51
|
Candido S, Salemi R, Piccinin S, Falzone L, Libra M. The PIK3CA H1047R Mutation Confers Resistance to BRAF and MEK Inhibitors in A375 Melanoma Cells through the Cross-Activation of MAPK and PI3K-Akt Pathways. Pharmaceutics 2022; 14:pharmaceutics14030590. [PMID: 35335966 PMCID: PMC8950976 DOI: 10.3390/pharmaceutics14030590] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/23/2023] Open
Abstract
The targeting of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway in melanoma improves the prognosis of patients harbouring the V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) mutation. However, a fraction of these patients may experience tumour progression due to resistance to targeted therapy. Mutations affecting the Phosphoinositol-3-Kinase (PI3K)–Akt pathway may favour the onset of drug resistance, suggesting the existence of a crosstalk between the MAPK and PI3K–Akt pathways. We hypothesized that the inhibition of both pathways may be a therapeutic option in resistant melanoma. However, conflicting data have been generated in this context. In this study, three different A375 cell melanoma models either overexpressing or not expressing the wild-type or mutated form of the PhosphatidylInositol-4,5-bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene were used to clarify the therapeutic response of melanoma to BRAF, Mitogen-Activated Protein Kinase Kinase 1 (MEK), and PI3K inhibitors in the presence of the PIK3CA H1047R mutation. Our data strongly support the notion that the crosstalk between the MAPK and PI3K–Akt pathways is one of the main mechanisms associated with melanoma development and progression and that the combination of MAPK and PI3K inhibitors may sensitize melanoma cells to therapy.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
| | - Sara Piccinin
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1278
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
52
|
Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022; 14:505. [PMID: 35335881 PMCID: PMC8950730 DOI: 10.3390/pharmaceutics14030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Collapse
Affiliation(s)
- Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, Navarra Institute for Health Research (IdisNA), University of Navarra, 31080 Pamplona, Spain;
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Francisco Ruiz-Cabello
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
53
|
Computational Analyses of YY1 and Its Target RKIP Reveal Their Diagnostic and Prognostic Roles in Lung Cancer. Cancers (Basel) 2022; 14:cancers14040922. [PMID: 35205667 PMCID: PMC8869872 DOI: 10.3390/cancers14040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung cancer (LC) is the tumor with the highest global mortality rate. Novel personalized therapies are currently being tested (e.g., targeted inhibitors, the immune-checkpoint inhibitors), but they cannot yet prevent the very frequent relapse and generalized metastases observed in a large population of LC patients. Currently, there is an urgent need for novel reliable biomarkers for the prognosis and diagnosis of LC. Through the systematic analysis of multiple deposited expression datasets, this report aims to explore the role of the Yin-Yang 1 (YY1) transcription factor and its target the Raf Kinase Inhibitory Protein (RKIP) in LC. The computational analysis suggested the predictive diagnostic and prognostic roles for both YY1 and RKIP stimulating further studies for proving their implication as novel biomarkers, as well as therapeutically druggable targets in LC. Abstract Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate. Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors), relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often found downregulated in the majority of the examined cancers. In the present report, the role of both YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic significance, as proven by the ROC analyses. Finally, the survival data support the notion that both YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic targets. However, further studies will be necessary to validate the in silico results.
Collapse
|
54
|
Liang M, Zhu B, Wang M, Jin J. Knockdown of long non‑coding RNA DDX11‑AS1 inhibits the proliferation, migration and paclitaxel resistance of breast cancer cells by upregulating microRNA‑497 expression. Mol Med Rep 2022; 25:123. [PMID: 35169864 PMCID: PMC8864609 DOI: 10.3892/mmr.2022.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/21/2021] [Indexed: 11/06/2022] Open
Abstract
Drug resistance is a major problem to overcome in the treatment of cancer; therefore, identifying therapeutic targets for drug resistance is a point of focus in the field of cancer research. Long non-coding RNAs (lncRNAs) and microRNAs (miRs) not only affect gene expression regulation during cell proliferation, but also have several potential roles in the drug resistance of malignant tumors. Reverse transcription-quantitative PCR was used to detect the expression levels of DDX11 antisense RNA 1 (DDX11-AS1) and miR-497 in MCF-7 and MDA-MB-231 cells. Cell transfection techniques were used to interfere with the expression levels of DDX11-AS1 and miR-497. Cell Counting Kit-8 and MTT assays were used to detect cell viability. A colony formation assay was used to detect cell proliferation. Wound-healing and Transwell assays were performed to measure the levels of cell migration and invasion. Western blotting was used to analyze the expression levels of migration-associated proteins, and immunofluorescence and western blotting were used to determine the expression levels of the epithelial-mesenchymal transition-related proteins E-cadherin and N-cadherin, respectively. A luciferase reporter gene assay was used to verify the targeted binding of DDX11-AS1 and miR-497. The present study demonstrated that the expression levels of lncRNA DDX11-AS1 were markedly increased in paclitaxel (PTX)-resistant breast cancer cell lines. By contrast, knockdown of DDX11-AS1 expression inhibited PTX resistance of breast cancer cells, and suppressed the proliferation, invasion and migration of breast cancer cells, which was achieved via upregulation of miR-497 expression. In conclusion, knockdown of lncRNA DDX11-AS1 could inhibit the proliferation, migration and PTX resistance of breast cancer cells by upregulating miR-497 expression.
Collapse
Affiliation(s)
- Meng Liang
- Department of Pathology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Beibei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou 510632, P.R. China
| | - Min Wang
- Emergency Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Ju Jin
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
55
|
Zhang J, Veeramachaneni N. Targeting interleukin-1β and inflammation in lung cancer. Biomark Res 2022; 10:5. [PMID: 35086565 PMCID: PMC8796434 DOI: 10.1186/s40364-021-00341-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a process that protects organs against various potentially harmful stimuli and enables repair. Dysregulated inflammation, however, damages tissues and leads to disease, including cancer. Cancer-related inflammation is characterized by cytokine production, leukocyte infiltration, angiogenesis, and tissue remodeling-all critical processes in modulating the tumor microenvironment (TME). The TME is known to play a key role in tumor progression, and targeting its immune component to achieve a better anti-tumor response is the basis of immunotherapy. Despite the critical role cytokines play in the TME and tumor progression, there is currently only one therapy approved by the FDA that directly involves cytokine signaling: human recombinant interleukin-2 protein, aldesleukin. The recent Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial evaluated the use of anti-interleukin-1β therapy in atherosclerotic disease; however, it also revealed interleukin-1β (IL-1β) blockade with canakinumab led to a significantly lower incidence of lung cancer. This has opened a promising new avenue for lung cancer therapy, and strategies using anti-IL-1β therapy alone or in combination with chemotherapy and/or immune checkpoint blockade are currently being evaluated in several clinical trials.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Nirmal Veeramachaneni
- Department of Cardiovascular and Thoracic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160 , USA
| |
Collapse
|
56
|
Pitoia F, Jerkovich F, Trimboli P, Smulever A. New approaches for patients with advanced radioiodine-refractory thyroid cancer. World J Clin Oncol 2022; 13:9-27. [PMID: 35116229 PMCID: PMC8790300 DOI: 10.5306/wjco.v13.i1.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/31/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
The cumulative evidence over the past decades has shown that the incidence of differentiated thyroid carcinoma (DTC) has exponentially increased. Approximately 10% of patients with DTC exhibit recurrent or metastatic disease, and about two-thirds of the latter will be defined as refractory to radioactive iodine (RAIR) treatment. Since this condition implies 10-year survival rates less than 10% after detection, using available treatments, such as systemic and targeted therapies, have become increasingly relevant. The initiation of these treatments aims to reach stabilization, tumor volume reduction, and/or symptom improvement and it should be decided by highly specialized endocrinologists/oncologists on the basis of patient's features. Considering that despite enlarged progression-free survival was proven, multikinase inhibitors remain non-curative, their benefits last for a limited time and the side effects potentially cause harm and quality of life reduction. In this context, molecular testing of cancer cells provides a promising spectrum of targeted therapies that offer increased compatibility with individual patient needs by improving efficacy, progression free survival, overall survival and adverse events profile. This review article aims to provide a summary of the current therapeutic strategies in advanced RAIR-DTC, including approved target therapies as well as those for off-label use, RAI resensitization agents, and immunotherapy.
