51
|
Ratnatunga CN, Tungatt K, Proietti C, Halstrom S, Holt MR, Lutzky VP, Price P, Doolan DL, Bell SC, Field MA, Kupz A, Thomson RM, Miles JJ. Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease. Front Immunol 2022; 13:1047781. [PMID: 36439147 PMCID: PMC9686449 DOI: 10.3389/fimmu.2022.1047781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/29/2023] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic, progressive, and growing worldwide health burden associated with mounting morbidity, mortality, and economic costs. Improvements in NTM-PD management are urgently needed, which requires a better understanding of fundamental immunopathology. Here, we examine temporal dynamics of the immune compartment during NTM-PD caused by Mycobacterium avium complex (MAC) and Mycobactereoides abscessus complex (MABS). We show that active MAC infection is characterized by elevated T cell immunoglobulin and mucin-domain containing-3 expression across multiple T cell subsets. In contrast, active MABS infection was characterized by increased expression of cytotoxic T-lymphocyte-associated protein 4. Patients who failed therapy closely mirrored the healthy individual immune phenotype, with circulating immune network appearing to 'ignore' infection in the lung. Interestingly, immune biosignatures were identified that could inform disease stage and infecting species with high accuracy. Additionally, programmed cell death protein 1 blockade rescued antigen-specific IFN-γ secretion in all disease stages except persistent infection, suggesting the potential to redeploy checkpoint blockade inhibitors for NTM-PD. Collectively, our results provide new insight into species-specific 'immune chatter' occurring during NTM-PD and provide new targets, processes and pathways for diagnostics, prognostics, and treatments needed for this emerging and difficult to treat disease.
Collapse
Affiliation(s)
- Champa N. Ratnatunga
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
- Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka
| | - Katie Tungatt
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Carla Proietti
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Sam Halstrom
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Michael R. Holt
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital Foundation, Brisbane, QLD, Australia
| | - Viviana P. Lutzky
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
| | - Patricia Price
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Scott C. Bell
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Rachel M. Thomson
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Division of Infection and Immunity, University Hospital Wales, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Division of Infection and Immunity, University Hospital Wales, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
52
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
53
|
Advanced Acral Melanoma Therapies: Current Status and Future Directions. Curr Treat Options Oncol 2022; 23:1405-1427. [PMID: 36125617 PMCID: PMC9526689 DOI: 10.1007/s11864-022-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Melanoma is one of the deadliest malignancies. Its incidence has been significantly increasing in most countries in recent decades. Acral melanoma (AM), a peculiar subgroup of melanoma occurring on the palms, soles, and nails, is the main subtype of melanoma in people of color and is extremely rare in Caucasians. Although great progress has been made in melanoma treatment in recent years, patients with AM have shown limited benefit from current therapies and thus consequently have worse overall survival rates. Achieving durable therapeutic responses in this high-risk melanoma subtype represents one of the greatest challenges in the field. The frequency of BRAF mutations in AM is much lower than that in cutaneous melanoma, which prevents most AM patients from receiving treatment with BRAF inhibitors. However, AM has more frequent mutations such as KIT and CDK4/6, so targeted therapy may still improve the survival of some AM patients in the future. AM may be less susceptible to immune checkpoint inhibitors because of the poor immunogenicity. Therefore, how to enhance the immune response to the tumor cells may be the key to the application of immune checkpoint inhibitors in advanced AM. Anti-angiogenic drugs, albumin paclitaxel, or interferons are thought to enhance the effectiveness of immune checkpoint inhibitors. Combination therapies based on the backbone of PD-1 are more likely to provide greater clinical benefits. Understanding the molecular landscapes and immune microenvironment of AM will help optimize our combinatory strategies.
Collapse
|
54
|
Yu L, Sun M, Zhang Q, Zhou Q, Wang Y. Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy. Front Immunol 2022; 13:982026. [PMID: 36159789 PMCID: PMC9498063 DOI: 10.3389/fimmu.2022.982026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the goal of harnessing the host's immune system to provide long-lasting remission and cures for various cancers, the advent of immunotherapy revolutionized the cancer therapy field. Among the current immunotherapeutic strategies, immune checkpoint blockades have greatly improved the overall survival rates in certain patient populations. Of note, CTLA4 and PD-1/PD-L1 are two major non-redundant immune checkpoints implicated in promoting cancer immune evasion, and ultimately lead to relapse. Antibodies or inhibitors targeting these two c+heckpoints have achieved some encouraging clinical outcomes. Further, beyond the canonical immune checkpoints, more inhibitory checkpoints have been identified. Herein, we will summarize recent progress in immune checkpoint blockade therapies, with a specific focus on key pre-clinical and clinical results of new immune checkpoint therapies for cancer. Given the crucial roles of immune checkpoint blockade in oncotherapy, drugs targeting checkpoint molecules expressed by both cancer and immune cells are in clinical trials, which will be comprehensively summarized in this review. Taken together, investigating combinatorial therapies targeting immune checkpoints expressed by cancer cells and immune cells will greatly improve immunotherapies that enhance host elimination of tumors.
