51
|
Gong H, Zhao N, Zhu C, Luo L, Liu S. Treatment of gastric ulcer, traditional Chinese medicine may be a better choice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117793. [PMID: 38278376 DOI: 10.1016/j.jep.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric ulcer (GU) is the injury of the gastric mucosa caused by the stimulation of various pathogenic factors penetrating the deep mucosal muscle layer. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in treating GU due to its multitarget, multilevel, and multi-pathway effects. AIM OF THE STUDY To review the latest research progress in the treatment of GU by TCM, including clinical and experimental studies, focusing on the target and mechanism of action of drugs and providing a theoretical basis for the treatment of GU by natural herbs. MATERIALS AND METHODS Electronic databases (PubMed, Elsevier, Springer, Web of Science, and CNKI) were searched using the keywords "gastric ulcer", "gastric mucosal lesion", "TCM" and or paired with "peptic ulcer" and "natural drugs" for studies published in the last fifteen years until 2023. RESULTS TCM, including single components of natural products, Chinese patent medicines (CPM), and TCM decoction, is expected to treat GU by regulating various mechanisms, such as redox balance, inflammatory factors, angiogenesis, gastric mucosal protective factors, intestinal flora, apoptosis, and autophagy. CONCLUSIONS We discussed and summarized the mechanism of TCM in the treatment of GU, which provided a sufficient basis for TCM treatment of GU.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
52
|
Nasrollahian S, Moradi F, Hadi N, Ranjbar S, Ranjbar R. An update on alternative therapy for Escherichia coli causing urinary tract infections; a narrative review. Photodiagnosis Photodyn Ther 2024; 46:104075. [PMID: 38574879 DOI: 10.1016/j.pdpdt.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Ayoka TO, Nwachukwu N, Ene AC, Igwe CU, Nnadi CO. The Hepatocurative Effects of Zanthoxylum zanthoxyloides Alkaloids on Tetrachloromethane-Induced Hepatotoxicity on Albino Rats. Indian J Clin Biochem 2024; 39:188-196. [PMID: 38577140 PMCID: PMC10987411 DOI: 10.1007/s12291-022-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
The study investigated the hepatocurative activity of the bulk alkaloids of Zanthoxylum zanthoxyloides in a tetrachloromethane (CCl4)-induced hepatotoxicity model in rats. The hepatocurative activity of the alkaloids at 200, 400 and 600 mg/kg doses was demonstrated by the assay of both enzymic and non-enzymic parameters. Sections of the liver were also subjected to histological examinations. Mapping techniques and data visualization approaches were adopted in finding relationships between the enzymic and non-enzymic parameters and the treatment groups. The bulk alkaloids caused dose-dependent effects on both the enzymic and non-enzymic parameters. The bulk alkaloids elicited a significant reduction (p < 0.05) in all liver and antioxidant enzymes activities compared with the untreated. The 600 mg/kg dose caused the restoration of the ALP, ALT and AST to 76.16, 10.72 and 11.83 iU/L respectively similar to the standard butylated hydroxytoluene. The 600 mg/kg dose also caused a slight increase in the activities of SOD, catalase and GPx to 11.45. 1.37 and 11.66 iU/L respectively when compared with the untreated rats. In the non-enzymic assays, the 600 mg/kg dose elicited a significant (p < 0.05) upregulation in the total bilirubin (1.18 mg/100 mL), total protein (3.75 g/dL), HDL (1.80 mMol/L) and vitamin C (2.41 mg/dL) and decrease in the CHOL (3.35 g/dL), TAG (1.85 mMol/L), LDL (0.67 mMol/L), BUN (39.55 mg/dL) and MDA (1.13 nMol/mL) when compared with the untreated rats. The restoration of the natural histo-architecture of the CCl4-damaged liver by the alkaloids further evidenced the hepatocurative activity of the bulk alkaloids.
Collapse
Affiliation(s)
- Thecla Okeahunwa Ayoka
- Department of Science Laboratory Technology (Biochemistry Unit), Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Ngwu Nwachukwu
- Department of Biochemistry, School of Biological Sciences, Federal University of Technology, Owerri, Imo State Nigeria
| | - Aloysius Chinedu Ene
- Department of Biochemistry, School of Biological Sciences, Federal University of Technology, Owerri, Imo State Nigeria
| | - Chidi Uzoma Igwe
- Department of Biochemistry, School of Biological Sciences, Federal University of Technology, Owerri, Imo State Nigeria
| | - Charles Okeke Nnadi
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State Nigeria
| |
Collapse
|
54
|
Kokkinis S, Singh M, Paudel KR, De Rubis G, Bani Saeid A, Jessamine V, Datsyuk J, Singh SK, Vishwas S, Adams J, Hansbro PM, Oliver B, Gupta G, Dureja H, Dua K. Plant-based therapeutics for chronic obstructive pulmonary diseases: Nanoformulation strategies to overcome delivery challenges. FOOD BIOSCI 2024; 58:103761. [DOI: 10.1016/j.fbio.2024.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
55
|
Setlhare B, Letsoalo M, Nkabinde SA, Nkabinde M, Mzobe G, Mtshali A, Parveen S, Ngcobo S, Invernizzi L, Maharaj V, Ngcobo M, Gqaleni N. An in vitro study to elucidate the effects of product Nkabinde on immune response in peripheral blood mononuclear cells of healthy donors. Front Pharmacol 2024; 15:1308913. [PMID: 38533263 PMCID: PMC10963514 DOI: 10.3389/fphar.2024.1308913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: A significant number of the South African population still rely on traditional medicines (TM) as their primary healthcare due to their belief in their holistic healing and immune-boosting properties. However, little to no scientific data is available on the effects of most TM products on cytokine and cellular biomarkers of the immune response. Here, we evaluated the impact of traditional medicine [Product Nkabinde (PN)] in inducing cellular and cytokine biomarkers of inflammation in peripheral blood mononuclear cells (PBMCs) from eight healthy volunteers. Methods: PN was supplied by a local Traditional Health Practitioner (THP). The IC50 (half maximum concentration) of the standardized extract on isolated PBMCs was established using the cell viability assay over 24 h of incubation. Luminex and flow cytometry assays were used to measure cytokine and cellular levels in PBMCs stimulated with PN and/or PHA over 24, 48, and 72 h, respectively. Results: The IC50 concentration of PN in treated PBMCs was established at 325.3 μg/mL. In the cellular activation assay, the percentages of CD38-HLA-DR + on total CD4+ T cells were significantly increased in PBMCs stimulated with PN compared to unstimulated controls after 24 h (p = 0.008). PN significantly induced the production of anti-inflammatory IL-10 (p = 0.041); proinflammatory cytokines IL-1α (p = 0.003), TNF-α (p < 0.0001); and chemokine MIP-1β (p = 0.046) compared to the unstimulated control after 24 h. At 48 h incubation, the production of proinflammatory cytokines IL-1α (p = 0.034) and TNF-α (p = 0.011) were significantly induced following treatment with PN. Conclusion: We conclude that the PN possesses in vitro immunomodulatory properties that may influence immune and inflammatory responses. More studies using PN are needed to further understand key parameters mediating induction, expression, and regulation of the immune response in the context of pathogen-associated infections.
Collapse
Affiliation(s)
- Boitumelo Setlhare
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marothi Letsoalo
- Centre for Aids Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Siphathimandla Authority Nkabinde
- Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Magugu Nkabinde
- Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Gugulethu Mzobe
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Aids Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Mtshali
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Aids Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sobia Parveen
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Aids Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samukelisiwe Ngcobo
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Aids Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Luke Invernizzi
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Vinesh Maharaj
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Mlungisi Ngcobo
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban, South Africa
- Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
56
|
Hasan SF, Abo Elsoud MM, Sidkey NM, Elhateir MM. Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageobacillus toebii using low-cost substrates and its potential antiviral activity. Int J Biol Macromol 2024; 262:129915. [PMID: 38325682 DOI: 10.1016/j.ijbiomac.2024.129915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
There is an increasing desire for bioplastics produced from renewable resources as an alternative to their petrochemical counterparts. These biopolymers have long-unnoticed antiviral properties. This study aimed to produce and characterize bioplastics by Parageobacillus toebii using low-cost substrates and determine their antiviral activity against coxsackievirus B4. Seven low-cost substrates (bagasse, water hyacinth, rice straw, rice water, sesame husks, molasses, and corn syrup) were compared with glucose for bioplastic precursor production. The highest bioplastic produced was from water hyacinth and glucose, followed by molasses, rice straw, rice water, sesame husks, and bagasse. Water hyacinth and glucose media were further optimized to increase the bioplastic precursor yield. The optimization of the media leads to increases in bioplastic precursor yields of 1.8-fold (3.456 g/L) and 1.496-fold (2.768 g/L), respectively. These bioplastics were further characterized by thermogravimetric analysis (TGA), Fourier-transformed infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR), and gas chromatography-mass spectrometry (GC-MS). They are thermostable, and their characterizations confirm the presence of polyhydroxybutyrate. The antiviral assay showed reasonable antiviral effects for bioplastics from water hyacinth (80.33 %) and glucose (55.47 %) media at 250 μg/mL maximum non-toxic concentrations (MNTC). The present investigation demonstrates a low-cost model for producing polyhydroxybutyrate bioplastic precursor for antiviral applications.
