51
|
Examining the Effects of an Anti-Salmonella Bacteriophage Preparation, BAFASAL ®, on Ex-Vivo Human Gut Microbiome Composition and Function Using a Multi-Omics Approach. Viruses 2021; 13:v13091734. [PMID: 34578313 PMCID: PMC8473076 DOI: 10.3390/v13091734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella infections (salmonellosis) pose serious health risks to humans, usually via food-chain contamination. This foodborne pathogen causes major food losses and human illnesses, with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-resistant strains of bacteria, and governments are now restricting their use, leading the food industry to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are natural components of the ecosystem. However, when specifically used in the industry, they can also make their way into humans through our food chain or exposure, as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented to animal feeds. To our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition and function were unaffected by BAFASAL® treatment, providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.
Collapse
|
52
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
53
|
Abstract
Viruses are the most abundant biological entity on Earth, infect cellular organisms from all domains of life, and are central players in the global biosphere. Over the last century, the discovery and characterization of viruses have progressed steadily alongside much of modern biology. In terms of outright numbers of novel viruses discovered, however, the last few years have been by far the most transformative for the field. Advances in methods for identifying viral sequences in genomic and metagenomic datasets, coupled to the exponential growth of environmental sequencing, have greatly expanded the catalog of known viruses and fueled the tremendous growth of viral sequence databases. Development and implementation of new standards, along with careful study of the newly discovered viruses, have transformed and will continue to transform our understanding of microbial evolution, ecology, and biogeochemical cycles, leading to new biotechnological innovations across many diverse fields, including environmental, agricultural, and biomedical sciences.
Collapse
Affiliation(s)
- Lee Call
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; ,
| |
Collapse
|
54
|
Dixit K, Chaudhari D, Dhotre D, Shouche Y, Saroj S. Restoration of dysbiotic human gut microbiome for homeostasis. Life Sci 2021; 278:119622. [PMID: 34015282 DOI: 10.1016/j.lfs.2021.119622] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
The human microbiome is a complex and dynamic ecosystem, and the imbalance of its microbial community structure from the normal state is termed dysbiosis. The dysbiotic gut microbiome has been proved to be related to several pathological conditions like Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), Colorectal Cancer (CRC), etc., and several other extra-intestinal conditions like Type 1 & 2 diabetes, obesity, etc. The complex gut microbial ecosystem starts to build before the birth of an individual. It is known to get affected by several factors such as birth mode, individual lifestyle, dietary practices, medications, and antibiotics. A dysbiotic microbiome can potentially hamper host homeostasis due to its role in immune modulation, metabolism, nutrient synthesis, etc. Restoration of the dysbiotic gut microbiome has emerged as a promising aid and a better therapeutic approach. Several approaches have been investigated to achieve this goal, including prebiotics and probiotics, Fecal Microbiota Transplantation (FMT), extracellular vesicles, immune modulation, microbial metabolites, dietary interventions, and phages. This review discusses the various factors that influence the human microbiome with respect to their cause-effect relationship and the effect of gut microbiome compositional changes on the brain through the gut-brain axis. We also discuss the practices used globally for gut microbiome restoration purposes, along with their effectiveness.
