51
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
52
|
Wei M, Wu T, Chen N. Bridging neurotrophic factors and bioactive peptides to Alzheimer's disease. Ageing Res Rev 2024; 94:102177. [PMID: 38142891 DOI: 10.1016/j.arr.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. As the demographic shifting towards an aging population, AD has emerged as a prominent public health concern. The pathogenesis of AD is complex, and there are no effective treatment methods for AD until now. In recent years, neurotrophic factors and bioactive peptides including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), irisin, melatonin, have been discovered to exert neuroprotective functions for AD. Bioactive peptides can be divided into two categories based on their sources: endogenous and exogenous. This review briefly elaborates on the pathogenesis of AD and analyzes the regulatory effects of endogenous and exogenous peptides on the pathogenesis of AD, thereby providing new therapeutic targets for AD and a theoretical basis for the application of bioactive peptides as adjunctive therapies for AD.
Collapse
Affiliation(s)
- Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
53
|
Wan M, Sun S, Di X, Zhao M, Lu F, Zhang Z, Li Y. Icariin improves learning and memory function in Aβ 1-42-induced AD mice through regulation of the BDNF-TrκB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117029. [PMID: 37579923 DOI: 10.1016/j.jep.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium brevicornu Maxim. is a traditional medicinal Chinese herb that is enriched with flavonoids, which have remarkably high medicinal value. Icariin (ICA) is a marker compound isolated from the total flavonoids of Epimedium brevicornu Maxim. It has been shown to improve Neurodegenerative disease, therefore, ICA is probably a potential drug for treating AD. MATERIALS AND METHODS The 6-8-week-old SPF-class male ICR mice were randomly divided into 8 groups for modeling, and then the mice were administered orally with ICA for 21 days. The behavioral experiments were conducted to evaluate if learning and memory behavior were absent in mice, confirming that infusion of Amyloid β-protein (Aβ)1-42 caused significant memory impairment. The morphological changes and damage of neurons in the mice's brains were observed by HE and Nissl staining. The spinous protrusions (dendritic spines) on neuronal dendrites were investigated by Golgi-Cox staining. The molecular mechanism of ICA was examined by Western Blot. The protein docking of ICA and Donepezil with BDNF were analyzed to determine their interaction. RESULTS The behavioral experimental results showed that in Aβ1-42-induced AD mice, the learning and memory abilities were improved after using ICA. At the same time, the low, medium, and high doses of ICA could reduce the content of Aβ1-42 in the hippocampus of AD mice, repair neuronal damage, enhance synaptic plasticity, as well as increase the expression of BDNF, TrκB, CREB, Akt, GAP43, PSD95, and SYN proteins in the hippocampus of mice. However, the effect with high doses of ICA is more pronounced. The high-dose administration of ICA has the best therapeutic effect on AD mice. After administering the inhibitor k252a, the therapeutic effect of ICA was reversed. The macromolecular docking results of ICA and BDNF protein demonstrated a strong interaction of -7.8 kcal/mol, which indicates that ICA plays a therapeutic role in AD mice by regulating the BDNF-TrκB signaling pathway. CONCLUSIONS The results confirm that ICA can repair neuronal damage, enhance synaptic plasticity, as well as ultimately improve learning and memory impairment through the regulation of the BDNF-TrκB signaling pathway.
Collapse
Affiliation(s)
- Meiyu Wan
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Shengqi Sun
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Xiaoke Di
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Minghui Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Fengjuan Lu
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Zhifei Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Yang Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China.
| |
Collapse
|
54
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
55
|
Tian Y, Wang R, Liu L, Zhang W, Liu H, Jiang L, Jiang Y. The regulatory effects of the apelin/APJ system on depression: A prospective therapeutic target. Neuropeptides 2023; 102:102382. [PMID: 37716179 DOI: 10.1016/j.npep.2023.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Depression is a debilitating neuropsychological disorder characterized by high incidence, high recurrence, high suicide, and high disability rates, which poses serious threats to human health and imposes heavy psychological and economic burdens on family and society. The pathogenesis of depression is extremely complex, and its etiology is multifactorial. Mounting evidence suggests that apelin and apelin receptor APJ, which compose the apelin/APJ system, are related to the development of depression. However, the specific mechanism is still unclear, and research in this area in human is still insufficient. Acceleration of research into the regulatory effects and underlying mechanisms of the apelin/APJ system in depression may identify attractive therapeutic targets and contribute to the development of novel intervention strategies against this devastating psychological disorder. In this review, we mainly discuss the regulatory effects of apelin/APJ system on depression and its potential therapeutic applications.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Lin Liu
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Wenhuan Zhang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Liqing Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yunlu Jiang
- School of Mental Health, Jining Medical University, Jining 272067, China.
| |
Collapse
|
56
|
Wen R, Huang R, Xu K, Cheng Y, Yi X. Beneficial effects of Apelin-13 on metabolic diseases and exercise. Front Endocrinol (Lausanne) 2023; 14:1285788. [PMID: 38089606 PMCID: PMC10714012 DOI: 10.3389/fendo.2023.1285788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Apelin, a novel endogenous ligand of the G-protein-coupled receptor APJ, is encoded by the APLN gene and can be hydrolyzed into multiple subtypes, with Apelin-13 being one of the most active subtypes of the Apelin family. Recent studies have revealed that Apelin-13 functions as an adipokine that participates in the regulation of different biological processes, such as oxidative stress, inflammation, apoptosis, and energy metabolism, thereby playing an important role in the prevention and treatment of various metabolic diseases. However, the results of recent studies on the association between Apelin-13 and various metabolic states remain controversial. Furthermore, Apelin-13 is regulated or influenced by various forms of exercise and could therefore be categorized as a new type of exercise-sensitive factor that attenuates metabolic diseases. Thus, in this review, our purpose was to focus on the relationship between Apelin-13 and related metabolic diseases and the regulation of response movements, with particular reference to the establishment of a theoretical basis for improving and treating metabolic diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
57
|
Monastero R, Magro D, Venezia M, Pisano C, Balistreri CR. A promising therapeutic peptide and preventive/diagnostic biomarker for age-related diseases: The Elabela/Apela/Toddler peptide. Ageing Res Rev 2023; 91:102076. [PMID: 37776977 DOI: 10.1016/j.arr.2023.102076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Elabela (ELA), Apela or Toddler peptide is a hormone peptide belonging to the adipokine group and a component of apelinergic system, discovered in 2013-2014. Given its high homology with apelin, the first ligand of APJ receptor, ELA likely mediates similar effects. Increasing evidence shows that ELA has a critical function not only in embryonic development, but also in adulthood, contributing to physiological and pathological conditions, such as the onset of age-related diseases (ARD). However, still little is known about the mechanisms and molecular pathways of ELA, as well as its precise functions in ARD pathophysiology. Here, we report the mechanisms by which ELA/APJ signaling acts in a very complex network of pathways for the maintenance of physiological functions of human tissue and organs, as well as in the onset of some ARD, where it appears to play a central role. Therefore, we describe the possibility to use the ELA/APJ pathway, as novel biomarker (predictive and diagnostic) and target for personalized treatments of ARD. Its potentiality as an optimal peptide candidate for therapeutic ARD treatments is largely described, also detailing potential current limitations.
Collapse
Affiliation(s)
- Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Daniele Magro
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Marika Venezia
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy
| | - Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Rome, 00133 Rome, Italy
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134, Palermo, Italy.