Collapse
Affiliation(s)
- Seham F Hasan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt.
| | - Mostafa M Abo Elsoud
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| | - Mai M Elhateir
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| |
Collapse
|
57
|
Khayatan D, Razavi SM, Arab ZN, Hosseini Y, Niknejad A, Momtaz S, Abdolghaffari AH, Sathyapalan T, Jamialahmadi T, Kesharwani P, Sahebkar A. Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem 2024; 479:693-705. [PMID: 37166541 DOI: 10.1007/s11010-023-04757-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur's anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
58
|
El Hammadi N, Almajano MP, Pastor MV, Codina-Torrella I. Evaluating the Incorporation of Myrtus communis L. Leaves Infusion in Alginate-Based Films and Spheres to Enhance the Oxidative Stability of Oil-in-Water Emulsions. Polymers (Basel) 2024; 16:649. [PMID: 38475332 DOI: 10.3390/polym16050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Myrtus communis L. is a species of the Myrtaceae family that is found in the Mediterranean region, and it is traditionally recognized for its importance and different uses. The objective of this study was to determine the effect of M. communis L. leaf extract (MCLE), which was incorporated directly into alginate spheres and films, on preserving oil-in-water emulsions from oxidation. For this purpose, the solvent extraction (with ethanol at 40, 60, and 80%) of the antioxidant compounds was optimized (total phenolic compounds (TPCs) and total flavonoid content (TFC)) along with the scavenging activity. The best condition for the extraction corresponded with 60% ethanol (MCLE60), with a TPC of ~66.06 g GAE/L and a TFC of ~18.91 g QE/L, which was selected for use in the following assays. MCLE60 showed a considerable radical scavenging activity (24.85 mmol TE/L in FRAP, 28.75 mmol TE/L in DPPH, 30.61 mmol TE/L in ABTS, and 14.94 mmol TE/L in ORAC), which was probably due to its content in the phenolic compounds arbutin (122.08 mg/L), epicatechin (73.89 mg/L), sinapic acid (51.85 mg/L), and gallic acid (36.72 mg/L). The oil-in-water emulsions with the MCLE60 spheres showed the best oxidative stability (TBARS ~2.64 mg MDA/kg of emulsion, PV ~35.7 meq hydroperoxides/kg of emulsion) in comparison to the control. The film was also able to protect the emulsion from oxidation for more than a week at 30 °C (TBARS ~1.9 mg MDA/kg of emulsion). The alginate films with MCLE60 presented an important release of phenolic compounds in water and acetic food simulants, while in both ethanol simulants, the release of TPC remained more stable over time. Thus, this study highlights the potential uses of MCLE as a natural ingredient for emulsion oxidative preservation and the production of alginate delivery systems (spheres and films).
Collapse
Affiliation(s)
- Nisserine El Hammadi
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Maria Vicenta Pastor
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Idoia Codina-Torrella
- Agri-Food Engineering and Biotechnology Department, Universitat Politècnica de Catalunya, Esteve Terrades 8, 08860 Castelldefels, Spain
| |
Collapse
|
59
|
Gu K, Feng S, Zhang X, Peng Y, Sun P, Liu W, Wu Y, Yu Y, Liu X, Liu X, Deng G, Zheng J, Li B, Zhao L. Deciphering the antifungal mechanism and functional components of cinnamomum cassia essential oil against Candida albicans through integration of network-based metabolomics and pharmacology, the greedy algorithm, and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117156. [PMID: 37729978 DOI: 10.1016/j.jep.2023.117156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fungal pathogens can cause deadly invasive infections and have become a major global public health challenge. There is an urgent need to find new treatment options beyond established antifungal agents, as well as new drug targets that can be used to develop novel antifungal agents. Cinnamomum cassia is a tropical aromatic plant that has a wide range of applications in traditional Chinese medicine, especially in the treatment of bacterial and fungal infections. AIM OF THE STUDY The present study aimed to explore the mechanism of action and functional components of Cinnamomum cassia essential oil (CEO) against Candida albicans using an integrated strategy combining network-based metabolomics and pharmacology, the greedy algorithm and molecular docking. MATERIALS AND METHODS CEO was extracted using hydrodistillation and its chemical composition was identified by GC-MS. Cluster analysis was performed on the compositions of 19 other CEOs from the published literature, as well as the sample obtained in this study. The damages of C. albicans cells upon treatment with CEO was observed using a scanning electron microscope. The mechanisms of its antifungal effect at a subinhibitory concentration of 0.1 × MIC were determined using microbial metabolomics and network analysis. The functional components were studied using the greedy algorithm and molecular docking. RESULTS A total of 69 compounds were identified in the chemical analysis of CEO, which accounted for 90% of the sample. The major compounds were terpenoids (34.04%), aromatic compounds (4.52%), aliphatic compounds (0.9%), and others. Hierarchical cluster analysis of the compositions of 20 essential oils extracted from Cinnamomum cassia grown in different geographical locations showed a wide diversity of chemical composition with four major chemotypes. CEO showed strong antifungal activity and caused destruction of cell membranes in a concentration-dependent way. Metabolic fingerprint analysis identified 29 metabolites associated with lipid metabolism, which were mapped to 23 core targets mainly involved in fatty acid biosynthesis and metabolism. Six antifungal functional components of CEO were identified through network construction, greedy algorithm and molecular docking, including trans-cinnamaldehyde, δ-cadinol, ethylcinnamate, safrole, trans-anethole, and trans-cinnamyl acetate, which showed excellent binding with specific targets of AKR1B1, PPARG, BCHE, CYP19A1, CYP2C19, QPCT, and CYP51A1. CONCLUSIONS This study provides a systematic understanding of the antifungal activity of CEO and offers an integrated strategy for deciphering the potential metabolism and material foundation of complex component drugs.
Collapse
Affiliation(s)
- Keru Gu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Shengyi Feng
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xinyue Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yuanyuan Peng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Peipei Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wenchi Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yi Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yun Yu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jun Zheng
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Bo Li
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
60
|
Kongolo Kalemba MR, Makhuvele R, Njobeh PB. Phytochemical screening, antioxidant activity of selected methanolic plant extracts and their detoxification capabilities against AFB 1 toxicity. Heliyon 2024; 10:e24435. [PMID: 38312698 PMCID: PMC10835242 DOI: 10.1016/j.heliyon.2024.e24435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a secondary metabolite produced principally by Aspergillus parasiticus and A. flavus. It is one of the most potent and commonly occurring dietary carcinogen with its carcinogenic potential being linked to the formation of DNA adducts and reactive oxygen species (ROS). Plant extracts contain a plethora of biologically active phytochemicals that act against ROS. This study aimed to assess the phytochemical content and antioxidant activity of methanolic extracts of some medicinal plants and investigate their detoxification potentials against AFB1. Phytochemical screening together with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+)) assays) were performed on nine methanolic plant extracts. Extracts were incubated with AFB1 for 24 and 48 h and liquid chromatography mass spectrometry (LC-MS) analysis done to assess their AFB1 detoxification activities. The TPC of the extracts ranged from 88.92 ± 6.54 to 210.19 ± 7.90 mg GAE/g, while TFC ranged between 4.01 ± 0.94 and 32.48 ± 1.02 mg QE/g. Radical scavenging activities of extracts varied from 4.18 ± 1.37 to 251.53 ± 9.30 μg/mL and 8.36 ± 1.65 to 279.22 ± 8.33 μg/mL based on DPPH and ABTS+ assays, respectively. Six of the plant extracts showed a time-dependent detoxification activity against AFB1 after 48 h ranging from 20.17 to 38.13 %. C. dentata bark extract showed the highest percentage of AFB1 reduction, with mean percentages of 43.57 and 70.96 % at 24 and 48 h, respectively. This was followed by C. asiatica leaves and A. melegueta seeds with a maximum of 40.81 and 38.13 %, respectively after 48 h. These extracts also possessed high TPC, TFC, and antioxidant activities compared to all the other extracts. Findings from this study demonstrate the abundance of bioactive compounds with antioxidant activity playing a role in potent AFB1 detoxification activity.
Collapse
Affiliation(s)
- Mavie Rose Kongolo Kalemba
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
- Toxicology and Ethnoveterinary Medicine, ARC-Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
| |
Collapse
|
61
|
Ramata-Stunda A, Boroduskis M, Pastare L, Berga M, Kienkas L, Patetko L, Skudrins G, Reihmane D, Nakurte I. In Vitro Safety and Efficacy Evaluation of a Juniperus communis Callus Culture Extract and Matricaria recutita Processing Waste Extract Combination as a Cosmetic Ingredient. PLANTS (BASEL, SWITZERLAND) 2024; 13:287. [PMID: 38256840 PMCID: PMC10818699 DOI: 10.3390/plants13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
For skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.
Collapse
Affiliation(s)
- Anna Ramata-Stunda
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Martins Boroduskis
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Liene Kienkas
- Field and Forest, Ltd., 2 Izstades Str., Priekuli Parish, LV-4126 Cesis, Latvia;
| | - Liene Patetko
- Faculty of Biology, University of Lavia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gundars Skudrins
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| | - Dace Reihmane
- Alternative Plants, Ltd., 2 Podraga Str., LV-1007 Riga, Latvia; (M.B.); (D.R.)
| | - Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (L.P.); (M.B.); (G.S.); (I.N.)
| |
Collapse
|
62
|
Wekwejt M, Małek M, Ronowska A, Michno A, Pałubicka A, Zasada L, Klimek A, Kaczmarek-Szczepańska B. Hyaluronic acid/tannic acid films for wound healing application. Int J Biol Macromol 2024; 254:128101. [PMID: 37972843 DOI: 10.1016/j.ijbiomac.2023.128101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In this study, thin films based on hyaluronic acid (HA) with tannic acid (TA) were investigated in three different weight ratios (80HA/20TA, 50HA/50TA, 20HA/80TA) for their application as materials for wound healing. Surface free energy, as well as their roughness, mechanical properties, water vapor permeability rate, and antioxidant activity were determined. Moreover, their compatibility with blood and osteoblast cells was investigated. The irritation effect caused by hyaluronic acid/tannic acid films was also considered with the use of are constructed human epidermis model. The irritation effect for hyaluronic acid/tannic acid films by the in vitro method was also studied. The low surface free energy, surface roughness, and antioxidant activity presented by the obtained films were examined. All the tested compositions of hyaluronic acid/tannic acid films were hemocompatible, but only films based on 50HA/50TA were fully cytocompatible. Regarding the potential implantation, all the films except 80HA/20TA showed appropriate mechanical properties. The specimens did not exert the irritation effect during the studies involving reconstructed human epidermis.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Klimek
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
63
|
Zeng F, Li Y, Zhang X, Shen L, Zhao X, Beta T, Li B, Chen R, Huang W. Immune regulation and inflammation inhibition of Arctium lappa L. polysaccharides by TLR4/NF-κB signaling pathway in cells. Int J Biol Macromol 2024; 254:127700. [PMID: 37918584 DOI: 10.1016/j.ijbiomac.2023.127700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Arctium lappa L. polysaccharides (ALP) are important active ingredients of burdocks with various bioactivities. In the present study, a crude polysaccharide was extracted from A. lappa L. roots and purified using DEAE-52 and Sephacryl™ S-400 columns to reach 99 % purity. This neutral polysaccharide contained fructose, glucose, galactose and arabinose in a ratio of 0.675:0.265:0.023:0.016 and had a Mw of 4256 Da. The immunomodulatory activity and intestinal inflammation inhibitory effects of ALP were investigated in in vitro models, including lipopolysaccharide-induced macrophage RAW264.7 and interleukin (IL)-1β-induced colon Caco-2 cells. The results revealed that ALP possessed both antioxidant and anti-inflammatory effects by decreasing nuclear factor-E2-related factor 2 mRNA expression and reactive oxygen species. Furthermore, ALP was found to have inhibitory effects on pro-inflammatory cytokines, including IL-8, IL-6, IL-1β, and tumor necrosis factor-α, as well as inflammatory cytokines, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 by down-regulating the Toll-like receptor 4 (TLR4)/NF-κB (nuclear factor-kappa B signaling) pathway. It indicated that A. lappa L. was an ideal source of bioactive polysaccharides having potential to be developed as functional foods or nutraceuticals to improve immune system and prevent/treat intestinal inflammation.
