51
|
Zhang Y, Zhao H, Zhou S, He Y, Luo Q, Zhang F, Qiu D, Feng J, Wei Q, Chen L, Chen M, Chang J, Yang G, He G. Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. PLANTA 2018; 248:117-137. [PMID: 29616395 DOI: 10.1007/s00425-018-2887-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION TaGF14b enhances tolerance to multiple stresses through ABA signaling pathway by altering physiological and biochemical processes, including ROS-scavenging system, stomatal closure, compatible osmolytes, and stress-related gene expressions in tobaccos. The 14-3-3 proteins are involved in plant growth, development, and in responding to abiotic stresses. However, the precise functions of 14-3-3s in responding to drought and salt stresses remained unclear, especially in wheat. In this study, a 14-3-3 gene from wheat, designated TaGF14b, was cloned and characterized. TaGF14b was upregulated by polyethylene glycol 6000, sodium chloride, hydrogen peroxide, and abscisic acid (ABA) treatments. Ectopic expression of TaGF14b in tobacco conferred enhanced tolerance to drought and salt stresses. Transgenic tobaccos had longer root, better growth status, and higher relative water content, survival rate, photosynthetic rate, and water use efficiency than control plants under drought and salt stresses. The contribution of TaGF14b to drought and salt tolerance relies on the regulations of ABA biosynthesis and ABA signaling, as well as stomatal closure and stress-related gene expressions. Moreover, TaGF14b expression could significantly enhance the reactive oxygen species (ROS) scavenging system to ameliorate oxidative damage to cells. In addition, TaGF14b increased tolerance to osmotic stress evoked by drought and salinity through modifying water conservation and compatible osmolytes in plants. In conclusion, TaGF14b enhances tolerance to multiple abiotic stresses through the ABA signaling pathway in transgenic tobaccos by altering physiological and biochemical processes.
Collapse
Affiliation(s)
- Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shiyi Zhou
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, 430205, China
| | - Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ding Qiu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuhui Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lihong Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
52
|
Guo D, Yang ZP, Li HL, Wang Y, Zhu JH, Peng SQ. The 14-3-3 protein HbGF14a interacts with a RING zinc finger protein to regulate expression of the rubber transferase gene in Hevea brasiliensis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1903-1912. [PMID: 29432591 DOI: 10.1093/jxb/ery049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hevea brasiliensis is a key commercial source of natural rubber (cis 1,4-polyisoprene). In H. brasiliensis, rubber transferase is responsible for cis-1,4-polymerization of isoprene units from isopentenyl diphosphate and thus affects the yield of rubber. Little is known about the regulatory mechanisms of the rubber transferase gene at a molecular level. In this study we show that the 5'UTR intron of the promoter of the rubber transferase gene (HRT2) suppresses the expression of HRT2. A H. brasiliensis RING zinc finger protein (designated as HbRZFP1) was able to interact specifically with the HRT2 promoter to down-regulate its transcription in vivo. A 14-3-3 protein (named as HbGF14a) was identified as interacting with HbRZFP1, both in yeast and in planta. Transient co-expression of HbGF14a and HbRZFP1-encoding cDNAs resulted in HbRZFP1-mediated HRT2 transcription inhibition being relieved. HbGF14a repressed the protein-DNA binding of HbRZFP1 with the HRT2 promoter in yeast. We propose a regulatory mechanism by which the binding of HbGF14a to HbRZFP1 interferes with the interaction of HbRZFP1 with the HRT2 promoter, thereby repressing the protein-DNA binding between them. This study provides new insights into the role of HbGF14a in mediating expression of the rubber transferase gene in Hevea brasiliensis.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zi-Ping Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Tropical Crop Genetic Improvement Key Laboratory of Zhanjiang, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jia-Hong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
53
|
van Kleeff PJM, Gao J, Mol S, Zwart N, Zhang H, Li KW, de Boer AH. The Arabidopsis GORK K +-channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:219-231. [PMID: 29475088 DOI: 10.1016/j.plaphy.2018.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 05/23/2023]
Abstract
Potassium (K+) is a vital ion for many processes in the plant and fine-tuned ion channels control the K+-fluxes across the plasma membrane. GORK is an outward-rectifying K+-channel with important functions in stomatal closure and in root K+-homeostasis. In this study, post-translational modification of the Arabidopsis GORK ion channel and its regulation by 14-3-3 proteins was investigated. To investigate the possible interaction between GORK and 14-3-3s an in vivo pull-down from an Arabidopsis protein extract with recombinant GORK C-terminus (GORK-C) indeed identified endogenous 14-3-3s (LAMBDA, CHI, NU) as binding partners in a phosphorylation dependent manner. However, a direct interaction between 14-3-3's and GORK-C could not be demonstrated. Since the pull-down of 14-3-3s was phosphorylation dependent, we determined GORK-C as substrate for CPK21 phosphorylation and identified three CPK21 phospho-sites in the GORK protein (T344, S518 and S649). Moreover, interaction of 14-3-3 to CPK21 strongly stimulates its kinase activity; an effect that can result in increased GORK phosphorylation and change in activity. Using the non-invasive vibrating probe technique, we measured the predominantly GORK mediated salt induced K+-efflux from wild-type, gork, cpk21, aha2 and 14-3-3 mutant roots. The mutants cpk21 and aha2 did not show statistical significant differences compared to WT. However, two (out of six) 14-3-3 isoforms, CHI and PHI, have a clear function in the salt induced K+-efflux. In conclusion, our results show that GORK can be phosphorylated by CPK21 and suggest that 14-3-3 proteins control GORK activity through binding with and activation of CPK21.
Collapse
Affiliation(s)
- P J M van Kleeff
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - J Gao
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - S Mol
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - N Zwart
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - H Zhang
- Netherlands Proteomics Centre, Utrecht University - H.R. Kruyt gebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - K W Li
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus, Amsterdam, The Netherlands.
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava. Genes (Basel) 2018; 9:genes9020110. [PMID: 29461467 PMCID: PMC5852606 DOI: 10.3390/genes9020110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
GENERAL REGULATORY FACTOR (GRF) proteins play vital roles in the regulation of plant growth, development, and response to abiotic stress. However, little information is known for this gene family in cassava (Manihot esculenta). In this study, 15 MeGRFs were identified from the cassava genome and were clustered into the ε and the non-ε groups according to phylogenetic, conserved motif, and gene structure analyses. Transcriptomic analyses showed eleven MeGRFs with constitutively high expression in stems, leaves, and storage roots of two cassava genotypes. Expression analyses revealed that the majority of GRFs showed transcriptional changes under cold, osmotic, salt, abscisic acid (ABA), and H2O2 treatments. Six MeGRFs were found to be commonly upregulated by abiotic stress, ABA, and H2O2 treatments, which may be the converging points of multiple signaling pathways. Interaction network analysis identified 18 possible interactors of MeGRFs. Taken together, this study elucidates the transcriptional control of MeGRFs in tissue development and the responses of abiotic stress and related signaling in cassava. Some constitutively expressed, tissue-specific, and abiotic stress-responsive candidate MeGRF genes were identified for the further genetic improvement of crops.