Collapse
Affiliation(s)
- Fabián Pitoia
- Division of Endocrinology, Hospital de Clínicas José de San Martin, University of Buenos Aires, Buenos Aires 1120, Argentina
| | - Fernando Jerkovich
- Division of Endocrinology, Hospital de Clínicas José de San Martin, University of Buenos Aires, Buenos Aires 1120, Argentina
| | - Pierpaolo Trimboli
- Clinic for Endocrinology and Diabetology, Lugano Regional Hospital, Ente Ospedaliero Cantonale, Lugano 1111, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 1111, Switzerland
| | - Anabella Smulever
- Division of Endocrinology, Hospital de Clínicas José de San Martin, University of Buenos Aires, Buenos Aires 1120, Argentina
| |
Collapse
|
57
|
Abstract
The association of gut microbiota with gastrointestinal carcinogenesis has been heavily investigated since the recent advance in sequencing technology. Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression. Given by its importance, emerging studies have focussed on targeting microbiota to ameliorate therapeutic effectiveness. It is now clear that the microbial community is closely related to the efficacy of chemotherapy, while the correlation of microbiota with immunotherapy is much less studied. Herein, we review the up-to-date findings on the influence of gut microbiota on three common immunotherapies including adoptive cell transfer, immune checkpoint blockade, and CpG-oligodeoxynucleotide therapy. We then explore three microbiota-targeted strategies that may improve treatment efficacy, involving dietary intervention, probiotics supplementation, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong,CONTACT Jun Yu Institute of Digestive Disease, Department of Medicine and Therapeutics, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
58
|
Gupta T, Debele TA, Wei YF, Gupta A, Murtaza M, Su WP. Synergistic Action of Immunotherapy and Nanotherapy against Cancer Patients Infected with SARS-CoV-2 and the Use of Artificial Intelligence. Cancers (Basel) 2022; 14:213. [PMID: 35008377 PMCID: PMC8750412 DOI: 10.3390/cancers14010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
Since 2019, the SARS-CoV-2 pandemic has caused a huge chaos throughout the world and the major threat has been possessed by the immune-compromised individuals involving the cancer patients; their weakened immune response makes them vulnerable and susceptible to the virus. The oncologists as well as their patients are facing many problems for their treatment sessions as they need to postpone their surgery, chemotherapy, or radiotherapy. The approach that could be adopted especially for the cancer patients is the amalgamation of immunotherapy and nanotherapy which can reduce the burden on the healthcare at this peak time of the infection. There is also a need to predict or analyze the data of cancer patients who are at a severe risk of being exposed to an infection in order to reduce the mortality rate. The use of artificial intelligence (AI) could be incorporated where the real time data will be available to the physicians according to the different patient's clinical characteristics and their past treatments. With this data, it will become easier for them to modify or replace the treatment to increase the efficacy against the infection. The combination of an immunotherapy and nanotherapy will be targeted to treat the cancer patients diagnosed with SARS-CoV-2 and the AI will act as icing on the cake to monitor, predict and analyze the data of the patients to improve the treatment regime for the most vulnerable patients.
Collapse
Affiliation(s)
- Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tilahun Ayane Debele
- Department of Biomedical, Chemical & Environmental Engineering, College of Engineering and Applied Science (CEAS), University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Yu-Feng Wei
- Department of Internal Medicine, School of Medicine for International Students, College of Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| | - Anish Gupta
- Devscope IT, First Floor, 40A/B Gandhi Nagar, Jammu 180001, India;
| | - Mohd Murtaza
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180012, India;
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
59
|
Amjad H, Rizwan K, Baber M, Iqbal S. Organic–Inorganic Nanohybrids in Cancer Treatment. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:107-132. [DOI: 10.1007/978-981-19-4538-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
60
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
61
|
Ring A, Campo D, Porras TB, Kaur P, Forte VA, Tripathy D, Lu J, Kang I, Press MF, Jeong YJ, Snow A, Zhu Y, Zada G, Wagle N, Lang JE. Circulating Tumor Cell Transcriptomics as Biopsy Surrogates in Metastatic Breast Cancer. Ann Surg Oncol 2022; 29:2882-2894. [PMID: 35000083 PMCID: PMC8989945 DOI: 10.1245/s10434-021-11135-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Metastatic breast cancer (MBC) and the circulating tumor cells (CTCs) leading to macrometastases are inherently different than primary breast cancer. We evaluated whether whole transcriptome RNA-Seq of CTCs isolated via an epitope-independent approach may serve as a surrogate for biopsies of macrometastases. METHODS We performed RNA-Seq on fresh metastatic tumor biopsies, CTCs, and peripheral blood (PB) from 19 newly diagnosed MBC patients. CTCs were harvested using the ANGLE Parsortix microfluidics system to isolate cells based on size and deformability, independent of a priori knowledge of cell surface marker expression. RESULTS Gene expression separated CTCs, metastatic biopsies, and PB into distinct groups despite heterogeneity between patients and sample types. CTCs showed higher expression of immune oncology targets compared with corresponding metastases and PB. Predictive biomarker (n = 64) expression was highly concordant for CTCs and metastases. Repeat observation data post-treatment demonstrated changes in the activation of different biological pathways. Somatic single nucleotide variant analysis showed increasing mutational complexity over time. CONCLUSION We demonstrate that RNA-Seq of CTCs could serve as a surrogate biomarker for breast cancer macrometastasis and yield clinically relevant insights into disease biology and clinically actionable targets.