Collapse
Affiliation(s)
- Feng Zeng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225000, PR China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Xiaoxiao Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225000, PR China
| | - Xingyu Zhao
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Trust Beta
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Rui Chen
- Department of Kidney Internal Medicine, Clinic Medical School, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou 225000, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225000, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
64
|
Tritean N, Dimitriu L, Dima ȘO, Stoica R, Trică B, Ghiurea M, Moraru I, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Cytocompatibility, Antimicrobial and Antioxidant Activity of a Mucoadhesive Biopolymeric Hydrogel Embedding Selenium Nanoparticles Phytosynthesized by Sea Buckthorn Leaf Extract. Pharmaceuticals (Basel) 2023; 17:23. [PMID: 38256857 PMCID: PMC10819796 DOI: 10.3390/ph17010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)-SeNPsSb-in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Luminița Dimitriu
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, 011464 Bucharest, Romania
| | - Ștefan-Ovidiu Dima
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Rusăndica Stoica
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Bogdan Trică
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independenței nr. 313, 060042 Bucharest, Romania
| | - Marius Ghiurea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Ionuț Moraru
- Laboratoarele Medica Srl, str. Frasinului nr. 11, 075100 Otopeni, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Florin Oancea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, 011464 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| |
Collapse
|
65
|
Chen X, Xing X, Lin S, Huang L, He L, Zou Y, Zhang X, Su B, Lu Y, Zheng D. Plant-derived nanovesicles: harnessing nature's power for tissue protection and repair. J Nanobiotechnology 2023; 21:445. [PMID: 38001440 PMCID: PMC10668476 DOI: 10.1186/s12951-023-02193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue damage and aging lead to dysfunction, disfigurement, and trauma, posing significant global challenges. Creating a regenerative microenvironment to resist external stimuli and induce stem cell differentiation is essential. Plant-derived nanovesicles (PDNVs) are naturally bioactive lipid bilayer nanovesicles that contain proteins, lipids, ribonucleic acid, and metabolites. They have shown potential in promoting cell growth, migration, and differentiation into various types of tissues. With immunomodulatory, microbiota regulatory, antioxidant, and anti-aging bioactivities, PDNVs are valuable in resisting external stimuli and facilitating tissue repair. The unique structure of PDNVs provides an optimal platform for drug encapsulation, and surface modifications enhance their stability and specificity. Moreover, by employing synergistic administration strategies, PDNVs can maximize their therapeutic potential. This review summarized the progress and prospects of PDNVs as regenerative tools, provided insights into their selection for repair activities based on existing studies, considered the key challenge for clinical application, and anticipated their continued prominent role in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojie Xing
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Liyu Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Human Anatomy and Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xuyang Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
66
|
Choi M, Yoon J, Yang SH, Kim JK, Park SU. Production of Phenolic Compounds and Antioxidant Activity in Hairy Root Cultures of Salvia plebeia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3840. [PMID: 38005737 PMCID: PMC10675400 DOI: 10.3390/plants12223840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Salvia plebeia (Lamiaceae) is a medicinal plant containing diverse bioactive constituents that have biological properties. In this study, we determined the optimal conditions (media and auxin) for the hairy root culture of S. plebeia for the growth and accumulation of phenolic compounds and evaluated its antioxidant activities. Rosmarinic acid and five phenylpropanoids were detected using high-performance liquid chromatography. The hairy roots grown in 1/2 SH medium with 1 mg/L NAA had a high level of rosmarinic acid content. Hairy roots cultured in 1 mg/L NAA had the highest total content of five phenylpropanoids. Compared to wild-type roots grown in the field, hairy roots (NAA 1) expressed similar levels of rosmarinic acid but significantly enhanced phenylpropanoid accumulation. Furthermore, the total phenolic content and total flavonoid content of hairy roots (NAA 1) were 2.22 and 1.73 times higher than those of wild-type roots. In the results of DPPH, ABTS, and reducing power assays, the hairy roots (NAA 1) showed higher free radical scavenging effects and reduction potential than the wild-type roots. These results suggest that S. plebeia hairy roots cultured under optimal conditions, which exhibit enhanced phenolic compound accumulation and antioxidant activity, can potentially be used as sources of antioxidants.
Collapse
Affiliation(s)
- Minsol Choi
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Jiwon Yoon
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - So Hwi Yang
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea;
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea;
| | - Sang Un Park
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| |
Collapse
|
67
|
Kareem YM, Hamad TI. Assessment of the antibacterial effect of Barium Titanate nanoparticles against Staphylococcus epidermidis adhesion after addition to maxillofacial silicone. F1000Res 2023; 12:385. [PMID: 37663198 PMCID: PMC10468664 DOI: 10.12688/f1000research.132727.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Maxillofacial silicones are the most popular and acceptable material for making maxillofacial prostheses, but they are not perfect in every sense. To enhance their effectiveness, more improvements to their properties are required, such as their antimicrobial efficiency. This study assess the antibacterial effect of barium titanate nanoparticles in various percentages against staphylococcus epidermidis biofilm adhesion after addition to maxillofacial silicone. Methods: Barium titanate nanoparticles were added into VST-50 platinum silicone elastomer in four weight percentages (0.25wt%, 0.5wt%, 0.75wt% and 1wt%). 50 specimens were prepared and categorized into five groups; one control group and four experimental groups. All conducted data was statistically analyzed using (one-way ANOVA) analysis of variance, and Games-Howell multiple comparison test (significant level at p < 0.05). Shapiro-Wilk and Levene's tests were used, respectively, to evaluate the normal distribution and homogeneity of the data. Result: One-way ANOVA test revealed a highly significant difference between all groups, and Games-Howell test revealed a highly significant difference between the control group and the four experimental groups. The 0.25wt% and 0.5wt% groups revealed a highly significant difference between them and with the (0.75%wt and 0.1%wt) groups. While the 0.75wt% group revealed a significant difference with 1wt% group. Conclusions: The addition of barium titanate to VST-50 maxillofacial silicone enhanced the antibacterial activity of silicon against Staphylococcus epidermidis, and this activity seems to be concentration dependent. FTIR analysis demonstrated no chemical interaction between the Barium Titanate and the VST-50 maxillofacial silicone elastomer. SEM pictures show that the barium titanate nanopowder was effectively dispersed inside the maxillofacial silicone matrix.
Collapse
Affiliation(s)
- Yasir Mohammed Kareem
- B.D.S. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | - Thekra Ismael Hamad
- B.D.S., M.Sc., Ph.D., Prof. Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| |
Collapse
|
68
|
Ezzaky Y, Elmoslih A, Silva BN, Bonilla-Luque OM, Possas A, Valero A, Cadavez V, Gonzales-Barron U, Achemchem F. In vitro antimicrobial activity of extracts and essential oils of Cinnamomum, Salvia, and Mentha spp. against foodborne pathogens: A meta-analysis study. Compr Rev Food Sci Food Saf 2023; 22:4516-4536. [PMID: 37615998 DOI: 10.1111/1541-4337.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Essential oils (EOs) are a class of natural products that exhibit potent antimicrobial properties against a broad spectrum of bacteria. Inhibition diameters (IDs) and minimum inhibitory concentrations (MICs) are the typical measures of antimicrobial activity for extracts and EOs obtained from Cinnamomum, Salvia, and Mentha species. This study used a meta-analytical regression analysis to investigate the correlation between ID and MIC measurements and the variability in antimicrobial susceptibility tests. By utilizing pooled ID models, this study revealed significant differences in foodborne pathogens' susceptibility to extracts, which were dependent on both the plant species and the methodology employed (p < .05). Cassia showed the highest efficacy against Salmonella spp., exhibiting a pooled ID of 26.24 mm, while cinnamon demonstrated the highest efficacy against Bacillus cereus, with a pooled ID of 23.35 mm. Mint extract showed the greatest efficacy against Escherichia coli and Staphylococcus aureus. Interestingly, cinnamon extract demonstrated the lowest effect against Shiga toxin-producing E. coli, with a pooled ID of only 8.07 mm, whereas its EOs were the most effective against this bacterial strain. The study found that plant species influenced the MIC, while the methodology did not affect MIC measurements (p > .05). An inverse correlation between ID and MIC measurements was identified (p < .0001). These findings suggest that extracts and EOs obtained from Cinnamomum, Salvia, and Mentha spp. have the potential to inhibit bacterial growth. The study highlights the importance of considering various factors that may influence ID and MIC measurements when assessing the effectiveness of antimicrobial agents.
Collapse
Affiliation(s)
- Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Abdelkhaleq Elmoslih
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Olga María Bonilla-Luque
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Arícia Possas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, Córdoba, Spain
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
69
|
Alquraishi R, Al-Samydai A, Al Azzam KM, Alqaraleh M, Al-Halaseh L, Sanabrah A, Abu Hajleh MN, Al Khatib A, Alsaher W, Negim ES, Khleifat K. Preparation, characterization and wound-healing effect of PEGylated nanoliposomes loaded with oleuropein. Biomed Chromatogr 2023; 37:e5716. [PMID: 37580869 DOI: 10.1002/bmc.5716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Chronic wounds have become a major concern for healthcare systems, as they have been related to diabetic foot ulcers, venous leg ulcers and pressure ulcers. Oleuropein is an active compound that is extracted from olive leaves and it has the ability to reduce injury to tissues owing to its antioxidant effect, hence improving wound healing. The poor pharmacokinetics of oleuropein have limited its use clinically. This work is aimed toward studying the impact of PEGylated and non-PEGylated nanoliposomes loaded with oleuropein, as a carrier model, on wound-healing activity. The thin film hydration method was used to compose PEGylated and non-PEGylated liposomes, both loaded with oleuropein. The results indicated that each free, PEGylated and non-PEGylated composition was within the limit of optimum nanoliposome characterization. The results showed that non-PEGylated compositions produced higher efficiency in encapsulation (47.09 ± 10.06%) than the PEGylated ones (20.97 ± 10.52%). The PEG-nanoliposomes loaded with oleuropein (PEG-oleu) had mean size, charge and polydispersity index of 129.35 nm, -9.55 mV and 0.1010, respectively. The scratch assay results proved that PEGylated liposomal compositions have a more rapid wound-healing activity than non-PEGylated ones at different time intervals at 0, 2, 24 and 28 h.