Collapse
|
55
|
Camoni L, Visconti S, Aducci P, Marra M. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once. FRONTIERS IN PLANT SCIENCE 2018; 9:297. [PMID: 29593761 PMCID: PMC5859350 DOI: 10.3389/fpls.2018.00297] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/21/2018] [Indexed: 05/19/2023]
Abstract
In this review we highlight the advances achieved in the investigation of the role of 14-3-3 proteins in hormone signaling, biosynthesis, and transport. 14-3-3 proteins are a family of conserved molecules that target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. As a result, they regulate several cellular processes, ranging from metabolism to transport, growth, development, and stress response. High-throughput proteomic data and two-hybrid screen demonstrate that 14-3-3 proteins physically interact with many protein clients involved in the biosynthesis or signaling pathways of the main plant hormones, while increasing functional evidence indicates that 14-3-3-target interactions play pivotal regulatory roles. These advances provide a framework of our understanding of plant hormone action, suggesting that 14-3-3 proteins act as hubs of a cellular web encompassing different signaling pathways, transducing and integrating diverse hormone signals in the regulation of physiological processes.
Collapse
|
56
|
Bian S, Li X, Mainali H, Chen L, Dhaubhadel S. Genome-wide analysis of DWD proteins in soybean (Glycine max): Significance of Gm08DWD and GmMYB176 interaction in isoflavonoid biosynthesis. PLoS One 2017; 12:e0178947. [PMID: 28586359 PMCID: PMC5460815 DOI: 10.1371/journal.pone.0178947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
A subset of WD40 proteins with DWD motif has been proposed to serve as substrate receptor of DDB-CUL4-ROC1 complex, thereby getting involved in protein degradation via ubiquitination pathway. Here, we identified a total of 161 potential DWD proteins in soybean (Glycine max) by searching DWD motif against the genome-wide WD40 repeats, and classified them into 20 groups on the basis of their functional domains and annotations. These putative DWD genes in soybean displayed tissue-specific expression patterns, and their genome localization and analysis of evolutionary relationship identified 48 duplicated gene pairs within 161 GmDWDs. Among the 161 soybean DWD proteins, Gm08DWD was previously found to interact with an isoflavonoid regulator, GmMYB176. Therefore, Gm08DWD and its homologue Gm05DWD were further investigated. Expression profile of both genes in different soybean tissues revealed that Gm08DWD was expressed higher in embryo, while Gm05DWD exhibited maximum transcript accumulation in leaf. Our protein-protein interaction studies demonstrated that Gm08DWD interacts with GmMYB176. Although Gm08DWD was localized both in nucleus and cytoplasm, the resulting complex of Gm08DWD and GmMYB176 was mainly observed in the nucleus. This finding is consistent with the functional localization of CUL4-E3 ligase complex. In conclusion, the survey on soybean potential DWD protein is useful reference for the further functional investigation of their DDB1-binding ability. Based on the functional investigation of Gm08DWD, we speculate that protein-protein interaction between Gm08DWD and GmMYB176 may lead to the degradation of GmMYB176 through CUL4-DDB1complex.
Collapse
Affiliation(s)
- Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Hemanta Mainali
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
57
|
Ghorbel M, Cotelle V, Ebel C, Zaidi I, Ormancey M, Galaud JP, Hanin M. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:37-47. [PMID: 28224917 DOI: 10.1016/j.plantsci.2017.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 05/13/2023]
Abstract
Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn2+, whereas in the presence of Ca2+ ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Chantal Ebel
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; University of Sfax, Institute of Biotechnology, BP "1175", 3038 Sfax, Tunisia
| | - Ikram Zaidi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia
| | - Mélanie Ormancey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France.
| | - Moez Hanin
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; University of Sfax, Institute of Biotechnology, BP "1175", 3038 Sfax, Tunisia.
| |
Collapse
|
58
|
Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Mol Cell 2017; 66:117-128.e5. [PMID: 28344081 DOI: 10.1016/j.molcel.2017.02.016] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022]
Abstract
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.
Collapse
Affiliation(s)
- Ziyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxin Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
59
|
Cho BR, Hahn JS. CK2-dependent phosphorylation positively regulates stress-induced activation of Msn2 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:695-704. [PMID: 28330760 DOI: 10.1016/j.bbagrm.2017.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 01/28/2023]
Abstract
CK2 is a highly conserved Ser/Thr protein kinase involved in a large number of cellular processes. Here, we demonstrate that CK2-dependent phosphorylation positively regulates Msn2/4, the general stress response transcriptional activators in Saccharomyces cerevisiae, in response to various types of environmental stress conditions. CK2 overexpression elicits hyperactivation of Msn2/4, whereas deletion of one of the CK2 catalytic subunits, especially CKA2, leads to reduced transcriptional activity of Msn2/4 in response to glucose starvation, H2O2, and lactic acid. The CKA2 deletion mutant also shows increased stress sensitivity. CK2 phosphorylates Ser194 and Ser638 in Msn2 and replacement of Ser638 with alanine leads to reduced Msn2 activity upon stress and reduced tolerance to H2O2 and lactic acid. CKA2 deletion mutant shows shorter nuclear retention time of Msn2 upon lactic acid stress, suggesting that CK2 might regulate nuclear localization of Msn2. However, Msn2S194A, S638A mutant shows normal nuclear import and export patterns upon stress, suggesting that CK2 might positively regulate the general stress response not only by direct phosphorylation of Msn2/4, but also by regulating cellular translocation machinery.
Collapse
Affiliation(s)
- Bo-Ram Cho
- Interdisciplinary Program for Bioengineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- Interdisciplinary Program for Bioengineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
60
|
Ormancey M, Thuleau P, Mazars C, Cotelle V. CDPKs and 14-3-3 Proteins: Emerging Duo in Signaling. TRENDS IN PLANT SCIENCE 2017; 22:263-272. [PMID: 28065409 DOI: 10.1016/j.tplants.2016.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 05/19/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca2+-sensors that play pivotal roles in plant development and stress responses. They have the unique ability to directly translate intracellular Ca2+ signals into reversible phosphorylation events of diverse substrates which can mediate interactions with 14-3-3 proteins to modulate protein functions. Recent studies have revealed roles for the coordinated action of CDPKs and 14-3-3s in regulating diverse aspects of plant biology including metabolism, development, and stress responses. We review here the underlying interaction and cross-regulation of the two signaling proteins, and we discuss how this insight has led to the emerging concept of CDPK/14-3-3 signaling modules that could contribute to response specificity.