Collapse
Affiliation(s)
- Alexander Ring
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA ,Present Address: Department of Hematology and Medical Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Campo
- Department of Biological Sciences, University of Southern California, Los Angeles, CA USA
| | - Tania B. Porras
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Pushpinder Kaur
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Victoria A. Forte
- Division of Medical Oncology, Department of Medicine, SUNY Downstate Medical Center, New York, NY USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Janice Lu
- Division of Medical Oncology, Department of Medicine and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Irene Kang
- Department of Pathology and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Michael F. Press
- Department of Pathology and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Young Ju Jeong
- Department of Surgery, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Anson Snow
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Yue Zhu
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Gabriel Zada
- Department of Neurosurgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Naveed Wagle
- Division of Medical Oncology, Department of Medicine and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Julie E. Lang
- Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA USA ,Present Address: Division of Breast Services, Department of General Surgery, Cleveland Clinic Breast Cancer Program, Cleveland, Ohio USA
| |
Collapse
|
62
|
Abstract
Melanoma is a relentless type of skin cancer which involves myriad signaling pathways which regulate many cellular processes. This makes melanoma difficult to treat, especially when identified late. At present, therapeutics include chemotherapy, surgical resection, biochemotherapy, immunotherapy, photodynamic and targeted approaches. These interventions are usually administered as either a single-drug or in combination, based on tumor location, stage, and patients' overall health condition. However, treatment efficacy generally decreases as patients develop treatment resistance. Genetic profiling of melanocytes and the discovery of novel molecular factors involved in the pathogenesis of melanoma have helped to identify new therapeutic targets. In this literature review, we examine several newly approved therapies, and briefly describe several therapies being assessed for melanoma. The goal is to provide a comprehensive overview of recent developments and to consider future directions in the field of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Pavan Kumar Dhanyamraju, Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA17033, USA. Tel: +1-6096474712, E-mail:
| | - Trupti N. Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
63
|
Grenda T, Grenda A, Krawczyk P, Kwiatek K. Botulinum toxin in cancer therapy-current perspectives and limitations. Appl Microbiol Biotechnol 2021; 106:485-495. [PMID: 34951660 PMCID: PMC8763801 DOI: 10.1007/s00253-021-11741-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022]
Abstract
Abstract Different serotypes of botulinum toxins (BoNTs) act upon different types of SNARE proteins. This property is used in aesthetic medicine to treat certain eye disorders such as crossed eyes (strabismus) and uncontrolled blinking (blepharospasm), to treat muscle spasms or movement disorders, and, for the two last decades, more and more often, to provide support in cancer therapy, especially so as to obtain analgesic effects upon spastic conditions. The limited literature data also suggests that the addition of BoNTs to the culture of cancer cell lines reduces cell growth, and mitotic activity, and promotes their apoptosis. BoNTs have several advantages that can be emphasized: BoNTs act on both perfusion and oxygenation; moreover, BoNTs are considered to be safe and free of systemic side effects upon administration. Recently, advances in molecular biology techniques have allowed a wide variety of novel BoNT constructs with alternative functions. These constructs could be assessed as potential new classes of anti-cancer drugs. This creates new potential perspectives in the wider use of non-toxic modified BoNT constructs in cancer therapy. In the light of the mentioned premises and existing literature reports, the aim of this review is to summarize current data and reports considering BoNT use in cancer therapy. Key points •Botulinum toxin (BoNTs) may be useful in cancer treatment. •Botulinum toxin can serve as an analgesic after cancer radiotherapy. •Botulinum toxin has the ability to inhibit tumor growth and promote apoptosis of neoplastic cells.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland.
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
| |
Collapse
|
64
|
Erfanian N, Derakhshani A, Nasseri S, Fereidouni M, Baradaran B, Jalili Tabrizi N, Brunetti O, Bernardini R, Silvestris N, Safarpour H. Immunotherapy of cancer in single-cell RNA sequencing era: A precision medicine perspective. Biomed Pharmacother 2021; 146:112558. [PMID: 34953396 DOI: 10.1016/j.biopha.2021.112558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy has revolutionized cancer treatment and brought new aspects into tumor immunology. Effective immunotherapy will require using the suitable target antigens, optimizing the interaction between the antigenic peptide, the APC, and the T cell, and the simultaneous inhibitor of the negative regulatory process that inhibits immunotherapeutic effects and develop resistance. Tumor heterogeneity and its microenvironment is the leading cause of resistance in patients. Recently by emerging the single-cell RNA sequencing technology and its combination with immunotherapy, now we can specifically evaluate the mechanism of tumors in the face of immunotherapy agents at the single-cell resolution by detecting the transcriptional activity of immune checkpoints, screening neoantigens with high transcription levels, identifying rare cells, and other important processes. This review focuses on scRNA-seq, particularly on its application in cancer immunotherapy.
Collapse
Affiliation(s)
- Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Saeed Nasseri
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Fereidouni
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
65
|
Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol 2021; 14:206. [PMID: 34930377 PMCID: PMC8686226 DOI: 10.1186/s13045-021-01218-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China.
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
66
|
Fathi M, Vakili K, Jazi K, Sadeghi MA, Hajiesmaeili M, Mohamadkhani A, Rezaei-Tavirani M, Tavasol A. Challenges of cancer immunotherapy and chemotherapy during the COVID-19 pandemic. TUMORI JOURNAL 2021; 108:407-419. [PMID: 34918602 DOI: 10.1177/03008916211063939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
People at high risk of morbidity and mortality from coronavirus disease 2019 (COVID-19), including patients dealing with malignancies and patients on immunosuppressive anticancer therapies, need to be followed carefully as the pandemic continues. Challenges in continuing cancer management and patient monitoring are of concern given the importance of timing in cancer therapy. Alternative treatment decisions and priorities are also important considerations. The efficacy and safety of various cancer treatments in patients with COVID-19 are other important considerations. In this systematic review, we summarize the potential risks and benefits of cancer treatments applied to patients with COVID-19 and malignant tumors. Using the PubMed and Scopus databases, we reviewed studies involving cancer therapy and COVID-19 to address the recent discoveries and related challenges of cancer therapy in patients with COVID-19 and cancer.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | | | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
circHUWE1 Exerts an Oncogenic Role in Inducing DDP-Resistant NSCLC Progression Depending on the Regulation of miR-34a-5p/TNFAIP8. Int J Genomics 2021; 2021:3997045. [PMID: 34901263 PMCID: PMC8664528 DOI: 10.1155/2021/3997045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background Circular RNAs (circRNAs) are reported as competing endogenous RNAs (ceRNAs) and play key roles in non-small-cell lung cancer (NSCLC) progression. Thus, this study was aimed at clarifying underlying molecular mechanisms of circHUWE1 in NSCLC. Methods The quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analyses were used for examining circHUWE1, microRNA-34a-5p (miR-34a-5p), and tumor necrosis factor alpha-induced protein 8 (TNFAIP8). IC50 of cisplatin (DDP) in A549/DDP and H1299/DDP cells and cell viability were analyzed by the Cell Counting Kit 8 (CCK-8) assay. Colony forming assay was performed to assess colony forming ability. Cell apoptosis and cell cycle distribution were determined by flow cytometry. Migrated and invaded cell numbers were examined by transwell assay. The association among circHUWE1, miR-34a-5p, and TNFAIP8 was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft experiment was applied to clarify the functional role of circHUWE1 in vivo. Results circHUWE1 was upregulated in NSCLC tissues and cells, especially in DDP-resistant groups. circHUWE1 downregulation inhibited DDP resistance, proliferation, migration, and invasion while it induced apoptosis and cell cycle arrest of DDP-resistant NSCLC cells, which was overturned by silencing of miR-34a-5p. TNFAIP8 was a functional gene of miR-34a-5p, and the suppressive effects of miR-34a-5p overexpression on DDP-resistant NSCLC progression were dependent on the suppression of TNFAIP8. circHUWE1 inhibition also delayed tumor growth of DDP-resistant NSCLC cells. Conclusion circHUWE1 functioned as a promoter in DDP-resistant NSCLC by interaction with miR-34a-5p-TNFAIP8 networks, providing novel insight into DDP-resistant NSCLC diagnosis and treatment.