| |
Collapse
|
58
|
Moretti E, Signorini C, Corsaro R, Noto D, AntonioTripodi S, Menchiari A, Micheli L, Ponchia R, Collodel G. Apelin is found in human sperm and testis and is raised in inflammatory pathological conditions. Cytokine 2023; 169:156281. [PMID: 37352775 DOI: 10.1016/j.cyto.2023.156281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Apelin/APJ receptor (R) is involved in many oxidative stress-induced pathological conditions. Since this system is not yet explored in male reproduction, we studied apelin/APJ-R in human semen and testis. Semen of 41 infertile patients with varicocele, genitourinary infections, unexplained infertility and 12 fertile men was analysed (WHO guidelines, 2021). Apelin was quantified by ELISA in seminal fluid and spermatozoa, interleukin (IL)-1β in seminal fluid. Apelin/APJ-R were immunolocalized in spermatozoa and testis. Apelin was present in spermatozoa and its levels were negatively correlated with normal sperm morphology% (r = -0.857; p < 0.001), and positively with IL-1β levels (r = 0.455; p < 0.001). Apelin and IL-1β concentrations were increased in patients' samples with varicocele (apelin p < 0.01; IL-1β p < 0.05) and infections (apelin p < 0.01; IL-1β p < 0.001). By logistic regression analysis, apelin (OR 1.310; p = 0.011) and IL-1β (OR 1.572; p = 0.005) were predictors of inflammatory diseases (varicocele, infections). Apelin and APJ-R immunofluorescence labels were weak in sperm tail of fertile men and intense along tail, cytoplasmic residues and post-acrosomal sheath of sperm from infertile men. In testis, apelin and APJ-R labels were evident in Leydig cells and weak inside the seminiferous tubule. Apelin/APJ-R system is present in human spermatozoa and testicular tissue and probably involved in human fertility.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Andrea Menchiari
- Department of Business and Law, University of Siena, Siena, Italy
| | - Lucia Micheli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rosetta Ponchia
- Unit of Medically Assisted Reproduction, Siena University Hospital, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
59
|
Zhu F, Song Z, Zhang S, Zhang X, Zhu D. The Renoprotective Effect of Shikonin in a Rat Model of Diabetic Kidney Disease. Transplant Proc 2023; 55:1731-1738. [PMID: 37391330 DOI: 10.1016/j.transproceed.2023.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND In diabetes mellitus, diabetic nephropathy (DN) is a typical complication and pivotal cause of chronic kidney disease. The DN disease burden is among the highest in the world and is associated with high morbidity, mortality, and disease burden. Safe and effective medications are urgently needed for the treatment of DN. Interest has been increasing in Shikonin, extracted from the naphthoquinone plant, particularly in determining its renal protective effect. METHODS In this study, we explored Shikonin's effects and potential mechanisms on a streptozotocin (STZ)-induced DN experimental model. An STZ-induced rat diabetic model was established, and the rats were treated with different doses of Shikonin (10/50 mg/kg) for 4 weeks. Blood, urine, and renal tissue samples were collected after the last administration. Renal tissues were examined to detect each group's physiologic, biochemical, histopathologic, and molecular changes. RESULTS The results showed that Shikonin administration could significantly alleviate the STZ-induced elevation of blood urea nitrogen, serum creatinine, urinary protein content, and renal pathologic injury. Furthermore, Shikonin significantly decreased oxidative stress, inflammation, and Toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-κB expression levels in DN kidney tissues. Shikonin showed a dose-dependent effect, with the best outcome at 50 mg/kg. CONCLUSION Shikonin could effectively alleviate DN-related nephropathy damage and reveal the underlying pharmacologic mechanism. Based on the results, a Shikonin combination can be used in clinical treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji'an City, China
| | - Zhengyi Song
- Department of General Surgery, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Shuang Zhang
- Department of Neurology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Xueqin Zhang
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Dan Zhu
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China.
| |
Collapse
|
60
|
Ansari MA, Al-Jarallah A, Babiker FA. Impaired Insulin Signaling Alters Mediators of Hippocampal Synaptic Dynamics/Plasticity: A Possible Mechanism of Hyperglycemia-Induced Cognitive Impairment. Cells 2023; 12:1728. [PMID: 37443762 PMCID: PMC10340300 DOI: 10.3390/cells12131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects the elderly and is characterized by progressive and irreversible neurodegeneration in the cerebral cortex [...].
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Fawzi A. Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
61
|
Arjunan A, Song J. Pharmacological and physiological roles of adipokines and myokines in metabolic-related dementia. Biomed Pharmacother 2023; 163:114847. [PMID: 37150030 DOI: 10.1016/j.biopha.2023.114847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Dementia is a detrimental neuropathologic condition with considerable physical, mental, social, and financial impact on patients and society. Patients with metabolic syndrome (MetS), a group of diseases that occur in tandem and increase the risk of neurologic diseases, have a higher risk of dementia. The ratio between muscle and adipose tissue is crucial in MetS, as these contain many hormones, including myokines and adipokines, which are involved in crosstalk and local paracrine/autocrine interactions. Evidence suggests that abnormal adipokine and myokine synthesis and release may be implicated in various MetS, such as atherosclerosis, diabetic mellitus (DM), and dyslipidemia, but their precise role is unclear. Here we review the literature on adipokine and myokine involvement in MetS-induced dementia via glucose and insulin homeostasis regulation, neuroinflammation, vascular dysfunction, emotional changes, and cognitive function.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| |
Collapse
|
62
|
Pham AQ, Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol 2023; 139:84-92. [PMID: 35370089 DOI: 10.1016/j.semcdb.2022.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Collapse
Affiliation(s)
- Andrew Q Pham
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States.
| |
Collapse
|
63
|
Wang C, Shen D, Hu Y, Chen J, Liu J, Huang Y, Yu X, Chu H, Zhang C, Yin L, Liu Y, Ma H. Selective Targeting of Class I HDAC Reduces Microglial Inflammation in the Entorhinal Cortex of Young APP/PS1 Mice. Int J Mol Sci 2023; 24:4805. [PMID: 36902234 PMCID: PMC10003411 DOI: 10.3390/ijms24054805] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BG45 is a class Ⅰ histone deacetylase inhibitor (HDACI) with selectivity for HDAC3. Our previous study demonstrated that BG45 can upregulate the expression of synaptic proteins and reduce the loss of neurons in the hippocampus of APPswe/PS1dE9 (APP/PS1) transgenic mice (Tg). The entorhinal cortex is a pivotal region that, along with the hippocampus, plays a critical role in memory in the Alzheimer's disease (AD) pathology process. In this study, we focused on the inflammatory changes in the entorhinal cortex of APP/PS1 mice and further explored the therapeutic effects of BG45 on the pathologies. The APP/PS1 mice were randomly divided into the transgenic group without BG45 (Tg group) and the BG45-treated groups. The BG45-treated groups were treated with BG45 at 2 months (2 m group), at 6 months (6 m group), or twice at 2 and 6 months (2 and 6 m group). The wild-type mice group (Wt group) served as the control. All mice were killed within 24 h after the last injection at 6 months. The results showed that amyloid-β (Aβ) deposition and IBA1-positive microglia and GFAP-positive astrocytes in the entorhinal cortex of the APP/PS1 mice progressively increased over time from 3 to 8 months of age. When the APP/PS1 mice were treated with BG45, the level of H3K9K14/H3 acetylation was improved and the expression of histonedeacetylase1, histonedeacetylase2, and histonedeacetylase3 was inhibited, especially in the 2 and 6 m group. BG45 alleviated Aβ deposition and reduced the phosphorylation level of tau protein. The number of IBA1-positive microglia and GFAP-positive astrocytes decreased with BG45 treatment, and the effect was more significant in the 2 and 6 m group. Meanwhile, the expression of synaptic proteins synaptophysin, postsynaptic density protein 95, and spinophilin was upregulated and the degeneration of neurons was alleviated. Moreover, BG45 reduced the gene expression of inflammatory cytokines interleukin-1β and tumor necrosis factor-α. Closely related to the CREB/BDNF/NF-kB pathway, the expression of p-CREB/CREB, BDNF, and TrkB was increased in all BG45 administered groups compared with the Tg group. However, the levels of p-NF-kB/NF-kB in the BG45 treatment groups were reduced. Therefore, we deduced that BG45 is a potential drug for AD by alleviating inflammation and regulating the CREB/BDNF/NF-kB pathway, and the early, repeated administration of BG45 can play a more effective role.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Di Shen
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Hu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jie Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jingyun Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yufei Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xuebin Yu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Haiying Chu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chenghong Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Liangwei Yin