Collapse
Affiliation(s)
- Kunal Dixit
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Diptaraj Chaudhari
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune, India
| | - Dhiraj Dhotre
- Innovative Technology Group, Reliance Life Sciences Pvt Ltd., Navi-Mumbai, India
| | - Yogesh Shouche
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune, India
| | - Sunil Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
55
|
Dougherty MW, Jobin C. Shining a Light on Colibactin Biology. Toxins (Basel) 2021; 13:346. [PMID: 34065799 PMCID: PMC8151066 DOI: 10.3390/toxins13050346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this biosynthetic gene cluster cause DNA damage and tumorigenesis in cell lines and pre-clinical models, yet fundamental knowledge regarding colibactin function is lacking. To accurately assess the role of pks+ E. coli in cancer etiology, the biological mechanisms governing production and delivery of colibactin by these bacteria must be elucidated. In this review, we will focus on recent advances in our understanding of colibactin's structural mode-of-action and mutagenic potential with consideration for how this activity may be regulated by physiologic conditions within the intestine.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Infectious Diseases and Inflammation, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
56
|
Grigorova EV, Rychkova LV, Belkova NL, Nemchenko UM, Savelkaeva MV, Kungurtseva EA, Voropaeva NM. Еvaluation of the sensitivity of bacteriophage preparations to Klebsiella pneumoniae strains isolated from the colon microbiota in children with functional gastrointestinal disorders. Klin Lab Diagn 2021; 66:217-222. [PMID: 33878243 DOI: 10.51620/0869-2084-2021-66-4-217-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The level of sensitivity of Klebsiella pneumoniae strains isolated from children of the first half of life with functional gastrointestinal disorders (FGID) to commercial bacteriophage preparations was assessed. The material was the feces of 67 children of the first half of life with FGID who are breastfed. Culture of K. pneumoniae isolated from faeces of children, amounted to two comparison groups, depending on the age of the patients. The first group included 43 K. pneumoniae strains isolated from the colon of children aged from birth to three months, in the second group - 24 strains, from children aged three to six months. The composition of the colon microbiota was studied using standard methods, and the results were evaluated in accordance with Industry Standard 91500.11.0004-2003. Identification of K. pneumoniae was performed by bacteriological methods. Determination of the level of lytic activity of K. pneumoniae, Klebsiella polyvalent and sextaphage bacteriophages to K. pneumoniae strains was conducted by the drip method (spot-test) according to clinical recommendations. It is shown that the formation of FGID symptoms in children correlates with age - the frequency of regurgitation decreased in children up to six months (from 23.3% to 4.2%) against the background of the formation of a symptom complex associated with defecation disorder. Bacteriological analysis showed that in General, phages show a low level of lytic activity, sensitivity to them Klebsiella also correlated with age and was higher in children of three to six months. Thus, in the first comparison group, the absence of Klebsiella lysis in relation to the Klebsiella pneumoniae bacteriophage was registered three times more often (30.2%, p<0.05) and twice less often (30.2%, p<0.05), the low level of lysis of K. pneumoniae strains to the Klebsiella polyvalent phage compared to the second group. The sensitivity of K. pneumoniae strains to sextaphage was comparable in comparison groups and varied from 2 to 10%. Thus, among the studied K. pneumoniae observed a low level of sensitivity to specific drugs - bacteriophage Klebsiella pneumoniae, Klebsiella polyvalent and sextaphage. This fact reflects the insufficient activity of phages and predicts low effectiveness of empirical phage therapy without elimination from the intestinal biocenosis of K. pneumoniae in children with FGID who are breastfed.
Collapse
Affiliation(s)
- E V Grigorova
- Scientific Centre for Family Health and Human Reproduction Problems
| | - L V Rychkova
- Scientific Centre for Family Health and Human Reproduction Problems
| | - N L Belkova
- Scientific Centre for Family Health and Human Reproduction Problems
| | - U M Nemchenko
- Scientific Centre for Family Health and Human Reproduction Problems
| | - M V Savelkaeva
- Scientific Centre for Family Health and Human Reproduction Problems
| | - E A Kungurtseva
- Scientific Centre for Family Health and Human Reproduction Problems
| | - N M Voropaeva
- Scientific Centre for Family Health and Human Reproduction Problems
| |
Collapse
|
57
|
Gangwar M, Rastogi S, Singh D, Shukla A, Dhameja N, Kumar D, Kumar R, Nath G. Study on the Effect of Oral Administration of Bacteriophages in Charles Foster Rats With Special Reference to Immunological and Adverse Effects. Front Pharmacol 2021; 12:615445. [PMID: 33912038 PMCID: PMC8072658 DOI: 10.3389/fphar.2021.615445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Numerous pre-clinical and clinical studies have recently demonstrated the significant role of phage therapy in treating multidrug-resistant bacterial infections. However, only a few researchers have focused on monitoring the phage-mediated adverse reactions during phage therapy. Besides adverse reactions, immunological response after short- and long-term oral administration of bacteriophages is also lacking. In this study, we administered the bacteriophages orally against Klebsiella pneumoniae XDR strain in dosages of 1015 PFU/ml and a 1020 PFU/ml (still higher) to Charles Foster rats as a single dose (in acute toxicity study) and daily dosage for 28 days (in sub-acute toxicity study). One milliliter suspension of bacteriophages was administered through the oral gavage feeding tube. No adverse effect was observed in any of the experimental as well as in the control animals.Further, an insignificant change in food and water intake and body weight was observed throughout the study period compared with the control group rats. On the 28th day of phage administration, blood was collected to estimate hematological, biochemical, and cytokines parameters. The data suggested no difference in the hematological, biochemical, and cytokine profile compared to the control group. No significant change in any of the treatment groups could be observed on the gross and histopathological examinations. The cytokines estimated, interleukin-1 beta (IL-1β), IL-4, IL-6, and INF-gamma, were found within the normal range during the experiment. The results suggested no adverse effect, including the severe detrimental impact on oral administration of high (1015 PFU/ml) and very high dose (1020 PFU/ml) of the bacteriophages cocktail. The high and long-term oral administration of bacteriophages did not induce noticeable immunological response as well.
