is difficult to evaluate because many neuroimaging methods used to measure listening effort are incompatible with hearing aid use. Functional near-infrared spectroscopy (fNIRS), which can be used to measure the concentration of oxygen in the prefrontal cortex (PFC), appears to be well-suited to this application. The first aim of this study was to establish whether fNIRS could measure cognitive effort during listening in older adults who use hearing aids. The second aim was to use fNIRS to determine if listening effort, a form of cognitive effort, differed depending on whether or not hearing aids were used when listening to sound presented at 35 dB SL (flat gain). Sixteen older adults who were experienced hearing aid users completed an auditory n-back task and a visual n-back task; both tasks were completed with and without hearing aids. We found that PFC oxygenation increased with n-back working memory demand in both modalities, supporting the use of fNIRS to measure cognitive effort during listening in this population. PFC oxygenation was weakly and nonsignificantly correlated with self-reported listening effort and reaction time, respectively, suggesting that PFC oxygenation assesses a dimension of listening effort that differs from these other measures. Furthermore, the extent to which hearing aids reduced PFC oxygenation in the left lateral PFC was positively correlated with age and pure-tone average thresholds. The implications of these findings as well as future directions are discussed.
Collapse
Affiliation(s)
- Joseph Rovetti
- Department of Psychology, Ryerson University, Toronto, ON,
Canada
| | - Huiwen Goy
- Department of Psychology, Ryerson University, Toronto, ON,
Canada
| | | | - Frank A. Russo
- Department of Psychology, Ryerson University, Toronto, ON,
Canada
- Toronto Rehabilitation Institute, ON, Canada
| |
Collapse
|
54
|
Bortfeld H. Functional near-infrared spectroscopy as a tool for assessing speech and spoken language processing in pediatric and adult cochlear implant users. Dev Psychobiol 2018; 61:430-443. [PMID: 30588618 DOI: 10.1002/dev.21818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 11/11/2022]
Abstract
Much of what is known about the course of auditory learning in following cochlear implantation is based on behavioral indicators that users are able to perceive sound. Both prelingually deafened children and postlingually deafened adults who receive cochlear implants display highly variable speech and language processing outcomes, although the basis for this is poorly understood. To date, measuring neural activity within the auditory cortex of implant recipients of all ages has been challenging, primarily because the use of traditional neuroimaging techniques is limited by the implant itself. Functional near-infrared spectroscopy (fNIRS) is an imaging technology that works with implant users of all ages because it is non-invasive, compatible with implant devices, and not subject to electrical artifacts. Thus, fNIRS can provide insight into processing factors that contribute to variations in spoken language outcomes in implant users, both children and adults. There are important considerations to be made when using fNIRS, particularly with children, to maximize the signal-to-noise ratio and to best identify and interpret cortical responses. This review considers these issues, recent data, and future directions for using fNIRS as a tool to understand spoken language processing in children and adults who hear through a cochlear implant.
Collapse
Affiliation(s)
- Heather Bortfeld
- Psychological Sciences, University of California, Merced, Merced, California
| |
Collapse
|
55
|
Inattentional deafness to auditory alarms: Inter-individual differences, electrophysiological signature and single trial classification. Behav Brain Res 2018; 360:51-59. [PMID: 30508609 DOI: 10.1016/j.bbr.2018.11.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 02/03/2023]
Abstract
Inattentional deafness can have deleterious consequences in complex real-life situations (e.g. healthcare, aviation) leading to miss critical auditory signals. Such failure of auditory attention is thought to rely on top-down biasing mechanisms at the central executive level. A complementary approach to account for this phenomenon is to consider the existence of visual dominance over hearing that could be implemented via direct visual-to-auditory pathways. To investigate this phenomenon, thirteen aircraft pilots, equipped with a 32-channel EEG system, faced a low and high workload scenarii along with an auditory oddball task in a motion flight simulator. Prior to the flying task, the pilots were screened to assess their working memory span and visual dominance susceptibility. The behavioral results disclosed that the volunteers missed 57.7% of the auditory alarms in the difficult condition. Among all evaluated capabilities, only the visual dominance index was predictive of the miss rate in the difficult scenario. These findings provide behavioral evidences that other early cross-modal competitive process than top down modulation process could account for inattentional deafness. The electrophysiological analyses showed that the miss over the hit alarms led to a significant amplitude reduction of early perceptual (N100) and late attentional (P3a and P3b) event-related potentials components. Eventually, we implemented an EEG-based processing pipeline to perform single-trial classification of inattentional deafness. The results indicate that this processing chain could be used in an ecological setting as it led to 72.2% mean accuracy to discriminate missed from hit auditory alarms.
Collapse
|
56
|
Bonetti LV, Hassan SA, Lau ST, Melo LT, Tanaka T, Patterson KK, Reid WD. Oxyhemoglobin changes in the prefrontal cortex in response to cognitive tasks: a systematic review. Int J Neurosci 2018; 129:195-203. [PMID: 30173620 DOI: 10.1080/00207454.2018.1518906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE STUDY the aim of this study was to synthesize PFC fNIRS outcomes on the effects of cognitive tasks compared to resting/baseline tasks in healthy adults from studies utilizing a pre/post design. MATERIAL AND METHODS original research studies were searched from seven databases (MEDLINE, EMBASE, CENTRAL, CINAHL, SCOPUS, PEDro and PubMed). Subsequently, two independent reviewers screened the titles and abstracts followed by full-text reviews to assess the studies' eligibility. RESULTS eleven studies met the inclusion criteria and had data abstracted and quality assessed. Methodology varied considerably and yet cognitive tasks resulted in the ΔO2Hb increasing in 8 of the 11 and ΔHHb decreasing in 8 of 8 studies that reported this outcome. The cognitive tasks from 10 of the 11 studies were classified as "Working Memory" and "Verbal Fluency Tasks". CONCLUSIONS although, the data comparison was challenging provided the heterogeneity in methodology, the results across studies were similar.