Collapse
Affiliation(s)
- Mélanie Ormancey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet Tolosan, France
| | - Patrice Thuleau
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet Tolosan, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet Tolosan, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
61
|
Li X, Xie X, Li J, Cui Y, Hou Y, Zhai L, Wang X, Fu Y, Liu R, Bian S. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s. BMC PLANT BIOLOGY 2017; 17:32. [PMID: 28143404 PMCID: PMC5286673 DOI: 10.1186/s12870-017-0983-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. RESULTS We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. CONCLUSION This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or under abiotic stresses.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Ji Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Yanming Hou
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yanli Fu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Ranran Liu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
62
|
Kim SW, Md Hasanuzzaman, Cho M, Kim NH, Choi HY, Han JW, Park HJ, Oh JW, Shin JG. Role of 14-3-3 sigma in over-expression of P-gp by rifampin and paclitaxel stimulation through interaction with PXR. Cell Signal 2017; 31:124-134. [PMID: 28077325 DOI: 10.1016/j.cellsig.2017.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/01/2017] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
In this study, we presented the role of 14-3-3σ to activate CK2-Hsp90β-PXR-MDR1 pathway on rifampin and paclitaxel treated LS174T cells and in vivo LS174T cell-xenografted nude mouse model. Following several in vitro and in vivo experiments, rifampin and paclitaxel were found to be stimulated the CK2-Hsp90β-PXR-MDR1 pathway. Of the proteins in this pathway, Pregnane X receptor (PXR) is a representative transcription factor of multidrug resistance protein 1 (MDR1). We constructed FLAG-PXR-LS174T stable cell lines and discovered 22 proteins that interacted with PXR on rifampin treatment. Among them, Hsp90β and 14-3-3σ were isolated for further study. Both the proteins were found to be localized in cytoplasm on rifampin treatment by using confocal microscopy. On the other hand, PXR was found to be localized in nucleus after rifampin and paclitaxel treatment by using cell fractionation assay. In Western blot analysis, rifampin did not influence the expression of 14-3-3σ protein. Transient transfection of 14-3-3σ into LS174T cells induced overexpression of PXR; however, P-glycoprotein (P-gp) was not changed significantly. P-gp overexpression was induced only when 14-3-3σ transfected LS174T cells were treated with rifampin and paclitaxel, whereas 14-3-3σ inhibition by nonpeptidic inhibitor, BV02 and 14-3-3σ siRNA reduced rifampin induced PXR and P-gp expression. Cell survival rates were much higher at 14-3-3σ-LS174T stable cell lines than LS174T cells following paclitaxel and vincristine treatment. This data indicates that 14-3-3σ contributes to P-gp overexpression through interaction with PXR with rifampin and paclitaxel treatment.
Collapse
Affiliation(s)
- So Won Kim
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea; The Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea.
| | - Md Hasanuzzaman
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Munju Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nam Hyun Kim
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Hye-Young Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| | - Jung Woo Han
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun June Park
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Republic of Korea.
| |
Collapse
|
63
|
Sluchanko NN, Gusev NB. Moonlighting chaperone‐like activity of the universal regulatory 14‐3‐3 proteins. FEBS J 2017; 284:1279-1295. [DOI: 10.1111/febs.13986] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/20/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolai N. Sluchanko
- Laboratory of Structural Biochemistry of Proteins A. N. Bach Institute of Biochemistry Federal Research Center of Biotechnology of the Russian Academy of Sciences Moscow Russia
| | - Nikolai B. Gusev
- Department of Biochemistry School of Biology Moscow State University Russia
| |
Collapse
|
64
|
Ma W, Kong Q, Mantyla JJ, Yang Y, Ohlrogge JB, Benning C. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:228-235. [PMID: 27322486 DOI: 10.1111/tpj.13244] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 05/10/2023]
Abstract
Plant 14-3-3 proteins are phosphopeptide-binding proteins, belonging to a large family of proteins involved in numerous physiological processes including primary metabolism, although knowledge about the function of 14-3-3s in plant lipid metabolism is sparse. WRINKLED1 (WRI1) is a key transcription factor that governs plant oil biosynthesis. At present, AtWRI1-interacting partners remain largely unknown. Here, we show that 14-3-3 proteins are able to interact with AtWRI1, both in yeast and plant cells. Transient co-expression of 14-3-3- and AtWRI1-encoding cDNAs led to increased oil biosynthesis in Nicotiana benthamiana leaves. Stable transgenic plants overproducing a 14-3-3 protein also displayed increased seed oil content. Co-production of a 14-3-3 protein with AtWRI1 enhanced the transcriptional activity of AtWRI1. The 14-3-3 protein was found to increase the stability of AtWRI1. A possible 14-3-3 binding motif was identified in one of the two AP2 domains of AtWRI1, which was also found to be critical for the interaction of AtWRI1 with an E3 ligase linker protein. Thus, we hypothesize a regulatory mechanism by which the binding of 14-3-3 to AtWRI1 interferes with the interaction of AtWRI1 and the E3 ligase, thereby protecting AtWRI1 from degradation. Taken together, our studies identified AtWRI1 as a client of 14-3-3 proteins and provide insights into a role of 14-3-3 in mediating plant oil biosynthesis.
Collapse
Affiliation(s)
- Wei Ma
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Que Kong
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jenny J Mantyla
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yang Yang
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John B Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
65
|
Mathew DE, Larsen K, Janeczek P, Lewohl JM. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs. Mol Cell Neurosci 2016; 75:44-9. [DOI: 10.1016/j.mcn.2016.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/20/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023] Open
|
66
|
Huarancca Reyes T, Scartazza A, Lu Y, Yamaguchi J, Guglielminetti L. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:195-202. [PMID: 27108206 DOI: 10.1016/j.plaphy.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways.
