51
|
Noh JY, Seo H, Lee J, Jung H. Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. Int J Mol Sci 2020; 21:E8000. [PMID: 33121189 PMCID: PMC7663624 DOI: 10.3390/ijms21218000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy is extensively investigated for almost all types of hematologic tumors, from preleukemic to relapse/refractory malignancies. Due to the emergence of technologies for target cell characterization, antibody design and manufacturing, as well as genome editing, immunotherapies including gene and cell therapies are becoming increasingly elaborate and diversified. Understanding the tumor immune microenvironment of the target disease is critical, as is reducing toxicity. Although there have been many successes and newly FDA-approved immunotherapies for hematologic malignancies, we have learned that insufficient efficacy due to disease relapse following treatment is one of the key obstacles for developing successful therapeutic regimens. Thus, combination therapies are also being explored. In this review, immunotherapies for each type of hematologic malignancy will be introduced, and novel targets that are under investigation will be described.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Korea;
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
52
|
Understanding genetic determinants of resistance to immune checkpoint blockers. Semin Cancer Biol 2020; 65:123-139. [DOI: 10.1016/j.semcancer.2019.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
53
|
Identification of Genes Whose Expression Overlaps Age Boundaries and Correlates with Risk Groups in Paediatric and Adult Acute Myeloid Leukaemia. Cancers (Basel) 2020; 12:cancers12102769. [PMID: 32992503 PMCID: PMC7650662 DOI: 10.3390/cancers12102769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary To better understand whether acute myeloid leukaemia differs between children and adults, we have analysed the expression of genes in samples from both patient groups. Using previously published data, we compared gene expression between patient risk subgroups. We examined patients who had a poor chance of survival, based on clinical assessments, and those with a good chance of survival, to see whether there was any difference in the genes expressed in their leukaemic cells. Then we compared the genes on these lists between adults and children with acute myeloid leukaemia. We believe that patients with good or poor survival chances express genes that provide insights into how leukaemic cells behave. We hope that this work will provide new information about the mechanisms that underlie acute myeloid leukaemia and answer questions on the ways this form of leukaemia is similar in adults and children, which will then tell us whether the same treatments could be used for both age groups of patients. Abstract Few studies have compared gene expression in paediatric and adult acute myeloid leukaemia (AML). In this study, we have analysed mRNA-sequencing data from two publicly accessible databases: (1) National Cancer Institute’s Therapeutically Applicable Research to Generate Effective Treatments (NCI-TARGET), examining paediatric patients, and (2) The Cancer Genome Atlas (TCGA), examining adult patients with AML. With a particular focus on 144 known tumour antigens, we identified STEAP1, SAGE1, MORC4, SLC34A2 and CEACAM3 as significantly different in their expression between standard and low risk paediatric AML patient subgroups, as well as between poor and good, and intermediate and good risk adult AML patient subgroups. We found significant differences in event-free survival (EFS) in paediatric AML patients, when comparing standard and low risk subgroups, and quartile expression levels of BIRC5, MAGEF1, MELTF, STEAP1 and VGLL4. We found significant differences in EFS in adult AML patients when comparing intermediate and good, and poor and good risk adult AML patient subgroups and quartile expression levels of MORC4 and SAGE1, respectively. When examining Kyoto Encyclopedia of Genes and Genomes (KEGG) (2016) pathway data, we found that genes altered in AML were involved in key processes such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO). For the first time we have compared gene expression in paediatric AML patients with that of adult AML patients. This study provides unique insights into the differences and similarities in the gene expression that underlies AML, the genes that are significantly differently expressed between risk subgroups, and provides new insights into the molecular pathways involved in AML pathogenesis.
