51
|
Oh J, Warner M, Ambler JE, Schuch R. The Lysin Exebacase Has a Low Propensity for Resistance Development in Staphylococcus aureus and Suppresses the Emergence of Resistance to Antistaphylococcal Antibiotics. Microbiol Spectr 2023; 11:e0526122. [PMID: 36862002 PMCID: PMC10100934 DOI: 10.1128/spectrum.05261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Exebacase (CF-301) belongs to a novel class of protein-based antibacterial agents, called lysins (peptidoglycan hydrolases). Exebacase exhibits potent antistaphylococcal activity and is the first lysin to initiate clinical trials in the United States. To support clinical development, the potential for resistance development to exebacase was assessed over 28 days of serial daily subculture in the presence of increasing concentrations of the lysin performed in its reference broth medium. Exebacase MICs remained unchanged over serial subculture for three replicates each of methicillin-susceptible Staphylococcus aureus (MSSA) strain ATCC 29213 and methicillin-resistant S. aureus (MRSA) strain MW2. For comparator antibiotics also tested, oxacillin MICs increased by 32-fold with ATCC 29213 and daptomycin and vancomycin MICs increased by 16- and 8-fold, respectively, with MW2. Serial passage was also used to examine the capacity of exebacase to suppress selection for increased oxacillin, daptomycin, and vancomycin MICs when used together in combination, wherein daily exposures to increasing concentrations of antibiotic were performed over 28 days with the added presence of fixed sub-MIC amounts of exebacase. Exebacase suppressed increases in antibiotic MICs over this period. These findings are consistent with a low propensity for resistance to exebacase and an added benefit of reducing the potential for development of antibiotic resistance. IMPORTANCE To guide development of an investigational new antibacterial drug, microbiological data are required to understand the potential for development of resistance to the drug in the target organism(s). Exebacase is a lysin (peptidoglycan hydrolase) that represents a novel antimicrobial modality based on degradation of the cell wall of Staphylococcus aureus. Exebacase resistance was examined here using an in vitro serial passage method that assesses the impact of daily exposures to increasing concentrations of exebacase over 28 days in medium approved for use in exebacase antimicrobial susceptibility testing (AST) by the Clinical and Laboratory Standards Institute (CLSI). No changes in susceptibility to exebacase were observed over the 28-day period for multiple replicates of two S. aureus strains, indicating a low propensity for resistance development. Interestingly, while high-level resistance to commonly used antistaphylococcal antibiotics was readily obtained using the same method, the added presence of exebacase acted to suppress antibiotic resistance development.
Collapse
Affiliation(s)
- Jun Oh
- ContraFect Corporation, Yonkers, New York, USA
| | | | | | | |
Collapse
|
52
|
Gorodnichev RB, Kornienko MA, Malakhova MV, Bespiatykh DA, Manuvera VA, Selezneva OV, Veselovsky VA, Bagrov DV, Zaychikova MV, Osnach VA, Shabalina AV, Goloshchapov OV, Bespyatykh JA, Dolgova AS, Shitikov EA. Isolation and Characterization of the First Zobellviridae Family Bacteriophage Infecting Klebsiella pneumoniae. Int J Mol Sci 2023; 24:4038. [PMID: 36835449 PMCID: PMC9960094 DOI: 10.3390/ijms24044038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.