Collapse
Affiliation(s)
- Mayank Gangwar
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sonam Rastogi
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Digvijay Singh
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Alka Shukla
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neeraj Dhameja
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Deepak Kumar
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajesh Kumar
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Viral Research and Diagnostic Laboratory, Faculty of Medicine, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
58
|
Nale JY, Clokie MR. Preclinical data and safety assessment of phage therapy in humans. Curr Opin Biotechnol 2021; 68:310-317. [PMID: 33862490 PMCID: PMC8150739 DOI: 10.1016/j.copbio.2021.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages) are natural biological entities that kill bacteria with species specific precision, rendering them attractive for therapeutic purposes. Phages were discovered over a century ago, but, after antibiotic discovery, their use as antimicrobials dwindled. Interest in phage therapy has, however, been rekindled by increasing multi-drug resistance to routine and frontline antibiotics and by the slowing of antibiotic innovations. To build on fundamental phage research studies and compassionate usage, information on safety and efficacy of phages is needed to motivate clinical trials and are necessary for phage therapy to become mainstream. In this review, we discussed essential phage characterisation parameters alongside the merits and limitations of state-of-the-art models to gather preclinical data on the safety and efficacy of phage therapeutics.
Collapse
Affiliation(s)
- Janet Y Nale
- Department of Genetics and Genome Biology, University of Leicester, University Road, LE1 7RH, UK
| | - Martha Rj Clokie
- Department of Genetics and Genome Biology, University of Leicester, University Road, LE1 7RH, UK.
| |
Collapse
|
59
|
Shimamori Y, Pramono AK, Kitao T, Suzuki T, Aizawa SI, Kubori T, Nagai H, Takeda S, Ando H. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr Microbiol 2021; 78:1267-1276. [PMID: 33638001 PMCID: PMC7997843 DOI: 10.1007/s00284-021-02395-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The bacterium Staphylococcus aureus, which colonizes healthy human skin, may cause diseases, such as atopic dermatitis (AD). Treatment for such AD cases involves antibiotic use; however, alternate treatments are preferred owing to the development of antimicrobial resistance. This study aimed to characterize the novel bacteriophage SaGU1 as a potential agent for phage therapy to treat S. aureus infections. SaGU1 that infects S. aureus strains previously isolated from the skin of patients with AD was screened from sewage samples in Gifu, Japan. Its genome was sequenced and analyzed using bioinformatics tools, and the morphology, lytic activity, stability, and host range of the phage were determined. The SaGU1 genome was 140,909 bp with an average GC content of 30.2%. The viral chromosome contained 225 putative protein-coding genes and four tRNA genes, carrying neither toxic nor antibiotic resistance genes. Electron microscopy analysis revealed that SaGU1 belongs to the Myoviridae family. Stability tests showed that SaGU1 was heat-stable under physiological and acidic conditions. Host range testing revealed that SaGU1 can infect a broad range of S. aureus clinical isolates present on the skin of AD patients, whereas it did not kill strains of Staphylococcus epidermidis, which are symbiotic resident bacteria on human skin. Hence, our data suggest that SaGU1 is a potential candidate for developing a phage therapy to treat AD caused by pathogenic S. aureus.