Collapse
|
54
|
Yi L, Zhou L, Luo J, Yang Q. Circ-PTK2 promotes the proliferation and suppressed the apoptosis of acute myeloid leukemia cells through targeting miR-330-5p/FOXM1 axis. Blood Cells Mol Dis 2020; 86:102506. [PMID: 33126007 DOI: 10.1016/j.bcmd.2020.102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by malignant clonal disorder of blood cells with high relapse rate and low survival rate. Circular RNAs (circRNAs) have shown their important regulatory roles in AML progression. Here, we intended to disclose the role of circular RNA protein tyrosine kinase 2 (circ-PTK2) in the progression of AML and illustrate the potential working mechanisms. METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay were conducted to analyze cell proliferation ability, and the apoptosis rate was assessed by flow cytometry. Dual-luciferase reporter assay was used to validate the direct interaction between microRNA-330-5p (miR-330-5p) and circ-PTK2 or forkhead box M1 (FOXM1). RESULTS Circ-PTK2 was highly expressed in AML. Circ-PTK2 interference suppressed the proliferation and triggered the apoptosis of AML cells. Circ-PTK2 directly bound to miR-330-5p. Si-circ-PTK2-mediated inhibition on the malignant behaviors of AML cells was partly counteracted by the addition of anti-miR-330-5p. MiR-330-5p directly interacted with FOXM1 messenger RNA (mRNA), and FOXM1 overexpression partly reversed miR-330-5p-induced influence in AML cells. Circ-PTK2 up-regulated FOXM1 expression through sponging miR-330-5p in AML cells. CONCLUSION Circ-PTK2 promoted the proliferation and hampered the apoptosis of AML cells through targeting miR-330-5p/FOXM1 axis.
Collapse
Affiliation(s)
- Lai Yi
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Libo Zhou
- Department of Nephrology, Zhuzhou No. 2 Hospital, Zhuzhou, China
| | - Jinxia Luo
- Department of Dermatology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Qiuhong Yang
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China.
| |
Collapse
|
55
|
Salik B, Smyth MJ, Nakamura K. Targeting immune checkpoints in hematological malignancies. J Hematol Oncol 2020; 13:111. [PMID: 32787882 PMCID: PMC7425174 DOI: 10.1186/s13045-020-00947-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies such as anti-programmed death 1 (PD-1) and anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) have dramatically transformed treatment in solid tumor oncology. While immunotherapeutic approaches such as stem cell transplantation and anti-cancer monoclonal antibodies have made critical contributions to improve outcomes in hematological malignancies, clinical benefits of ICB are observed in only limited tumor types that are particularly characterized by a high infiltration of immune cells. Importantly, even patients that initially respond to ICB are unable to achieve long-term disease control using these therapies. Indeed, primary and acquired resistance mechanisms are differentially orchestrated in hematological malignancies depending on tumor types and/or genotypes, and thus, an in-depth understanding of the disease-specific immune microenvironments will be essential in improving efficacy. In addition to PD-1 and CTLA-4, various T cell immune checkpoint molecules have been characterized that regulate T cell responses in a non-redundant manner. Several lines of evidence suggest that these T cell checkpoint molecules might play unique roles in hematological malignancies, highlighting their potential as therapeutic targets. Targeting innate checkpoint molecules on natural killer cells and/or macrophages has also emerged as a rational approach against tumors that are resistant to T cell-mediated immunity. Given that various monoclonal antibodies against tumor surface proteins have been clinically approved in hematological malignancies, innate checkpoint blockade might play a key role to augment antibody-mediated cellular cytotoxicity and phagocytosis. In this review, we discuss recent advances and emerging roles of immune checkpoint blockade in hematological malignancies.
Collapse
Affiliation(s)
- Basit Salik
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia.
| |
Collapse
|
56
|
El Omri H, Taha RY, Elomri A, Kacem N, Elsabah H, Ellahie AY, Gamil A, Ibrahim F, Soliman DSA, El Akiki SJL, Nawaz Z, Al Sabbagh A, El Omri A. Acute Myeloid Leukemia in Qatar (2010-2016): Clinical, Biological, and Prognostic Factors and Treatment Outcomes. Front Genet 2020; 11:553. [PMID: 32625233 PMCID: PMC7313235 DOI: 10.3389/fgene.2020.00553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
The current study retrospectively evaluated cytogenetic profiles, various prognostic factors, and survival outcomes in 128 acute myeloid leukemia (AML) patients (14 ≤ age ≤ 70 years) admitted to the National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar, between January 2010 and December 2016. The median age at diagnosis was 43 years, and 80% were less than 60 years old; 75% of patients were male. Cytogenetic analysis was integrated into the World Health Organization 2008 classification and showed that the percentages of normal and abnormal karyotypes were similar, accounting for 48.4% of each group of patients. The AML risk stratification based on cytogenetic analysis resulted in the following distribution: 18% in the favorable risk group, 57% in the intermediate-risk group, 24% in the unfavorable risk group, and 1% unknown. Only 88 patients received therapy with curative intent; 67% achieved complete remission, increasing to 81% after inductions 1 and 2. The median overall survival (OS) and disease-free survival (DFS) in AML patients were 26.6 and 19.5 months, respectively. The 3-year OS and DFS were 40 and 36%, respectively. Prognostic factors including age, gender, white blood cell count, and risk stratification were not significantly associated with treatment outcomes, whereas response to treatment vs. failure was significantly associated with the outcome (p = 0.01). The current study supports the importance of cytogenetics as a useful tool in diagnosis, prognosis, and risk assessment in AML treatment.