Collapse
Affiliation(s)
- Roman B. Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Maria A. Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Maja V. Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry A. Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Valentin A. Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oksana V. Selezneva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry V. Bagrov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marina V. Zaychikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Veronika A. Osnach
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 St. Petersburg, Russia
| | - Anna V. Shabalina
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 St. Petersburg, Russia
| | - Oleg V. Goloshchapov
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Julia A. Bespyatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Anna S. Dolgova
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 St. Petersburg, Russia
| | - Egor A. Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
53
|
Klumpp J, Dunne M, Loessner MJ. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr Opin Microbiol 2023; 71:102240. [PMID: 36446275 DOI: 10.1016/j.mib.2022.102240] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Bacteriophages are the most abundant biological entity on earth, acting as the predators and evolutionary drivers of bacteria. Owing to their inherent ability to specifically infect and kill bacteria, phages and their encoded endolysins and receptor-binding proteins (RBPs) have enormous potential for development into precision antimicrobials for treatment of bacterial infections and microbial disbalances; or as biocontrol agents to tackle bacterial contaminations during various biotechnological processes. The extraordinary binding specificity of phages and RBPs can be exploited in various areas of bacterial diagnostics and monitoring, from food production to health care. We review and describe the distinctive features of phage RBPs, explain why they are attractive candidates for use as therapeutics and in diagnostics, discuss recent applications using RBPs, and finally provide our perspective on how synthetic technology and artificial intelligence-driven approaches will revolutionize how we use these tools in the future.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
54
|
Phage Therapy as an Alternative Treatment Modality for Resistant Staphylococcus aureus Infections. Antibiotics (Basel) 2023; 12:antibiotics12020286. [PMID: 36830196 PMCID: PMC9952150 DOI: 10.3390/antibiotics12020286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The production and use of antibiotics increased significantly after the Second World War due to their effectiveness against bacterial infections. However, bacterial resistance also emerged and has now become an important global issue. Those most in need are typically high-risk and include individuals who experience burns and other wounds, as well as those with pulmonary infections caused by antibiotic-resistant bacteria, such as Pseudomonas aeruginosa, Acinetobacter sp, and Staphylococci. With investment to develop new antibiotics waning, finding and developing alternative therapeutic strategies to tackle this issue is imperative. One option remerging in popularity is bacteriophage (phage) therapy. This review focuses on Staphylococcus aureus and how it has developed resistance to antibiotics. It also discusses the potential of phage therapy in this setting and its appropriateness in high-risk people, such as those with cystic fibrosis, where it typically forms a biofilm.
Collapse
|
55
|
Abedon ST. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics (Basel) 2023; 12:245. [PMID: 36830158 PMCID: PMC9952518 DOI: 10.3390/antibiotics12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
56
|
Interrogation of the contribution of (endo)lysin domains to tune their bacteriolytic efficiency provides a novel clue to design superior antibacterials. Int J Biol Macromol 2022; 223:1042-1053. [PMID: 36370862 DOI: 10.1016/j.ijbiomac.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.
Collapse
|
57
|
Chernyshov SV, Tsvetkova DV, Mikoulinskaia GV. A rapid and efficient technique for the isolation of Bacillus genomic DNA using a cocktail of peptidoglycan hydrolases of different type. World J Microbiol Biotechnol 2022; 39:31. [PMID: 36454347 DOI: 10.1007/s11274-022-03475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The paper suggests a rapid and efficient technique for isolation of genomic DNA from the bacteria of the genus Bacillus, which is based on the hydrolysis of cell wall peptidoglycan by a cocktail of peptidoglycan hydrolases of different type (L,D-peptidase and N-acetylmuramidase). The comparing of conventional techniques for the isolation of genomic DNA using: a microwave treatment; a treatment with ionic detergents (SDS, CTAB) or a chaotropic agent (GuSCN); and enzymatic hydrolysis (nonspecific, with proteinase K, or specific, with peptidoglycan hydrolases) conducted on Bacillus megaterium, B. subtilis, B. licheniformis, B. cereus showed that the most effective ones were techniques based on the specific hydrolysis of cell wall peptidoglycan. The highest efficiency of hydrolysis was obtained with an enzyme cocktail consisted of hen egg muramidase (HEWL) and highly active phage-specific L,D-peptidase EndoRB49 revealed a pronounced synergism between the peptidase and the muramidase. The cocktail treatment of Bacillus cells could be reduced to 10 min without affecting the yield of nucleic acids. The quality of DNA preparations was assessed using the restriction and PCR assays, as well as agarose gel electrophoresis. Using peptidoglycan hydrolases of different type, which have a good synergy, makes the technique very efficient and perspective for the application when rapid and effective disintegration of cell wall is crucial to avoid adverse effects of macromolecular denaturation.