Collapse
Affiliation(s)
- Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, I-56017, Pisa, Italy
| | - Andrea Scartazza
- Istituto di Biologia Agro-ambientale e Forestale (IBAF), Consiglio Nazionale delle Ricerche, Via Salaria km 29,300, 00016, Monterotondo Scalo (RM), Italy
| | - Yu Lu
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810, Japan
| | - Lorenzo Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, I-56017, Pisa, Italy.
| |
Collapse
|
67
|
Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins. Amino Acids 2016; 48:1221-9. [PMID: 26825549 PMCID: PMC4833811 DOI: 10.1007/s00726-015-2157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022]
Abstract
Tyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (β, η, ζ, γ and ε) of different dimer composition. All 14-3-3 homodimers and their respective 14-3-3ε-heterodimers bound with similar high affinity (Kd values of 1.4–3.8 nM) to serine19 phosphorylated human TH (TH-pS19). We similarly observed a consistent activation of bovine (3.3- to 4.4-fold) and human TH-pS19 (1.3–1.6 fold) across all the different 14-3-3 dimer species, with homodimeric 14-3-3γ being the strongest activator. Both hetero- and homodimers of 14-3-3 strongly inhibited dephosphorylation of TH-pS19, and we speculate if this is an important homeostatic mechanism of 14-3-3 target-protein regulation in vivo. We conclude that TH is a robust interaction partner of different 14-3-3 dimer types with moderate variability between the 14-3-3 dimers on their regulation of TH.
Collapse
|
68
|
Gao X, Dan S, Xie Y, Qin H, Tang D, Liu X, He QY, Liu L. 14-3-3ζ reduces DNA damage by interacting with and stabilizing proliferating cell nuclear antigen. J Cell Biochem 2016; 116:158-69. [PMID: 25169136 DOI: 10.1002/jcb.24955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/22/2014] [Indexed: 01/16/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a processivity factor of DNA replication which plays critical roles in the regulation of DNA replication and repair. In this study, we show that PCNA interacts directly in vitro and in cells with 14-3-3ζ, an adaptor protein that regulates cell growth and response to DNA damage in eukaryotes. The interaction is mediated by at least two PCNA-binding sites on 14-3-3ζ, one of which is a novel non-canonical PIP (PCNA interacting protein) box. We find that DNA damages induced by UVC irradiation and MMS (methyl methanesulfonate) can enhance both the interaction of these two proteins and their co-localization with chromatin. Functional analyses suggest that 14-3-3ζ stabilizes PCNA possibly by regulating its ubiquitination, which impacts on DNA damage repair and cell viability.
Collapse
Affiliation(s)
- Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Chandna R, Augustine R, Kanchupati P, Kumar R, Kumar P, Arya GC, Bisht NC. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:12. [PMID: 26858736 PMCID: PMC4726770 DOI: 10.3389/fpls.2016.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/07/2016] [Indexed: 05/22/2023]
Abstract
14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses.
Collapse
|
70
|
Li M, Ren L, Xu B, Yang X, Xia Q, He P, Xiao S, Guo A, Hu W, Jin Z. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. FRONTIERS IN PLANT SCIENCE 2016; 7:1442. [PMID: 27713761 PMCID: PMC5031707 DOI: 10.3389/fpls.2016.01442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 05/19/2023]
Abstract
Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana.
Collapse
Affiliation(s)
- Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Licheng Ren
- Department of Biology, Hainan Medical CollegeHaikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoliang Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Qiyu Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Pingping He
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Susheng Xiao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Anping Guo
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Wei Hu
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Zhiqiang Jin
| |
Collapse
|
71
|
Qin C, Cheng L, Shen J, Zhang Y, Cao H, Lu D, Shen C. Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2016; 7:320. [PMID: 27047505 PMCID: PMC4801894 DOI: 10.3389/fpls.2016.00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/01/2016] [Indexed: 05/08/2023]
Abstract
The 14-3-3 gene family, which is conserved in eukaryotes, is involved in protein-protein interactions and mediates signal transduction. However, detailed investigations of the 14-3-3 gene family in Medicago truncatula are largely unknown. In this study, the identification and study of M. truncatula 14-3-3-family genes were performed based on the latest M. truncatula genome. In the M. truncatula genome, 10 14-3-3 family genes were identified, and they can be grouped into ε and non-ε groups. An exon-intron analysis showed that the gene structures are conserved in the same group. The protein structure analysis showed that 14-3-3 proteins in M. truncatula are composed of nine typical antiparallel α-helices. The expression patterns of Mt14-3-3 genes indicated that they are expressed in all tissues. Furthermore, the gene expression levels of Mt14-3-3 under hormone treatment and Sinorhizobium meliloti infection showed that the Mt14-3-3 genes were involve in nodule formation. Our findings lay a solid foundation for further functional studies of 14-3-3 in M. truncatula.
Collapse
|
72
|
Moeller HB, Slengerik-Hansen J, Aroankins T, Assentoft M, MacAulay N, Moestrup SK, Bhalla V, Fenton RA. Regulation of the Water Channel Aquaporin-2 via 14-3-3θ and -ζ. J Biol Chem 2015; 291:2469-84. [PMID: 26645691 DOI: 10.1074/jbc.m115.691121] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation.
Collapse
Affiliation(s)
- Hanne B Moeller
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, 8000 Aarhus, Denmark
| | - Joachim Slengerik-Hansen
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, 8000 Aarhus, Denmark
| | - Takwa Aroankins
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, 8000 Aarhus, Denmark
| | - Mette Assentoft
- the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Soeren K Moestrup
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, 8000 Aarhus, Denmark, the Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark, and
| | - Vivek Bhalla
- the Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California 94305
| | - Robert A Fenton
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, 8000 Aarhus, Denmark,
| |
Collapse
|
73
|
Gökirmak T, Denison FC, Laughner BJ, Paul AL, Ferl RJ. Phosphomimetic mutation of a conserved serine residue in Arabidopsis thaliana 14-3-3ω suggests a regulatory role of phosphorylation in dimerization and target interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:296-303. [PMID: 26512969 DOI: 10.1016/j.plaphy.2015.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
14-3-3s are evolutionarily conserved eukaryotic regulatory proteins that are involved in diverse biological processes. The common mode of action for the 14-3-3 proteins is through the binding of phosphorylated target proteins. In many species, multiple 14-3-3 isoforms exist and these different isoforms can exhibit distinct ranges of target interactions. The dimerization of 14-3-3s is central to their function. 14-3-3 isoforms can form different combinations of homo- and heterodimers, which contribute to the broad functional diversity of the family. In this study, we showed that phosphomimetic mutation of a conserved serine residue in the dimerization interface of 14-3-3 isoforms, Ser-62, not only affects the ability of Arabidopsis 14-3-3ω to form homodimers, but alters the range of 14-3-3 family members with which it can form heterodimers. Furthermore, we demonstrated that the phosphorylation status of Ser-62 can regulate the binding of 14-3-3ω to target proteins, suggesting that Ser-62 might be a conserved key element to modulate target binding in both plants and animals.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Fiona C Denison
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Beth J Laughner
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Robert J Ferl
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA; Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
74
|
Li R, Jiang X, Jin D, Dhaubhadel S, Bian S, Li X. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress. PLoS One 2015; 10:e0143280. [PMID: 26599110 PMCID: PMC4658069 DOI: 10.1371/journal.pone.0143280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses.