Collapse
Affiliation(s)
- Rand Alquraishi
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Khaldun M Al Azzam
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Lidia Al-Halaseh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Alaa Sanabrah
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Arwa Al Khatib
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Walhan Alsaher
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - El-Sayed Negim
- School of Materials Science and Green Technologies, Kazakh-British Technical University, Almaty, Kazakhstan
- School of Petroleum Engineering, Satbayev University, Almaty, Kazakhstan
| | | |
Collapse
|
70
|
Zeng F, Li Y, Zhang X, Feng J, Gu W, Shen L, Huang W. Arctium lappa L. roots inhibit the intestinal inflammation of dietary obese rats through TLR4/NF-κB pathway. Heliyon 2023; 9:e21562. [PMID: 38027866 PMCID: PMC10663856 DOI: 10.1016/j.heliyon.2023.e21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Long-term consumption of Arctium lappa L. roots can lead to weight loss. To explore the relationship between anti-obesity and anti-inflammation, the effects and mechanism of A. lappa L. root powder (ARP) on intestinal inflammation in obese rats were investigated. Dietary obese rats were successfully established by feeding a high-fat and high-sugar diet. The control group (n = 6) consumed a normal diet. The intestines were compared among the groups (each n = 6) with and without the administration of ARP (intragastric 7.5 g/kg·bw/d). Real-time quantitative reverse transcription-polymerase chain reaction and western blotting analysis revealed that ARP effectively inhibited the expression of pro-inflammatory and inflammatory cytokines in the colons of obese rats. These cytokines included interleukin (IL)-1β, IL-8, IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. The inhibition rates for all these cytokines exceeded 88 %. Moreover, ARP demonstrated the ability to down-regulate key genes involved in Toll-like receptor 4 (TLR4) complexes, namely Tlr4, myeloid differentiation protein-2 (Md2), and myeloid differentiation factor 88 (Myd88), along with downstream signaling molecules such as tumor necrosis factor receptor associated factor 6 (TRAF6) and nuclear factor-κB (NF-κB), with inhibition rates over 81 %. Additionally, ARP was observed to inhibit protein levels of TLR4, NF-κB, IL-1β, and TNF-α in the colons of obese rats, with inhibition rates of 65.6 ± 10.9 %, 84.4 ± 19.9 %, 80.8 ± 14.4 %, and 68.4 ± 17.5 %, respectively. This study confirmed the effectiveness of ARP in inhibiting intestinal inflammation through the blockade of the TLR4/NF-κB signaling pathway. It also suggested that ARP holds potential in improving intestinal health in the context of obesity, implying its possible application in the prevention and treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Xiaoxiao Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Li Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
| | - Wuyang Huang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- School of Food and Bioengineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
71
|
Jiménez-Osorio AS, Carreón-Torres E, Correa-Solís E, Ángel-García J, Arias-Rico J, Jiménez-Garza O, Morales-Castillejos L, Díaz-Zuleta HA, Baltazar-Tellez RM, Sánchez-Padilla ML, Flores-Chávez OR, Estrada-Luna D. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants (Basel) 2023; 12:1894. [PMID: 37891973 PMCID: PMC10604737 DOI: 10.3390/antiox12101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammation and oxidative stress are essential components in a myriad of pathogenic entities that lead to metabolic and chronic diseases. Moreover, inflammation in its different phases is necessary for the initiation and maintenance of a healthy pregnancy. Therefore, an equilibrium between a necessary/pathologic level of inflammation and oxidative stress during pregnancy is needed to avoid disease development. High-density lipoproteins (HDL) are important for a healthy pregnancy and a good neonatal outcome. Their role in fetal development during challenging situations is vital for maintaining the equilibrium. However, in certain conditions, such as obesity, diabetes, and other cardiovascular diseases, it has been observed that HDL loses its protective properties, becoming dysfunctional. Bioactive compounds have been widely studied as mediators of inflammation and oxidative stress in different diseases, but their mechanisms of action are still unknown. Nonetheless, these agents, which are obtained from functional foods, increase the concentration of HDL, TRC, and antioxidant activity. Therefore, this review first summarizes several mechanisms of HDL participation in the equilibrium between inflammation and oxidative stress. Second, it gives an insight into how HDL may act as a vector for bioactive compounds. Third, it describes the relationships between the inflammation process in pregnancy and HDL activity. Consequently, different databases were used, including MEDLINE, PubMed, and Scopus, where scientific articles published in the English language up to 2023 were identified.
Collapse
Affiliation(s)
- Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Emmanuel Correa-Solís
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón 68540, Oaxaca, Mexico;
| | - Julieta Ángel-García
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Octavio Jiménez-Garza
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Lizbeth Morales-Castillejos
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Hugo Alexander Díaz-Zuleta
- Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales, Cl. 222 #54-21, Bogotá 111166, Colombia;
| | - Rosa María Baltazar-Tellez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - María Luisa Sánchez-Padilla
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hida go, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (A.S.J.-O.); (J.Á.-G.); (J.A.-R.); (O.J.-G.); (L.M.-C.); (R.M.B.-T.); (M.L.S.-P.); (O.R.F.-C.)
| |
Collapse
|
72
|
Nawaz MH, Aizaz A, Ropari AQ, Shafique H, Imran OB, Minhas BZ, Manzur J, Alqahtani MS, Abbas M, Ur Rehman MA. A study on the effect of bioactive glass and hydroxyapatite-loaded Xanthan dialdehyde-based composite coatings for potential orthopedic applications. Sci Rep 2023; 13:17842. [PMID: 37857655 PMCID: PMC10587085 DOI: 10.1038/s41598-023-44870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
The most important challenge faced in designing orthopedic devices is to control the leaching of ions from the substrate material, and to prevent biofilm formation. Accordingly, the surgical grade stainless steel (316L SS) was electrophoretically deposited with functional composition of biopolymers and bioceramics. The composite coating consisted of: Bioglass (BG), hydroxyapatite (HA), and lawsone, that were loaded into a polymeric matrix of Xanthan Dialdehyde/Chondroitin Sulfate (XDA/CS). The parameters and final composition for electrophoretic deposition were optimized through trial-and-error approach. The composite coating exhibited significant adhesion strength of "4B" (ASTM D3359) with the substrate, suitable wettability of contact angle 48°, and an optimum average surface roughness of 0.32 µm. Thus, promoting proliferation and attachment of bone-forming cells, transcription factors, and proteins. Fourier transformed infrared spectroscopic analysis revealed a strong polymeric network formation between XDA and CS. scanning electron microscopy and energy dispersive X-ray spectroscopy analysis displayed a homogenous surface with invariable dispersion of HA and BG particles. The adhesion, hydrant behavior, and topography of said coatings was optimal to design orthopedic implant devices. The said coatings exhibited a clear inhibition zone of 21.65 mm and 21.04 mm with no bacterial growth against Staphylococcus aureus (S. Aureus) and Escherichia coli (E. Coli) respectively, confirming the antibacterial potential. Furthermore, the crystals related to calcium (Ca) and HA were seen after 28 days of submersion in simulated body fluid. The corrosion current density, of the above-mentioned coating was minimal as compared to the bare 316L SS substrate. The results infer that XDA/CS/BG/HA/lawsone based composite coating can be a candidate to design coatings for orthopedic implant devices.
Collapse
Affiliation(s)
- Muhammad Haseeb Nawaz
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Aqsa Aizaz
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Abdul Qadir Ropari
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Huzaifa Shafique
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Osama Bin Imran
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Badar Zaman Minhas
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Jawad Manzur
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Mohammed S Alqahtani
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan.
- Centre of Excellence in Biomaterials and Tissue Engineering, Government College University Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
73
|
Elkolli H, Elkolli M, Ataya FS, Salem-Bekhit MM, Zahrani SA, Abdelmageed MWM, Ernst B, Benguerba Y. In Vitro and In Silico Activities of E. radiata and E. cinerea as an Enhancer of Antibacterial, Antioxidant, and Anti-Inflammatory Agents. Molecules 2023; 28:7153. [PMID: 37894631 PMCID: PMC10609132 DOI: 10.3390/molecules28207153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous extracts (AE) obtained from these plants, and the extraction yields were found to be different. The in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial strains. The results showed that the two extracts were effective against all three strains. Both extracts displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin. All phytoconstituents present good pharmacokinetic characteristics without toxicity except very slight toxicity of terpineol and cineol and a maximum binding energy of -7.53 kcal/mol for its anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs (NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing natural-based drugs with potential therapeutic benefits.