Collapse
Affiliation(s)
- Leandro Viçosa Bonetti
- a Department of Physical Therapy , University of Toronto , Toronto, ON , Canada.,b Department of Physical Therapy , Universidade de Caxias do Sul , Rio Grande do Sul , Brazil
| | - Syed A Hassan
- a Department of Physical Therapy , University of Toronto , Toronto, ON , Canada.,c Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada
| | - Sin-Tung Lau
- d Department of Kinesiology and Physical Education , Wilfrid Laurier University , Waterloo , ON , Canada.,e Toronto Rehabilitation Institute, University Health Network , Toronto , ON , Canada
| | - Luana T Melo
- a Department of Physical Therapy , University of Toronto , Toronto, ON , Canada
| | - Takako Tanaka
- a Department of Physical Therapy , University of Toronto , Toronto, ON , Canada.,f Department of Cardiopulmonary Rehabilitation Science , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Kara K Patterson
- a Department of Physical Therapy , University of Toronto , Toronto, ON , Canada.,c Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada.,e Toronto Rehabilitation Institute, University Health Network , Toronto , ON , Canada
| | - W Darlene Reid
- a Department of Physical Therapy , University of Toronto , Toronto, ON , Canada.,c Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada.,e Toronto Rehabilitation Institute, University Health Network , Toronto , ON , Canada.,g Interdepartmental Division of Critical Care Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
57
|
Liu Y, Ayaz H. Speech Recognition via fNIRS Based Brain Signals. Front Neurosci 2018; 12:695. [PMID: 30356771 PMCID: PMC6189799 DOI: 10.3389/fnins.2018.00695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
In this paper, we present the first evidence that perceived speech can be identified from the listeners' brain signals measured via functional-near infrared spectroscopy (fNIRS)—a non-invasive, portable, and wearable neuroimaging technique suitable for ecologically valid settings. In this study, participants listened audio clips containing English stories while prefrontal and parietal cortices were monitored with fNIRS. Machine learning was applied to train predictive models using fNIRS data from a subject pool to predict which part of a story was listened by a new subject not in the pool based on the brain's hemodynamic response as measured by fNIRS. fNIRS signals can vary considerably from subject to subject due to the different head size, head shape, and spatial locations of brain functional regions. To overcome this difficulty, a generalized canonical correlation analysis (GCCA) was adopted to extract latent variables that are shared among the listeners before applying principal component analysis (PCA) for dimension reduction and applying logistic regression for classification. A 74.7% average accuracy has been achieved for differentiating between two 50 s. long story segments and a 43.6% average accuracy has been achieved for differentiating four 25 s. long story segments. These results suggest the potential of an fNIRS based-approach for building a speech decoding brain-computer-interface for developing a new type of neural prosthetic system.
Collapse
Affiliation(s)
- Yichuan Liu
- School of Biomedical Engineering, Drexel University, Science and Health Systems, Philadelphia, PA, United States.,Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, Drexel University, Philadelphia, PA, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Drexel University, Science and Health Systems, Philadelphia, PA, United States.,Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, Drexel University, Philadelphia, PA, United States.,Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States.,The Division of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
58
|
Neuroethical Implications of Neurocognitive Enhancement in Managerial Professional Contexts. JOURNAL OF COGNITIVE ENHANCEMENT 2018. [DOI: 10.1007/s41465-018-0100-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
59
|
Perrey S, Besson P. Studying brain activity in sports performance: Contributions and issues. PROGRESS IN BRAIN RESEARCH 2018; 240:247-267. [PMID: 30390834 DOI: 10.1016/bs.pbr.2018.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the interactions between brain activity and behavior comprehensively in achieving optimal exercise performance in sports is still lacking. The existent research in this area has been limited by the constraints of sports environments and the robustness of the most suitable non-invasive functional neuroimaging methods (electroencephalography, EEG and functional near-infrared spectroscopy, fNIRS) to motion artifacts and noise. However, recent advances in brain mapping technology should improve the capabilities of the future brain imaging devices to assess and monitor the level of adaptive cognitive-motor performance during exercise in sports environments. The purpose of this position manuscript is to discuss the contributions and issues in behavioral neuroscience related to brain activity measured during exercise and in various sports. A first part aims to give an overview of EEG and fNIRS neuroimaging methods assessing electrophysiological activity and hemodynamic responses of the acute and chronic relation of physical exercise on the human brain. Then, methodological issues, such as the reliability of brain data during physical exertion, key limitations and possible prospects of fNIRS and EEG methods are provided. While the use of such methods in sports environments remains scarce and limited to controlled cycling task, new generation of wearable, whole-scalp EEG and fNIRS technologies could open up a range of new applications in sports sciences for providing neuroimaging-based biomarkers (hemodynamic and/or neural electrical signals) to various types of exercise and innovative training.
Collapse
Affiliation(s)
| | - Pierre Besson
- Euromov-University of Montpellier, Montpellier, France
| |
Collapse
|
60
|
Anderson AA, Parsa K, Geiger S, Zaragoza R, Kermanian R, Miguel H, Dashtestani H, Chowdhry FA, Smith E, Aram S, Gandjbakhche AH. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task. PLoS One 2018; 13:e0198257. [PMID: 29870536 PMCID: PMC5988299 DOI: 10.1371/journal.pone.0198257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.
Collapse
Affiliation(s)
- Afrouz A. Anderson
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Kian Parsa
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Sydney Geiger
- St. Olaf College, Northfield, MN, United States of America
| | - Rachel Zaragoza
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Riley Kermanian
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Helga Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Hadis Dashtestani
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima A. Chowdhry
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Smith
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Siamak Aram
- Analytics Department, Harrisburg University of Science and Technology, Harrisburg, PA, United States of America
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
61
|
Miao Y, Koomson VJ. A CMOS-Based Bidirectional Brain Machine Interface System With Integrated fdNIRS and tDCS for Closed-Loop Brain Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:554-563. [PMID: 29877819 DOI: 10.1109/tbcas.2018.2798924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A CMOS-based bidirectional brain machine interface system with on-chip frequency-domain near infrared spectroscopy (fdNIRS) and transcranial direct-current stimulation (tDCS) is designed to enable noninvasive closed-loop brain stimulation for neural disorders treatment and cognitive performance enhancement. The dual channel fdNIRS can continuously monitor absolute cerebral oxygenation during the entire tDCS process by measuring NIR light's attenuation and phase shift across brain tissue. Each fdNIRS channel provides 120 dBΩ transimpedance gain at 80 MHz with a power consumption of 30 mW while tolerating up to 8 pF input capacitance. A photocurrent between 10 and 450 nA can be detected with a phase resolution down to 0.2°. A lensless system with subnanowatt sensitivity is realized by using an avalanche photodiode. The on-chip programmable voltage-controlled resistor stimulator can support a stimulation current from 0.6 to 2.2 mA with less than 1% variation, which covers the required current range of tDCS. The chip is fabricated in a standard 130-nm CMOS process and occupies an area of 2.25 mm2.