- Department of Oncology, Dalian Municipal Central Hospital, Dalian 116089, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian 116089, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
64
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
65
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
66
|
Topcu A, Saral S, Ozturk A, Saral O, Kaya AK. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment. Neurol Res 2023; 45:544-553. [PMID: 36598971 DOI: 10.1080/01616412.2022.2164452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) occurs in approximately 10% to 30% of individuals aged 65 or older worldwide. Novel therapeutic agents therefore need to be discovered in addition to traditional medications. Nimodipine appears to possess the potential to reverse cognitive impairment-induced dysfunction in learning and memory through its regulatory effect on the brain-derived neurotrophic factor (BDNF), acetylcholine (Ach), and acetylcholinesterase (AChE) pathway in the hippocampus and prefrontal cortex. METHODS Twenty-four male Sprague Dawley rats weighing 380 ± 10 g were used for behavioral and biochemical analyses. These were randomly and equally assigned into one of three groups. Group 1 received saline solution alone via the intraperitoneal (i.p) route, and Group 2 received 1 mg/kg/day i.p. scopolamine once a day for three weeks for induction of learning and memory impairments. In Group 3, 10 mg/kg/day nimodipine was prepared in tap water and administered orally every day for three weeks, followed after 30 min by 1 mg/kg/day scopolamine i.p. Behavior was evaluated using the Morris Water Maze test. BDNF, ACh, and AChE levels were determined using the ELISA test in line with the manufacturer's instructions. RESULTS Nimodipine treatment significantly increased the time spent in the target quadrant and the number of entries into the target quadrant compared to the scopolamine group alone. Additionally, BDNF and ACh levels in the hippocampus and prefrontal cortex decreased following 20-day scopolamine administration, while AChE activation increased. CONCLUSION Nimodipine exhibited potentially beneficial effects by ameliorating cognitive decline following scopolamine administration in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Aykut Ozturk
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ozlem Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| |
Collapse
|
67
|
Liu M, Zhang Y, Dong L, Guo Z. Apelin-13 facilitates mitochondria homeostasis via mitophagy to prevent against airway oxidative injury in asthma. Mol Immunol 2023; 153:1-9. [PMID: 36402066 DOI: 10.1016/j.molimm.2022.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Oxidative stress is a major mediator in the pathogenesis of allergens-induced asthma. Mitochondria damage and dysfunction is considered to be closely related with oxidative stress. Apelin-13 is a novel multifunctional protein with anti-inflammatory and anti-oxidative properties in neuroinflammation and ischemia-reperfusion injury. However, its role in mitochondria homeostasis under asthma-associated airway oxidative injury and the potential mechanisms have not been elucidated. A murine model of asthma was established by house dust mite (HDM) allergen sensitization and challenge. The mice were received Apelin-13 protein through intraperitoneal administration before HDM challenge. Airway inflammation, histopathological changes and oxidative stress were examined. The regulatory effects of Apelin-13 on mitochondria function were evaluated using airway epithelial BEAS-2B cells, including mitochondria membrane potential (MMP), mitophagy and the possible signaling pathway. The HDM-challenged mice group exhibited robust inflammation and apoptosis in airway epithelium compared to the control group. The airway impairment in asthmatic mice was partly lessened after Apelin-13 administration. Meanwhile, protein expressions of mitophagy-related markers PINK1, Parkin, Tomm20 and LC3 were significantly increased in the lungs of Apelin-13-treated asthmatic mice. In vitro, Apelin-13 treatment significantly improved MMP levels and reduced ROS production in BEAS-2B cells exposed to HDM, accompanied with the increase of cell viability. Furthermore, Apelin-13 was found to promote the activation of PINK1/Parkin signaling in BEAS-2B cells, thereby increasing mitophagy activity and facilitating mitochondria homeostasis. These results demonstrate that Apelin-13 acts as a regulator of mitochondria homeostasis by driving mitophagy to protect against HDM allergen-induced airway oxidative injury. Apelin-13 may serve as a promising protective agent for treating asthma.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Yunxuan Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Lin Dong
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| |
Collapse
|
68
|
Combination of EPC-EXs and NPC-EXs with miR-126 and miR-210 overexpression produces better therapeutic effects on ischemic stroke by protecting neurons through the Nox2/ROS and BDNF/TrkB pathways. Exp Neurol 2023; 359:114235. [PMID: 36174747 DOI: 10.1016/j.expneurol.2022.114235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUNDS/AIMS Neural progenitor cells (NPCs) and endothelial progenitor cell (EPCs) exhibit synergistical effects on protecting endothelial cell functions. MiR-126 and miR-210 can protect cell activities by regulating brain-derived neurotrophic factor (BDNF) and reactive oxygen species (ROS) production. Exosomes (EXs) mediate the beneficial effects of stem cells via delivering microRNAs (miRs). Here, we investigated the combination effects of EXs from EPCs (EPC-EXs) and NPCs (NPC-EXs), and determined whether these EXs with miR-126 (EPC-EXsmiR-126) and miR-210 overexpression (NPC-EXsmiR-210) had better effects on hypoxia/reoxygenation (H/R)-injured neurons and ischemic stroke (IS). METHODS Cultured neurons were subjected to hypoxia for 6 h and then co-cultured with culture medium, NPC-EXs, EPC-EXs, NPC-EXs + EPC-EXs or NPC-EXsmiR-210 + EPC-EXsmiR-126 under normoxia for 24 h. Cell apoptosis, ROS production, neurite outgrowth and BDNF level were analyzed. Permanent middle cerebral artery occlusion (MCAO) was performed on C57BL/6 mice to build IS model. The mice were injected with PBS or various EXs via tail vein 2 h after MCAO operation. After 24 h, infarct volume and neurological deficits score (NDS), neuronal apoptosis, ROS production and spine density of dendrites, and brain BDNF level were analyzed. For mechanism study, NADPH oxidase 2(Nox2) and BDNF receptor tyrosine kinase receptor B (TrkB) were determined, and TrkB inhibitor k-252a was used in in vitro and in vivo study. RESULTS 1) The level of miR-210 or miR-126 was increased after NPC-EXs or EPC-EXs treatment respectively. 2) In H/R-injured neurons, NPC-EXs or EPC-EXs decreased cell apoptosis and ROS production and promoted neurite outgrowth, which were associated with the downregulation of Nox2 and the increase of BDNF and p-TrkB/TrkB level. 3) In MCAO mice, NPC-EXs or EPC-EXs decreased infarct volume and NDS, reduced neural apoptosis and ROS production, and promoted the spine density of dendrites. The levels of Nox2, BDNF and p-TrkB/TrkB in mouse brain tissues changed in similar patterns as seen in the in vitro study. 4) In both cell and mouse models, combination of NPC-EXs and EPC-EXs was more effective than NPC-EXs or EPC-EXs alone on all of these effects. 5) EPC-EXsmiR-126 + NPC-EXsmiR-210 had better effects compared to NPC-EXs + EPC-EXs, which were inhibited by k-252a. CONCLUSION EPC-EXsmiR-126 combined NPC-EXsmiR-210 further orchestrate the combinative protective effects of EPC-EXs and NPC-EXs on IS, possibly by protecting H/R-injured neurons through the Nox2/ ROS and BDNF/TrkB pathways.
Collapse
|
69
|
Hu Z, Yu X, Chen P, Jin K, Zhou J, Wang G, Yu J, Wu T, Wang Y, Lin F, Zhang T, Wang Y, Zhao X. BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury. Mol Pain 2023; 19:17448069231185439. [PMID: 37321969 PMCID: PMC10402286 DOI: 10.1177/17448069231185439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Mechanical allodynia can be evoked by punctate pressure contact with the skin (punctate mechanical allodynia) and dynamic contact stimulation induced by gentle touching of the skin (dynamic mechanical allodynia). Dynamic allodynia is insensitive to morphine treatment and is transmitted through the spinal dorsal horn by a specific neuronal pathway, which is different from that for punctate allodynia, leading to difficulties in clinical treatment. K+-Cl- cotransporter-2 (KCC2) is one of the major determinants of inhibitory efficiency, and the inhibitory system in the spinal cord is important in the regulation of neuropathic pain. The aim of the current study was to determine whether neuronal KCC2 is involved in the induction of dynamic allodynia and to identify underlying spinal mechanisms involved in this process. Dynamic and punctate allodynia were assessed using either von Frey filaments or a paint brush in a spared nerve injury (SNI) mouse model. Our study discovered that the downregulated neuronal membrane KCC2 (mKCC2) in the spinal dorsal horn of SNI mice is closely associated with SNI-induced dynamic allodynia, as the prevention of KCC2 downregulation significantly suppressed the induction of dynamic allodynia. The over activation of microglia in the spinal dorsal horn after SNI was at least one of the triggers in SNI-induced mKCC2 reduction and dynamic allodynia, as these effects were blocked by the inhibition of microglial activation. Finally, the BDNF-TrkB pathway mediated by activated microglial affected SNI-induced dynamic allodynia through neuronal KCC2 downregulation. Overall, our findings revealed that activation of microglia through the BDNF-TrkB pathway affected neuronal KCC2 downregulation, contributing to dynamic allodynia induction in an SNI mouse model.