Collapse
Affiliation(s)
- Hayet Elkolli
- Laboratory of Multiphasic Polymeric Materials, Départment of Process Engineering, Faculty of Technology, University Ferhat Abbas of Setif 1, Setif 19000, Algeria;
| | - Meriem Elkolli
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif 1, Setif 19000, Algeria;
| | - Farid S. Ataya
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem-Bekhit
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Sami Al Zahrani
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mostafa W. M. Abdelmageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Barbara Ernst
- Laboratory of Molecular Recognition and Separation Processes (RePSeM), CNRS, IPHC UMR 7178, University of Strasbourg, ECPM 25 Becquerel Road, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratory of Biopharmacy and Pharmacotechnics (LPBT), University of Ferhat Abbas Setif 1, Setif 19000, Algeria
| |
Collapse
|
74
|
Jokubaite M, Pukenaite G, Marksa M, Ramanauskiene K. Balsam Poplar Buds Extracts-Loaded Gels and Emulgels: Development, Biopharmaceutical Evaluation, and Biological Activity In Vitro. Gels 2023; 9:821. [PMID: 37888394 PMCID: PMC10606801 DOI: 10.3390/gels9100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Balsam poplar buds have been used for wound healing and treating irritated skin in traditional medicine. Balsam poplar buds extracts exhibit anti-inflammatory, antioxidant, and antimicrobial effects. In recent years, scientific research has begun to validate some of these traditional uses, leading to an increased interest in balsam poplar buds as a potential source of natural remedies in modern medicine. The study aims to simulate semi-solid pharmaceutical forms with balsam poplar buds extract and evaluate their quality through biopharmaceutical research. The active compounds identified in Lithuanian poplar buds were p-coumaric acid, cinnamic acid, caffeic acid, galangin, pinocembrin, pinobanksin, and salicin. In gels, pH values ranged from 5.85 ± 0.05 to 5.95 ± 0.07. The determined pH values of emulgels ranged from 5.13 ± 0.05 to 5.66 ± 0.15. After 6 h, the release of active compounds from gels and emulgels ranged from 47.40 ± 2.41% to 71.17 ± 3.54. p-coumaric acid dominates in the balsam poplar buds extracts. The pH values of the prepared sem-solid pharmaceutical forms are suitable for use on the skin. The viscosity of the formulations depends on the amount of gelling agent. All formulations showed antioxidant activity. It is relevant to conduct a more extensive study on the influence of the chosen carrier on the release of active compounds from semi-solid formulations with an extract of balsam poplar buds.
Collapse
Affiliation(s)
- Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Greta Pukenaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| |
Collapse
|
75
|
Iyigundogdu Z, Petek BS, Capkin Yurtsever M, Ceylan S. Melissa officinalisessential oil loaded polycaprolactone membranes: evaluation of antimicrobial activities and cytocompatibility for tissue engineering applications. Biomed Mater 2023; 18:065012. [PMID: 37741274 DOI: 10.1088/1748-605x/acfc9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Antimicrobial biomaterials play important role in tissue engineering applications to protect damaged tissue from infections. The aim of this study is producing antimicrobial polycaprolactone (PCL) membranes by using a plant based antimicrobial agent. Therefore,Melissa officinalisessential oil (MEO) was investigated against ten types of microorganisms and remarkable antimicrobial activity was demonstrated. PCL:MEO membranes were prepared by solvent casting method by mixing MEO into PCL in various ratios (PCL:0M, PCL:0.25M, PCL:0.5M, and PCL:1M w/w). Water contact angle measurements showed that hydrophilicity of the membranes increased with increasing concentrations of MEO from 103.44° to 83.36° for PCL:0M and PCL:1M, respectively. It was determined that there was an inverse relationship between the MEO concentration and the mechanical properties. Notable antioxidant activity of PCL/MEO membranes was exhibited by the inhibition percent of 2,2-diphenyl-1-picrylhydrazyl (DPPH) which was increased from 24.74% to 44.79% for PCL:0M and PCL:1M, respectively. The antimicrobial activity of MEO was also highly maintained in PCL membranes. For PCL/MEO membranes, at least 99.9% of microorganisms were inhibited. Cytocompatibility of the membranes were investigated by resazurin assay, scanning electron microscopy analysis and 4',6-diamidino-2-phenylindole (DAPI) staining. PCL:0.25M and PCL:0.5M membranes supported the viability of L929 cells more than 87% when compared to PCL:0M membranes on day 6. However, the viability of L929 cells on PCL:1M membranes was about 43% indicating significant decrease on cellular activity. In conclusion, PCL:0.25M and PCL:0.5M membranes with their high antimicrobial activity, acceptable mechanical properties and cytocompatible properties, they can be considered as an alternative biomaterial for tissue engineering applications.
Collapse
Affiliation(s)
- Zeynep Iyigundogdu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Betül Sena Petek
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Merve Capkin Yurtsever
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| |
Collapse
|
76
|
Doghish AS, Shehabeldine AM, El-Mahdy HA, Hassanin MMH, Al-Askar AA, Marey SA, AbdElgawad H, Hashem AH. Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities. Molecules 2023; 28:6910. [PMID: 37836753 PMCID: PMC10574288 DOI: 10.3390/molecules28196910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.
Collapse
Affiliation(s)
- Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
77
|
Burenjargal M, Narangerel T, Batmunkh T, Dong A, Idesh S. A review of the bioactive properties of Mongolian plants, with a focus on their potential as natural food preservatives. Food Sci Nutr 2023; 11:5736-5752. [PMID: 37823130 PMCID: PMC10563759 DOI: 10.1002/fsn3.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Consumers have recently preferred food that is easy to make and of excellent quality, as well as food that is safe, natural, and minimally processed, but has a longer shelf life. Food deteriorates over time as a result of microbiological, chemical, or physical changes. Phytochemicals derived from medicinal and food plants have long been recognized for their biological activity to protect plants. These bioactivities are designed to increase the shelf life of food while inhibiting the growth of microorganisms. The use of natural plant food preservatives containing bioactive compounds as health-promoting agents is particularly intriguing. Furthermore, due to their effectiveness against food spoilage and foodborne pathogens, natural plant-origin antimicrobial compounds have been investigated as alternatives to synthetic antimicrobial compounds for preserving food quality. This review focused on the plant composition and properties that can be utilized as a natural food preservative, as well as the possibilities of using Mongolian medicinal plants.
Collapse
Affiliation(s)
| | - Tuya Narangerel
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| | - Tuyagerel Batmunkh
- Department of Chemical and Biological EngineeringNational University of MongoliaUlaanbaatarMongolia
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Saruul Idesh
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| |
Collapse
|
78
|
Tritean N, Dima ȘO, Trică B, Stoica R, Ghiurea M, Moraru I, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Selenium-Fortified Kombucha-Pollen Beverage by In Situ Biosynthesized Selenium Nanoparticles with High Biocompatibility and Antioxidant Activity. Antioxidants (Basel) 2023; 12:1711. [PMID: 37760014 PMCID: PMC10525527 DOI: 10.3390/antiox12091711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Biogenic selenium nanoparticles (SeNPs) have been shown to exhibit increased bioavailability. Fermentation of pollen by a symbiotic culture of bacteria and yeasts (SCOBY/Kombucha) leads to the release of pollen content and enhances the prebiotic and probiotic effects of Kombucha. The aim of this study was to fortify Kombucha beverage with SeNPs formed in situ by Kombucha fermentation with pollen. Response Surface Methodology (RSM) was used to optimize the biosynthesis of SeNPs and the pollen-fermented Kombucha beverage. SeNPs were characterized by Transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX), Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), and Zeta potential. The pollen-fermented Kombucha beverage enriched with SeNPs was characterized by measuring the total phenolic content, antioxidant activity, soluble silicon, saccharides, lactic acid, and the total content of Se0. The polyphenols were identified by liquid chromatography-mass spectrometry (LC-MS). The pollen and the bacterial (nano)cellulose were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), FTIR, and X-Ray diffraction (XRD). We also assessed the in vitro biocompatibility in terms of gingival fibroblast viability and proliferation, as well as the antioxidant activity of SeNPs and the pollen-fermented Kombucha beverage enriched with SeNPs. The results highlight their increased biological performance in this regard.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania;
| | - Ștefan-Ovidiu Dima
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
| | - Bogdan Trică
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
- Postdoctoral School, National University of Science and Technology Politehnica of Bucharest, Splaiul Independenței No. 313, 060042 Bucharest, Romania
| | - Rusăndica Stoica
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
| | - Marius Ghiurea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
| | - Ionuț Moraru
- Medica Laboratories, Str. Frasinului nr. 11, 075100 Otopeni, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania;
| | - Florin Oancea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv. No. 59, Sector 1, 011464 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (Ș.-O.D.); (B.T.); (R.S.); (M.G.)
| |
Collapse
|
79
|
Osman NAHK, Abd-Elazeem OM, Al-Eisa RA, El-Shenawy NS. Anticancer and antimicrobial evaluation of extract from brown algae Hormophysa cuneiformis. J Appl Biomed 2023; 21:121-136. [PMID: 37747312 DOI: 10.32725/jab.2023.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
AIM We investigated the antimicrobial and anticancer properties of an ethanol crude extract of Red Sea brown alga (Hormophysa cuneiformis) from Egypt. METHODS Extraction was achieved by mixing 100 g of sample powder with absolute ethanol, incubating at 37 °C overnight in a shaking incubator, and then collecting the extract. The extract's antimicrobial activity was tested using a well diffusion assay against the tested pathogens (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Candida albicans) in comparison to commercial antibiotics. Anticancer activity was assessed using MTT assay on MCF-7, HepG-2, and HEP-2 cell lines. The anticancer mechanism of action against the HepG-2 cell line was investigated using cell cycle analysis, Annexin V, and antioxidant enzymes, in addition to transmission electron microscopy. RESULTS GC-MS phytoconstituent profile of the extract was dominant with fatty acids. A broad antimicrobial effect against all the pathogenic isolates of E. coli, S. aureus, B. subtitles, and C. albicans was demonstrated, especially at the high concentration in comparison to commercial antibiotics. The extract could inhibit the growth of the tested cell lines. We observed the most significant effect on HepG-2 cells, and the concentration of the extract played a role in the level of inhibition (IC50 of 44.6 ± 0.6 µg/ml). The extract had negligible effects on Vero normal cell lines at the lower concentration, with slight toxicity (90.8% viability) at the highest concentration (500 µg/ml). At this same concentration, the extract caused 80-92% inhibition of the cancer cell lines. The extract appears to have demonstrated promising effects on cancer cells. It induces programmed cell death (apoptosis), arrests the cell cycle, and affects the oxidative/antioxidant balance within the cells, potentially leading to the suppression or elimination of cancer cells. These findings are encouraging and may have implications for cancer treatment or further research in this area. More action of extract was seen against bacteria than fungi, with a wide antibacterial impact against all of the tested isolates, notably at the high concentration in comparison to conventional antibiotics. CONCLUSION According to the findings, H. cuneiformis may be a valuable source of chemicals that are both antimicrobial and anticancer.