Collapse
|
68
|
Activation of Innate Immunity by Therapeutic Nucleic Acids. Int J Mol Sci 2021; 22:ijms222413360. [PMID: 34948156 PMCID: PMC8704878 DOI: 10.3390/ijms222413360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid-based therapeutics have gained increased attention during recent decades because of their wide range of application prospects. Immunostimulatory nucleic acids represent a promising class of potential drugs for the treatment of tumoral and viral diseases due to their low toxicity and stimulation of the body’s own innate immunity by acting on the natural mechanisms of its activation. The repertoire of nucleic acids that directly interact with the components of the immune system is expanding with the improvement of both analytical methods and methods for the synthesis of nucleic acids and their derivatives. Despite the obvious progress in this area, the problem of delivering therapeutic acids to target cells as well as the unresolved issue of achieving a specific therapeutic effect based on activating the mechanism of interferon and anti-inflammatory cytokine synthesis. Minimizing the undesirable effects of excessive secretion of inflammatory cytokines remains an unsolved task. This review examines recent data on the types of immunostimulatory nucleic acids, the receptors interacting with them, and the mechanisms of immunity activation under the action of these molecules. Finally, data on immunostimulatory nucleic acids in ongoing and completed clinical trials will be summarized.
Collapse
|
69
|
Xuan DTM, Wu CC, Kao TJ, Ta HDK, Anuraga G, Andriani V, Athoillah M, Chiao CC, Wu YF, Lee KH, Wang CY, Chuang JY. Prognostic and immune infiltration signatures of proteasome 26S subunit, non-ATPase (PSMD) family genes in breast cancer patients. Aging (Albany NY) 2021; 13:24882-24913. [PMID: 34839279 PMCID: PMC8660617 DOI: 10.18632/aging.203722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.
Collapse
Affiliation(s)
- Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Che Wu
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Chung-Chieh Chiao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
70
|
Zheng Q, Wu C, Ye H, Xu Z, Ji Y, Rao J, Lu L, Zhu Y, Cheng F. Analysis of the efficacy and prognostic factors of PD-1 inhibitors in advanced gallbladder cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1568. [PMID: 34790774 PMCID: PMC8576663 DOI: 10.21037/atm-21-4747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
Background Gallbladder cancer (GBC) is highly malignant, its early diagnosis is difficult, and the 5-year survival rate is less than 5%. For patients with advanced GBC (GBCa), combined chemotherapy, radiotherapy, targeted therapy, and immunotherapy are needed to improve the overall survival (OS) rate of patients. Methods Data were collected from 53 patients with GBCa who had volunteered to receive programmed death protein-1 (PD-1)-based treatment at the First Affiliated Hospital of Nanjing Medical University from February 2018 to February 2021. Statistical analysis of the collected data, including Kaplan-Meier method, log-rank test, Cox proportional hazard regression model and other methods. Results The objective response rates (ORRs) and disease control rates (DCRs) of 53 participants 3 months after receiving immunotherapy were 30.2% and 79.2%, respectively. The ORRs and DCRs of the combined treatment group were higher than those of the camrelizumab group (CG) (P<0.05). The DCRs of the camrelizumab plus apatinib group (CAG) at 3 and 6 months were 90.9% and 45.5% (P=0.003), respectively, while the DCRs at 3 and 6 months of the camrelizumab plus chemotherapy group (CCG) were 85.7% and 71.4% (P=0.450), respectively. After treatment, there were statistically significant differences before and after CA199 for each group (P<0.05). The median progression-free survival (mPFS) of the 53 participants was 7 months, and the median overall survival (mOS) was 12 months. The mPFS and mOS of the CAG and the CCG were greater than those in the CG (6 vs. 3 months, P<0.001, 12 vs. 8 months, P=0.019; 9 vs. 3 months, P<0.001, 13 vs. 8 months, P<0.001, respectively). A total of 16 cases had grade 1 or 2 adverse events, and 3 cases had grade 3 and higher adverse events. Conclusions For GBCa patients, PD-1 combined with targeted therapy or chemotherapy is more effective than immunotherapy alone. The targeted therapy group has more obvious early effects on the disease control rate, and combined chemotherapy can achieve sustained effects, providing new ideas for the future GBCa application of immune, targeted, and chemotherapy sequential therapy.
Collapse
Affiliation(s)
- Qitong Zheng
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chen Wu
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Huangshu Ye
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhenggang Xu
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yang Ji
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jianhua Rao
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yaqing Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Feng Cheng
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
71
|
Raza F, Siyu L, Zafar H, Kamal Z, Zheng B, Su J, Qiu M. Recent Advances in Gelatin-Based Nanomedicine for Targeted Delivery of Anti-Cancer Drugs. Curr Pharm Des 2021; 28:380-394. [PMID: 34727851 DOI: 10.2174/1381612827666211102100118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/29/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles based on natural polymers are utilized for the development of a wide range of drug delivery systems (DDS) in the current era. Gelatin-based nanoparticles, for example, are a remarkable cancer therapy with high efficacy and specificity. This paper reviews the recent advancements in gelatin-based nanomedicine for use in cancer therapeutics. Due to the characteristics features of gelatin, such as biocompatibility, biodegradability, stability, and good surface properties, these nanoparticles provide high therapeutic potency in cancer nanomedicine. The surface of gelatin can be modified in a number of ways using various ligands to explore the platform for the development of a more novel DDS. Various methods are available for the preparation of gelatin nanomedicine discussed in this review. In addition, various cross-linkers to stabilized nanocarriers and stimuli base gelatin nanoparticles are reviewed. Furthermore, recent advances and research in gelatin-based nanomedicine are discussed. Also, some drawbacks and challenges are evaluated. In general, this paper paves the pathway to identify the details about the gelatin-based DDS for cancer therapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Liu Siyu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Zul Kamal
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| |
Collapse
|
72
|
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM, Turnbull AK. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J Pers Med 2021; 11:1073. [PMID: 34834425 PMCID: PMC8624266 DOI: 10.3390/jpm11111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Charlene Kay
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Mark Gray
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - J. Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
| | - Arran K. Turnbull
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| |
Collapse
|
73
|
Utsumi M, Kitada K, Tokunaga N, Kato T, Narusaka T, Hamano R, Miyasou H, Tsunemitsu Y, Otsuka S, Inagaki M. A combined prediction model for biliary tract cancer using the prognostic nutritional index and pathological findings: a single-center retrospective study. BMC Gastroenterol 2021; 21:375. [PMID: 34645392 PMCID: PMC8513195 DOI: 10.1186/s12876-021-01957-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background The prognostic nutritional index, a marker of nutritional status and systemic inflammation, is a known biomarker for various cancers. However, few studies have evaluated the predictive value of the prognostic nutritional index in patients with biliary tract cancer. Therefore, we investigated the prognostic significance of the prognostic nutritional index, and developed a risk-stratification system to identify prognostic factors in patients with biliary tract cancer. Methods Between July 2010 and March 2021, 117 patients with biliary tract cancer were recruited to this single-center, retrospective study. The relationship between clinicopathological variables, including the prognostic nutritional index, and overall survival was analyzed using univariate and multivariate analyses. A P < 0.05 was considered statistically significant. Results The median age was 75 (range 38–92) years. Thirty patients had intrahepatic cholangiocarcinoma; 29, gallbladder carcinoma; 27, distal cholangiocarcinoma; 17, ampullary carcinoma; and 13, perihilar cholangiocarcinoma. Curative (R0) resection was achieved in 99 patients. In univariate analysis, the prognostic nutritional index (< 42), lymph node metastasis, carbohydrate antigen 19-9 level (> 20 U/mL), preoperative cholangitis, tumor differentiation, operation time (≥ 360 min), and R1–2 resection were significant risk factors for overall survival. The prognostic nutritional index (P = 0.027), lymph node metastasis (P = 0.040), and tumor differentiation (P = 0.006) were independent prognostic factors in multivariate analysis. A combined score of the prognostic nutritional index and pathological findings outperformed each marker alone, in terms of discriminatory power. Conclusions The prognostic nutritional index, lymph node metastasis, and tumor differentiation were independent prognostic factors after surgical resection in patients with biliary tract cancer. A combined prediction model using the prognostic nutritional index and pathological findings accurately predicted prognosis, and can be used as a novel prognostic factor in patients with biliary tract cancer.