Collapse
|
62
|
Xu H, Yin L, Liu C, Sheng X, Zhao N. Recent Advances in Biointegrated Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800156. [PMID: 29806115 DOI: 10.1002/adma.201800156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/06/2018] [Indexed: 05/09/2023]
Abstract
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted.
Collapse
Affiliation(s)
- Huihua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Lan Yin
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
63
|
Gateau T, Ayaz H, Dehais F. In silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI. Front Hum Neurosci 2018; 12:187. [PMID: 29867411 PMCID: PMC5966564 DOI: 10.3389/fnhum.2018.00187] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations.
Collapse
Affiliation(s)
- Thibault Gateau
- ISAE-SUPAERO, Institut Supérieur de l'Aéronautique et de l'Espace, Université Fédérale de Midi-Pyrénées, Toulouse, France
| | - Hasan Ayaz
- School of Biomedical Engineering, Science Health Systems, Drexel University, Philadelphia, PA, United States
| | - Frédéric Dehais
- ISAE-SUPAERO, Institut Supérieur de l'Aéronautique et de l'Espace, Université Fédérale de Midi-Pyrénées, Toulouse, France
| |
Collapse
|
64
|
Berger A, Pixa NH, Steinberg F, Doppelmayr M. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS): A Combined EEG-fNIRS Study. Front Behav Neurosci 2018; 12:67. [PMID: 29720935 PMCID: PMC5915568 DOI: 10.3389/fnbeh.2018.00067] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Motor control is associated with synchronized oscillatory activity at alpha (8–12 Hz) and beta (12–30 Hz) frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS) is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females) aged between 18 and 30 (M = 22.35 ± 3.62) participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions) for 20 min via small gel electrodes (3,14 cm2 Ag/AgCl, amperage = 1 mA). Before and three time-points after tACS (immediately, 30 min and 1 day), bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG) and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS). Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that tACS applied at parietal brain areas provoked electrophysiological and hemodynamic changes at brain regions of the motor network which are relevant for bimanual motor behavior. The existence of neurophysiological alterations immediately following tACS, especially in the absence of behavioral effects, are elementary for a profound understanding of the mechanisms underlying tACS. The lack of behavioral modifications strengthens the need for further research on tACS effects on neurophysiology and behavior using combined electrophysiological and neuroimaging methods.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nils H Pixa
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Fabian Steinberg
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Cognitive Neuroscience, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
65
|
Shuster LI. Considerations for the Use of Neuroimaging Technologies for Predicting Recovery of Speech and Language in Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2018; 27:291-305. [PMID: 29497745 DOI: 10.1044/2018_ajslp-16-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE The number of research articles aimed at identifying neuroimaging biomarkers for predicting recovery from aphasia continues to grow. Although the clinical use of these biomarkers to determine prognosis has been proposed, there has been little discussion of how this would be accomplished. This is an important issue because the best translational science occurs when translation is considered early in the research process. The purpose of this clinical focus article is to present a framework to guide the discussion of how neuroimaging biomarkers for recovery from aphasia could be implemented clinically. METHOD The genomics literature reveals that implementing genetic testing in the real-world poses both opportunities and challenges. There is much similarity between these opportunities and challenges and those related to implementing neuroimaging testing to predict recovery in aphasia. Therefore, the Center for Disease Control's model list of questions aimed at guiding the review of genetic testing has been adapted to guide the discussion of using neuroimaging biomarkers as predictors of recovery in aphasia. CONCLUSION The adapted model list presented here is a first and useful step toward initiating a discussion of how neuroimaging biomarkers of recovery could be employed clinically to provide improved quality of care for individuals with aphasia.
Collapse
Affiliation(s)
- Linda I Shuster
- Department of Speech, Language, and Hearing Sciences, Western Michigan University, Kalamazoo
| |
Collapse
|
66
|
Giovannella M, Ibañez D, Gregori-Pla C, Kacprzak M, Mitjà G, Ruffini G, Durduran T. Concurrent measurement of cerebral hemodynamics and electroencephalography during transcranial direct current stimulation. NEUROPHOTONICS 2018; 5:015001. [PMID: 29392156 PMCID: PMC5784784 DOI: 10.1117/1.nph.5.1.015001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/20/2017] [Indexed: 05/05/2023]
Abstract
Transcranial direct current stimulation (tDCS) is currently being used for research and treatment of some neurological and neuropsychiatric disorders, as well as for improvement of cognitive functions. In order to better understand cerebral response to the stimulation and to redefine protocols and dosage, its effects must be monitored. To this end, we have used functional diffuse correlation spectroscopy (fDCS) and time-resolved functional near-infrared spectroscopy (TR-fNIRS) together with electroencephalography (EEG) during and after stimulation of the frontal cortex. Twenty subjects participated in two sessions of stimulation with two different polarity montages and twelve also underwent a sham session. Cerebral blood flow and oxyhemoglobin concentration increased during and after active stimulation in the region under the stimulation electrode while deoxyhemoglobin concentration decreased. The EEG spectrum displayed statistically significant power changes across different stimulation sessions in delta (2 to 4 Hz), theta (4 to 8 Hz), and beta (12 to 18 Hz) bands. Results suggest that fDCS and TR-fNIRS can be employed as neuromonitors of the effects of transcranial electrical stimulation and can be used together with EEG.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Address all correspondence to: Martina Giovannella, E-mail:
| | | | - Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michal Kacprzak
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | | | - Giulio Ruffini
- Starlab, Barcelona, Spain
- Neuroelectrics Barcelona, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Obesity is a chronic illness and its prevalence is growing worldwide and numerous factors play a role in the regulation of food intake. The prefrontal cortex (PFC) is involved in high-order executive function, regulation of limbic reward regions, and the inhibition of impulsive behaviors. Understanding the role of the PFC in the control of appetite regulation may contribute to a greater understanding of the etiology of obesity and could improve weight loss outcomes. RECENT FINDINGS Neuroimaging studies have identified lower activation in the left dorsolateral PFC (DLPFC) in obese compared to lean individuals and others have focused on efforts to improve cognitive control in this area of the brain. The DLPFC is a critical brain area associated with appetitive control, food craving, and executive functioning, indicating a candidate target area for treatment. Further studies are needed to advance our understanding of the relationship between obesity, appetite, and the DLPFC and provide validation for the effectiveness of novel treatments in clinical populations.