Collapse
Affiliation(s)
- Ruihua Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaotong Jiang
- College of Plant Science, Jilin University, Changchun, China
| | - Donghao Jin
- College of Plant Science, Jilin University, Changchun, China
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
75
|
Li C, Lin H, Dubcovsky J. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:70-82. [PMID: 26252567 PMCID: PMC5104200 DOI: 10.1111/tpj.12960] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 05/18/2023]
Abstract
The FLOWERING LOCUS T (FT) protein is a central component of a mobile flowering signal (florigen) that is transported from leaves to the shoot apical meristem (SAM). Two FT monomers and two DNA-binding bZIP transcription factors interact with a dimeric 14-3-3 protein bridge to form a hexameric protein complex. This complex, designated as the 'florigen activation complex' (FAC), plays a critical role in flowering. The wheat homologue of FT, designated FT1 (= VRN3), activates expression of VRN1 in the leaves and the SAM, promoting flowering under inductive long days. In this study, we show that FT1, other FT-like proteins, and different FD-like proteins, can interact with multiple wheat and barley 14-3-3 proteins. We also identify the critical amino acid residues in FT1 and FD-like proteins required for their interactions, and demonstrate that 14-3-3 proteins are necessary bridges to mediate the FT1-TaFDL2 interaction. Using in vivo bimolecular fluorescent complementation (BiFC) assays, we demonstrate that the interaction between FT1 and 14-3-3 occurs in the cytoplasm, and that this complex is then translocated to the nucleus, where it interacts with TaFDL2 to form a FAC. We also demonstrate that a FAC including FT1, TaFDL2 and Ta14-3-3C can bind to the VRN1 promoter in vitro. Finally, we show that relative transcript levels of FD-like and 14-3-3 genes vary among tissues and developmental stages. Since FD-like proteins determine the DNA specificity of the FACs, variation in FD-like gene expression can result in spatial and temporal modulation of the effects of mobile FT-like signals.
Collapse
Affiliation(s)
- Chengxia Li
- Department Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Huiqiong Lin
- Department Plant Sciences, University of California, Davis, CA, USA
| | - Jorge Dubcovsky
- Department Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Gordon and Betty Moore Foundation, Palo Alto, CA, USA
| |
Collapse
|
76
|
Chung C, Wu WH, Chen BS. Identification of Novel 14-3-3 Residues That Are Critical for Isoform-specific Interaction with GluN2C to Regulate N-Methyl-D-aspartate (NMDA) Receptor Trafficking. J Biol Chem 2015; 290:23188-200. [PMID: 26229101 DOI: 10.1074/jbc.m115.648436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/15/2023] Open
Abstract
The 14-3-3 family of proteins is widely distributed in the CNS where they are major regulators of essential neuronal functions. There are seven known mammalian 14-3-3 isoforms (ζ,, τ, ϵ, η, β, and σ), which generally function as adaptor proteins. Previously, we have demonstrated that 14-3-3ϵ isoform dynamically regulates forward trafficking of GluN2C-containing NMDA receptors (NMDARs) in cerebellar granule neurons, that when expressed on the surface, promotes neuronal survival following NMDA-induced excitotoxicity. Here, we report 14-3-3 isoform-specific binding and functional regulation of GluN2C. In particular, we show that GluN2C C-terminal domain (CTD) binds to all 14-3-3 isoforms except 14-3-3σ, and binding is dependent on GluN2C serine 1096 phosphorylation. Co-expression of 14-3-3 (ζ and ϵ) and GluN1/GluN2C promotes the forward delivery of receptors to the cell surface. We further identify novel residues serine 145, tyrosine 178, and cysteine 189 on α-helices 6, 7, and 8, respectively, within ζ-isoform as part of the GluN2C binding motif and independent of the canonical peptide binding groove. Mutation of these conserved residues abolishes GluN2C binding and has no functional effect on GluN2C trafficking. Reciprocal mutation of alanine 145, histidine 180, and isoleucine 191 on 14-3-3σ isoform promotes GluN2C binding and surface expression. Moreover, inhibiting endogenous 14-3-3 using a high-affinity peptide inhibitor, difopein, greatly diminishes GluN2C surface expression. Together, these findings highlight the isoform-specific structural and functional differences within the 14-3-3 family of proteins, which determine GluN2C binding and its essential role in targeting the receptor to the cell surface to facilitate glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Connie Chung
- From the Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Wei-Hua Wu
- From the Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Bo-Shiun Chen
- From the Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| |
Collapse
|
77
|
Yoon GM. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis. Mol Cells 2015; 38:597-603. [PMID: 26095506 PMCID: PMC4507024 DOI: 10.14348/molcells.2015.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
78
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:1210. [PMID: 26858725 PMCID: PMC4729941 DOI: 10.3389/fpls.2015.01210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 05/19/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet-Tolosan, France
- *Correspondence: Valérie Cotelle,
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS–CEA–Université Aix-MarseilleSaint-Paul-lez-Durance, France
| |
Collapse
|
79
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26858725 DOI: 10.3389/fpis.2015.01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS Castanet-Tolosan, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille Saint-Paul-lez-Durance, France
| |
Collapse
|
80
|
Gao J, van Kleeff PJM, Oecking C, Li KW, Erban A, Kopka J, Hincha DK, de Boer AH. Light modulated activity of root alkaline/neutral invertase involves the interaction with 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:785-96. [PMID: 25256212 DOI: 10.1111/tpj.12677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 05/17/2023]
Abstract
Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580). We demonstrate that Ser547 at the extreme C-terminus of the AtCINV1 protein is a substrate of calcium-dependent kinases (CPK3 and 21) and that phosphorylation creates a high-affinity binding site for 14-3-3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14-3-3 proteins enhances its activity. The analysis of three quadruple 14-3-3 mutants generated from six T-DNA insertion mutants of the non-epsilon family shows both specificity as well as redundancy for this function of 14-3-3 proteins. The strong reduction in hexose levels in the roots of one 14-3-3 quadruple mutant plant is in line with the activating function of 14-3-3 proteins. The physiological relevance of this mechanism that affects A/N-invertase activity is underscored by the light-induced activation and is another example of the central role of 14-3-3 proteins in mediating dark/light signaling. The nature of the light-induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca(++) changes that activate calcium-dependent kinases, await further study.