Collapse
Affiliation(s)
- Sergei V Chernyshov
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, 142290, Pushchino, Moscow region, Russia
| | - Diana V Tsvetkova
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, 142290, Pushchino, Moscow region, Russia
| | - Galina V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, 142290, Pushchino, Moscow region, Russia.
| |
Collapse
|
58
|
Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N, Bera BC, Vaid RK, Tripathi BN. Tracking the phage trends: A comprehensive review of applications in therapy and food production. Front Microbiol 2022; 13:993990. [PMID: 36504807 PMCID: PMC9730251 DOI: 10.3389/fmicb.2022.993990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
In the present scenario, the challenge of emerging antimicrobial resistance is affecting human health globally. The increasing incidences of multidrug-resistant infections have become harder to treat, causing high morbidity, and mortality, and are posing extensive financial loss. Limited discovery of new antibiotic molecules has further complicated the situation and has forced researchers to think and explore alternatives to antibiotics. This has led to the resurgence of the bacteriophages as an effective alternative as they have a proven history in the Eastern world where lytic bacteriophages have been used since their first implementation over a century ago. To help researchers and clinicians towards strengthening bacteriophages as a more effective, safe, and economical therapeutic alternative, the present review provides an elaborate narrative about the important aspects of bacteriophages. It abridges the prerequisite essential requirements of phage therapy, the role of phage biobank, and the details of immune responses reported while using bacteriophages in the clinical trials/compassionate grounds by examining the up-to-date case reports and their effects on the human gut microbiome. This review also discusses the potential of bacteriophages as a biocontrol agent against food-borne diseases in the food industry and aquaculture, in addition to clinical therapy. It finishes with a discussion of the major challenges, as well as phage therapy and phage-mediated biocontrols future prospects.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Taruna Anand
- ICAR – National Research Centre on Equines, Hisar, India,*Correspondence: Taruna Anand,
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Medhavi Vashisth
- Department of Molecular Biology, Biotechnology, and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Nitin Virmani
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. C. Bera
- ICAR – National Research Centre on Equines, Hisar, India
| | - R. K. Vaid
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. N. Tripathi
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India
| |
Collapse
|
59
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
60
|
Influence of NaCl and pH on lysostaphin catalytic activity, cell binding, and bacteriolytic activity. Appl Microbiol Biotechnol 2022; 106:6519-6534. [DOI: 10.1007/s00253-022-12173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
61
|
Abedon ST. Further Considerations on How to Improve Phage Therapy Experimentation, Practice, and Reporting: Pharmacodynamics Perspectives. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:98-111. [PMID: 36148139 PMCID: PMC9436263 DOI: 10.1089/phage.2022.0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phage therapy uses bacterial viruses (bacteriophages) to infect and kill targeted pathogens. Approximately one decade ago, I started publishing on how possibly to improve upon phage therapy experimentation, practice, and reporting. Here, I gather and expand upon some of those suggestions. The issues emphasized are (1) that using ratios of antibacterial agents to bacteria is not how dosing is accomplished in the real world, (2) that it can be helpful to not ignore Poisson distributions as a means of either anticipating or characterizing phage therapy success, and (3) how to calculate a concept of 'inundative phage densities.' Together, these are issues of phage therapy pharmacodynamics, meaning they are ways of thinking about the potential for phage therapy treatments to be efficacious mostly independent of the details of delivery of phages to targeted bacteria. Much emphasis is placed on working with Poisson distributions to better align phage therapy with other antimicrobial treatments.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
62
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
63
|
São-José C, Costa AR, Melo LDR. Editorial: Bacteriophages and Their Lytic Enzymes as Alternative Antibacterial Therapies in the Age of Antibiotic Resistance. Front Microbiol 2022; 13:884176. [PMID: 35401457 PMCID: PMC8991073 DOI: 10.3389/fmicb.2022.884176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Costa
- Department of Bionanosciences, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Luís D R Melo
- CEB - Centre of Biological Enginering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|