Collapse
Affiliation(s)
- Masashi Utsumi
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan.
| | - Koji Kitada
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Naoyuki Tokunaga
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Takamitsu Kato
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Toru Narusaka
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Ryosuke Hamano
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Hideaki Miyasou
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Yousuke Tsunemitsu
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Shinya Otsuka
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| | - Masaru Inagaki
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, 4-14-17 Okinogami-cho, Fukuyama City, Hiroshima, 720-8520, Japan
| |
Collapse
|
74
|
Liu Y, Liu S, Qin Y, Zhao L, Li Y, Zhou C, Chen W. Does prior exposure to immune checkpoint inhibitors treatment affect incidence and mortality of COVID-19 among the cancer patients: The systematic review and meta-analysis. Int Immunopharmacol 2021; 101:108242. [PMID: 34688136 PMCID: PMC8502698 DOI: 10.1016/j.intimp.2021.108242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) treatment among cancer patients has been shown to have antiviral effects by reactivating exhausted T cells. However, they could also trigger inflammatory storm. Therefore, prior exposure to ICIs may influence the risk of SARS-CoV2 infection and subsequent mortality. Recent results from studies of ICIs treatment on incidence and mortality of COVID-19 are controversial. MATERIALS AND METHODS We searched databases PubMed, Embase, ISI of Knowledge, Cochrane Central Register of Controlled Trials (CENTRAL), as well as pre-print databases (MedRxiv and BioRxiv) for retrospective and prospective studies comparing ICIs versus other antitumor treatments in cancer patients in the area of COVID-19 pandemic. The primary outcome was the incidence of COVID-19. The secondary outcomes were mortality of COVID-19. RESULTS Twenty-three studies with a total of 117,735 patients were selected. Compared with other antitumor treatments, prior exposure to ICIs had not an increased risk of incidence [Odds ratio (OR), 0.84; 95% confidence interval (CI), 0.60-1.18; P = 0.32] and mortality (OR, 1.22; 95% CI, 0.91-1.62; P = 0.18) of COVID-19 infectioin. Our subgroup and meta-regression analyses indicated that prior exposure to ICIs may reduce the incidence of COVID-19 in metastatic cancer patients. CONCLUSIONS There was no significant difference on incidence and mortality of COVID-19 between prior exposure to ICIs with other anti-tumor treatments. ICIs may reduce infection susceptibility of COVID-19 in metastatic cancer patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Surgical intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuo Liu
- Department of Pharmacy, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yujun Qin
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yiliang Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Intensive care unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
75
|
Identification of tumor antigens with immunopeptidomics. Nat Biotechnol 2021; 40:175-188. [PMID: 34635837 DOI: 10.1038/s41587-021-01038-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
The identification of actionable tumor antigens is indispensable for the development of several cancer immunotherapies, including T cell receptor-transduced T cells and patient-specific mRNA or peptide vaccines. Most known tumor antigens have been identified through extensive molecular characterization and are considered canonical if they derive from protein-coding regions of the genome. By eluting human leukocyte antigen-bound peptides from tumors and subjecting these to mass spectrometry analysis, the peptides can be identified by matching the resulting spectra against reference databases. Recently, mass-spectrometry-based immunopeptidomics has enabled the discovery of noncanonical antigens-antigens derived from sequences outside protein-coding regions or generated by noncanonical antigen-processing mechanisms. Coupled with transcriptomics and ribosome profiling, this method enables the identification of thousands of noncanonical peptides, of which a substantial fraction may be detected exclusively in tumors. Spectral matching against the immense noncanonical reference may generate false positives. However, sensitive mass spectrometry, analytical validation and advanced bioinformatics solutions are expected to uncover the full landscape of presented antigens and clinically relevant targets.
Collapse
|
76
|
Tyrosine Kinase Inhibitors Improved Survival of Critically Ill EGFR-Mutant Lung Cancer Patients Undergoing Mechanical Ventilation. Biomedicines 2021; 9:biomedicines9101416. [PMID: 34680533 PMCID: PMC8533530 DOI: 10.3390/biomedicines9101416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Respiratory failure requiring mechanical ventilation is the major reason for lung cancer patients being admitted to the intensive care unit (ICU). Though molecular targeted therapies, especially epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), have largely improved the survival of oncogene-driven lung cancer patients, few studies have focused on the performance of TKI in such settings. Materials and Methods: This was a retrospective cohort study enrolling non-small cell lung cancer (NSCLC) patients who harbored sensitizing EGFR mutation and had received EGFR-TKIs as first-line cancer therapy in the ICU with mechanical ventilator use. The primary outcome was the 28-day ICU survival rate, and secondary outcomes were the rate of successful weaning from the ventilator and overall survival. Results: A total of 35 patients were included. The 28-day ICU survival rate was 77%, and the median overall survival was 67 days. Multivariate logistic regression revealed that shock status was associated with a lower 28-day ICU survival rate independently (odds ratio (OR) 0.017, 95% confidence interval (CI), 0.000–0.629, p = 0.027), and that L858R mutation (L858R compared with exon 19 deletion, OR, 0.014, 95% CI 0.000–0.450, p = 0.016) and comorbidities of diabetes mellitus (DM) (OR, 0.032, 95% CI, 0.000–0.416, p = 0.014)) were independently predictive of weaning failure. The successful weaning rate was 43%, and the median of ventilator-dependent duration was 22 days (IQR, 12–29). Conclusions: For EGFR mutant lung cancer patients suffering from respiratory failure and undergoing mechanical ventilation, TKI may still be useful, especially in those with EGFR del19 mutation or without shock and DM comorbidity.