Collapse
Affiliation(s)
- Jing Gao
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
81
|
van Kleeff PJM, Jaspert N, Li KW, Rauch S, Oecking C, de Boer AH. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5877-88. [PMID: 25189593 PMCID: PMC4203132 DOI: 10.1093/jxb/eru338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation.
Collapse
Affiliation(s)
- P J M van Kleeff
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - N Jaspert
- Centre for Plant Molecular Biology-Plant Physiology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - K W Li
- Faculty of Earth and Life Sciences, Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - S Rauch
- Centre for Plant Molecular Biology-Plant Physiology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - C Oecking
- Centre for Plant Molecular Biology-Plant Physiology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - A H de Boer
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
82
|
Catalá R, López-Cobollo R, Mar Castellano M, Angosto T, Alonso JM, Ecker JR, Salinas J. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. THE PLANT CELL 2014; 26:3326-42. [PMID: 25122152 PMCID: PMC4371832 DOI: 10.1105/tpc.114.127605] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 05/18/2023]
Abstract
In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis.
Collapse
Affiliation(s)
- Rafael Catalá
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| | - Rosa López-Cobollo
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| | - M Mar Castellano
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Campus de Excelencia Internacional Agroalimentaria ceiA3, Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain
| | - José M Alonso
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| |
Collapse
|
83
|
Yang ZP, Li HL, Guo D, Tang X, Peng SQ. Identification and characterization of the 14-3-3 gene family in Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:121-7. [PMID: 24751399 DOI: 10.1016/j.plaphy.2014.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/29/2014] [Indexed: 05/08/2023]
Abstract
The 14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Although the genome-wide analysis of this family has been carried out in certain plant species, little is known about 14-3-3 protein genes in rubber tree (Hevea brasiliensis). In this study, we identified 10 14-3-3 protein genes (designated as HbGF14a to HbGF14j) in the latest rubber tree genome. A phylogenetic tree was constructed and found to demonstrate that HbGF14s can be divided into two major groups. Tissue-specific expression profiles showed that 10 HbGF14 were expressed in at least one of the tissues, which suggested that HbGF14s participated in numerous cellular processes. The 10 HbGF14s responded to jasmonic acid (JA) and ethylene (ET) treatment, which suggested that these HbGF14s were involved in response to JA and ET signaling. The target of HbGF14c protein was related to small rubber particle protein, a major rubber particle protein that is involved in rubber biosynthesis. These findings suggested that 14-3-3 proteins may be involved in the regulation of natural rubber biosynthesis.
Collapse
Affiliation(s)
- Zi-Ping Yang
- College of Agriculture, Hainan University, Haikou 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4# Xueyuan Rd., Haikou 571101, China
| | - Hui-Liang Li
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Dong Guo
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiao Tang
- College of Agriculture, Hainan University, Haikou 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4# Xueyuan Rd., Haikou 571101, China
| | - Shi-Qing Peng
- College of Agriculture, Hainan University, Haikou 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4# Xueyuan Rd., Haikou 571101, China.
| |
Collapse
|
84
|
Swatek KN, Wilson RS, Ahsan N, Tritz RL, Thelen JJ. Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Biochem J 2014; 459:15-25. [PMID: 24438037 PMCID: PMC4127189 DOI: 10.1042/bj20130035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant 14-3-3 proteins are phosphorylated at multiple sites in vivo; however, the protein kinase(s) responsible are unknown. Of the 34 CPK (calcium-dependent protein kinase) paralogues in Arabidopsis thaliana, three (CPK1, CPK24 and CPK28) contain a canonical 14-3-3-binding motif. These three, in addition to CPK3, CPK6 and CPK8, were tested for activity against recombinant 14-3-3 proteins χ and ε. Using an MS-based quantitative assay we demonstrate phosphorylation of 14-3-3 χ and ε at a total of seven sites, one of which is an in vivo site discovered in Arabidopsis. CPK autophosphorylation was also comprehensively monitored by MS and revealed a total of 45 sites among the six CPKs analysed, most of which were located within the N-terminal variable and catalytic domains. Among these CPK autophosphorylation sites was Tyr463 within the calcium-binding EF-hand domain of CPK28. Of all CPKs assayed, CPK28, which contained an autophosphorylation site (Ser43) within a canonical 14-3-3-binding motif, showed the highest activity against 14-3-3 proteins. Phosphomimetic mutagenesis of Ser72 to aspartate on 14-3-3χ, which is adjacent to the 14-3-3-binding cleft and conserved among all 14-3-3 isoforms, prevented 14-3-3-mediated inhibition of phosphorylated nitrate reductase.
Collapse
Affiliation(s)
- Kirby N. Swatek
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Rashaun S. Wilson
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Nagib Ahsan
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Rebecca L. Tritz
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, U.S.A
| |
Collapse
|
85
|
Lozano-Durán R, Bourdais G, He SY, Robatzek S. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. THE NEW PHYTOLOGIST 2014; 202:259-269. [PMID: 24372399 DOI: 10.1111/nph.12651] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/08/2013] [Indexed: 05/19/2023]
Abstract
Successful pathogens counter immunity at multiple levels, mostly through the action of effectors. Pseudomonas syringae secretes c. 30 effectors, some of which have been shown to inhibit plant immunity triggered upon perception of conserved pathogen-associated molecular patterns (PAMPs). One of these is HopM1, which impairs late immune responses through targeting the vesicle trafficking-related AtMIN7 for degradation. Here, we report that in planta expressed HopM1 suppresses two early PAMP-triggered responses, the oxidative burst and stomatal immunity, both of which seem to require proteasomal function but are independent of AtMIN7. Notably, a 14-3-3 protein, GRF8/AtMIN10, was found previously to be a target of HopM1 in vivo, and expression of HopM1 mimics the effect of chemically and genetically disrupting 14-3-3 function. Our data further show that the function of 14-3-3 proteins is required for PAMP-triggered oxidative burst and stomatal immunity, and chemical-mediated disruption of the 14-3-3 interactions with their client proteins restores virulence of a HopM1-deficient P. syringae mutant, providing a link between HopM1 and the involvement of 14-3-3 proteins in plant immunity. Taken together, these results unveil the impact of HopM1 on the PAMP-triggered oxidative burst and stomatal immunity in an AtMIN7-independent manner, most likely acting at the function of (a) 14-3-3 protein(s).