Collapse
Affiliation(s)
- Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA.
| | - Pooja Viswanath
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA
| |
Collapse
|
68
|
Yücel MA, Selb JJ, Huppert TJ, Franceschini MA, Boas DA. Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:78-86. [PMID: 29457144 PMCID: PMC5810962 DOI: 10.1016/j.cobme.2017.09.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) maps human brain function by measuring and imaging local changes in hemoglobin concentrations in the brain that arise from the modulation of cerebral blood flow and oxygen metabolism by neural activity. Since its advent over 20 years ago, researchers have exploited and continuously advanced the ability of near infrared light to penetrate through the scalp and skull in order to non-invasively monitor changes in cerebral hemoglobin concentrations that reflect brain activity. We review recent advances in signal processing and hardware that significantly improve the capabilities of fNIRS by reducing the impact of confounding signals to improve statistical robustness of the brain signals and by enhancing the density, spatial coverage, and wearability of measuring devices respectively. We then summarize the application areas that are experiencing rapid growth as fNIRS begins to enable routine functional brain imaging.
Collapse
Affiliation(s)
- Meryem A. Yücel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Juliette J. Selb
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, USA
| | - Theodore J. Huppert
- Department of Radiology and Bioengineering, University of Pittsburg, Pittsburg, PA, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
69
|
Wyser D, Lambercy O, Scholkmann F, Wolf M, Gassert R. Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths. NEUROPHOTONICS 2017; 4:041413. [PMID: 28840164 PMCID: PMC5562388 DOI: 10.1117/1.nph.4.4.041413] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/12/2017] [Indexed: 05/22/2023]
Abstract
With the aim of transitioning functional near-infrared spectroscopy (fNIRS) technology from the laboratory environment to everyday applications, the field has seen a recent push toward the development of wearable/miniaturized, multiwavelength, multidistance, and modular instruments. However, it is challenging to unite all these requirements in a precision instrument with low noise, low drift, and fast sampling characteristics. We present the concept and development of a wearable fNIRS instrument that combines all these key features with the goal of reliably and accurately capturing brain hemodynamics. The proposed instrument consists of a modular network of miniaturized optode modules that include a four-wavelength light source and a highly sensitive silicon photomultiplier detector. Simultaneous measurements with short-separation (7.5 mm; containing predominantly extracerebral signals) and long-separation (20 mm or more; containing both extracerebral and cerebral information) channels are used with short-channel regression filtering methods to increase robustness of fNIRS measurements. Performance of the instrument was characterized with phantom measurements and further validated in human in vivo measurements, demonstrating the good raw signal quality (signal-to-noise ratio of 64 dB for short channels; robust measurements up to 50 mm; dynamic optical range larger than 160 dB), the valid estimation of concentration changes (oxy- and deoxyhemoglobin, and cytochrome-c-oxidase) in muscle and brain, and the detection of task-evoked brain activity. The results of our preliminary tests suggest that the presented fNIRS instrument outperforms existing instruments in many aspects and bears high potential for real-time single-trial fNIRS applications as required for wearable brain-computer interfaces.
Collapse
Affiliation(s)
- Dominik Wyser
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
- University Hospital of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
- Address all correspondence to: Dominik Wyser, E-mail:
| | - Olivier Lambercy
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Felix Scholkmann
- University Hospital of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Martin Wolf
- University Hospital of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Roger Gassert
- ETH Zurich, Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Zurich, Switzerland
| |
Collapse
|
70
|
Curtin A, Sun J, Ayaz H, Qian Z, Onaral B, Wang J, Tong S. Evaluation of evoked responses to pulse-matched high frequency and intermittent theta burst transcranial magnetic stimulation using simultaneous functional near-infrared spectroscopy. NEUROPHOTONICS 2017; 4:041405. [PMID: 28840157 PMCID: PMC5559641 DOI: 10.1117/1.nph.4.4.041405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method used to excite or inhibit cortical activity for experimental, diagnostic, and therapeutic interventions. However, nonmotor regions of the brain targeted in TMS therapies, such as the dorsolateral prefrontal cortex (DLPFC), offer no extrinsic response to stimulation, resulting in a need for a practical method for the evaluation of treatment. We sought to determine the capability of a continuous-wave light emitting diodes (LED)-based functional near-infrared spectroscopy (fNIRS) system to measure evoked cortical hemoglobin changes in the DLPFC during the simultaneous application of TMS to the left-DLPFC under brief stimulation paradigms used in the clinic. Seventeen healthy participants received short TMS trains at F3 in four different stimulation conditions (single pulse, high frequency, intermittent theta burst, and sham) while adjacent fNIRS measurements were recorded. Ten 2-s trains of each stimulation type were delivered with an intertrial interval of 40 s. Results indicated that high-frequency stimulation produces a larger and more evident response than other measured conditions. These findings show that a continuous-wave LED-based fNIRS system can be used to measure TMS-evoked responses and that future TMS applications can benefit from concurrent assessment of localized cortical activation changes.
Collapse
Affiliation(s)
- Adrian Curtin
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
| | - Junfeng Sun
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Family and Community Health, Philadelphia, Pennsylvania, United States
- Children’s Hospital of Philadelphia, The Division of General Pediatrics, Philadelphia, Pennsylvania, United States
| | - Zhenying Qian
- Shanghai Jiao Tong University, School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Banu Onaral
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
| | - Jijun Wang
- Shanghai Jiao Tong University, School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Shanbao Tong
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
71
|
Scarapicchia V, Brown C, Mayo C, Gawryluk JR. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Front Hum Neurosci 2017; 11:419. [PMID: 28867998 PMCID: PMC5563305 DOI: 10.3389/fnhum.2017.00419] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function.