Collapse
Affiliation(s)
- Lu Yu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
55
|
Development of a human phage display-derived anti-PD-1 scFv antibody: an attractive tool for immune checkpoint therapy. BMC Biotechnol 2022; 22:22. [PMID: 35996120 PMCID: PMC9396865 DOI: 10.1186/s12896-022-00752-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background The PD-1 checkpoint pathway plays a major role in tumor immune evasion and the development of the tumor microenvironment. Clinical studies show that therapeutic antibodies blocking the PD-1 pathway can restore anti-tumor or anti-virus immune responses by the reinvigoration of exhausted T cells. Because of the promising results of anti-PD-1 monoclonal antibodies in cancer treatment, autoimmune disorders, and infectious diseases, the PD-1 has emerged as an encouraging target for different diseases. Results In the present study, we employed a human semi-synthetic phage library for isolation of some scFvs against the extracellular domain of PD-1 protein by panning process. After the panning, a novel anti-PD-1 scFv (SS107) was found that exhibited specific binding to PD-1 antigen and stimulated Jurkat T cells. The selected anti-PD-1 scFv could restore the production of IL-2 and IFN-γ by Jurkat T cells that were co-cultured with PD-L1 positive tumor cells. Conclusion This anti-PD-1 scFv with high specificity and the ability to reactivate exhausted T cells has the potential to be developed as an anti-cancer agent or to be used in combination with other therapeutic approaches.
Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00752-8.
Collapse
|
56
|
Liu X, Wu W, Fang L, Liu Y, Chen W. TNF-α Inhibitors and Other Biologic Agents for the Treatment of Immune Checkpoint Inhibitor-Induced Myocarditis. Front Immunol 2022; 13:922782. [PMID: 35844550 PMCID: PMC9283712 DOI: 10.3389/fimmu.2022.922782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 01/11/2023] Open
Abstract
With anti-PD-1 antibodies serving as a representative drug, immune checkpoint inhibitors (ICIs) have become the main drugs used to treat many advanced malignant tumors. However, immune-related adverse events (irAEs), which might involve multiple organ disorders, should not be ignored. ICI-induced myocarditis is an uncommon but life-threatening irAE. Glucocorticoids are the first choice of treatment for patients with ICI-induced myocarditis, but high proportions of steroid-refractory and steroid-resistant cases persist. According to present guidelines, tumor necrosis factor alpha (TNF-α) inhibitors are recommended for patients who fail to respond to steroid therapy and suffer from severe cardiac toxicity, although evidence-based studies are lacking. On the other hand, TNF-α inhibitors are contraindicated in patients with moderate-to-severe heart failure. This review summarizes real-world data from TNF-α inhibitors and other biologic agents for ICI-induced myocarditis to provide more evidence of the efficacy and safety of TNF-α inhibitors and other biologic agents.
Collapse
Affiliation(s)
| | | | | | | | - Wei Chen
- *Correspondence: Yingxian Liu, ; Wei Chen,
| |
Collapse
|
57
|
Systemic levels of the soluble co-inhibitory immune checkpoints, CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3 are markedly increased in basal cell carcinoma. Transl Oncol 2022; 19:101384. [PMID: 35255355 PMCID: PMC8898970 DOI: 10.1016/j.tranon.2022.101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Soluble co-inhibitory immune checkpoint molecules are increased in basal cell carcinoma. Pre-therapy measurement of these checkpoints may have prognostic potential. Measuring soluble immune checkpoint molecules might be of value in patient selection. Immune checkpoint blockade may be of value in early disease. Co-blockade of PD-1 and TIM-3 may hold particular promise.