Collapse
Affiliation(s)
- Zihan Hu
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Xinren Yu
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Keyu Jin
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Rehabilitation Center, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Wu
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Yulong Wang
- Rehabilitation Center, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fuqing Lin
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Tingting Zhang
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| |
Collapse
|
70
|
Chen B, Wu J, Hu S, Liu Q, Yang H, You Y. Apelin-13 Improves Cognitive Impairment and Repairs Hippocampal Neuronal Damage by Activating PGC-1α/PPARγ Signaling. Neurochem Res 2022; 48:1504-1515. [PMID: 36512295 DOI: 10.1007/s11064-022-03844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that is prevalent around the world. Both Apelin-13 and proliferator-activated receptor-γ (PPARγ)/PPARγ co-activator 1α (PGC-1α) are regarded as candidate targets for treating AD. The investigation examined whether Apelin-13 exerts neuroprotective effects via PGC-1α/PPARγ signaling. In this study, Apelin-13 improved cognitive deficits in AD mice, while SR-18,292 (a PGC-1α inhibitor) interfered with the therapeutic effects of Apelin-13. Mechanistically, Apelin-13, PGC-1α and PPARγ were decreased in AD mice and oxygen-glucose deprivation (OGD)-induced neuronal cells. Apelin-13 bound to PGC-1α and negatively regulated the expression of PGC-1α and PPARγ. In turn, PGC-1α accelerated the accumulation of Apelin-13 and PPARγ. Additionally, neuronal apoptosis was inhibited, and the abundance of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase 3) was induced. The content of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) fluctuated. The level of inflammatory factors (interleukin-6, IL-6, IL-10, tumor necrosis factor-α, TNF-α) was regulated. In short, Apelin-13 exerted anti-apoptosis, anti-oxidant stress and anti-inflammatory effects. Interestingly, PGC-1α silencing promoted neuronal apoptosis, oxidant stress and inflammation, and overexpression of PGC-1α exhibited the opposite. More importantly, inhibition of PGC-1α attenuated Apelin-13-enhanced cognitive impairment and neuronal damage. Therefore, our findings suggested that Apelin-13 exerted neuroprotective effects in part via the PGC-1α/PPARγ pathway.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China.,Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, 571199, Haikou, China.,International Center for Aging and Cancer (ICAC), 571199, Haikou, China
| | - Jingwei Wu
- Department of Radiology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China
| | - Sheng Hu
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Qingli Liu
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Hui Yang
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China.,Hainan Medical University, 571199, Haikou, China
| | - Yong You
- Department of Neurology, the Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, China. .,Hainan Medical University, 571199, Haikou, China. .,Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, 571199, Haikou, China. .,International Center for Aging and Cancer (ICAC), 571199, Haikou, China.
| |
Collapse
|
71
|
Kurowska-Rucińska E, Ruciński J, Myślińska D, Grembecka B, Wrona D, Majkutewicz I. Dimethyl Fumarate Alleviates Adult Neurogenesis Disruption in Hippocampus and Olfactory Bulb and Spatial Cognitive Deficits Induced by Intracerebroventricular Streptozotocin Injection in Young and Aged Rats. Int J Mol Sci 2022; 23:ijms232415449. [PMID: 36555093 PMCID: PMC9779626 DOI: 10.3390/ijms232415449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The disorder of adult neurogenesis is considered an important mechanism underlying the learning and memory impairment observed in Alzheimer's disease (AD). The sporadic nonhereditary form of AD (sAD) affects over 95% of AD patients and is related to interactions between genetic and environmental factors. An intracerebroventricular injection of streptozotocin (STZ-ICV) is a representative and well-established method to induce sAD-like pathology. Dimethyl fumarate (DMF) has antioxidant and anti-inflammatory properties and is used for multiple sclerosis treatment. The present study determines whether a 26-day DMF therapy ameliorates the disruption of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and olfactory bulb (OB) in an STZ-ICV rat model of sAD. Considering age as an important risk factor for developing AD, this study was performed using 3-month-old (the young group) and 22-month-old (the aged group) male Wistar rats. Spatial cognitive functions were evaluated with the Morris water maze task. Immunofluorescent labelling was used to assess the parameters of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and OB. Our results showed that the STZ-ICV evoked spatial learning and memory impairment and disturbances in adult neurogenesis and BDNF expression in both examined brain structures. In the aged animals, the deficits were more severe. We found that the DMF treatment significantly alleviated STZ-ICV-induced behavioural and neuronal disorders in both age groups of the rats. Our findings suggest that DMF, due to its beneficial effect on the formation of new neurons and BDNF-related neuroprotection, may be considered as a promising new therapeutic agent in human sAD.
Collapse
|
72
|
Ivanov MN, Stoyanov DS, Pavlov SP, Tonchev AB. Distribution, Function, and Expression of the Apelinergic System in the Healthy and Diseased Mammalian Brain. Genes (Basel) 2022; 13:2172. [PMID: 36421846 PMCID: PMC9690544 DOI: 10.3390/genes13112172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/27/2023] Open
Abstract
Apelin, a peptide initially isolated from bovine stomach extract, is an endogenous ligand for the Apelin Receptor (APLNR). Subsequently, a second peptide, ELABELA, that can bind to the receptor has been identified. The Apelin receptor and its endogenous ligands are widely distributed in mammalian organs. A growing body of evidence suggests that this system participates in various signaling cascades that can regulate cell proliferation, blood pressure, fluid homeostasis, feeding behavior, and pituitary hormone release. Additional research has been done to elucidate the system's potential role in neurogenesis, the pathophysiology of Glioblastoma multiforme, and the protective effects of apelin peptides on some neurological and psychiatric disorders-ischemic stroke, epilepsy, Parkinson's, and Alzheimer's disease. This review discusses the current knowledge on the apelinergic system's involvement in brain physiology in health and disease.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Anton. B. Tonchev
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| |
Collapse
|
73
|
Omer AB, Dalhat MH, Khan MK, Afzal O, Altamimi ASA, Alzarea SI, Almalki WH, Kazmi I. Butin Mitigates Memory Impairment in Streptozotocin-Induced Diabetic Rats by Inhibiting Oxidative Stress and Inflammatory Responses. Metabolites 2022; 12:1050. [PMID: 36355133 PMCID: PMC9694489 DOI: 10.3390/metabo12111050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2023] Open
Abstract
It has been reported from the previous literature that butin restores mitochondrial dysfunction by modulation of oxidative stress and glutamate-induced neurotoxicity in mouse hippocampus HT22 cells. Butin also possesses an anti-Huntington's effect in rats. Considering the current background, this study was designed to evaluate the neuroprotective effect of butin against memory loss caused by streptozotocin (STZ). STZ (40 mg/kg) was intraperitoneally injected into rats. Three days later, diabetic rats were identified and included in the study. A total of 30 rats (12 nondiabetic and 18 diabetics) were grouped as Group A (control-non-diabetic rats) and Group B (STZ diabetic control) were treated with 1 mL of sodium CMC (0.5% w/v). Group C (STZ+ butin 25) were treated with butin 25 mg/kg. Group D (STZ+ butin 50) and Group E (butin per se) were administered with butin 50 mg/kg. Each therapy was administered orally once each day for 15-day. The Morris water maze and the Y-maze behavioural tests were run throughout the experimental programme. Animals were put to death on day 15 and their brains were removed for biochemical assays (CAT, SOD, GSH, MDA, nitrite, acetylcholinesterase (AchE), IL-1, and mitochondrial enzyme complexes). Rats with neurobehavioral impairments brought on by STZ have less spontaneous movement, learning capacity, and memory. Additionally, STZ decreased endogenous antioxidants and increased pro-inflammatory cytokines, nitrite, MDA, and AchE. Neurobehavioral deficits and metabolic markers were dramatically improved by butin.
Collapse
Affiliation(s)
- Asma B. Omer
- Department of Basic Health Sciences, Foundation Year for the Health Colleges, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Kaleem Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
74
|
Levetiracetam Ameliorates Doxorubicin-Induced Chemobrain by Enhancing Cholinergic Transmission and Reducing Neuroinflammation Using an Experimental Rat Model and Molecular Docking Study. Molecules 2022; 27:molecules27217364. [PMID: 36364190 PMCID: PMC9653834 DOI: 10.3390/molecules27217364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer chemotherapy-induced cognitive impairment (chemobrain) is a major complication that affects the prognosis of therapy. Our study evaluates the nootropic-like activity of levetiracetam (LEVE) against doxorubicin (DOX)-induced memory defects using in vivo and molecular modelling. Rats were treated with LEVE (100 and 200 mg/kg, 30 days) and chemobrain was induced by four doses of DOX (2 mg/kg, i.p.). Spatial memory parameters were evaluated using an elevated plus maze (EPM) and Y-maze. Additionally, acetylcholinesterase (AChE) and the neuroinflammatory biomarkers cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α) were analyzed using brain homogenate. PharmMapper was used for inverse docking and AutoDock Vina was used for molecular docking. LEVE treatment significantly diminished the DOX-induced memory impairment parameters in both the EPM and Y-maze. In addition, the drug treatment significantly reduced AChE, COX-2, PGE2, NF-κB, and TNF-α levels compared to DOX-treated animals. The inverse docking procedures resulted in the identification of AChE as the potential target. Further molecular modelling studies displayed interactions with residues Gly118, Gly119, and Ser200, critical for the hydrolysis of ACh. Analysis of the results suggested that administration of LEVE improved memory-related parameters in DOX-induced animals. The ‘nootropic-like’ activity could be related to diminished AChE and neuroinflammatory mediator levels.