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gildas Bourdais
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, East Lansing, MI, 48824, USA
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
86
|
Pallucca R, Visconti S, Camoni L, Cesareni G, Melino S, Panni S, Torreri P, Aducci P. Specificity of ε and non-ε isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLoS One 2014; 9:e90764. [PMID: 24603559 PMCID: PMC3946203 DOI: 10.1371/journal.pone.0090764] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/04/2014] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are a family of ubiquitous dimeric proteins that modulate many cellular functions in all eukaryotes by interacting with target proteins. 14-3-3s exist as a number of isoforms that in Arabidopsis identifies two major groups named ε and non-ε. Although isoform specificity has been demonstrated in many systems, the molecular basis for the selection of specific sequence contexts has not been fully clarified. In this study we have investigated isoform specificity by measuring the ability of different Arabidopsis 14-3-3 isoforms to activate the H+-ATPase. We observed that GF14 isoforms of the non-ε group were more effective than ε group isoforms in the interaction with the H+-ATPase and in the stimulation of its activity. Kinetic and thermodynamic parameters of the binding of GF14ε and GF14ω isoforms, representative of ε and non-ε groups respectively, with the H+-ATPase, have been determined by Surface Plasmon Resonance analysis demonstrating that the higher affinity of GF14ω is mainly due to slower dissociation. The role of the C-terminal region and of a Gly residue located in the loop 8 and conserved in all non-ε isoforms has also been studied by deletion and site-specific mutagenesis. The C-terminal domains, despite their high divergence, play an auto-inhibitory role in both isoforms and they, in addition to a specific residue located in the loop 8, contribute to isoform specificity. To investigate the generality of these findings, we have used the SPOT-synthesis technology to array a number of phosphopeptides matching known or predicted 14-3-3 binding sites present in a number of clients. The results of this approach confirmed isoform specificity in the recognition of several target peptides, suggesting that the isoform specificity may have an impact on the modulation of a variety of additional protein activities, as suggested by probing of a phosphopeptide array with members of the two 14-3-3 groups.
Collapse
Affiliation(s)
- Roberta Pallucca
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Cesareni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; IRCSS, Research Institute "Fondazione Santa Lucia", Rome, Italy
| | - Sonia Melino
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata", Rome, Italy
| | - Simona Panni
- Department DiBEST, University of Calabria, Rende, Italy
| | - Paola Torreri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
87
|
Zhou H, Lin H, Chen S, Becker K, Yang Y, Zhao J, Kudla J, Schumaker KS, Guo Y. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. THE PLANT CELL 2014; 26:1166-82. [PMID: 24659330 PMCID: PMC4001376 DOI: 10.1105/tpc.113.117069] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion (Na(+)) homeostasis and salt tolerance in plants. Until recently, little was known about the mechanisms that inhibit the SOS pathway when plants are grown in the absence of salt stress. In this study, we report that the Arabidopsis thaliana 14-3-3 proteins λ and κ interact with SOS2 and repress its kinase activity. Growth in the presence of salt decreases the interaction between SOS2 and the 14-3-3 proteins, leading to kinase activation in planta. 14-3-3 λ interacts with the SOS2 junction domain, which is important for its kinase activity. A phosphorylation site (Ser-294) is identified within this domain by mass spectrometry. Mutation of Ser-294 to Ala or Asp does not affect SOS2 kinase activity in the absence of the 14-3-3 proteins. However, in the presence of 14-3-3 proteins, the inhibition of SOS2 activity is decreased by the Ser-to-Ala mutation and enhanced by the Ser-to-Asp exchange. These results identify 14-3-3 λ and κ as important regulators of salt tolerance. The inhibition of SOS2 mediated by the binding of 14-3-3 proteins represents a novel mechanism that confers basal repression of the SOS pathway in the absence of salt stress.
Collapse
Affiliation(s)
- Huapeng Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huixin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Katia Becker
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Center for Plant Gene Research, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
88
|
Uhart M, Bustos DM. Protein intrinsic disorder and network connectivity. The case of 14-3-3 proteins. Front Genet 2014; 5:10. [PMID: 24550932 PMCID: PMC3909831 DOI: 10.3389/fgene.2014.00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022] Open
Abstract
The understanding of networks is a common goal of an unprecedented array of traditional disciplines. One of the protein network properties most influenced by the structural contents of its nodes is the inter-connectivity. Recent studies in which structural information was included into the topological analysis of protein networks revealed that the content of intrinsic disorder in the nodes could modulate the network topology, rewire networks, and change their inter-connectivity, which is defined by its clustering coefficient. Here, we review the role of intrinsic disorder present in the partners of the highly conserved 14-3-3 protein family on its interaction networks. The 14-3-3s are phospho-serine/threonine binding proteins that have strong influence in the regulation of metabolism and signal transduction networks. Intrinsic disorder increases the clustering coefficients, namely the inter-connectivity of the nodes within each 14-3-3 paralog networks. We also review two new ideas to measure intrinsic disorder independently of the primary sequence of proteins, a thermodynamic model and a method that uses protein structures and their solvent environment. This new methods could be useful to explain unsolved questions about versatility and fixation of intrinsic disorder through evolution. The relation between the intrinsic disorder and network topologies could be an interesting model to investigate new implicitness of the graph theory into biology.
Collapse
Affiliation(s)
- Marina Uhart
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas Chascomús, Argentina
| | - Diego M Bustos
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas Chascomús, Argentina
| |
Collapse
|
89
|
Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics. Arch Biochem Biophys 2013; 541:1-12. [PMID: 24211434 DOI: 10.1016/j.abb.2013.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 01/04/2023]
Abstract
14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo.
Collapse
|
90
|
Liu L, Zhu Y, Shen L, Yu H. Emerging insights into florigen transport. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:607-13. [PMID: 23810436 DOI: 10.1016/j.pbi.2013.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/01/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
The photoperiodic control of flowering in plants begins with the perception of seasonal changes in day length and consequential induction of a mobile floral stimulus in leaves. This stimulus called florigen is transported from leaves to the shoot apical meristem to provoke the initiation of floral meristems. Decades of efforts have identified that the proteins encoded by FLOWERING LOCUS T (FT) in Arabidopsis and its orthologs in other plant species are part of the long-sought florigen. Emerging evidence suggests that long-distance transport of FT towards the shoot apical meristem occurs through the phloem in a regulated manner. This review summarizes the recent advances in understanding florigen transport and discusses the proven and potential regulators required for this process.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 10 Science Drive 4, 117543 Singapore, Singapore
| | | | | | | |
Collapse
|
91
|
Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D. Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). MOLECULAR PLANT 2013; 6:1274-1289. [PMID: 23253603 PMCID: PMC3971370 DOI: 10.1093/mp/sss158] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
14-3-3 proteins play an important role in the regulation of many cellular processes. The Arabidopsis vacuolar two-pore K(+) channel 1 (TPK1) interacts with the 14-3-3 protein GRF6 (GF14-λ). Upon phosphorylation of the putative binding motif in the N-terminus of TPK1, GRF6 binds to TPK1 and activates the potassium channel. In order to gain a deeper understanding of this 14-3-3-mediated signal transduction, we set out to identify the respective kinases, which regulate the phosphorylation status of the 14-3-3 binding motif in TPK1. Here, we report that the calcium-dependent protein kinases (CDPKs) can phosphorylate and thereby activate the 14-3-3 binding motif in TPK1. Focusing on the stress-activated kinase CPK3, we visualized direct and specific interaction of TPK1 with the kinase at the tonoplast in vivo. In line with its proposed role in K(+) homeostasis, TPK1 phosphorylation was found to be induced by salt stress in planta, and both cpk3 and tpk1 mutants displayed salt-sensitive phenotypes. Molecular modeling of the TPK1-CPK3 interaction domain provided mechanistic insights into TPK1 stress-regulated phosphorylation responses and pinpointed two arginine residues in the N-terminal 14-3-3 binding motif in TPK1 critical for kinase interaction. Taken together, our studies provide evidence for an essential role of the vacuolar potassium channel TPK1 in salt-stress adaptation as a target of calcium-regulated stress signaling pathways involving Ca(2+), Ca(2+)-dependent kinases, and 14-3-3 proteins.