Collapse
Affiliation(s)
- Nehal A H K Osman
- Suez Canal University, Faculty of Science, Botany and Microbiology Department, Ismailia 41522, Egypt
| | - Omniya M Abd-Elazeem
- Suez Canal University, Faculty of Science, Department of Zoology, Ismailia 41522, Egypt
| | - Rasha A Al-Eisa
- Taif University, College of Sciences, Department of Biology, Taif 21944, Saudi Arabia
| | - Nahla S El-Shenawy
- Suez Canal University, Faculty of Science, Department of Zoology, Ismailia 41522, Egypt
| |
Collapse
|
80
|
Çavuş UY, Yılmaz A, Tascanov MB, Ocak M. Efficacy of combination of N-acetylcysteine and primrose in spinal cord injury; an experimental study. Heliyon 2023; 9:e19350. [PMID: 37662796 PMCID: PMC10474406 DOI: 10.1016/j.heliyon.2023.e19350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Spinal cord trauma represents a major cause of emergency department admissions, with high morbidity and mortality rates. It requires early and urgent treatment. This experimental study assessed the effectiveness of a combination of primrose and N-acetylcysteine (NAC) in managing spinal cord injury (SCI). Methods We divided 46 adult male Wistar albino rats (6-8 months old, weighing 300-350 g) into five groups. Group 1 (n = 10) received only primrose; group 2 (n = 10) received only NAC; group 3 (n = 10) received a combination of NAC and primrose; group 4 (n = 10) received no intervention (first control group); group 5 (n = 10) underwent laminectomy only (second control group). Intergroup neurological and motor function were evaluated on days 1, 7, and 14. Oxidative biochemical markers, such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and malondialdehyde (MDA), were measured. Results Significant differences were recorded in the GPX, SOD, and MDA values of groups 1, 2, 3, and 4 (p < 0.001, p = 0.005, and p = 0.097, respectively). Groupwise comparisons were conducted to identify the clinical significance of these markers. GPX and SOD levels were significantly higher in group 1 than in group 2; MDA levels were lower in group 1. GPX and SOD levels were significantly higher than in group 3 than in group 1; MDA levels were lower in group 3. Compared with group 5, group 1 demonstrated significantly higher GPX and SOD levels and lower MDA levels. Results in group 2 were similar to results in group 5. In group 3, GPX and SOD levels were significantly higher than in groups 2 and 5; MDA levels were significantly lower. Comparisons according to inclined plane angle level and motor function values revealed significant results on day 14, in favor of group 3 rats that had received the combined treatment. Conclusion The combined administration of NAC and primrose for traumatic SCI was more effective than either treatment alone in terms of improving biochemical and neurological functions. These findings suggest that the combination of NAC and primrose can serve as an effective treatment option for traumatic SCI.
Collapse
Affiliation(s)
- Umut Yücel Çavuş
- University of Health Sciences DıskapıYıldırım Beyazıt Education and Training Hospital, Department of Emergency Medicine,Ankara, Turkiye
| | - Abdurrahman Yılmaz
- Uşak University Faculty of Medicine, Department of Emergency Medicine, Uşak, Turkiye
| | | | - Metin Ocak
- Samsun Education and Training Hospital, Department of Emergency Medicine, Samsun, Turkiye
| |
Collapse
|
81
|
Touzout SN, Merghni A, Laouani A, Boukhibar H, Alenazy R, Alobaid A, Alenazy M, Ben-Attia M, Saguem K, El-Bok S. Antibacterial Properties of Methanolic Leaf Extracts of Melia azedarach L. against Gram-Positive and Gram-Negative Pathogenic Bacteria. Microorganisms 2023; 11:2062. [PMID: 37630622 PMCID: PMC10457991 DOI: 10.3390/microorganisms11082062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Melia azedarach L., a Meliaceae family tree, is widely used in traditional folkloric medicine for its pharmaceutical properties. In the present study, we investigated the phytochemical composition of four methanolic leaf extracts of M. azedarach of various origins (Algeria and Tunisia) using high-performance liquid chromatography (HPLC). The antibacterial efficacy and mechanisms of action against Gram-positive and Gram-negative pathogenic microorganisms were then evaluated. Our findings revealed a presence of phenolic acids and flavonoids, such as gallic acid, chlorogenic acid, caffeic acid, hyperoside, isoquercetin, quercetin, and isorhamnetin both in Algerian and Tunisian localities, with an abundance of phenolic acids compared to flavonoids. Additionally, the studied extracts exhibit a broad spectrum of antibacterial activities, with MIC values ranging from 31.25 mg/mL to 125 mg/mL. Methanolic leaf extracts of M. azedarach from Algeria exhibited more potent biofilm eradication, with a percentage of inhibition reaching 72.17% against the S. aureus strain. Furthermore, inhibitory concentrations of tested substances, particularly the extract from the Relizane area, were capable of disrupting the membrane integrity of the treated bacteria as well as producing oxidative stress through ROS generation. Likewise, our results reveal that plant extract induces lipid peroxidation by raising MDA levels in comparison to untreated cells, particularly with the plant extract of Blida. M. azedarach extracts also reduced the synthesis of antioxidant enzymes (CAT and SOD). Our findings illustrate that M. azedarach remains a plant with significant antibacterial potential and distinct mechanisms of action that are closely related to the origins of this specimen.
Collapse
Affiliation(s)
- Soraya Naila Touzout
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Halima Boukhibar
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmohsen Alobaid
- Department of Medical Laboratory, Aliman General Hospital-Riyadh, Ministry of Health, Riyadh 12684, Saudi Arabia;
| | | | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia;
| | - Khaled Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Safia El-Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| |
Collapse
|
82
|
Ma Y, Yi J, Ma J, Yu H, Luo L, Wu W, Jin L, Yang Q, Lou T, Sun D, Cao M. Hand Sanitizer Gels: Classification, Challenges, and the Future of Multipurpose Hand Hygiene Products. TOXICS 2023; 11:687. [PMID: 37624192 PMCID: PMC10459210 DOI: 10.3390/toxics11080687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Hand hygiene is a crucial measure in the prevention and control of infections, and there is a growing awareness among individuals who are making a conscious effort to maintain hand cleanliness. With the advent of the SARS-CoV-2 outbreak, the demand for hand hygiene products has also gradually shifted towards those with antimicrobial properties. Among these products, hand sanitizer gels (HSGs) have gained considerable popularity as an efficient method of hand cleaning, due to their rapid drying and sustained antimicrobial efficacy. Concurrently, there has been a growing interest in novel HSGs that offer additional functions such as skin whitening, moisturizing, and anti-inflammatory effects. These novel HSGs effectively address concerns associated with the ingestion of antimicrobial ingredients and demonstrate reduced skin irritation, thereby alleviating hand dermatological issues. This review provides an extensive overview of the application scenarios, classification, and challenges associated with HSGs while emphasizing the emergence of novel components with biological functions, aiming to contribute to the advancement of hand hygiene practices and offer novel insights for the development of novel HSGs with outstanding antimicrobial properties with other multiple biological functions and desirable biosafety profiles.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ting Lou
- Yiwu Center for Disease Control and Prevention, Yiwu 322000, China;
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Min Cao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
83
|
Altintas F, Tunc-Ata M, Secme M, Kucukatay V. The anticancer effects of thymol on HepG2 cell line. Med Oncol 2023; 40:260. [PMID: 37542527 DOI: 10.1007/s12032-023-02134-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
There is an increasing incidence of liver cancer, which is a hazard for global health. The present study was designed to evaluate possible cytotoxic, genotoxic, apoptotic, oxidant and antioxidant effects of thymol on hepatocellular carcinoma (HepG2) cell line. The cytotoxic effect of thymol on HepG2 cell line was determined by XTT test. We also used the HUVEC cell line to show whether thymol damages healthy cells. Oxidative stress level was determined with Total Oxidant Status (TOS) and Total Antioxidant Status (TAS) measurement kits. Apoptosis of cells was detected in flow cytometry with Annexin V apoptosis kit. Apoptotic gene expressions were analyzed by real-time PCR. Genotoxicity was determined by comet assay, which measures DNA damage. The thymol IC50 dose was found to be 11 μM on HepG2 cell line. This dose had no lethal effect on the healthy HUVEC cell line. While thymol significantly decreased the TOS level, it increased the TAS level significantly in HepG2 cells compared to control. Thymol significantly induced apoptosis in HepG2 cells (apoptosis rate in control group 1%, in thymol group 21%). Thymol did not alter the gene expressions of bax, bcl-2, and casp3, all of which are associated with apoptosis. Statistically significant change in favor of genotoxicity was observed in tail length measurements. Our results suggest that thymol decreases oxidative stress in HepG2 cell line, but it induces apoptosis and genotoxicity.
Collapse
Affiliation(s)
- Fatih Altintas
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160, Denizli, Turkey.
| | - Melek Tunc-Ata
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160, Denizli, Turkey
| | - Mucahit Secme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160, Denizli, Turkey
| |
Collapse
|
84
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
85
|
Vishnu J, Kesavan P, Shankar B, Dembińska K, Swiontek Brzezinska M, Kaczmarek-Szczepańska B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J Funct Biomater 2023; 14:344. [PMID: 37504839 PMCID: PMC10381466 DOI: 10.3390/jfb14070344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Prolonged inflammation induced by orthopedic metallic implants can critically affect the success rates, which can even lead to aseptic loosening and consequent implant failure. In the case of adverse clinical conditions involving osteoporosis, orthopedic trauma and implant corrosion-wear in peri-implant region, the reactive oxygen species (ROS) activity is enhanced which leads to increased oxidative stress. Metallic implant materials (such as titanium and its alloys) can induce increased amount of ROS, thereby critically influencing the healing process. This will consequently affect the bone remodeling process and increase healing time. The current review explores the ROS generation aspects associated with Ti-based metallic biomaterials and the various surface modification strategies developed specifically to improve antioxidant aspects of Ti surfaces. The initial part of this review explores the ROS generation associated with Ti implant materials and the associated ROS metabolism resulting in the formation of superoxide anion, hydroxyl radical and hydrogen peroxide radicals. This is followed by a comprehensive overview of various organic and inorganic coatings/materials for effective antioxidant surfaces and outlook in this research direction. Overall, this review highlights the critical need to consider the aspects of ROS generation as well as oxidative stress while designing an implant material and its effective surface engineering.