Collapse
|
75
|
Yan YH, Huang ZH, Xiong QP, Song YW, Li SY, Yang BW, Sun L, Zhang MY, Ji Y. Effects of Broussonetia papyrifera (L.) L'Hér. ex Vent. fruits water extract on hippocampal neurogenesis in the treatment of APP/PS1 transgenic mice. Front Pharmacol 2022; 13:1056614. [DOI: 10.3389/fphar.2022.1056614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Adult neurogenesis plays an important role in repairing damaged neurons and improving cognitive impairment in Alzheimer’s disease (AD). B. Papyrifera (L.) L'Hér. ex Vent. fruits (BL), a traditional Chinese medicine for tonifying the kidney, has been reported to improve cognitive function in AD mice, but the underlying mechanisms have not been clearly illuminated. This study aimed to provide an overview of the differential compounds in the brain of APP/PS1 mice after BL water extract (BLWE) treatment through metabolomics technology and to elucidate whether the therapeutic effect and mechanism are through the enhancement of neurogenesis.Methods: APP/PS1 transgenic mice were treated with different doses of BLWE. After 6 weeks of intragastric injection, the therapeutic effects of BLWE on APP/PS1 transgenic mice were determined by the Morris water maze test, immunohistochemistry, hematoxylin & eosin and Nissl staining, enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Subsequently, metabolomics technology was used to analyze the regulatory effect of BLWE on differential compounds in the brain of APP/PS1 mice, and on this basis, its molecular mechanism of BLWE was screened. Finally, the protein expression of the Wnt/β-catenin signaling pathway was detected by Western blotting.Results: After BLWE treatment, the learning and memory function of APP/PS1 mice were significantly improved, which was related to the increase in the number of Nestin+/BrdU+ and NeuN+/BrdU+ cells, and the decrease in the number of apoptotic cells in the hippocampus. BLWE treatment could also up-regulate the expression of synapse-associated proteins. Moreover, BLWE could modulate endogenous metabolic compounds in the brains of AD mice, including N-acetyl-aspartate, glutamine, etc. Furthermore, BLWE inhibited the phosphorylation of Tyr216-GSK-3β and β-catenin protein while increased CyclinD1 protein expression.Conclusion: We demonstrated that BLWE can enhance neural stem cells proliferation and improve neurogenesis, thereby efficiently repairing damaged neurons in the hippocampus and ameliorating cognitive impairment in APP/PS1 transgenic mice. The mechanism is at least partly through activating the Wnt/β-catenin signaling pathway.
Collapse
|
76
|
An F, Zhao R, Xuan X, Xuan T, Zhang G, Wei C. Calycosin ameliorates advanced glycation end product-induced neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease. Chem Biol Interact 2022; 368:110206. [PMID: 36195188 DOI: 10.1016/j.cbi.2022.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
Growing pieces of evidence suggest that Alzheimer's disease (AD) is interlinked with Type 2 diabetes mellitus (DM), which has been described as "type 3 DM". In this study, we investigate the neuronal insult attributable to advanced glycation end products (AGEs) as the models of DM-related AD to understand the effects exerted by calycosin on neurodegenerative changes both in vivo and in vitro studies and also studied the associated molecular mechanisms. The results reported herein revealed that the viability of the PC12 cells induced by AGEs increased when treated with calycosin. It was also observed that the learning and memory abilities of AGE-induced DM-related AD rats improved under these conditions. Analysis of the reported results indicates that calycosin can effectively down-regulate the activity of GSK-3β to result in the reversal of the process of tau hyperphosphorylation, inhibit the expression of RAGE and BACE-1 proteins, resulting in a decrease in the production of β-amyloid and regulate the PGC-1α/TFAM signaling pathway to repair mitochondrial dysfunction. It can be inferred that calycosin can potentially exhibit important therapeutic properties that can be exploited during the treatment of AD, especially DM-related AD.
Collapse
Affiliation(s)
- Fengmao An
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Ruyi Zhao
- Department of Medicine and Food, Tongliao Vocational College, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Xinran Xuan
- First Clinical Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tianqi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guowei Zhang
- College of Nursing, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Institute of Dementia, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chengxi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Medical College, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
77
|
Zhao DP, Lei X, Wang YY, Xue A, Zhao CY, Xu YM, Zhang Y, Liu GL, Geng F, Xu HD, Zhang N. Sagacious confucius’ pillow elixir ameliorates Dgalactose induced cognitive injury in mice via estrogenic effects and synaptic plasticity. Front Pharmacol 2022; 13:971385. [PMID: 36249769 PMCID: PMC9555387 DOI: 10.3389/fphar.2022.971385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing concern in modern society, and there is currently a lack of effective therapeutic drugs. Sagacious Confucius’ Pillow Elixir (SCPE) has been studied for the treatment of neurodegenerative diseases such as AD. This study aimed to reveal the key components and mechanisms of SCPE’s anti-AD effect by combining Ultra-high Performance Liquid Chromatography-electrostatic field Orbitrap combined high-resolution Mass Spectrometry (UPLC-LTQ/Orbitrap-MS) with a network pharmacology approach. And the mechanism was verified by in vivo experiments. Based on UPLC-LTQ/Orbitrap-MS technique identified 9 blood components from rat serum containing SCPE, corresponding to 113 anti-AD targets, and 15 of the 113 targets had high connectivity. KEGG pathway enrichment analysis showed that estrogen signaling pathway and synaptic signaling pathway were the most significantly enriched pathways in SCPE anti-AD, which has been proved by in vivo experiments. SCPE can exert estrogenic effects in the brain by increasing the amount of estrogen in the brain and the expression of ERα receptors. SCPE can enhance the synaptic structure plasticity by promoting the release of brain-derived neurotrophic factor (BDNF) secretion and improving actin polymerization and coordinates cofilin activity. In addition, SCPE also enhances synaptic functional plasticity by increasing the density of postsynaptic densified 95 (PSD95) proteins and the expression of functional receptor AMPA. SCPE is effective for treatment of AD and the mechanism is related to increasing estrogenic effects and improving synaptic plasticity. Our study revealed the synergistic effect of SCPE at the system level and showed that SCPE exhibits anti-AD effects in a multi-component, multi-target and multi-pathway manner. All these provide experimental support for the clinical application and drug development of SCPE in the prevention and treatment of AD.
Collapse
Affiliation(s)
- De-Ping Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xia Lei
- Institute of Traditional Chinese Medicine, Wuxi Traditional Chinese Medicine Hospital, Jiangsu, Wuxi, China
| | - Yue-Ying Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yu Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yan-Ming Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Yue Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guo-Liang Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Fang Geng
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, China
- *Correspondence: Fang Geng, ; Hong-Dan Xu, ; Ning Zhang,
| | - Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
- College of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu, China
- *Correspondence: Fang Geng, ; Hong-Dan Xu, ; Ning Zhang,
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
- *Correspondence: Fang Geng, ; Hong-Dan Xu, ; Ning Zhang,
| |
Collapse
|
78
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
79
|
Neuropeptide apelin presented in the dopaminergic neurons modulates the neuronal excitability in the substantia nigra pars compacta. Neuropharmacology 2022; 219:109235. [PMID: 36041497 DOI: 10.1016/j.neuropharm.2022.109235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The dopaminergic neurons in the substantia nigra pars compacta are characterized by autonomous pacemaking activity. The spontaneous firing activity of nigral dopaminergic neurons plays an important role in physiological function and is essential for their survival. Importantly, the spontaneous firing activity may also be involved in the preferential vulnerability of the nigral dopaminergic neurons in Parkinson's disease (PD). The neuropeptide apelin was reported to exert neuroprotective effects in neurodegenerative diseases, including PD. And it was noticed that apelin modulates neuronal activity in some brain regions. The present study investigated the electrophysiological and behavioral effects of apelin in the substantia nigra. Double-labeling immunofluorescence showed that apelin was present in nigral dopaminergic neurons and that these neurons expressed apelin receptor APJ. Further single unit in vivo electrophysiological recordings revealed that endogenous apelin tonically increased the firing rate of nigral dopaminergic neurons in both normal and parkinsonian animals. Exogenous apelin-13 exerted excitatory effects on the majority of nigral dopaminergic neurons, yet reduced excitability in a subset of neurons. In addition, nigral application of apelin-13 increased motor activity in normal rats and blocking endogenous apelin reduced motor activity. Considering the involvement of the spontaneous firing activity of nigral dopaminergic neurons in the development of PD and the possibility that apelin acts in an autocrine manner on apelin receptors expressed by nigral dopaminergic neurons, the modulation of the spontaneous firing activity of nigral dopaminergic neurons by apelin may serve as a neuroprotective factor in PD.