Although co-inhibitory immune checkpoint proteins are primarily involved in promoting cell-cell interactions that suppress adaptive immunity, especially tumor immunity, the soluble cell-free variants of these molecules are also detectable in the circulation of cancer patients where they retain immunosuppressive activity. Nevertheless, little is known about the systemic levels of these soluble co-inhibitory immune checkpoints in patients with various subtypes of basal cell carcinoma (BCC), which is the most invasive and treatment-resistant type of this most commonly-occurring malignancy. In the current study, we have measured the systemic concentrations of five prominent co-inhibitory immune checkpoints, namely CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3, as well as those of C-reactive protein (CRP) and vitamin D (VD), in a cohort of patients (n = 40) with BCC, relative to those of a group of control participants, using the combination of multiplex bead array, laser nephelometry and ELISA technologies, respectively. The median systemic concentrations of CRP and VD were comparable between the two groups; however, those of all five immune checkpoints were significantly elevated (P = 0.0184 - P = < 0.00001), with those of CTLA-4 and PD-1 being highly correlated (r = 0.87; P < 0.00001). This seemingly novel finding not only identifies the existence of significant systemic immunosuppression in BCC, but also underscores the therapeutic promise of immune checkpoint targeted therapy, as well as the potential of these proteins to serve as prognostic/predictive biomarkers in BCC.
Collapse
|
58
|
Park K, Veena MS, Shin DS. Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies. Front Cell Dev Biol 2022; 10:830208. [PMID: 35345849 PMCID: PMC8957227 DOI: 10.3389/fcell.2022.830208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is a complex, dynamic battlefield for both immune cells and tumor cells. The advent of the immune checkpoint inhibitors (ICI) since 2011, such as the anti-cytotoxic T-lymphocyte associated protein (CTLA)-4 and anti-programmed cell death receptor (PD)-(L)1 antibodies, provided powerful weapons in the arsenal of cancer treatments, demonstrating unprecedented durable responses for patients with many types of advanced cancers. However, the response rate is generally low across tumor types and a substantial number of patients develop acquired resistance. These primary or acquired resistance are attributed to various immunosuppressive elements (soluble and cellular factors) and alternative immune checkpoints in the TME. Therefore, a better understanding of the TME is absolutely essential to develop therapeutic strategies to overcome resistance. Numerous clinical studies are underway using ICIs and additional agents that are tailored to the characteristics of the tumor or the TME. Some of the combination treatments are already approved by the Food and Drug Administration (FDA), such as platinum-doublet chemotherapy, tyrosine kinase inhibitor (TKI) -targeting vascular endothelial growth factor (VEGF) combined with anti-PD-(L)1 antibodies or immuno-immuno combinations (anti-CTLA-4 and anti-PD-1). In this review, we will discuss the key immunosuppressive cells, metabolites, cytokines or chemokines, and hypoxic conditions in the TME that contribute to tumor immune escape and the prospect of relevant clinical trials by targeting these elements in combination with ICIs.
Collapse
Affiliation(s)
- Kevin Park
- Department of Medicine, Division of Hematology/Oncology, Los Angeles, CA, United States.,VA Greater Los Angeles Healthcare System, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Mysore S Veena
- Department of Medicine, Division of Hematology/Oncology, Los Angeles, CA, United States.,VA Greater Los Angeles Healthcare System, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, Los Angeles, CA, United States.,VA Greater Los Angeles Healthcare System, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Molecular Biology Institute, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
59
|
Michel T, Ollert M, Zimmer J. A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. Int J Mol Sci 2022; 23:ijms23020797. [PMID: 35054985 PMCID: PMC8776043 DOI: 10.3390/ijms23020797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.
Collapse
Affiliation(s)
- Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Correspondence:
| |
Collapse
|
60
|
Cowles SC, Sheen A, Santollani L, Lutz EA, Lax BM, Palmeri JR, Freeman GJ, Wittrup KD. An affinity threshold for maximum efficacy in anti-PD-1 immunotherapy. MAbs 2022; 14:2088454. [PMID: 35924382 PMCID: PMC9354768 DOI: 10.1080/19420862.2022.2088454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies targeting the programmed cell death protein 1 (PD-1) remain the most prevalent cancer immunotherapy both as a monotherapy and in combination with additional therapies. Despite the extensive success of anti-PD-1 monoclonal antibodies in the clinic, the experimental relationship between binding affinity and functional potency for anti-PD-1 antibodies in vivo has not been reported. Anti-PD-1 antibodies with higher and lower affinity than nivolumab or pembrolizumab are entering the clinic and show varied preclinical efficacy. Here, we explore the role of broad-ranging affinity variation within a single lineage in a syngeneic immunocompetent mouse model. By developing a panel of murine anti-PD-1 antibodies with varying affinity (ranging from KD = 20 pM - 15 nM), we find that there is a threshold affinity required for maximum efficacy at a given dose in the treatment of the MC38 adenocarcinoma model with anti-PD-1 immunotherapy. Physiologically based pharmacokinetic modeling complements interpretation of the experimental results and highlights the direct relationship between dose, affinity, and PD-1 target saturation in the tumor.
Collapse
Affiliation(s)
- Sarah C. Cowles
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gordon J. Freeman
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
61
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|