Collapse
Affiliation(s)
| | - Cassandra Brown
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Chantel Mayo
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of VictoriaVictoria, BC, Canada
| |
Collapse
|
72
|
Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation: A near-infrared spectroscopy study. Neurosci Lett 2017; 653:78-83. [DOI: 10.1016/j.neulet.2017.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
|
73
|
Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Res 2017; 1667:28-40. [PMID: 28502585 DOI: 10.1016/j.brainres.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/24/2022]
Abstract
There is considerable interest in maintaining working memory (WM) because it is essential to accomplish most cognitive tasks, and it is correlated with fluid intelligence and ecologically valid measures of daily living. Toward this end, WM training protocols aim to improve WM capacity and extend improvements to unpracticed domains, yet success is limited. One emerging approach is to couple WM training with transcranial direct current stimulation (tDCS). This pairing of WM training with tDCS in longitudinal designs promotes behavioral improvement and evidence of transfer of performance gains to untrained WM tasks. However, the mechanism(s) underlying tDCS-linked training benefits remain unclear. Our goal was to gain purchase on this question by recording high-density EEG before and after a weeklong WM training+tDCS study. Participants completed four sessions of frontoparietal tDCS (active anodal or sham) during which they performed a visuospatial WM change detection task. Participants who received active anodal tDCS demonstrated significant improvement on the WM task, unlike those who received sham stimulation. Importantly, this pattern was mirrored by neural correlates in spectral and phase synchrony analyses of the HD-EEG data. Notably, the behavioral interaction was echoed by interactions in frontal-posterior alpha band power, and theta and low alpha oscillations. These findings indicate that one mechanism by which paired tDCS+WM training operates is to enhance cortical efficiency and connectivity in task-relevant networks.
Collapse
|
74
|
Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:5491296. [PMID: 28546809 PMCID: PMC5435907 DOI: 10.1155/2017/5491296] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/18/2017] [Accepted: 04/06/2017] [Indexed: 11/26/2022]
Abstract
Motor-activity-related mental tasks are widely adopted for brain-computer interfaces (BCIs) as they are a natural extension of movement intention, requiring no training to evoke brain activity. The ideal BCI aims to eliminate neuromuscular movement, making motor imagery tasks, or imagined actions with no muscle movement, good candidates. This study explores cortical activation differences between motor imagery and motor execution for both upper and lower limbs using functional near-infrared spectroscopy (fNIRS). Four simple finger- or toe-tapping tasks (left hand, right hand, left foot, and right foot) were performed with both motor imagery and motor execution and compared to resting state. Significant activation was found during all four motor imagery tasks, indicating that they can be detected via fNIRS. Motor execution produced higher activation levels, a faster response, and a different spatial distribution compared to motor imagery, which should be taken into account when designing an imagery-based BCI. When comparing left versus right, upper limb tasks are the most clearly distinguishable, particularly during motor execution. Left and right lower limb activation patterns were found to be highly similar during both imagery and execution, indicating that higher resolution imaging, advanced signal processing, or improved subject training may be required to reliably distinguish them.
Collapse
|
75
|
McKendrick R, Mehta R, Ayaz H, Scheldrup M, Parasuraman R. Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work. HUMAN FACTORS 2017; 59:147-162. [PMID: 28146680 DOI: 10.1177/0018720816675053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
OBJECTIVE The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. BACKGROUND Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. METHOD Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. RESULTS Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. CONCLUSION Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. APPLICATION This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.
Collapse
Affiliation(s)
- Ryan McKendrick
- Northrop Grumman Aerospace Systems, Redondo Beach, California
- George Mason University, Fairfax, Virginia
| | - Ranjana Mehta
- Texas A&M University, College Station
- George Mason University, Fairfax, Virginia
| | - Hasan Ayaz
- Drexel University, Philadelphia, Pennsylvania
- George Mason University, Fairfax, Virginia
| | | | | |
Collapse
|
76
|
The Spatial Release of Cognitive Load in Cocktail Party Is Determined by the Relative Levels of the Talkers. J Assoc Res Otolaryngol 2017; 18:457-464. [PMID: 28101695 DOI: 10.1007/s10162-016-0611-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
In a multi-talker situation, spatial separation between talkers reduces cognitive processing load: this is the "spatial release of cognitive load". The present study investigated the role played by the relative levels of the talkers on this spatial release of cognitive load. During the experiment, participants had to report the speech emitted by a target talker in the presence of a concurrent masker talker. The spatial separation (0° and 120° angular distance in azimuth) and the relative levels of the talkers (adverse, intermediate, and favorable target-to-masker ratio) were manipulated. The cognitive load was assessed with a prefrontal functional near-infrared spectroscopy. Data from 14 young normal-hearing listeners revealed that the target-to-masker ratio had a direct impact on the spatial release of cognitive load. Spatial separation significantly reduced the prefrontal activity only for the intermediate target-to-masker ratio and had no effect on prefrontal activity for the favorable and the adverse target-to-masker ratios. Therefore, the relative levels of the talkers might be a key point to determine the spatial release of cognitive load and more specifically the prefrontal activity induced by spatial cues in multi-talker situations.
Collapse
|
77
|
Voarino N, Dubljević V, Racine E. tDCS for Memory Enhancement: Analysis of the Speculative Aspects of Ethical Issues. Front Hum Neurosci 2017; 10:678. [PMID: 28123362 PMCID: PMC5225120 DOI: 10.3389/fnhum.2016.00678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising technology to enhance cognitive and physical performance. One of the major areas of interest is the enhancement of memory function in healthy individuals. The early arrival of tDCS on the market for lifestyle uses and cognitive enhancement purposes lead to the voicing of some important ethical concerns, especially because, to date, there are no official guidelines or evaluation procedures to tackle these issues. The aim of this article is to review ethical issues related to uses of tDCS for memory enhancement found in the ethics and neuroscience literature and to evaluate how realistic and scientifically well-founded these concerns are? In order to evaluate how plausible or speculative each issue is, we applied the methodological framework described by Racine et al. (2014) for “informed and reflective” speculation in bioethics. This framework could be succinctly presented as requiring: (1) the explicit acknowledgment of factual assumptions and identification of the value attributed to them; (2) the validation of these assumptions with interdisciplinary literature; and (3) the adoption of a broad perspective to support more comprehensive reflection on normative issues. We identified four major considerations associated with the development of tDCS for memory enhancement: safety, autonomy, justice and authenticity. In order to assess the seriousness and likelihood of harm related to each of these concerns, we analyzed the assumptions underlying the ethical issues, and the level of evidence for each of them. We identified seven distinct assumptions: prevalence, social acceptance, efficacy, ideological stance (bioconservative vs. libertarian), potential for misuse, long term side effects, and the delivery of complete and clear information. We conclude that ethical discussion about memory enhancement via tDCS sometimes involves undue speculation, and closer attention to scientific and social facts would bring a more nuanced analysis. At this time, the most realistic concerns are related to safety and violation of users’ autonomy by a breach of informed consent, as potential immediate and long-term health risks to private users remain unknown or not well defined. Clear and complete information about these risks must be provided to research participants and consumers of tDCS products or related services. Broader public education initiatives and warnings would also be worthwhile to reach those who are constructing their own tDCS devices.