Collapse
|
80
|
Hu S, Shen P, Chen B, Tian SW, You Y. Apelin-13 reduces lipopolysaccharide-induced neuroinflammation and cognitive impairment via promoting glucocorticoid receptor expression and nuclear translocation (Manuscript-revision). Neurosci Lett 2022; 788:136850. [PMID: 36038029 DOI: 10.1016/j.neulet.2022.136850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
Neuroinflammation is usually associated with cognitive decline, which is involved in neurodegenerative diseases. Apelin, a neuropeptide, exerts various biological roles in central nervous system. Recent evidence showed that apelin-13, an active form of apelin, suppresses neuroinflammation and improves cognitive decline in diverse pathological processes. However, the underlying mechanism of apelin-13 in neuroinflammation remains largely unknown. The present study aimed to determine underlying mechanism of apelin-13 on neuroinflammation-related cognitive decline. The lipopolysaccharide (LPS) intracerebroventricular (i.c.v.) to is used to establish a rat model of neuroinflammation-related cognitive decline. The results showed that apelin-13 inhibits LPS-induced neuroinflammation and improves cognitive impairment. Apelin-13 upregulates the GR level and nuclear translocation in hippocampus of rats. Moreover, glucocorticoid receptor inhibitor RU486 prevents apelin-13-mediated neuroprotective actions on cognitive function. Taken together, apelin-13 could exert a protective effect in neuroinflammation-mediated cognitive impairment via the activation of GR expression and nuclear translocation.
Collapse
Affiliation(s)
- Sheng Hu
- The Second Affiliated Hospital of Hainan Medical University, Department of Neurology, Haikou, Hainan, 570216, China; Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, 571199, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, 571199, China
| | - Pei Shen
- Department of Neurology, The First People's Hospital of Changde City, Changde, Hunan, 415000, China
| | - Bin Chen
- The Second Affiliated Hospital of Hainan Medical University, Department of Neurology, Haikou, Hainan, 570216, China; Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, 571199, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, 571199, China
| | - Shao-Wen Tian
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, 541001, China.
| | - Yong You
- The Second Affiliated Hospital of Hainan Medical University, Department of Neurology, Haikou, Hainan, 570216, China; Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, 571199, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, 571199, China.
| |
Collapse
|
81
|
Wang X, Zhang L, Li P, Zheng Y, Yang Y, Ji S. Apelin/APJ system in inflammation. Int Immunopharmacol 2022; 109:108822. [DOI: 10.1016/j.intimp.2022.108822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022]
|
82
|
Cao H, Zuo C, Gu Z, Huang Y, Yang Y, Zhu L, Jiang Y, Wang F. High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis. Redox Biol 2022; 54:102354. [PMID: 35660628 PMCID: PMC9168605 DOI: 10.1016/j.redox.2022.102354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Glutamate mediated excitotoxicity, such as oxidative stress, neuroinflammation, synaptic loss and neuronal death, is ubiquitous in Alzheimer's disease (AD). Our previous study found that 15 Hz repetitive transcranial magnetic stimulation (rTMS) could reduce cortical excitability. The purpose of this study was to explore the therapeutic effect of higher frequency rTMS on 3xTg-AD model mice and further explore the mechanisms of rTMS. METHODS First, WT and 3xTg-AD model mice received 25 Hz rTMS treatment for 21 days. The Morris water maze test was used to evaluate the cognitive function. The levels of Aβ and neuroinflammation were assessed by ELISA and immunofluorescence. Oxidative stress was quantified by biochemical assay kits. Brain glucose metabolism was assessed by 18F-FDG PET. Apoptosis was assessed by western blot and TUNEL staining. Synaptic plasticity and PI3K/Akt/GLT-1 pathway related protein expression were assessed by western blot. Next, to explore the activity of PI3K/Akt in the therapeutic effect of rTMS, 3xTg-AD model mice were given LY294002 intervention and rTMS treatment for 21 days, the experimental method was the same as before. RESULTS We found that 25 Hz rTMS could improve cognitive function of 3xTg-AD model mice, reduce hippocampal Aβ1-42 levels, ameliorate oxidative stress and improve glucose metabolism. rTMS alleviated neuroinflammatory response, enhanced synaptic plasticity and reduced neuronal loss and cell apoptosis, accompanied by activation of PI3K/Akt/GLT-1 pathway. After administration of PI3K/Akt inhibitor LY294002, 25 Hz rTMS could not improve the cognitive function and reduce neuron damage of 3xTg-AD model mice, nor could it upregulate the expression of GLT-1, indicating that its therapeutic and protective effects required the involvement of PI3K/Akt/GLT-1 pathway. CONCLUSION rTMS exerts protective role for AD through regulating multiple pathological processes. Meanwhile, this study revealed the key role of PI3K/Akt/GLT-1 pathway in the treatment of AD by rTMS, which might be a new target.
Collapse
Affiliation(s)
- Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Liudi Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
83
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
84
|
Liu Q, Zhou S, Wang X, Gu C, Guo Q, Li X, Zhang C, Zhang N, Zhang L, Huang F. Apelin alleviated neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats. J Neuroinflammation 2022; 19:160. [PMID: 35725619 PMCID: PMC9208139 DOI: 10.1186/s12974-022-02518-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury (SCI) causes devastating neurological damage, including secondary injuries dominated by neuroinflammation. The role of Apelin, an endogenous ligand that binds the G protein-coupled receptor angiotensin-like receptor 1, in SCI remains unclear. Thus, our aim was to investigate the effects of Apelin in inflammatory responses and activation of endogenous neural stem cells (NSCs) after SCI. Methods Apelin expression was detected in normal and injured rats, and roles of Apelin in primary NSCs were examined. In addition, we used induced pluripotent stem cells (iPSCs) as a carrier to prolong the effective duration of Apelin and evaluate its effects in a rat model of SCI. Results Co-immunofluorescence staining suggested that Apelin was expressed in both astrocytes, neurons and microglia. Following SCI, Apelin expression decreased from 1 to 14 d and re-upregulated at 28 d. In vitro, Apelin promoted NSCs proliferation and differentiation into neurons. In vivo, lentiviral-transfected iPSCs were used as a carrier to prolong the effective duration of Apelin. Transplantation of transfected iPSCs in situ immediately after SCI reduced polarization of M1 microglia and A1 astrocytes, facilitated recovery of motor function, and promoted the proliferation and differentiation of endogenous NSCs in rats. Conclusion Apelin alleviated neuroinflammation and promoted the proliferation and differentiation of endogenous NSCs after SCI, suggesting that it might be a promising target for treatment of SCI.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xiao Wang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chengxu Gu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xikai Li
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chunlei Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Naili Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Road, Qingdao, 266071, China.
| |
Collapse
|
85
|
权 会, 徐 卫, 祁 宇, 李 清, 周 辉, 黄 婧. [Inhibition connexin 43 by mimetic peptide Gap27 mediates protective effects on 6-hydroxydopamine induced Parkinson's disease mouse model]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:421-426. [PMID: 35701117 PMCID: PMC9197703 DOI: 10.19723/j.issn.1671-167x.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models. METHODS Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot. RESULTS After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05). CONCLUSION In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.
Collapse
Affiliation(s)
- 会会 权
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 卫星 徐
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 宇泽 祁
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 清如 李
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 辉 周
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 婧 黄
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
86
|
Xia F, Zeng Q, Chen J. Circulating brain-derived neurotrophic factor dysregulation and its linkage with lipid level, stenosis degree, and inflammatory cytokines in coronary heart disease. J Clin Lab Anal 2022; 36:e24546. [PMID: 35666604 PMCID: PMC9279961 DOI: 10.1002/jcla.24546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Background Brain‐derived neurotrophic factor (BDNF) regulates the lipid metabolism, atherosclerosis plaque formation, and inflammatory process, while the study about its clinical role in coronary heart disease (CHD) is few. The present study intended to explore the expression of BDNF and its relationship with stenosis, inflammation, and adhesion molecules in CHD patients. Methods After serum samples were obtained from 207 CHD patients, BDNF, tumor necrosis factor‐alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, IL‐17A, vascular cell adhesion molecule‐1 (VCAM‐1), and intercellular adhesion molecule‐1 (ICAM‐1) levels were determined using ELISA. Then, the BDNF level was also examined in 40 disease controls (DCs) and 40 healthy controls (HCs), separately. Results BDNF was lower in CHD patients than in DCs and HCs (median (95% confidential interval) value: 5.6 (3.5–9.6) ng/mL vs. 10.7 (6.1–17.0) ng/mL and 12.6 (9.4–18.2) ng/mL, both p < 0.001). BDNF could well distinguish CHD patients from DCs (area under the curve [AUC]: 0.739) and HCs (AUC: 0.857). BDNF was negatively associated with triglyceride (p = 0.014), total cholesterol (p = 0.037), and low‐density lipoprotein cholesterol (p = 0.008). BDNF was negatively associated with CRP (p < 0.001), TNF‐α (p < 0.001), IL‐1β (p = 0.008), and IL‐8 (p < 0.001). BDNF was negatively related to VCAM‐1 (p < 0.001) and ICAM‐1 (p = 0.003). BDNF was negatively linked with the Gensini score (p < 0.001). Conclusion BDNF reflects the lipid dysregulation, inflammatory status, and stenosis degree in CHD patients.