Collapse
Affiliation(s)
- Andreas Latz
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Norbert Mehlmer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Simone Zapf
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Thomas D. Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Barbara Pfister
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Edina Csaszar
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Markus Teige
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
- To whom correspondence should be addressed. , tel. +49 (0)931/888-6108, fax +49 (0)931/888-6157
| |
Collapse
|
92
|
Taoka KI, Ohki I, Tsuji H, Kojima C, Shimamoto K. Structure and function of florigen and the receptor complex. TRENDS IN PLANT SCIENCE 2013; 18:287-94. [PMID: 23477923 DOI: 10.1016/j.tplants.2013.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 05/21/2023]
Abstract
In the 1930s, the flowering hormone, florigen, was proposed to be synthesized in leaves under inductive day length and transported to the shoot apex, where it induces flowering. More recently, generated genetic and biochemical data suggest that florigen is a protein encoded by the gene, FLOWERING LOCUS T (FT). A rice (Oryza sativa) FT homolog, Hd3a, interacts with the rice FD homolog, OsFD1, via a 14-3-3 protein. Formation of this tri-protein complex is essential for flowering promotion by Hd3a in rice. In addition, the multifunctionality of FT homologs, other than for flowering promotion, is an emerging concept. Here we review the structural and biochemical features of the florigen protein complex and discuss the molecular basis for the multifunctionality of FT proteins.
Collapse
Affiliation(s)
- Ken-ichiro Taoka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
93
|
Giska F, Lichocka M, Piechocki M, Dadlez M, Schmelzer E, Hennig J, Krzymowska M. Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins. PLANT PHYSIOLOGY 2013; 161:2049-61. [PMID: 23396834 PMCID: PMC3613475 DOI: 10.1104/pp.112.209023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/06/2013] [Indexed: 05/02/2023]
Abstract
HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector.
Collapse
Affiliation(s)
- Fabian Giska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Marcin Piechocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Elmon Schmelzer
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | | |
Collapse
|
94
|
Yoon GM, Kieber JJ. 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. THE PLANT CELL 2013; 25:1016-28. [PMID: 23512855 PMCID: PMC3634674 DOI: 10.1105/tpc.113.110106] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 05/19/2023]
Abstract
14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Plants have large 14-3-3 gene families, and many binding partners have been identified, though relatively few functions have been defined. Here, we demonstrate that 14-3-3 proteins interact with multiple 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms in Arabidopsis thaliana. ACS catalyzes the generally rate-limiting step in the biosynthesis of the phytohormone ethylene. This interaction increases the stability of the ACS proteins. 14-3-3s also interact with the ETHYLENE-OVERPRODUCER1 (ETO1)/ETO1-LIKE (EOLs), a group of three functionally redundant proteins that are components of a CULLIN-3 E3 ubiquitin ligase that target a subset of the ACS proteins for rapid degradation by the 26S proteasome. In contrast with ACS, the interaction with 14-3-3 destabilizes the ETO1/EOLs. The level of the ETO1/EOLs in vivo plays a role in mediating ACS protein turnover, with increased levels leading to a decrease in ACS protein levels. These studies demonstrate that regulation of ethylene biosynthesis occurs by a mechanism in which 14-3-3 proteins act through a direct interaction and stabilization of ACS and through decreasing the abundance of the ubiquitin ligases that target a subset of ACS proteins for degradation.
Collapse
|
95
|
Uhart M, Bustos DM. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation. PLoS One 2013; 8:e55703. [PMID: 23418452 PMCID: PMC3572099 DOI: 10.1371/journal.pone.0055703] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/28/2012] [Indexed: 01/24/2023] Open
Abstract
The 14-3-3 protein family interacts with more than 700 different proteins in mammals, in part as a result of its specific phospho-serine/phospho-threonine binding activity. Upon binding to 14-3-3, the stability, subcellular localization and/or catalytic activity of the ligands are modified. Seven paralogs are strictly conserved in mammalian species. Although initially thought as redundant, the number of studies showing specialization is growing. We created a protein-protein interaction network for 14-3-3, kinases and their substrates signaling in human cells. We included information of phosphorylation, acetylation and other PTM sites, obtaining a complete representation of the 14-3-3 binding partners and their modifications. Using a computational system approach we found that networks of each 14-3-3 isoform are statistically different. It was remarkable to find that Tyr was the most phosphorylatable amino acid in domains of 14-3-3 epsilon partners. This, together with the over-representation of SH3 and Tyr_Kinase domains, suggest that epsilon could be involved in growth factors receptors signaling pathways particularly. We also found that within zeta's network, the number of acetylated partners (and the number of modify lysines) is significantly higher compared with each of the other isoforms. Our results imply previously unreported hidden differences of the 14-3-3 isoforms interaction networks. The phosphoproteome and lysine acetylome within each network revealed post-transcriptional regulation intertwining phosphorylation and lysine acetylation. A global understanding of these networks will contribute to predict what could occur when regulatory circuits become dysfunctional or are modified in response to external stimuli.
Collapse
Affiliation(s)
- Marina Uhart
- Laboratorio de Biología Estructural y Celular de Modificaciones post-traduccionales, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Int. Marino Km 8.2, Chascomus, Argentina
| | - Diego M. Bustos
- Laboratorio de Biología Estructural y Celular de Modificaciones post-traduccionales, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Int. Marino Km 8.2, Chascomus, Argentina
| |
Collapse
|