Collapse
|
77
|
Naik PP. Current Trends of Immunotherapy in the Treatment of Cutaneous Melanoma: A Review. Dermatol Ther (Heidelb) 2021; 11:1481-1496. [PMID: 34339016 PMCID: PMC8484371 DOI: 10.1007/s13555-021-00583-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma remains a severe public health threat, with annual incidence increasing slowly but steadily over 4 decades. While early-stage melanomas can typically be treated with complete surgical excision with favorable results, the development of metastatic cancer, which is related to a lower survival rate, is linked to the primary tumor's rising stage and other high-risk features. Even though the first discoveries of an immunological anti-tumor response were published about a century ago, immunotherapy has only been a feasible therapeutic option for cutaneous melanoma in the last 30 years. Nonetheless, for the treatment of various cancers, including metastatic melanoma, the area of cancer immunotherapy has made significant progress in the last decade. As a result, melanoma continues to be the subject of several preclinical and clinical investigations to further understand cancer immunobiology and test different tumor immunotherapies. Immunotherapy's resistance to radiation and cytotoxic chemotherapy is one of its most distinguishing features. Furthermore, the discovery of biomarkers will aid in patient stratification and management during immunotherapy treatment. In this article, we discuss current knowledge and recent developments in immune-mediated therapy of melanoma.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Dubai, United Arab Emirates.
| |
Collapse
|
78
|
Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, Ahamed MBK, Sandai D, Barakat K, Siraki A, Majid AMSA. β-Caryophyllene Induces Apoptosis and Inhibits Angiogenesis in Colorectal Cancer Models. Int J Mol Sci 2021; 22:10550. [PMID: 34638895 PMCID: PMC8508804 DOI: 10.3390/ijms221910550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
Collapse
Affiliation(s)
- Saad S. Dahham
- Department of Science, University of Technology and Applied Sciences, Rustaq 10 P.C:329, Oman
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Loiy E. Hassan
- Department of Botany, Faculty of Science & Technology, Omdurman Islamic University, P.O. Box 382, Omdurman 14415, Sudan;
| | - Mohamed B. Khadeer Ahamed
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.B.K.A.); (A.M.S.A.M.)
| | - Doblin Sandai
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Amin M. S. A. Majid
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.B.K.A.); (A.M.S.A.M.)
- John Curtin School of Medical Research, College of Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
79
|
Tupikowski K, Partyka A, Pawlak EA, Ptaszkowski K, Zdrojowy R, Frydecka I, Hałoń A, Karabon L. Variation in the gene encoding the co-inhibitory molecule BTLA is associated with survival in patients treated for clear cell renal carcinoma - results of a prospective cohort study. Arch Med Sci 2021; 19:1454-1462. [PMID: 37732048 PMCID: PMC10507760 DOI: 10.5114/aoms/142407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/19/2021] [Indexed: 09/22/2023] Open
Abstract
Introduction The successful introduction of immune checkpoint blockade approaches to renal-cell carcinoma (RCC) treatment indicates the importance of molecules regulating the T cell response to RCC risk and progression. Material and methods In this study, we evaluate the association of variations in the CTLA-4, BTLA and CD28 genes with overall survival (OS) of RCC patients and specifically clear cell RCC (ccRCC) patients. The following single nucleotide polymorphisms (SNPs) previously genotyped using the RFLP method or TaqMan SNP Genotyping Assays were analyzed: CTLA-4 gene: c.49A>G (rs231775), g.319C>T (rs5742909), g.*6230G>A (CT60; rs3087243), g.*10223G>T (Jo31; rs11571302); CD28 gene: c.17+3T>C (rs3116496), c.-1042G>A (rs3181098); BTLA gene: rs2705511, rs1982809, rs9288952, rs9288953, rs2705535 and rs1844089. Results During long term observation (6.5 years) we discovered that possessing the A allele at BTLA rs1844089 SNP, together with advanced disease (stage ≥ 3, tumor grade > 3, tumor diameter ≥ 70 mm), is an independent risk factor of death which increases the hazard ratio (HR) of death by more than two-fold (HR = 2.21, 95% CI: 1.28-3.83). Furthermore, the OS of patients bearing this allele is 6 months shorter than for homozygous (GG) patients (42.5 vs. 48.2 months). Conclusions Our results indicate for the first time that genetic variation within the gene encoding BTLA is significantly associated with overall survival in clear cell renal cell carcinoma patients.
Collapse
Affiliation(s)
| | - Anna Partyka
- Department of Experimental Therapy, L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Edyta A. Pawlak
- Department of Experimental Therapy, L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Kuba Ptaszkowski
- Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Romuald Zdrojowy
- Department of Urology and Oncological Urology, Wroclaw Medical University, Wroclaw, Poland
| | - Irena Frydecka
- Department of Experimental Therapy, L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Agnieszka Hałoń
- Department of Pathomorphology, Wroclaw Comprehensive Cancer Center, Wroclaw, Poland
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Lidia Karabon
- Department of Experimental Therapy, L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
- Department of Urology and Oncological Urology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
80
|
Zhao H, Chen Y, Shen P, Gong L. Identification of Immune Cell Infiltration Landscape and Their Prognostic Significance in Uveal Melanoma. Front Cell Dev Biol 2021; 9:713569. [PMID: 34513843 PMCID: PMC8427429 DOI: 10.3389/fcell.2021.713569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Uveal melanoma (UVM) is the most common primary intraocular cancer in adults. Increasing evidence has demonstrated that immune cell infiltration (ICI) is crucial in predicting patient outcomes and therapeutic efficacy. Thus, describing the immune cell infiltrative landscape of UVM tumors may yield a novel prognostic marker and provide direction for immunotherapeutic selection. In this study, the gene expression data and clinical information of UVM patients were obtained from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. The ICI landscape of UVM was analyzed using the CIBERSORT and ESTIMATE algorithms. Two ICI phenotypes were defined, and the ICI scores were calculated by using principal component analysis algorithms. We found that a subtype with high ICI scores had poorer prognosis and increased expression levels of immune checkpoint-related genes. This study demonstrates that ICI scores are an independent prognostic biomarker and highlights their value in predicting immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Chinese of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peijun Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Chinese of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
81
|
RNA-seq profiling reveals PBMC RNA as a potential biomarker for hepatocellular carcinoma. Sci Rep 2021; 11:17797. [PMID: 34493740 PMCID: PMC8423838 DOI: 10.1038/s41598-021-96952-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and has extremely high morbidity and mortality. Although many existing studies have focused on the identification of biomarkers, little information has been uncovered regarding the PBMC RNA profile of HCC. We attempted to create a profile throughout using expression of peripheral blood mononuclear cell (PBMC) RNA using RNA-seq technology and compared the transcriptome between HCC patients and healthy controls. Seventeen patients and 17 matched healthy controls were included in this study, and PBMC RNA was sequenced from all samples. Sequencing data were analyzed using bioinformatics tools, and quantitative reverse transcription PCR (qRT-PCR) was used for selected validation of DEGs. A total of 1,578 dysregulated genes were found in the PBMC samples, including 1,334 upregulated genes and 244 downregulated genes. GO enrichment and KEGG studies revealed that HCC is closely linked to differentially expressed genes (DEGs) implicated in the immune response. Expression of 6 selected genes (SELENBP1, SLC4A1, SLC26A8, HSPA8P4, CALM1, and RPL7p24) was confirmed by qRT-PCR, and higher sensitivity and specificity were obtained by ROC analysis of the 6 genes. CALM1 was found to gradually decrease as tumors enlarged. Nearly the opposite expression modes were obtained when compared to tumor sequencing data. Immune cell populations exhibited significant differences between HCC and controls. These findings suggest a potential biomarker for the diagnosis of HCC. This study provides new perspectives for liver cancer development and possible future successful clinical diagnosis.