Collapse
Affiliation(s)
- Feng Xia
- Department of Cardiology, Wuhan Asia General Hospital, Wuhan, China
| | - Qingrong Zeng
- Department of Cardiology, Wuhan Asia General Hospital, Wuhan, China
| | - Jing Chen
- Department of Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, China
| |
Collapse
|
87
|
Activation of TGR5 Ameliorates Streptozotocin-Induced Cognitive Impairment by Modulating Apoptosis, Neurogenesis, and Neuronal Firing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3716609. [PMID: 35464765 PMCID: PMC9033389 DOI: 10.1155/2022/3716609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is the first known G protein-coupled receptor specific for bile acids and is recognized as a new and critical target for type 2 diabetes and metabolic syndrome. It is expressed in many brain regions associated with memory such as the hippocampus and frontal cortex. Here, we hypothesize that activation of TGR5 may ameliorate streptozotocin- (STZ-) induced cognitive impairment. The mouse model of cognitive impairment was established by a single intracerebroventricular (ICV) injection of STZ (3.0 mg/kg), and we found that TGR5 activation by its agonist INT-777 (1.5 or 3.0 μg/mouse, ICV injection) ameliorated spatial memory impairment in the Morris water maze and Y-maze tests. Importantly, INT-777 reversed STZ-induced downregulation of TGR5 and glucose usage deficits. Our results further showed that INT-777 suppressed neuronal apoptosis and improved neurogenesis which were involved in tau phosphorylation and CREB-BDNF signaling. Moreover, INT-777 increased action potential firing of excitatory pyramidal neurons in the hippocampal CA3 and medial prefrontal cortex of ICV-STZ groups. Taken together, these findings reveal that activation of TGR5 has a neuroprotective effect against STZ-induced cognitive impairment by modulating apoptosis, neurogenesis, and neuronal firing in the brain and TGR5 might be a novel and potential target for Alzheimer's disease.
Collapse
|
88
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
89
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
90
|
Gazmeh S, Azhir M, Elyasi L, Jahanshahi M, Nikmahzar E, Jameie SB. Apelin-13 protects against memory impairment and neuronal loss, Induced by Scopolamine in male rats. Metab Brain Dis 2022; 37:701-709. [PMID: 34982353 DOI: 10.1007/s11011-021-00882-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
The present study aimed to evaluate the effects of Apelin-13 on scopolamine-induced memory impairment in rats. Forty male rats were divided into five groups of eight. The control group received no intervention; the scopolamine group underwent stereotaxic surgery and received 3 mg/kg intraperitoneal scopolamine. The treatment groups additionally received 1.25, 2.5 and 5 µg apelin-13 in right lateral ventricles for 7 days. All rats (except the control group) were tested for the passive avoidance reaction, 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with cresyl violet; synaptogenesis biochemical markers were determined by immunoblotting. Apelin-13 alleviated scopolamine-induced passive avoidance memory impairment and neuronal loss in the rats' hippocampus (P<0.001). The reduction observed in mean concentrations of hippocampal synaptic proteins (including neurexin1, neuroligin, and postsynaptic density protein 95) in scopolamine-treated animals was attenuated by apelin-13 treatment. The results demonstrated that apelin-13 can protect against passive avoidance memory deficiency, and neuronal loss, induced by scopolamine in male rats. Further experimental and clinical studies are required to confirm its therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Gazmeh
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Azhir
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), Gorgan, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
91
|
Wan T, Fu M, Jiang Y, Jiang W, Li P, Zhou S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer's Disease. Neurochem Res 2022; 47:205-217. [PMID: 34518975 PMCID: PMC8436866 DOI: 10.1007/s11064-021-03448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to increase. Some of the typical pathological changes of AD include amyloid plaque, hyperphosphorylation of tau protein, secretion of inflammatory mediators, and neuronal apoptosis. Apelin is a neuroprotective peptide that is widely expressed in the body. Among members of apelin family, apelin-13 is the most abundant with a high neuroprotective function. Apelin-13/angiotensin domain type 1 receptor-associated proteins (APJ) system regulates several physiological and pathophysiological cell activities, such as apoptosis, autophagy, synaptic plasticity, and neuroinflammation. It has also been shown to prevent AD development. This article reviews the research progress on the relationship between apelin-13 and AD to provide new ideas for prevention and treatment of AD.
Collapse
Affiliation(s)
- Teng Wan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangnan University, Chenzhou, 423043, China
| | - Weiwei Jiang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Peiling Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China.
- Department of Physiology, Basic Medical College, Guilin, 541199, Guangxi, China.
| |
Collapse
|
92
|
McNerney MW, Heath A, Narayanan S, Yesavage J. Repetitive Transcranial Magnetic Stimulation Improves Brain-Derived Neurotrophic Factor and Cholinergic Signaling in the 3xTgAD Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 86:499-507. [PMID: 35068462 PMCID: PMC9028616 DOI: 10.3233/jad-215361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Alzheimer’s disease (AD) is a debilitating disorder involving the loss of plasticity and cholinergic neurons in the cortex. Pharmaceutical treatments are limited in their efficacy, but brain stimulation is emerging as a treatment for diseases of cognition. More research is needed to determine the biochemical mechanisms and treatment efficacy of this technique. Objective: We aimed to determine if forebrain repetitive transcranial magnetic stimulation can improve cortical BDNF gene expression and cholinergic signaling in the 3xTgAD mouse model of AD. Methods: Both B6 wild type mice and 3xTgAD mice aged 12 months were given daily treatment sessions for 14 days or twice weekly for 6 weeks. Following treatment, brain tissue was extracted for immunological stains for plaque load, as well as biochemical analysis for BDNF gene expression and cholinergic signaling via acetylcholinesterase and choline acetyltransferase ELISA assays. Results: For the 3xTgAD mice, both 14 days and 6 weeks treatment regimens resulted in an increase in BDNF gene expression relative to sham treatment, with a larger increase in the 6-week group. Acetylcholinesterase activity also increased for both treatments in 3xTgAD mice. The B6 mice only had an increase in BDNF gene expression for the 6-week group. Conclusion: Brain stimulation is a possible non-invasive and nonpharmaceutical treatment option for AD as it improves both plasticity markers and cholinergic signaling in an AD mouse model.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alesha Heath
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sindhu Narayanan
- Medical Anthropology and Global Health, University of Washington, Seattle, WA, USA
| | - Jerome Yesavage
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
93
|
Chen T, Shou L, Guo X, Wei M, Zheng H, Tao T. Magnolol attenuates the locomotor impairment, cognitive deficit, and neuroinflammation in Alzheimer's disease mice with brain insulin resistance via up-regulating miR-200c. Bioengineered 2022; 13:531-543. [PMID: 34968163 PMCID: PMC8805894 DOI: 10.1080/21655979.2021.2009975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, we aimed to investigate the effect of Magnolol on Alzheimer's disease (AD). After the model of streptozotocin-induced AD mice with brain insulin resistance was established, the mice were treated with Magnolol or miR-200c antagomiR. The abilities of ambulations, rearings, discrimination, spatial learning, and memory were evaluated by open-field test (OFT), novel object recognition (NOR), and morris water maze (MWM) tests. The levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), and miR-200c in the mice hippocampus were evaluated by enzyme-linked immunosorbent assay, Western blot, or Quantitative real-time Polymerase Chain Reaction. In AD mice model, streptozotocin induced the locomotor impairment and cognitive deficit, up-regulated levels of MDA, TNF-α, IL-6, and CRP, while down-regulated levels of GSH, SOD, and miR-200c. Magnolol increased the rearings numbers and discrimination index of AD mice in OFT and NOR tests. Magnolol increased the number of entries in the target quadrant and time spent in the target quadrant and decreased the escape latency of AD mice in the MWM test. Magnolol also down-regulated the levels of MDA, TNF-α, IL-6, and CRP, and up-regulated the levels of GSH, SOD, and miR-200c in the hippocampus tissues of AD mice. However, miR-200c antagomiR did the opposite and further offset the effects of the Magnolol on AD mice. Magnolol attenuated the locomotor impairment, cognitive deficit, and neuroinflammatory in AD mice with brain insulin resistance via up-regulating miR-200c.