Collapse
Affiliation(s)
- Yuzuki Shimamori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ajeng K Pramono
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tohru Suzuki
- Genome Microbiology Laboratory, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Shin-Ichi Aizawa
- Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Shigeki Takeda
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
| |
Collapse
|
60
|
Nale JY, Vinner GK, Lopez VC, Thanki AM, Phothaworn P, Thiennimitr P, Garcia A, AbuOun M, Anjum MF, Korbsrisate S, Galyov EE, Malik DJ, Clokie MRJ. An Optimized Bacteriophage Cocktail Can Effectively Control Salmonella in vitro and in Galleria mellonella. Front Microbiol 2021; 11:609955. [PMID: 33552020 PMCID: PMC7858669 DOI: 10.3389/fmicb.2020.609955] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella spp. is a leading cause of gastrointestinal enteritis in humans where it is largely contracted via contaminated poultry and pork. Phages can be used to control Salmonella infection in the animals, which could break the cycle of infection before the products are accessible for consumption. Here, the potential of 21 myoviruses and a siphovirus to eliminate Salmonella in vitro and in vivo was examined with the aim of developing a biocontrol strategy to curtail the infection in poultry and swine. Together, the phages targeted the twenty-three poultry and ten swine prevalent Salmonella serotype isolates tested. Although individual phages significantly reduced bacterial growth of representative isolates within 6 h post-infection, bacterial regrowth occurred 1 h later, indicating proliferation of resistant strains. To curtail bacteriophage resistance, a novel three-phage cocktail was developed in vitro, and further investigated in an optimized Galleria mellonella larva Salmonella infection model colonized with representative swine, chicken and laboratory strains. For all the strains examined, G. mellonella larvae given phages 2 h prior to bacterial exposure (prophylactic regimen) survived and Salmonella was undetectable 24 h post-phage treatment and throughout the experimental time (72 h). Administering phages with bacteria (co-infection), or 2 h post-bacterial exposure (remedial regimen) also improved survival (73-100% and 15-88%, respectively), but was less effective than prophylaxis application. These pre-livestock data support the future application of this cocktail for further development to effectively treat Salmonella infection in poultry and pigs. Future work will focus on cocktail formulation to ensure stability and incorporation into feeds and used to treat the infection in target animals.
Collapse
Affiliation(s)
- Janet Y Nale
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Gurinder K Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Viviana C Lopez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Anisha M Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Angela Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Danish J Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
61
|
Royer S, Morais AP, da Fonseca Batistão DW. Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Arch Microbiol 2021; 203:1271-1279. [PMID: 33474609 DOI: 10.1007/s00203-020-02167-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/20/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023]
Abstract
Interest in the therapeutic use of bacteriophages (phages) has emerged in recent years, driven mainly by the antimicrobial resistance crisis. This review aimed to summarize some important studies addressing the use of phages as a therapeutic alternative for multiresistant bacterial infections. To this end, a literature search was conducted to address the efficacy and versatility of phage therapy, the advantages and disadvantages of its use, and potential limitations for the application of phage therapy that need to be overcome, especially in Western countries. Thus, this review highlights that phage therapy may be a promising route in the treatment of infections caused by multidrug-resistant pathogens and that a combined approach has the potential to prolong the life of the current available antimicrobials. In addition, standardized clinical trials using monoclonal or polyclonal phages, alone or in combination with antimicrobials, are crucial to determine the real potential of these treatments in clinical practice.
Collapse
Affiliation(s)
- Sabrina Royer
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil. .,Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| | - Aléxia Pinheiro Morais
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.,Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
62
|
Turkington CJR, Varadan AC, Grenier SF, Grasis JA. The Viral Janus: Viruses as Aetiological Agents and Treatment Options in Colorectal Cancer. Front Cell Infect Microbiol 2021; 10:601573. [PMID: 33489934 PMCID: PMC7817644 DOI: 10.3389/fcimb.2020.601573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, our understanding of the importance of microorganisms on and within our bodies has been revolutionized by the ability to characterize entire microbial communities. No more so is this true than in cases of disease. Community studies have revealed strong associations between microbial populations and disease states where such concomitance was previously absent from aetiology: including in cancers. The study of viruses, in particular, has benefited from the development of new community profiling techniques and we are now realising that their prominence within our physiology is nearly as broad as the diversity of the organisms themselves. Here, we examine the relationship between viruses and colorectal cancer (CRC), the leading cause of gastrointestinal cancer-related death worldwide. In CRC, viruses have been suggested to be involved in oncogenesis both directly, through infection of our cells, and indirectly, through modulating the composition of bacterial communities. Interestingly though, these characteristics have also led to their examination from another perspective—as options for treatment. Advances in our understanding of molecular and viral biology have caused many to look at viruses as potential modular biotherapeutics, where deleterious characteristics can be tamed and desirable characteristics exploited. In this article, we will explore both of these perspectives, covering how viral infections and involvement in microbiome dynamics may contribute to CRC, and examine ways in which viruses themselves could be harnessed to treat the very condition their contemporaries may have had a hand in creating.