Collapse
|
82
|
Huang M, Liu L, Zhu J, Jin T, Chen Y, Xu L, Cheng W, Ruan X, Su L, Meng J, Lu X, Yan F. Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Bladder Cancer. Front Cell Dev Biol 2021; 9:723817. [PMID: 34532318 PMCID: PMC8438153 DOI: 10.3389/fcell.2021.723817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Tumors are closely related to the tumor microenvironment (TME). The complex interaction between tumor cells and the TME plays an indisputable role in tumor development. Tumor cells can affect the TME, promote tumor angiogenesis and induce immune tolerance by releasing cell signaling molecules. Immune cell infiltration (ICI) in the TME can affect the prognosis of patients with bladder cancer. However, the pattern of ICI of the TME in bladder cancer has not yet been elucidated. Herein, we identified three distinct ICI subtypes based on the TME immune infiltration pattern of 584 bladder cancer patients using the ESTIMATE and CIBERSORT algorithms. Then, we identified three gene clusters based on the differentially expressed genes (DEGs) between the three ICI subtypes. In addition, the ICI score was determined using single sample gene set enrichment analysis (ssGSEA). The results suggested that patients in the high ICI score subgroup had a favorable prognosis and higher expression of checkpoint-related and immune activity-related genes. The high ICI score subgroup was also linked to increased tumor mutation burden (TMB) and neoantigen burden. A cohort treated with anti-PD-L1 immunotherapy confirmed the therapeutic advantage and clinical benefit of patients with higher ICI scores. In the end, our study also shows that the ICI score represents an effective prognostic predictor for evaluating the response to immunotherapy. In conclusion, our study deepened the understanding of the TME, and it provides new ideas for improving patients' response to immunotherapy and promoting individualized tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Mengjia Huang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Liu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junkai Zhu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tong Jin
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Xu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinjia Ruan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liwen Su
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Institute of Urology, Anhui Medical University, Hefei, China
| | - Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
83
|
Zhu SJ, Wang X, Hu SL, Fang Y, Guan BX, Li J, Li G, Xu JY. Clinical Significance and Biological Function of miR-1274a in Non-small Cell Lung Cancer. Mol Biotechnol 2021; 64:9-16. [PMID: 34427871 DOI: 10.1007/s12033-021-00385-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Since the discovery of microRNAs (miRNAs) as a class of important regulatory molecules, miRNAs are involved in the occurrence and development of tumors. In this paper, we aimed to identify the role of miR-1274a in non-small cell lung cancer (NSCLC). The miR-1274a expression levels in four NSCLC cells and tissues from 125 patients were determined by qRT-PCR assays. Kaplan-Meier survival curves and Cox regression analysis were used to examine the prognostic significance of miR-1274a in NSCLC patients. The CCK-8 and Transwell assays were performed to evaluate the cell proliferation, invasion, and migration ability of NSCLC cells. The miR-1274a expression levels were significantly higher in NSCLC tissues than in adjacent normal tissues, and overexpression of miR-1274a had a poor prognosis in NSCLC patients. Functional studies in two NSCLC cell lines have shown that overexpression of miR-1274a could promote cell proliferation, migration, and invasion. miR-1274a expression levels are upregulated in NSCLC tissues, and a high expression is associated with a poor prognosis in patients with NSCLC. Moreover, miR-1274a promotes cell proliferation, migration, and invasion. Based on our findings, miR-1274a may act as a tumor miRNA in the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Shi-Jia Zhu
- Clinical Oncology Center, Hong Kong University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiao Wang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Song-Liu Hu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Yu Fang
- Department of Phase I Clinical Trial, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150040, Heilongjiang, China
| | - Bi-Xi Guan
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Jian Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Gen Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Jian-Yu Xu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
84
|
Zhang Y, Wei H, Fan L, Fang M, He X, Lu B, Pang Z. CLEC4s as Potential Therapeutic Targets in Hepatocellular Carcinoma Microenvironment. Front Cell Dev Biol 2021; 9:681372. [PMID: 34409028 PMCID: PMC8367378 DOI: 10.3389/fcell.2021.681372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Immunosuppressive tumor microenvironment in hepatocellular carcinoma (HCC) is critical in tumor development. C-type (Ca2+ -dependent) lectin (CLEC) receptors, essential in innate pattern recognition, have potential regulatory effects on immune cell trafficking and modulatory effects on cancer cell activity. However, information on the expression and prognostic value of CLECs in HCC is scanty. Herein, we explored the potential role of CLECs in HCC based on TCGA, ONCOMINE, GEPIA, UALCAN, cBioPortal, Metascape, TRRUST, and TIMER databases. Results demonstrated a significantly higher mRNA level of CLEC4A and CLEC4L in HCC tissues than normal liver tissues. Contrarily, we found significantly low CLEC4G/H1/H2/M expression in HCC tissues. The IHC analysis revealed the following: Absence of CLEC4A/J/K/M in normal and liver cancer tissues; high CLEC4C expression in HCC tissues; low expression and zero detection of CLEC4D/E/H1/H2/L in HCC tissues and normal tissues, respectively. And the HepG2 and LX-2 were used to verify the expression level of CLEC4s via qRT-PCR in vitro. Furthermore, the expression of CLEC4H1 (ASGR1) and CLEC4H2 (ASGR2) exhibited a significant relation to clinical stages. However, the expression of CLEC4A, CLEC4D, CLEC4E, CLEC4J (FCER2), CLEC4K (CD207), CLEC4G, CLEC4H1, CLEC4M, and CLEC4H2 decreased with tumor progression. Patients expressing higher CLEC4H1/H2 levels had longer overall survival than patients exhibiting lower expression. Moreover, CLEC4A/D/E/J/K/G/H1/M/H2 had significant down-regulated levels of promoter methylation. The expression level of CLEC4s was correlated with the infiltration of B cells, CD8 + T cells, CD4 + T cells, macrophage cells, neutrophil cells, and dendritic cells. Functional analysis revealed the potential role of CLECL4s in virus infection, including COVID-19. Also, hsa-miR-4278 and hsa-miR-324-5p, two potential miRNA targets of CLEC4s, were uncovered. This article demonstrates that CLEC4 is crucial for the development of HCC and is associated with infiltration of various immune cells, providing evidence for new immunotherapy targets in HCC.