Collapse
Affiliation(s)
- Nathalie Voarino
- Institut de recherches cliniques de Montréal, Université de Montréal, McGill UniversityMontreal, QC, Canada; Bioethics Programme, Department of Social and Preventive Medicine, School of Public Health (ÉSPUM), Université de MontréalMontreal, QC, Canada
| | - Veljko Dubljević
- North Carolina State UniversityRaleigh, NC, USA; Neuroethics Research Unit, Institut de recherches cliniques de MontréalMontreal, QC, Canada
| | - Eric Racine
- Institut de recherches cliniques de Montréal, Université de Montréal, McGill University Montreal, QC, Canada
| |
Collapse
|
78
|
Wolff W. Funktionelle Nahinfrarotspektroskopie in der sportpsychologischen Forschung. ZEITSCHRIFT FUR SPORTPSYCHOLOGIE 2017. [DOI: 10.1026/1612-5010/a000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Ziel des Beitrags ist die Vorstellung der funktionellen Nahinfrarotspektroskopie (fNIRS) als bildgebendes Verfahren, welches zur Messung kortikaler Prozesse während sportlicher Aktivität eingesetzt werden kann. Im Vergleich mit anderen bildgebenden Verfahren ist fNIRS sehr portabel und weniger anfällig für Bewegungsartefakte. Daher ist fNIRS potentiell eine vielversprechende Ergänzung zu bereits in der sportpsychologischen Forschung genutzten neurowissenschaftlichen Methoden. Dieser Beitrag konzentriert sich auf eine kurze Darstellung der grundlegenden physikalischen Prinzipien von fNIRS und eine Analyse der relativen Stärken und Schwächen von fNIRS mit Blick auf den Einsatz in der sportpsychologischen Forschung. Anschließend werden einige fNIRS basierte Forschungsergebnisse erörtert, die sportpsychologische Forschungsfragen betreffen. Abschließend wird beispielhaft eine mögliche sportpsychologische Forschungsfrage vorgestellt, zu deren Untersuchung fNIRS eingesetzt werden kann.
Collapse
Affiliation(s)
- Wanja Wolff
- Fachgruppe Sportwissenschaft, Universität Konstanz
| |
Collapse
|
79
|
Teng F, Cormier T, Sauer-Budge A, Chaudhury R, Pera V, Istfan R, Chargin D, Brookfield S, Ko NY, Roblyer DM. Wearable near-infrared optical probe for continuous monitoring during breast cancer neoadjuvant chemotherapy infusions. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:14001. [PMID: 28114449 PMCID: PMC5289133 DOI: 10.1117/1.jbo.22.1.014001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/21/2016] [Indexed: 05/04/2023]
Abstract
We present a new continuous-wave wearable diffuse optical probe aimed at investigating the hemodynamic response of locally advanced breast cancer patients during neoadjuvant chemotherapy infusions. The system consists of a flexible printed circuit board that supports an array of six dual wavelength surface-mount LED and photodiode pairs. The probe is encased in a soft silicone housing that conforms to natural breast shape. Probe performance was evaluated using tissue-simulating phantoms and in vivo normal volunteer measurements. High SNR (71 dB), low source-detector crosstalk ( ? 60 ?? dB ), high measurement precision (0.17%), and good thermal stability (0.22% V rms / ° C ) were achieved in phantom studies. A cuff occlusion experiment was performed on the forearm of a healthy volunteer to demonstrate the ability to track rapid hemodynamic changes. Proof-of-principle normal volunteer measurements were taken to demonstrate the ability to collect continuous in vivo breast measurements. This wearable probe is a first of its kind tool to explore prognostic hemodynamic changes during chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Fei Teng
- Boston University, Department of Electrical and Computer Engineering and Photonics Center, 8 Saint Mary’s Street, Boston, Massachusetts 02215, United States
| | - Timothy Cormier
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Alexis Sauer-Budge
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Rachita Chaudhury
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Vivian Pera
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Raeef Istfan
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - David Chargin
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Samuel Brookfield
- Boston University, Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary’s Street, Brookline, Massachusetts 02446, United States
| | - Naomi Yu Ko
- Boston Medical Center, Section of Hematology and Oncology, Women’s Health Unit, 801 Massachusetts Avenue, First Floor, Boston, Massachusetts 02118, United States
| | - Darren M. Roblyer
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Address all correspondence to: Darren M. Roblyer, E-mail:
| |
Collapse
|
80
|
Teo WP, Muthalib M, Yamin S, Hendy AM, Bramstedt K, Kotsopoulos E, Perrey S, Ayaz H. Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? - A Narrative Review of the Literature. Front Hum Neurosci 2016; 10:284. [PMID: 27445739 PMCID: PMC4919322 DOI: 10.3389/fnhum.2016.00284] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/25/2016] [Indexed: 01/29/2023] Open
Abstract
In the last decade, virtual reality (VR) training has been used extensively in video games and military training to provide a sense of realism and environmental interaction to its users. More recently, VR training has been explored as a possible adjunct therapy for people with motor and mental health dysfunctions. The concept underlying VR therapy as a treatment for motor and cognitive dysfunction is to improve neuroplasticity of the brain by engaging users in multisensory training. In this review, we discuss the theoretical framework underlying the use of VR as a therapeutic intervention for neurorehabilitation and provide evidence for its use in treating motor and mental disorders such as cerebral palsy, Parkinson’s disease, stroke, schizophrenia, anxiety disorders, and other related clinical areas. While this review provides some insights into the efficacy of VR in clinical rehabilitation and its complimentary use with neuroimaging (e.g., fNIRS and EEG) and neuromodulation (e.g., tDCS and rTMS), more research is needed to understand how different clinical conditions are affected by VR therapies (e.g., stimulus presentation, interactivity, control and types of VR). Future studies should consider large, longitudinal randomized controlled trials to determine the true potential of VR therapies in various clinical populations.