Collapse
Affiliation(s)
- Halima El Omri
- Medical Oncology-Hematology Department, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ruba Yasin Taha
- Medical Oncology-Hematology Department, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Adel Elomri
- Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Nancy Kacem
- Clinical Pharmacy, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Hesham Elsabah
- Medical Oncology-Hematology Department, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Anil Yousaf Ellahie
- Medical Oncology-Hematology Department, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Amna Gamil
- Medical Oncology-Hematology Department, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Firyal Ibrahim
- Hematopathology Laboratory, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Zafar Nawaz
- Cytogenetic and Molecular Laboratory, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad Al Sabbagh
- Hematopathology Laboratory, Hamad Medical Corporation, Doha, Qatar
| | - Abdelfatteh El Omri
- Center of Excellence in Bionanoscience Research and Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
57
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
58
|
Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, Zugmaier G, Kufer P, Iskander K, Kantarjian HM. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020; 126:3192-3201. [PMID: 32401342 DOI: 10.1002/cncr.32909] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Immuno-oncology therapies engage the immune system to treat cancer. BiTE (bispecific T-cell engager) technology is a targeted immuno-oncology platform that connects patients' own T cells to malignant cells. The modular nature of BiTE technology facilitates the generation of molecules against tumor-specific antigens, allowing off-the-shelf immuno-oncotherapy. Blinatumomab was the first approved canonical BiTE molecule and targets CD19 surface antigens on B cells, making blinatumomab largely independent of genetic alterations or intracellular escape mechanisms. Additional BiTE molecules in development target other hematologic malignancies (eg, multiple myeloma, acute myeloid leukemia, and B-cell non-Hodgkin lymphoma) and solid tumors (eg, prostate cancer, glioblastoma, gastric cancer, and small-cell lung cancer). BiTE molecules with an extended half-life relative to the canonical BiTE molecules are also being developed. Advances in immuno-oncology made with BiTE technology could substantially improve the treatment of hematologic and solid tumors and offer enhanced activity in combination with other treatments.
Collapse
Affiliation(s)
- Hermann Einsele
- Department of Internal Medicine II, Universität Würzburg, Würzburg, Germany
| | - Hossein Borghaei
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Gail J Roboz
- Weill Cornell Medicine, Division of Hematology and Oncology, The New York Presbyterian Hospital, New York, New York
| | | | - Peter Kufer
- Amgen Research (Munich) GmbH, Munich, Germany
| | | | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
59
|
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci 2020; 16:1767-1773. [PMID: 32398947 PMCID: PMC7211166 DOI: 10.7150/ijbs.41105] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
B7-H3 (also known as CD276) is a newly found molecule of B7 family, which may be a promising target for cancer treatment. B7-H3 protein was demonstrated to be expressed in several kinds of tumor tissues including non-small-cell lung cancer (NSCLC) and prostate cancer. Its expression is highly associated with undesirable treatment outcomes and survival time, due to function of the immune checkpoint molecule. It was classified as either a co-stimulatory molecule for T cell activation or the nonimmunological role of regulating signaling pathways. Although there is still no agreed conclusion on the function of B7-H3, it may be a valuable target for cancer therapy. This review aims to provide a comprehensive, up-to-date summary of the advances in B7-H3 targeting approaches in cancer therapy. Although several challenges remain, B7-H3 offers a new therapeutic target with increased efficacy and less toxicity in future cancer treatment.