Collapse
Affiliation(s)
| | - Ambarish C Varadan
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Shea F Grenier
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Juris A Grasis
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| |
Collapse
|
63
|
Łusiak-Szelachowska M, Weber-Dąbrowska B, Żaczek M, Borysowski J, Górski A. The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral? Microorganisms 2020; 8:E2012. [PMID: 33339331 PMCID: PMC7767151 DOI: 10.3390/microorganisms8122012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The presence of bacteriophages (phages) in the human body may impact bacterial microbiota and modulate immunity. The role of phages in human microbiome studies and diseases is poorly understood. However, the correlation between a greater abundance of phages in the gut in ulcerative colitis and diabetes has been suggested. Furthermore, most phages found at different sites in the human body are temperate, so their therapeutic effects and their potential beneficial effects remain unclear. Hence, far, no correlation has been observed between the presence of widespread crAssphage in the human population and human health and diseases. Here, we emphasize the beneficial effects of phage transfer in fecal microbiota transplantation (FMT) in Clostridioides difficile infection. The safety of phage use in gastrointestinal disorders has been demonstrated in clinical studies. The significance of phages in the FMT as well as in gastrointestinal disorders remains to be established. An explanation of the multifaceted role of endogenous phages for the development of phage therapy is required.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
| |
Collapse
|
64
|
Koonjan S, Seijsing F, Cooper CJ, Nilsson AS. Infection Kinetics and Phylogenetic Analysis of vB_EcoD_SU57, a Virulent T1-Like Drexlerviridae Coliphage. Front Microbiol 2020; 11:565556. [PMID: 33329423 PMCID: PMC7718038 DOI: 10.3389/fmicb.2020.565556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
The morphology, infection kinetics, genome sequence and phylogenetic characterization of the previously isolated bacteriophage vB_EcoD_SU57 are presented. The phage vB_EcoD_SU57 was isolated on Escherichia coli strain ECOR57 from the E. coli reference collection and was shown to produce four mm clear plaques with halos. Infection kinetics, as assessed by one-step growth analyses, suggest that vB_EcoD_SU57 is a virulent phage with an adsorption rate of 8.5 × 10-10 mL × min-1, a latency period of 14 min, and a burst size of 13 PFU per bacterium. Transmission electron microscopy confirmed vB_EcoD_SU57 to be a phage that used to be classified as a Siphoviridae phage. Bioinformatics analyses showed that the genome was 46,150 base pairs long, contained 29 genes with predicted protein functions, and 51 open reading frames encoding proteins with unknown function, many of which were gathered in clusters. A putative tRNA gene was also identified. Phylogenetic analyses showed that vB_EcoD_SU57 is a Braunvirinae phage of the newly formed Drexlerviridae family and closely related to T1-like E. coli phages vB_EcoS_ACG-M12 (Guelphvirus) and Rtp (Rtpvirus) as well as the unclassified phages vB_EcoS_CEB_EC3a and ECH1.