Collapse
Affiliation(s)
- Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood VIC, Australia
| | - Makii Muthalib
- EuroMov, University of MontpellierMontpellier, France; Cognitive Neuroscience Unit, Deakin University, BurwoodVIC, Australia
| | - Sami Yamin
- Liminal Pty Ltd., MelbourneVIC, Australia; Adult Mental Health, Monash Health, DandenongVIC, Australia
| | - Ashlee M Hendy
- School of Exercise and Nutrition Sciences, Deakin University, Burwood VIC, Australia
| | | | - Eleftheria Kotsopoulos
- Liminal Pty Ltd., MelbourneVIC, Australia; Aged Persons Mental Health Service, Monash Health, CheltenhamVIC, Australia
| | | | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PhiladelphiaPA, USA; Department of Family and Community Health, University of Pennsylvania, PhiladelphiaPA, USA; The Division of General Pediatrics, Children's Hospital of Philadelphia, PhiladelphiaPA, USA
| |
Collapse
|
81
|
Chitnis D, Airantzis D, Highton D, Williams R, Phan P, Giagka V, Powell S, Cooper RJ, Tachtsidis I, Smith M, Elwell CE, Hebden JC, Everdell N. Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:065112. [PMID: 27370501 PMCID: PMC4957669 DOI: 10.1063/1.4954722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The first wearable multi-wavelength technology for functional near-infrared spectroscopy has been developed, based on a custom-built 8-wavelength light emitting diode (LED) source. A lightweight fibreless probe is designed to monitor changes in the concentrations of multiple absorbers (chromophores) in biological tissue, the most dominant of which at near-infrared wavelengths are oxyhemoglobin and deoxyhemoglobin. The use of multiple wavelengths enables signals due to the less dominant chromophores to be more easily distinguished from those due to hemoglobin and thus provides more complete and accurate information about tissue oxygenation, hemodynamics, and metabolism. The spectroscopic probe employs four photodiode detectors coupled to a four-channel charge-to-digital converter which includes a charge integration amplifier and an analogue-to-digital converter (ADC). Use of two parallel charge integrators per detector enables one to accumulate charge while the other is being read out by the ADC, thus facilitating continuous operation without dead time. The detector system has a dynamic range of about 80 dB. The customized source consists of eight LED dies attached to a 2 mm × 2 mm substrate and encapsulated in UV-cured epoxy resin. Switching between dies is performed every 20 ms, synchronized to the detector integration period to within 100 ns. The spectroscopic probe has been designed to be fully compatible with simultaneous electroencephalography measurements. Results are presented from measurements on a phantom and a functional brain activation study on an adult volunteer, and the performance of the spectroscopic probe is shown to be very similar to that of a benchtop broadband spectroscopy system. The multi-wavelength capabilities and portability of this spectroscopic probe will create significant opportunities for in vivo studies in a range of clinical and life science applications.
Collapse
Affiliation(s)
- Danial Chitnis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Dimitrios Airantzis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - David Highton
- Neurocritical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London WC1N 3BG, United Kingdom
| | - Rhys Williams
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Phong Phan
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Vasiliki Giagka
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Powell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Robert J Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Martin Smith
- Neurocritical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London WC1N 3BG, United Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Jeremy C Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Nicholas Everdell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
82
|
McKendrick R, Parasuraman R, Murtza R, Formwalt A, Baccus W, Paczynski M, Ayaz H. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy. Front Hum Neurosci 2016; 10:216. [PMID: 27242480 PMCID: PMC4870997 DOI: 10.3389/fnhum.2016.00216] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the “wild”. We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.
Collapse
Affiliation(s)
- Ryan McKendrick
- Psychology Department, Human Factors and Applied Cognition, George Mason University Fairfax, VA, USA
| | - Raja Parasuraman
- Psychology Department, Human Factors and Applied Cognition, George Mason University Fairfax, VA, USA
| | - Rabia Murtza
- Psychology Department, Human Factors and Applied Cognition, George Mason University Fairfax, VA, USA
| | - Alice Formwalt
- Psychology Department, Human Factors and Applied Cognition, George Mason University Fairfax, VA, USA
| | - Wendy Baccus
- Psychology Department, Human Factors and Applied Cognition, George Mason University Fairfax, VA, USA
| | - Martin Paczynski
- Psychology Department, Human Factors and Applied Cognition, George Mason University Fairfax, VA, USA
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel UniversityPhiladelphia, PA, USA; Department of Family and Community Health, University of PennsylvaniaPhiladelphia, PA, USA; Division of General Pediatrics, Children's Hospital of PhiladelphiaPhiladelphia, PA, USA
| |
Collapse
|
83
|
Besson P, Perrey S, Teo WP, Muthalib M. Commentary: Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Front Hum Neurosci 2016; 10:70. [PMID: 26973492 PMCID: PMC4771759 DOI: 10.3389/fnhum.2016.00070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pierre Besson
- EuroMov, University of Montpellier Montpellier, France
| | | | - Wei-Peng Teo
- School of Exercise and Nutrition Sciences, Deakin University Melbourne, VIC, Australia
| | | |
Collapse
|
84
|
Carrieri M, Petracca A, Lancia S, Basso Moro S, Brigadoi S, Spezialetti M, Ferrari M, Placidi G, Quaresima V. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics. Front Hum Neurosci 2016; 10:53. [PMID: 26909033 PMCID: PMC4754420 DOI: 10.3389/fnhum.2016.00053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 11/15/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found between the distance traveled by the guided VB and the corresponding cortical activation. These results confirm the suitability of fNIRS technology to objectively evaluate cortical hemodynamic changes occurring in VR environments. Future studies could give a contribution to a better understanding of the cognitive mechanisms underlying human performance either in expert or non-expert operators during the simulation of different demanding/fatiguing activities.