Collapse
Affiliation(s)
- Jithin Vishnu
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Praveenkumar Kesavan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
86
|
Mammari N, Albert Q, Devocelle M, Kenda M, Kočevar Glavač N, Sollner Dolenc M, Mercolini L, Tóth J, Milan N, Czigle S, Varbanov M. Natural Products for the Prevention and Treatment of Common Cold and Viral Respiratory Infections. Pharmaceuticals (Basel) 2023; 16:ph16050662. [PMID: 37242445 DOI: 10.3390/ph16050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The common cold is generally considered a usually harmless infectious disease of the upper respiratory pathway, with mostly mild symptoms. However, it should not be overlooked, as a severe cold can lead to serious complications, resulting in hospitalization or death in vulnerable patients. The treatment of the common cold remains purely symptomatic. Analgesics as well as oral antihistamines or decongestants may be advised to relieve fever, and local treatments can clear the airways and relieve nasal congestion, rhinorrhea, or sneezing. Certain medicinal plant specialties can be used as therapy or as complementary self-treatment. Recent scientific advances discussed in more detail in this review have demonstrated the plant's efficiency in the treatment of the common cold. This review presents an overview of plants used worldwide in the treatment of cold diseases.
Collapse
Affiliation(s)
- Nour Mammari
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
| | - Quentin Albert
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologies Fongiques, 13288 Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, 13288 Marseille, France
| | - Marc Devocelle
- SSPC (Synthesis & Solid State Pharmaceutical Centre), V94 T9PX Limerick, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Nagy Milan
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Mihayl Varbanov
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
87
|
Kim SY, Sapkota A, Bae YJ, Choi SH, Bae HJ, Kim HJ, Cho YE, Choi YY, An JY, Cho SY, Hong SH, Choi JW, Park SJ. The Anti-Atopic Dermatitis Effects of Mentha arvensis Essential Oil Are Involved in the Inhibition of the NLRP3 Inflammasome in DNCB-Challenged Atopic Dermatitis BALB/c Mice. Int J Mol Sci 2023; 24:ijms24097720. [PMID: 37175425 PMCID: PMC10177797 DOI: 10.3390/ijms24097720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The NLRP3 inflammasome is upregulated by various agents, such as nuclear factor-kappa B (NF-κB), lipopolysaccharide (LPS), and adenosine triphosphate (ATP). The NLRP3 inflammasome facilitations the maturation of interleukin (IL)-1β, a proinflammatory cytokine that is critically involved in the pathogenesis of atopic dermatitis (AD). Although the NLRP3 inflammasome clearly exacerbates AD symptoms such as erythema and pruritus, drugs for AD patients targeting the NLRP3 inflammasome are still lacking. Based on the previous findings that Mentha arvensis essential oil (MAEO) possesses strong anti-inflammatory and anti-AD properties through its inhibition of the ERK/NF-κB signaling pathway, we postulated that MAEO might be capable of modulating the NLRP3 inflammasome in AD. The aim of this research was to investigate whether MAEO affects the inhibition of NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) stimulated with LPS + ATP in vitro and in a murine model displaying AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in vivo. We found that MAEO inhibited the expression of NLRP3 and caspase-1, leading to the suppression of NLRP3 inflammasome activation and IL-1β production in BMDMs stimulated with LPS + ATP. In addition, MAEO exhibited efficacy in ameliorating AD symptoms in a murine model induced by DNCB, as indicated by the reduction in dermatitis score, ear thickness, transepidermal water loss (TEWL), epidermal thickness, and immunoglobulin E (IgE) levels. Furthermore, MAEO attenuated the recruitment of NLRP3-expressing macrophages and NLRP3 inflammasome activation in murine dorsal skin lesions induced by DNCB. Overall, we provide evidence for the anti-AD effects of MAEO via inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Young Joo Bae
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Hee Hong
- School of Applied Science in Natural Resources & Environment, Hankyong National University, Anseong 17579, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
88
|
Hu Y, He Z, Zhang W, Niu Z, Wang Y, Zhang J, Shen T, Cheng H, Hu W. The potential of Panax notoginseng against COVID-19 infection. J Ginseng Res 2023:S1226-8453(23)00031-3. [PMID: 37362082 PMCID: PMC10082468 DOI: 10.1016/j.jgr.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has changed the world and has presented the scientific community with unprecedented challenges. Infection is associated with overproduction of proinflammatory cytokines secondary to hyperactivation of the innate immune response, inducing a cytokine storm and triggering multiorgan failure and significant morbidity/mortality. No specific treatment is yet available. For thousands of years, Panax notoginseng has been used to treat various infectious diseases. Experimental evidence of P. notoginseng utility in terms of alleviating the cytokine storm, especially the cascade, and improving post-COVID-19 symptoms, suggests that P. notoginseng may serve as a valuable adjunct treatment for COVID-19 infection.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanting Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Ting Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hong Cheng
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
- Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
89
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
90
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
91
|
Physicochemical Characterization, Biocompatibility, and Antibacterial Properties of CMC/PVA/Calendula officinalis Films for Biomedical Applications. Polymers (Basel) 2023; 15:polym15061454. [PMID: 36987233 PMCID: PMC10059992 DOI: 10.3390/polym15061454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
This study reports a carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) composite film that incorporates Calendula officinalis (CO) extract for biomedical applications. The morphological, physical, mechanical, hydrophilic, biological, and antibacterial properties of CMC/PVA composite films with various CO concentrations (0.1%, 1%, 2.5%, 4%, and 5%) are fully investigated using different experiments. The surface morphology and structure of the composite films are significantly affected by higher CO concentrations. X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FTIR) analyses confirm the structural interactions among CMC, PVA, and CO. After CO is incorporated, the tensile strength and elongation upon the breaking of the films decrease significantly. The addition of CO significantly reduces the ultimate tensile strength of the composite films from 42.8 to 13.2 MPa. Furthermore, by increasing the concentration of CO to 0.75%, the contact angle is decreased from 15.8° to 10.9°. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay reveals that the CMC/PVA/CO-2.5% and CMC/PVA/CO-4% composite films are non-cytotoxic to human skin fibroblast cells, which is favorable for cell proliferation. Remarkably, 2.5% and 4% CO incorporation significantly improve the inhibition ability of the CMC/PVA composite films against Staphylococcus aureus and Escherichia coli. In summary, CMC/PVA composite films containing 2.5% CO exhibit the functional properties for wound healing and biomedical engineering applications.
Collapse
|
92
|
Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules 2023; 28:molecules28052308. [PMID: 36903553 PMCID: PMC10004803 DOI: 10.3390/molecules28052308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Medicinal plants are an important source of bioactive compounds with a wide spectrum of practically useful properties. Various types of antioxidants synthesized in plants are the reasons for their application in medicine, phytotherapy, and aromatherapy. Therefore, reliable, simple, cost-effective, eco-friendly, and rapid methods for the evaluation of antioxidant properties of medicinal plants and products on their basis are required. Electrochemical methods based on electron transfer reactions are promising tools to solve this problem. Total antioxidant parameters and individual antioxidant quantification can be achieved using suitable electrochemical techniques. The analytical capabilities of constant-current coulometry, potentiometry, various types of voltammetry, and chrono methods in the evaluation of total antioxidant parameters of medicinal plants and plant-derived products are presented. The advantages and limitations of methods in comparison to each other and traditional spectroscopic methods are discussed. The possibility to use electrochemical detection of the antioxidants via reactions with oxidants or radicals (N- and O-centered) in solution, with stable radicals immobilized on the electrode surface, via oxidation of antioxidants on a suitable electrode, allows the study of various mechanisms of antioxidant actions occurring in living systems. Attention is also paid to the individual or simultaneous electrochemical determination of antioxidants in medicinal plants using chemically modified electrodes.
Collapse
|
93
|
El-Sabrout K, Khalifah A, Mishra B. Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet World 2023; 16:369-379. [PMID: 37041996 PMCID: PMC10082723 DOI: 10.14202/vetworld.2023.369-379] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/23/2023] [Indexed: 02/27/2023] Open
Abstract
Poultry is one of the most consumed sources of animal protein around the world. To meet the global demands for poultry meat and eggs, it is necessary to improve their nutrition to sustain the poultry industry. However, the poultry industry faces several challenges, including feedstuff availability, the banning of antibiotics as growth promoters, and several environmental stressors. Therefore, there is a critical need to include available nutraceuticals in the diet to sustain the poultry industry. Nutraceuticals are natural chemical substances that positively influence animal physiological and productive traits. Botanical products (such as fenugreek seeds, ginger roots, and olive leaves) are among the most commonly used nutraceuticals and are gradually gaining popularity in the poultry industry due to their immense benefits in nutrition and therapeutic properties. They can be added to the diet separately or in combination (as a natural antioxidant and immunostimulant) to improve poultry health and production. Botanical products are rich in essential oils and essential fatty acids, which have multiple benefits on the animal's digestive system, such as activating the digestive enzymes and restoring microbiota balance, enhancing poultry health, and production. These nutraceuticals have been shown to stimulate the expression of several genes related to growth, metabolism, and immunity. In addition, the essential oil supplementation in poultry diets up-regulated the expression of some crucial genes associated with nutrient transportation (such as glucose transporter-2 and sodium-glucose cotransporter-1). Previous studies have suggested that supplementation of botanical compounds increased broiler body weight and hen egg production by approximately 7% and 15%, respectively. Furthermore, the supplementation of botanical compounds enhanced the reproductive efficiency of hens and the semen quality of roosters by 13%. This review article discusses the significant effects of some botanical products in the poultry industry and how they can benefit poultry, especially in light of the ban on antibiotics as growth promoters.