Collapse
Affiliation(s)
- Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fredrik Seijsing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Callum J. Cooper
- School of Pharmacy, Pharmaceutical and Cosmetic Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
65
|
Phages versus Antibiotics To Treat Infected Diabetic Wounds in a Mouse Model: a Microbiological and Microbiotic Evaluation. mSystems 2020; 5:5/6/e00542-20. [PMID: 33172967 PMCID: PMC7657594 DOI: 10.1128/msystems.00542-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The management of diabetic foot infections is frequently a dead end for surgeons and infectious disease specialists. When the pathogen to be treated is not resistant to conventional antibiotics, the latter tend to unbalance the intestinal microbiota, which is linked to multiple pathologies. A local treatment with bacteriophages, in addition to being as much or even more effective than antibiotics from a clinical and microbiological point of view, makes it possible to respect the patient’s microbiota. These results suggest that the use of this therapeutic alternative is a major avenue and that the introduction of recommendations for their use is now necessary. Diabetes is marked by a range of complications, including chronic infections that can lead to limb amputation. The treatment of infected wounds is disrupted by arteriopathies that reduce tissue perfusion as well as by the critical development of bacterial resistance. We evaluated the impact of a local application of bacteriophages compared to that of a per os administration of amoxicillin-clavulanic acid in a mouse model of Staphylococcus aureus wound infection. We found that phage treatment resulted in improved clinical healing and a reduction in local bacterial load at 7 and 14 days postinfection. Unlike antibiotics, phage therapy did not deplete the intestinal microbiota of treated animals. Amoxicillin resulted in a reduction of alpha and beta diversities of the murine microbiota and disturbed architecture even 7 days after the end of treatment, whereas phage treatment did not impinge on the microbiota. IMPORTANCE The management of diabetic foot infections is frequently a dead end for surgeons and infectious disease specialists. When the pathogen to be treated is not resistant to conventional antibiotics, the latter tend to unbalance the intestinal microbiota, which is linked to multiple pathologies. A local treatment with bacteriophages, in addition to being as much or even more effective than antibiotics from a clinical and microbiological point of view, makes it possible to respect the patient’s microbiota. These results suggest that the use of this therapeutic alternative is a major avenue and that the introduction of recommendations for their use is now necessary.
Collapse
|
66
|
Baghai Arassi M, Zeller G, Karcher N, Zimmermann M, Toenshoff B. The gut microbiome in solid organ transplantation. Pediatr Transplant 2020; 24:e13866. [PMID: 32997434 DOI: 10.1111/petr.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Despite ground-breaking advances in allogeneic transplantation, allograft rejection and immunosuppressant-specific complications remain a major challenge in transplant medicine. Growing evidence suggests the human gut microbiome as a potential contributor to transplant outcome and patient health. After breakthrough findings in haematopoietic stem cell transplantation (HSCT), the relevance of the microbiome in solid organ transplantation (SOT) is becoming increasingly clear. Here, we review the role of the microbiome in SOT focusing on its significance for transplant-associated complications such as allograft rejection and infections, and highlight its potential impact on immunosuppressive treatment. Moreover, we shed light on the emerging role of the microbiome as a diagnostic biomarker and therapeutic target and discuss current microbial intervention strategies. In addition, this review includes some practical considerations in designing clinical microbiome trials and offers some advice for the interpretation of the resulting data. Further investigation of the gut microbiome harbours countless clinical application possibilities and holds great promise of having a lasting impact on transplant medicine.
Collapse
Affiliation(s)
- Maral Baghai Arassi
- Department of Paediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nicolai Karcher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Burkhard Toenshoff
- Department of Paediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
67
|
Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med 2020; 12:82. [PMID: 32988391 PMCID: PMC7523053 DOI: 10.1186/s13073-020-00782-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
The human gut microbiome is a dynamic collection of bacteria, archaea, fungi, and viruses that performs essential functions for immune development, pathogen colonization resistance, and food metabolism. Perturbation of the gut microbiome's ecological balance, commonly by antibiotics, can cause and exacerbate diseases. To predict and successfully rescue such perturbations, first, we must understand the underlying taxonomic and functional dynamics of the microbiome as it changes throughout infancy, childhood, and adulthood. We offer an overview of the healthy gut bacterial architecture over these life stages and comment on vulnerability to short and long courses of antibiotics. Second, the resilience of the microbiome after antibiotic perturbation depends on key characteristics, such as the nature, timing, duration, and spectrum of a course of antibiotics, as well as microbiome modulatory factors such as age, travel, underlying illness, antibiotic resistance pattern, and diet. In this review, we discuss acute and chronic antibiotic perturbations to the microbiome and resistome in the context of microbiome stability and dynamics. We specifically discuss key taxonomic and resistance gene changes that accompany antibiotic treatment of neonates, children, and adults. Restoration of a healthy gut microbial ecosystem after routine antibiotics will require rationally managed exposure to specific antibiotics and microbes. To that end, we review the use of fecal microbiota transplantation and probiotics to direct recolonization of the gut ecosystem. We conclude with our perspectives on how best to assess, predict, and aid recovery of the microbiome after antibiotic perturbation.