Collapse
Affiliation(s)
- Marika Carrieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Andrea Petracca
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Stefania Lancia
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Sara Basso Moro
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova Padova, Italy
| | - Matteo Spezialetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L'Aquila L'Aquila, Italy
| | - Giuseppe Placidi
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| |
Collapse
|
85
|
Choe J, Coffman BA, Bergstedt DT, Ziegler MD, Phillips ME. Transcranial Direct Current Stimulation Modulates Neuronal Activity and Learning in Pilot Training. Front Hum Neurosci 2016; 10:34. [PMID: 26903841 PMCID: PMC4746294 DOI: 10.3389/fnhum.2016.00034] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Skill acquisition requires distributed learning both within (online) and across (offline) days to consolidate experiences into newly learned abilities. In particular, piloting an aircraft requires skills developed from extensive training and practice. Here, we tested the hypothesis that transcranial direct current stimulation (tDCS) can modulate neuronal function to improve skill learning and performance during flight simulator training of aircraft landing procedures. Thirty-two right-handed participants consented to participate in four consecutive daily sessions of flight simulation training and received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal cortex (DLPFC) or left motor cortex (M1) in a randomized, double-blind experiment. Continuous electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) were collected during flight simulation, n-back working memory, and resting-state assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in flight and n-back working memory training, confirming tDCS-related modulation of brain processes involved in executive function. This modulation corresponded to a significantly different online and offline learning rates for working memory accuracy and decreased inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks and tDCS to the right DLPFC increased midline frontal theta-band power during n-back and flight tasks. These results demonstrate a modulation of group variance in skill acquisition through an increasing in learned skill consistency in cognitive and real-world tasks with tDCS. Further, tDCS performance improvements corresponded to changes in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices, providing a stronger link between modulated neuronal function and behavior.
Collapse
Affiliation(s)
| | - Brian A Coffman
- HRL Laboratories LLCMalibu, CA, USA; Department of Psychiatry, The University of PittsburghPittsburgh, PA, USA; Psychology Clinical Neuroscience Center, The University of New MexicoAlbuquerque, NM, USA
| | - Dylan T Bergstedt
- HRL Laboratories LLCMalibu, CA, USA; Department of Sports Medicine, Pepperdine UniversityMalibu, CA, USA
| | - Matthias D Ziegler
- HRL Laboratories LLCMalibu, CA, USA; Advanced Technologies Laboratories, Lockheed MartinArlington, VA, USA
| | | |
Collapse
|
86
|
Ho CSH, Zhang MWB, Ho RCM. Optical Topography in Psychiatry: A Chip Off the Old Block or a New Look Beyond the Mind-Brain Frontiers? Front Psychiatry 2016; 7:74. [PMID: 27199781 PMCID: PMC4844608 DOI: 10.3389/fpsyt.2016.00074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Melvyn W B Zhang
- National Addictions Management Service (NAMS), Institute of Mental Health , Singapore
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
87
|
Pinti P, Aichelburg C, Lind F, Power S, Swingler E, Merla A, Hamilton A, Gilbert S, Burgess P, Tachtsidis I. Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks. J Vis Exp 2015:53336. [PMID: 26651025 PMCID: PMC4692764 DOI: 10.3791/53336] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks.
Collapse
Affiliation(s)
- Paola Pinti
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London; Infrared Imaging Lab, Institute for Advanced Biomedical Technology (ITAB), Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara
| | - Clarisse Aichelburg
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Frida Lind
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Sarah Power
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London
| | - Elizabeth Swingler
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Arcangelo Merla
- Infrared Imaging Lab, Institute for Advanced Biomedical Technology (ITAB), Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara
| | - Antonia Hamilton
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Sam Gilbert
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Paul Burgess
- Institute of Cognitive Neuroscience, Alexandra House, University College London
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London;
| |
Collapse
|
88
|
von Lühmann A, Herff C, Heger D, Schultz T. Toward a Wireless Open Source Instrument: Functional Near-infrared Spectroscopy in Mobile Neuroergonomics and BCI Applications. Front Hum Neurosci 2015; 9:617. [PMID: 26617510 PMCID: PMC4641917 DOI: 10.3389/fnhum.2015.00617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Brain-Computer Interfaces (BCIs) and neuroergonomics research have high requirements regarding robustness and mobility. Additionally, fast applicability and customization are desired. Functional Near-Infrared Spectroscopy (fNIRS) is an increasingly established technology with a potential to satisfy these conditions. EEG acquisition technology, currently one of the main modalities used for mobile brain activity assessment, is widely spread and open for access and thus easily customizable. fNIRS technology on the other hand has either to be bought as a predefined commercial solution or developed from scratch using published literature. To help reducing time and effort of future custom designs for research purposes, we present our approach toward an open source multichannel stand-alone fNIRS instrument for mobile NIRS-based neuroimaging, neuroergonomics and BCI/BMI applications. The instrument is low-cost, miniaturized, wireless and modular and openly documented on www.opennirs.org. It provides features such as scalable channel number, configurable regulated light intensities, programmable gain and lock-in amplification. In this paper, the system concept, hardware, software and mechanical implementation of the lightweight stand-alone instrument are presented and the evaluation and verification results of the instrument's hardware and physiological fNIRS functionality are described. Its capability to measure brain activity is demonstrated by qualitative signal assessments and a quantitative mental arithmetic based BCI study with 12 subjects.
Collapse
Affiliation(s)
- Alexander von Lühmann
- Machine Learning Department, Computer Science, Technische Universität Berlin Berlin, Germany ; Institute of Biomedical Engineering, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Christian Herff
- Cognitive Systems Lab, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Dominic Heger
- Cognitive Systems Lab, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Tanja Schultz
- Cognitive Systems Lab, Karlsruhe Institute of Technology Karlsruhe, Germany
| |
Collapse
|
89
|
Dutta A. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS. Front Syst Neurosci 2015; 9:107. [PMID: 26321925 PMCID: PMC4530593 DOI: 10.3389/fnsys.2015.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS.
Collapse
Affiliation(s)
- Anirban Dutta
- INRIA (Sophia Antipolis) - CNRS: UMR5506 - Université Montpellier Montpellier, France ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), CNRS: UMR5506 - Université Montpellier Montpellier, France
| |
Collapse
|