Collapse
Affiliation(s)
- Ting Chen
- Department of Ultrasonography, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)
| | - Lan Shou
- Department of Endocrinology, The Affiliated Hospital of Hangzhou Normal University
| | - Xiaowen Guo
- Department of Anesthesia, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)
| | - Mingyang Wei
- Department of Anesthesia, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)
| | - Hui Zheng
- Department of Anesthesia, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)
| | - Tao Tao
- Department of Anesthesia, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)
| |
Collapse
|
94
|
Zhang X, Wu W, Luo Y, Wang Z. Transcranial photobiomodulation therapy ameliorates perioperative neurocognitive disorder through modulation of mitochondrial function in aged mice. Neuroscience 2021; 490:236-249. [PMID: 34979260 DOI: 10.1016/j.neuroscience.2021.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
Perioperative neurocognitive disorder (PND) is a serious nervous system complication characterized by progressive cognitive impairment, especially in geriatric population. However, the neuropathogenesis of PND is complex, and there are no approved disease-modifying therapeutic options. Mitochondrial dysfunction has been demonstrated to contribute to the occurrence and development of PND. Transcranial near-infrared (tNIR) light treatment helps to improve mitochondrial dysfunction and enhance cognition, but its effect on PND remains unclear. Here, we evaluated the effect of tNIR light treatment on PND caused by anesthesia and surgery in aged mice. We built the PND models with 18-month C57BL/6 male mice by exploratory laparotomy under isoflurane inhalation anesthesia, and treated by tNIR light with wavelength 810 nm for 2 weeks. The short-term and long-term changes in cognitive function were analyzed by behavioral tests. We further explored the effects of tNIR light on mitochondria, synapses, neurons, and signaling pathways through different experimental methods. The results demonstrated that the cognitive impairment and mitochondrial dysfunction in PND mice were ameliorated after tNIR light treatment. Further experiments demonstrated that photobiomodulation therapy (PBMT) increased synapse-related protein expression, neuronal survival, and protected synapse from depletion. Moreover, downregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were increased after tNIR light treatment. Our results suggested that tNIR light was an effective treatment of PND through PBMT effect, accompanied by synaptic and neuronal improvement. The improvement of mitochondrial dysfunction mediated by SIRT1/PGC-1α signaling pathway might participate in this process. Those findings might provide a novel and noninvasive therapeutic target for PND.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuelian Luo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
95
|
Jagadeesh KA, Dey KK, Montoro DT, Mohan R, Gazal S, Engreitz JM, Xavier RJ, Price AL, Regev A. Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.19.436212. [PMID: 34845454 PMCID: PMC8629197 DOI: 10.1101/2021.03.19.436212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes contributing to disease, but in many cases the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. We analyzed 1.6 million scRNA-seq profiles from 209 individuals spanning 11 tissue types and 6 disease conditions, and constructed gene programs capturing cell types, disease progression, and cellular processes both within and across cell types. We evaluated these gene programs for disease enrichment by transforming them to SNP annotations with tissue-specific epigenomic maps and computing enrichment scores across 60 diseases and complex traits (average N= 297K). Cell type, disease progression, and cellular process programs captured distinct heritability signals even within the same cell type, as we show in multiple complex diseases that affect the brain (Alzheimer’s disease, multiple sclerosis), colon (ulcerative colitis) and lung (asthma, idiopathic pulmonary fibrosis, severe COVID-19). The inferred disease enrichments recapitulated known biology and highlighted novel cell-disease relationships, including GABAergic neurons in major depressive disorder (MDD), a disease progression M cell program in ulcerative colitis, and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease progression immune cell type programs were associated, whereas for epithelial cells, disease progression programs were most prominent, perhaps suggesting a role in disease progression over initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.
Collapse
|
96
|
Liang YY, Zhang LD, Luo X, Wu LL, Chen ZW, Wei GH, Zhang KQ, Du ZA, Li RZ, So KF, Li A. All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural Regen Res 2021; 17:1210-1227. [PMID: 34782555 PMCID: PMC8643060 DOI: 10.4103/1673-5374.325012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.
Collapse
Affiliation(s)
- Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Dan Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University; Guangdong Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Wei Chen
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Guang-Hao Wei
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Kai-Qing Zhang
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze-An Du
- Department of Clinical Medicine, International School, Jinan University, Guangzhou, Guangdong Province, China
| | - Ren-Zhi Li
- International Department of the Affiliated High School of South China Normal University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| |
Collapse
|
97
|
Adipokines as Immune Cell Modulators in Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms221910845. [PMID: 34639186 PMCID: PMC8509121 DOI: 10.3390/ijms221910845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological deterioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of developing MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modification of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adipokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS.
Collapse
|
98
|
He J, Wei HJ, Li M, Li MH, Zou W, Zhang P. k252a Inhibits H2S-Alleviated Homocysteine-Induced Cognitive Dysfunction in Rats. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Zheng XD, Huang Y, Li H. Regulatory role of Apelin-13-mediated PI3K/AKT signaling pathway in the glucose and lipid metabolism of mouse with gestational diabetes mellitus. Immunobiology 2021; 226:152135. [PMID: 34521048 DOI: 10.1016/j.imbio.2021.152135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the regulatory mechanism of Apelin-13-mediated PI3K/AKT signaling pathway in the glucose and lipid metabolism of gestational diabetes mellitus (GDM) mouse. METHODS GDM mice models were established and treated with Apelin-13 and/or PI3K/AKT inhibitor LY294002. Then, the indicators of glucose and lipid metabolism and the levels of inflammatory factors were detected. Besides, the levels of indicators of oxidative stress in the placenta of mice were measured. Western blotting was also carried out to determine the expression of PI3K/AKT pathway-related proteins in all groups. RESULTS In comparison with the Control group, mice in the GDM group presented with the continuous increase in the level of FBG as the time went on, while FINS level decreased evidently. Besides, the fetus alive ratio in the GDM group was much lower with significant increased weight of fetal mouse and weight of placenta; the mice had significant decreased levels of IL-6, IL-1β, TNF-α and MCP-1, and in the placenta, the levels of SOD, GPx, GSH and CAT were also reduced evidently, with significant downregulation of p-PI3K/PI3K and p-AKT/AKT. However, indicators above in the GDM mice treated with Apelin-13 had significant improvement as compared to those in the GDM group, and the improvement was reversed by LY294002 treatment. CONCLUSION Apelin-13, possibly by activating the PI3K/AKT pathway, could improve the glucose and lipid metabolism, reduce the damage caused by oxidative stress and inflammatory reaction, and protect the pancreas islet, thereby improving the pregnancy outcome of GDM mice.
Collapse
Affiliation(s)
- Xiao-Dan Zheng
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou City 434020, Hubei Province, PR China
| | - Yi Huang
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou City 434020, Hubei Province, PR China
| | - Hui Li
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou City 434020, Hubei Province, PR China.
| |
Collapse
|
100
|
Wang D, Wang Y, Shan M, Chen J, Wang H, Sun B, Jin C, Li X, Yin Y, Song C, Xiao C, Li J, Wang T, Cai X. Apelin receptor homodimer inhibits apoptosis in vascular dementia. Exp Cell Res 2021; 407:112739. [PMID: 34343559 DOI: 10.1016/j.yexcr.2021.112739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Apelin receptor (APJ), a member of family A of the G protein-coupled receptors (GPCRs), is a potential pharmaceutical target for diseases of the nervous system. Our previous work revealed that human APJ can form a homodimer that has different functional characteristics than the monomer. To investigate the effects of APJ homodimers on neuroprotection in vascular dementia (VD), we established VD model in rats and treated the animals by injecting apelin-13 into the lateral ventricle. In addition, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) model in SH-SY5Y cells treated with apelin-13. After apelin-13 stimulation in the VD rat, the level of APJ and APJ homodimer were elevated. Furthermore, APJ homodimer decreased the level of cleaved caspase-3 and cleaved caspase-9 via the Gαi3 and Gαq signaling pathway, thereby increasing the number of neurons and inhibiting apoptosis. Consequently, APJ homodimers may serve as a unique mechanism for neuroprotection against VD and provide new pharmaceutical targets for VD.
Collapse
Affiliation(s)
- Dexiu Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuliang Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Meiyan Shan
- Department of Psychiatry, Shouguang Mental Health Center, Weifang, 261053, China
| | - Jing Chen
- Institute of Neurobiology, Jining Medical University, Rizhao, 276800, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Huannan Wang
- Institute of Neurobiology, Jining Medical University, Rizhao, 276800, China
| | - Baoqi Sun
- Ophthalmology Department, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Chengwen Jin
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xin Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yue Yin
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chao Song
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Changhao Xiao
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jianshe Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Taiqian Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xin Cai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|