Collapse
Affiliation(s)
- Karim El-Sabrout
- Department of Poultry Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Ayman Khalifah
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Egypt
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
94
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
95
|
Ghafouri A, Jafari Karegar S, Hajiluian G, Hosseini S, Shidfar S, Kamalinejad M, Hosseini AF, Heydari I, Shidfar F. The effects of aqueous and ethanolic extracts of Rheum ribes on insulin-resistance and apolipoproteins in patients with type 2 diabetes mellitus: a randomized controlled trial. BMC Complement Med Ther 2023; 23:46. [PMID: 36788517 DOI: 10.1186/s12906-023-03878-0.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/09/2023] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND AIM Previous studies have shown that Rheum ribes (R. ribes) could be effective in controlling the blood glucose levels. This study was conducted to determine the effects of R. ribes supplementation on glycemic indices and apolipoproteins in patients with type 2 diabetes mellitus (T2DM). METHODS In the present randomized double-blind controlled trial, 60 type 2 diabetic patients aged 30-60 years with a body mass index (BMI) of 20-30 kg/m2 and hemoglobin A1c (HbA1c) of 6-8% were enrolled. Patients were randomly assigned to receive 450 mg of aqueous R. ribes extract (AG), 450 mg of ethanolic R. ribes extract (EG), or placebo (PG) three times daily for 6 weeks. At the baseline and at the end of the study, blood glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) and the homeostatic model assessment of β-cell dysfunction (HOMA-B), as well as apolipoprotein A-I (ApoA1) and apolipoprotein B (ApoB) were measured. RESULTS There was a significant decrease in the serum levels of insulin in AG and EG groups (P = 0.003 and P = 0.001, respectively), HOMA-IR (P = 0.01 and P = 0.001, respectively), HOMA-B (P = 0.002 and P = 0.001, respectively), ApoB (P = 0.006 and P = 0.03, respectively), ApoB/ApoA1 ratio (P = 0.016 and P = 0.04, respectively). However, a significant increase in ApoA1 (P = 0.08 and P = 0.05, respectively) with no significant changes in blood glucose, at the end of study compared to beginning values, were observed. None of the variables showed a significant change in PG. At the end of the study; while there were significant differences in insulin (P = 0.04), HOMA-IR (P = 0.03), HOMA-B (P = 0.01), ApoB (P = 0.02), and ApoB/ApoA1 ratio (P = 0.03) among the groups but ApoA1 had no significant change. CONCLUSION Consumption of R. ribes intake could have beneficial effects on insulin resistance and apolipoproteins in type 2 diabetic patients. (Registered at en.irct.ir, identification number: IRCT201410142709N31).
Collapse
Affiliation(s)
- Atieh Ghafouri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Jafari Karegar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Hajiluian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sharieh Hosseini
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahrzad Shidfar
- Worcester Memorial Hospital, University of Massachusetts, Worcester, MA, USA
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Agha Fatemeh Hosseini
- Department of Statistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Heydari
- Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
96
|
Effect-Directed, Chemical and Taxonomic Profiling of Peppermint Proprietary Varieties and Corresponding Leaf Extracts. Antioxidants (Basel) 2023; 12:antiox12020476. [PMID: 36830034 PMCID: PMC9952098 DOI: 10.3390/antiox12020476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
During the development of novel, standardized peppermint extracts targeting functional applications, it is critical to adequately characterize raw material plant sources to assure quality and consistency of the end-product. This study aimed to characterize existing and proprietary, newly bred varieties of peppermint and their corresponding aqueous extract products. Taxonomy was confirmed through genetic authenticity assessment. Non-target effect-directed profiling was developed using high-performance thin-layer chromatography-multi-imaging-effect-directed assays (HPTLC-UV/Vis/FLD-EDA). Results demonstrated substantial differences in compounds associated with functional attributes, notably antioxidant potential, between the peppermint samples. Further chemical analysis by high-performance liquid chromatography-photodiode array/mass spectrometry detection (HPLC-PDA/MS) and headspace solid-phase microextraction-gas chromatography-flame ionization/MS detection (headspace SPME-GC-FID/MS) confirmed compositional differences. A broad variability in the contents of flavonoids and volatiles was observed. The peppermint samples were further screened for their antioxidant potential using the Caenorhabditis elegans model, and the results indicated concordance with observed content differences of the identified functional compounds. These results documented variability among raw materials of peppermint leaves, which can yield highly variable extract products that may result in differing effects on functional targets in vivo. Hence, product standardization via effect-directed profiles is proposed as an appropriate tool.
Collapse
|
97
|
Ghafouri A, Jafari Karegar S, Hajiluian G, Hosseini S, Shidfar S, Kamalinejad M, Hosseini AF, Heydari I, Shidfar F. The effects of aqueous and ethanolic extracts of Rheum ribes on insulin-resistance and apolipoproteins in patients with type 2 diabetes mellitus: a randomized controlled trial. BMC Complement Med Ther 2023; 23:46. [PMID: 36788517 PMCID: PMC9926739 DOI: 10.1186/s12906-023-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND AND AIM Previous studies have shown that Rheum ribes (R. ribes) could be effective in controlling the blood glucose levels. This study was conducted to determine the effects of R. ribes supplementation on glycemic indices and apolipoproteins in patients with type 2 diabetes mellitus (T2DM). METHODS In the present randomized double-blind controlled trial, 60 type 2 diabetic patients aged 30-60 years with a body mass index (BMI) of 20-30 kg/m2 and hemoglobin A1c (HbA1c) of 6-8% were enrolled. Patients were randomly assigned to receive 450 mg of aqueous R. ribes extract (AG), 450 mg of ethanolic R. ribes extract (EG), or placebo (PG) three times daily for 6 weeks. At the baseline and at the end of the study, blood glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) and the homeostatic model assessment of β-cell dysfunction (HOMA-B), as well as apolipoprotein A-I (ApoA1) and apolipoprotein B (ApoB) were measured. RESULTS There was a significant decrease in the serum levels of insulin in AG and EG groups (P = 0.003 and P = 0.001, respectively), HOMA-IR (P = 0.01 and P = 0.001, respectively), HOMA-B (P = 0.002 and P = 0.001, respectively), ApoB (P = 0.006 and P = 0.03, respectively), ApoB/ApoA1 ratio (P = 0.016 and P = 0.04, respectively). However, a significant increase in ApoA1 (P = 0.08 and P = 0.05, respectively) with no significant changes in blood glucose, at the end of study compared to beginning values, were observed. None of the variables showed a significant change in PG. At the end of the study; while there were significant differences in insulin (P = 0.04), HOMA-IR (P = 0.03), HOMA-B (P = 0.01), ApoB (P = 0.02), and ApoB/ApoA1 ratio (P = 0.03) among the groups but ApoA1 had no significant change. CONCLUSION Consumption of R. ribes intake could have beneficial effects on insulin resistance and apolipoproteins in type 2 diabetic patients. (Registered at en.irct.ir, identification number: IRCT201410142709N31).
Collapse
Affiliation(s)
- Atieh Ghafouri
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Jafari Karegar
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Hajiluian
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sharieh Hosseini
- grid.411463.50000 0001 0706 2472Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahrzad Shidfar
- grid.168645.80000 0001 0742 0364Worcester Memorial Hospital, University of Massachusetts, Worcester, MA USA
| | - Mohammad Kamalinejad
- grid.411600.2School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Agha Fatemeh Hosseini
- grid.411746.10000 0004 4911 7066Department of Statistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Heydari
- grid.411746.10000 0004 4911 7066Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran. .,Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
98
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
99
|
Immunomodulatory Potency of Eclipta alba (Bhringaraj) Leaf Extract in Heteropneustes fossilis against Oomycete Pathogen, Aphanomyces invadans. J Fungi (Basel) 2023; 9:jof9020142. [PMID: 36836257 PMCID: PMC9963822 DOI: 10.3390/jof9020142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Aphanomyces invadans is an aquatic oomycete pathogen and the causative agent of epizootic ulcerative syndrome (EUS) in fresh and brackish water fish, which is responsible for severe mortalities and economic losses in aquaculture. Therefore, there is an urgent need to develop anti-infective strategies to control EUS. An Oomycetes, a fungus-like eukaryotic microorganism, and a susceptible species, i.e., Heteropneustes fossilis, are used to establish whether an Eclipta alba leaf extract is effective against the EUS-causing A. invadans. We found that treatment with methanolic leaf extract, at concentrations between 50-100 ppm (T4-T6), protects the H. fossilis fingerlings against A. invadans infection. These optimum concentrations induced anti-stress and antioxidative response in fish, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) levels in treated animals, as compared with the controls. We further demonstrated that the A. invadans-protective effect of methanolic leaf extract was caused by its immunomodulatory effect and is linked to the enhanced survival of fingerlings. The analysis of non-specific and specific immune factors confirms that methanolic leaf extract-induced HSP70, HSP90 and IgM levels mediate the survival of H. fossilis fingerlings against A. invadans infection. Taken together, our study provides evidence that the generation of anti-stress and antioxidative responses, as well as humoral immunity, may play a role in protecting H. fossilis fingerlings against A. invadans infection. It is probable that E. alba methanolic leaf extract treatment might become part of a holistic strategy to control EUS in fish species.
Collapse
|
100
|
Abdelaziz AM, Elshaer MA, Abd-Elraheem MA, Ali OMOM, Haggag MI, El-Sayyad GS, Attia MS. Ziziphus spina-christi extract-stabilized novel silver nanoparticle synthesis for combating Fusarium oxysporum-causing pepper wilt disease: in vitro and in vivo studies. Arch Microbiol 2023; 205:69. [PMID: 36670250 DOI: 10.1007/s00203-023-03400-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/22/2023]
Abstract
The novelty of the present study is studying the ability of aqueous Ziziphus spina-christi leaves' extract (ZSCE) to produce eco-friendly and cost-effective silver nanoparticles (Ag NPs) against Fusarium wilt disease. Phytochemical screening of ZSCE by HPLC showed that they contain important antimicrobial substances such as Rutin, Naringin, Myricetin, Quercetin, Kaempferol, Hesperidin, Syringeic, Eugenol, Pyrogallol, Gallic and Ferulic. Characterization methods reveal a stable Ag NPs with a crystalline structure, spherical in shape with average particle size about 11.25 nm. ZSCE and Ag NPs showed antifungal potential against F. oxysporum at different concentrations with MIC of Ag NPs as 0.125 mM. Ag NPs treatment was the most effective, as it gave the least disease severity (20.8%) and the highest protection rate (75%). The application of ZSCE or Ag NPs showed a clear recovery, and its effectiveness was not limited for improving growth and metabolic characteristics only, but also inducing substances responsible for defense against pathogens and activating plant immunity (such as increasing phenols and strong expression of peroxidase and polyphenol oxidase as well as isozymes). Owing to beneficial properties such as antifungal activity, and the eco-friendly approach of cost and safety, they can be applied in agricultural field as novel therapeutic nutrients.
Collapse
Affiliation(s)
- Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| | - Mohammed A Elshaer
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, 13759, Egypt
| | - Mohamed A Abd-Elraheem
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, 13759, Egypt
| | - Omar M Omar M Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Muhammad I Haggag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt. .,Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| |
Collapse
|