Collapse
Affiliation(s)
- D. J. Schwartz
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - A. E. Langdon
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - G. Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| |
Collapse
|
68
|
The Protective Effect of Staphylococcus epidermidis Biofilm Matrix against Phage Predation. Viruses 2020; 12:v12101076. [PMID: 32992766 PMCID: PMC7601396 DOI: 10.3390/v12101076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus epidermidis is a major causative agent of nosocomial infections, mainly associated with the use of indwelling devices, on which this bacterium forms structures known as biofilms. Due to biofilms’ high tolerance to antibiotics, virulent bacteriophages were previously tested as novel therapeutic agents. However, several staphylococcal bacteriophages were shown to be inefficient against biofilms. In this study, the previously characterized S. epidermidis-specific Sepunavirus phiIBB-SEP1 (SEP1), which has a broad spectrum and high activity against planktonic cells, was evaluated concerning its efficacy against S. epidermidis biofilms. The in vitro biofilm killing assays demonstrated a reduced activity of the phage. To understand the underlying factors impairing SEP1 inefficacy against biofilms, this phage was tested against distinct planktonic and biofilm-derived bacterial populations. Interestingly, SEP1 was able to lyse planktonic cells in different physiological states, suggesting that the inefficacy for biofilm control resulted from the biofilm 3D structure and the protective effect of the matrix. To assess the impact of the biofilm architecture on phage predation, SEP1 was tested in disrupted biofilms resulting in a 2 orders-of-magnitude reduction in the number of viable cells after 6 h of infection. The interaction between SEP1 and the biofilm matrix was further assessed by the addition of matrix to phage particles. Results showed that the matrix did not inactivate phages nor affected phage adsorption. Moreover, confocal laser scanning microscopy data demonstrated that phage infected cells were less predominant in the biofilm regions where the matrix was more abundant. Our results provide compelling evidence indicating that the biofilm matrix can work as a barrier, allowing the bacteria to be hindered from phage infection.
Collapse
|
69
|
Complete genome sequence of a novel bacteriophage, ATCEA85, infecting Enterobacter aerogenes. Arch Virol 2020; 165:2397-2400. [DOI: 10.1007/s00705-020-04751-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
|
70
|
Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020; 12:E624. [PMID: 32635461 PMCID: PMC7408102 DOI: 10.3390/pharmaceutics12070624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.
Collapse
Affiliation(s)
| | | | | | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy; (M.P.); (S.X.); (M.R.)
| |
Collapse
|
71
|
Rashidi A, Weisdorf DJ. Microbiota-based approaches to mitigate infectious complications of intensive chemotherapy in patients with acute leukemia. Transl Res 2020; 220:167-181. [PMID: 32275896 PMCID: PMC7605891 DOI: 10.1016/j.trsl.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Despite advances in antimicrobial treatments, infection remains a common complication of intensive chemotherapy in patients with acute leukemia. It has become progressively apparent that the current antimicrobial focus has shortcomings that result from disruption of the commensal microbial communities of the gut. These effects, collectively known as dysbiosis, have been increasingly associated worldwide with growing complications such as Clostridioides difficile infection, systemic infections, and antibiotic resistance. A revision of the current practice is overdue. Several innovative concepts have been proposed and tested in animal models and humans, with the overarching goal of preventing damage to the microbiota and facilitating its recovery. In this review, we discuss these approaches, examine critical knowledge gaps, and explore how they may be filled in future research.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
72
|
Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases. Antibiotics (Basel) 2020; 9:antibiotics9020065. [PMID: 32041137 PMCID: PMC7168131 DOI: 10.3390/antibiotics9020065] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic failure is one of the most worrying health problems worldwide. We are currently facing an international crisis with several problematic facets: new antibiotics are no longer being discovered, resistance mechanisms are occurring in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria are hampering the successful treatment of infections. In this context, new anti-infectious strategies against multidrug-resistant (MDR) and persistent bacteria, as well as the rescue of Food and Drug Administration (FDA)-approved compounds (drug repurposing), are being explored. Among the highlighted new anti-infectious strategies, in this review, we focus on antimicrobial peptides, anti-virulence compounds, phage therapy, and new molecules. As drugs that are being repurposed, we highlight anti-inflammatory compounds, anti-psychotics, anti-helminthics, anti-cancerous drugs, and statins.
Collapse
|