Collapse
Affiliation(s)
- Shuo Yang
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Wei Wei
- Guangdong Cord Blood Bank; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, China
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| |
Collapse
|
60
|
Chen Y, Tan J, Huang S, Huang X, Huang J, Chen J, Yu Z, Lu Y, Weng J, Du X, Li Y, Zha X, Chen S. Higher frequency of the CTLA-4 + LAG-3 + T-cell subset in patients with newly diagnosed acute myeloid leukemia. Asia Pac J Clin Oncol 2019; 16:e12-e18. [PMID: 31612643 DOI: 10.1111/ajco.13236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
AIM Immune suppression based on alternative regulation of immune checkpoint proteins, for example, programmed cell death receptor-1 (PD-1) and cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), which results in T-cell exhaustion, contributes to cancer development and progression. In this study, we sought to characterize the distribution of CTLA-4 and T-cell lymphocyte activation gene-3 (LAG-3) expression on exhausted T cells in different T-cell subsets from patients with acute myeloid leukemia (AML). METHODS The coexpression of CTLA-4 and LAG-3 on exhausted CD244+ and CD57+ T cells from the CD3+ , CD4+ , and CD8+ T-cell subsets in peripheral blood from 12 patients with newly diagnosed AML was analyzed by multicolor flow cytometry assay. RESULTS A significantly higher percentage of CTLA-4+ CD3+ , CD4+ and CD8+ T cells was found in patients with AML. In addition, higher numbers of both CTLA-4+ CD244+ and CTLA-4+ CD57+ CD3+ T cells were detected. Interestingly, the increased CTLA-4+ CD244+ T cells were predominantly CD4+ T cells. In contrast, the increased CTLA-4+ CD57+ T cells primarily consisted of the CD8+ T-cell subset. A high proportion of LAG-3+ T cells was found in only a few cases with AML; however, a significantly higher proportion of coexpression of CTLA-4 and LAG-3 in the CD3+ and CD8+ T-cell subsets was detected. CONCLUSION We for the first time observed higher CTLA-4+ CD244+ CD4+ , CTLA-4+ CD57+ CD8+ , CTLA-4+ LAG-3+ CD3+ and CTLA-4+ LAG-3+ CD8+ T cells in patients with AML, whereas the upregulated expression of LAG-3 on T cells was only found in a subset of the cases. These data may provide further information by complementing the heterogeneity of immune checkpoints expression in AML.
Collapse
Affiliation(s)
- Youchun Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuxin Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingying Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
61
|
Lei B, He A, Chen Y, Cao X, Zhang P, Liu J, Ma X, Qian L, Zhang W. Long non-coding RNA RPPH1 promotes the proliferation, invasion and migration of human acute myeloid leukemia cells through down-regulating miR-330-5p expression. EXCLI JOURNAL 2019; 18:824-837. [PMID: 31645843 PMCID: PMC6806202 DOI: 10.17179/excli2019-1686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023]
Abstract
Multiple studies have revealed that the long non-coding RNA RPPH1 (Ribonuclease P RNA Component H1) is involved in disease progression of solid tumors and neurodegenerative diseases. We aimed to explore the functions of RPPH1 in the pathogenesis of acute myeloid leukemia (AML) and the underlying molecular mechanisms. The expression of RPPH1 was examined in blood samples of AML patients and human AML cell lines including THP-1 and HL-60. The microRNAs (miRNAs) targets of RPPH1 were predicted with online tools and validated with the dual luciferase reporter assay. The malignant behaviors of AML cells with lentivirus medicated knockdown of RPPH1 and/or administration of miR-330-5p inhibitor were assessed. Cell proliferation was determined by the CCK-8 and EdU incorporation methods, and cell invasion and migration were assayed with transwell experiments. The effects of RPPH1 knockdown on in vivo tumor growth were evaluated in nude mice with xenografted THP-1 cells. RPPH1 was expressed in the AML tissues and cell lines and its high expression predicted worse overall survival in AML patients. miR-330-5p was validated to be a direct target of RPPH1. Knockdown of RPPH1 suppressed the proliferation, invasion and migration ability of human AML cells, which was partially reversed by additional administration with miR-330-5p inhibitor. RPPH1 knockdown significantly inhibited the growth of xenografted THP-1 tumor in nude mice. Our work highlights the contributions of RPPH1 in promoting AML progression through targeting miR-330-5p, and suggests that the RPPH1/miR-330-5p axis is a potential target for AML treatments.
Collapse
Affiliation(s)
- Bo Lei
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Aili He
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Yinxia Chen
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Xingmei Cao
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Pengyu Zhang
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Jie Liu
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Xiaorong Ma
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Lu Qian
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Wanggang Zhang
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| |
Collapse
|
62
|
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, Schulenburg A, Rabitsch W, Sperr WR, Wolf D. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci 2019; 20:E4233. [PMID: 31470642 PMCID: PMC6747233 DOI: 10.3390/ijms20174233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
Collapse
MESH Headings
- Acute Disease
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/therapy
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herrmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria
- Medical Clinic 3, Oncology, Hematology, Immunoncology & Rheumatology, University Clinic Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|