Collapse
Affiliation(s)
- Yinjiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China.,Morning Star Academic Cooperation, Shanghai, China
| | - Hongyun Wei
- Morning Star Academic Cooperation, Shanghai, China.,Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Fan
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Mingyan Fang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| |
Collapse
|
85
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
86
|
Kang W, Feng Z, Luo J, He Z, Liu J, Wu J, Rong P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front Immunol 2021; 12:689270. [PMID: 34394083 PMCID: PMC8358404 DOI: 10.3389/fimmu.2021.689270] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
The complex tumor microenvironment (TME) plays a vital role in cancer development and dramatically determines the efficacy of immunotherapy. Tertiary lymphoid structures (TLSs) within the TME are well recognized and consist of T cell-rich areas containing dendritic cells (DCs) and B cell-rich areas containing germinal centers (GCs). Accumulating research has indicated that there is a close association between tumor-associated TLSs and favorable clinical outcomes in most types of cancers, though a minority of studies have reported an association between TLSs and a poor prognosis. Overall, the double-edged sword role of TLSs in the TME and potential mechanisms need to be further investigated, which will provide novel therapeutic perspectives for antitumor immunoregulation. In this review, we focus on discussing the main functions of TLSs in the TME and recent advances in the therapeutic manipulation of TLSs through multiple strategies to enhance local antitumor immunity.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Jianwei Luo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| |
Collapse
|
87
|
Vitali F, Colucci R, Di Paola M, Pindo M, De Filippo C, Moretti S, Cavalieri D. Early melanoma invasivity correlates with gut fungal and bacterial profiles. Br J Dermatol 2021; 186:106-116. [PMID: 34227096 PMCID: PMC9293081 DOI: 10.1111/bjd.20626] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The microbiome is emerging as a crucial player of the immune checkpoint in cancer. Melanoma is a highly immunogenic tumour, and the gut microbiome composition has been correlated to prognosis and evolution of advanced melanoma and proposed as biomarker for immune checkpoint therapy. OBJECTIVES We investigated the gut fungal and bacterial composition in early-stage melanoma and correlated microbial profiles with histopathological features. METHODS Bacterial 16S rRNA and fungal ITS region sequencing was performed from faecal samples of patients affected by stage I and II melanoma, and healthy controls. A meta-analysis with gut microbiota data from metastatic melanoma patients was also carried out. RESULTS We found a combination of gut fungal and bacterial profiles significantly discriminating M patients from controls. In melanoma patients, we observed an abundance of Prevotella copri and yeasts belonging to the Saccharomycetales order. We found bacterial and fungal community correlated to melanoma invasiveness, whereas specific fungal profile correlated to melanoma regression. Bacteroides was identified as general marker of immunogenicity, being shared by regressive and invasive melanoma. In addition, the bacterial community from stage I and II patients were different in structure and richer than those from metastatic melanoma patients. CONCLUSIONS Gut microbiota composition in early-stage melanoma changes along the gradient from in situ to invasive (and metastatic) melanoma. Changes in the microbiota and mycobiota are correlated to the histological features of early-stage melanoma, and to the clinical course and response to immune therapies of advanced stage melanoma, through a direct or indirect immunomodulation.
Collapse
Affiliation(s)
- F Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - R Colucci
- Section of Dermatology, Department of Health Sciences (DSS), University of Florence, Palagi Hospital, Viale Michelangelo 41, 50125, Florence, Italy
| | - M Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - M Pindo
- Genomics Platform, Unit of Computational Biology, San Michele a/A, Edmund Mach Foundation, Via E. Mach 1, 38010, Trento, Italy
| | - C De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - S Moretti
- Section of Dermatology, Department of Health Sciences (DSS), University of Florence, Palagi Hospital, Viale Michelangelo 41, 50125, Florence, Italy
| | - D Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
88
|
Falzone L, Scandurra G, Lombardo V, Gattuso G, Lavoro A, Distefano AB, Scibilia G, Scollo P. A multidisciplinary approach remains the best strategy to improve and strengthen the management of ovarian cancer (Review). Int J Oncol 2021; 59:53. [PMID: 34132354 PMCID: PMC8208622 DOI: 10.3892/ijo.2021.5233] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer represents one of the most aggressive female tumors worldwide. Over the decades, the therapeutic options for the treatment of ovarian cancer have been improved significantly through the advancement of surgical techniques as well as the availability of novel effective drugs able to extend the life expectancy of patients. However, due to its clinical, biological and molecular complexity, ovarian cancer is still considered one of the most difficult tumors to manage. In this context, several studies have highlighted how a multidisciplinary approach to this pathology improves the prognosis and survival of patients with ovarian cancer. On these bases, the aim of the present review is to present recent advantages in the diagnosis, staging and treatment of ovarian cancer highlighting the benefits of a patient‑centered care approach and on the importance of a multidisciplinary team for the management of ovarian cancer.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | | | | | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | | | - Giuseppe Scibilia
- Unit of Obstetrics and Gynecology, Cannizzaro Hospital, I‑95126 Catania, Italy
| | - Paolo Scollo
- Unit of Obstetrics and Gynecology, Cannizzaro Hospital, I‑95126 Catania, Italy
| |
Collapse
|
89
|
Grönholm M, Feodoroff M, Antignani G, Martins B, Hamdan F, Cerullo V. Patient-Derived Organoids for Precision Cancer Immunotherapy. Cancer Res 2021; 81:3149-3155. [PMID: 33687948 PMCID: PMC7616950 DOI: 10.1158/0008-5472.can-20-4026] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy has revolutionized the way tumors are treated. Nevertheless, efficient and robust testing platforms are still missing, including clinically relevant human ex vivo tumor assays that allow pretreatment testing of cancer therapies and selection of the most efficient and safe therapy for a specific patient. In the case of immunotherapy, this testing platform would require not only cancer cells, but also the tumor microenvironment, including immune cells. Here, we discuss the applications of patient-derived tumor organoid cultures and the possibilities in using complex immune-organoid cultures to provide preclinical testing platforms for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Mikaela Grönholm
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- FIMM, Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
90
|
Liverani C, Bongiovanni A, Mercatali L, Pieri F, Spadazzi C, Miserocchi G, Di Menna G, Foca F, Ravaioli S, De Vita A, Cocchi C, Rossi G, Recine F, Ibrahim T. Diagnostic and Predictive Role of DLL3 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Pathol 2021; 32:309-317. [PMID: 33409812 DOI: 10.1007/s12022-020-09657-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare and heterogeneous subgroup of tumors with a challenging management because of their extremely variable biological and clinical behaviors. Due to their different prognosis, there is an urgent need to identify molecular markers which would enable to discriminate between grade 3 neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), despite both being diagnosed mainly on the basis of proliferation index and cell differentiation. DLL3, a negative Notch regulator, is a promising molecular target highly expressed in several tumors with neuroendocrine features. We conducted a retrospective analysis of DLL3, RB1, and PD-L1 expression by immunohistochemistry (IHC), in formalin-fixed, paraffin-embedded (FFPE) samples from 47 patients with GEP-NENs. Then, we correlated the results with patients' clinical features and outcome. The absence of DLL3 expression in 5 well-differentiated GEP-NETs with high-grade features (G3 NET), and the presence of DLL3 in 76.9% of poorly-differentiated NECs (G3 NEC), highlights DLL3 expression as a marker of G3 NECs (p = 0.007). DLL3 expression was correlated with RB1-loss (p < 0.001), negative 68 Ga-PET/CT scan (p = 0.001), and an unfavorable clinical outcome, with important implications for treatment response and patient's follow-up. Median progression-free survival (PFS) and overall survival (OS) were 22.7 months (95% CI 6.1-68.8) and 68.8 months (95% CI 26.0-78.1), respectively, in patients with DLL3-negative tumor compared with 5.2 months (95% CI 2.5-18.5) and 9.5 months (95% CI 2.5-25.2), respectively, in patients with DLL3-positive tumor (PFS p = 0.0083, OS p = 0.0071). Therefore, combined with morphological cell analysis, DLL3 could represent a valuable histological marker, for the diagnosis of poorly differentiated NECs. The high percentage of DLL3 expression in NEC patients also highlights a potential opportunity for a DLL3 targeted therapy in this tumor subset.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giandomenico Di Menna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda USL Della Romagna, S. Maria Delle Croci Teaching Hospital, Ravenna, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
91
|
Raphael I, Kumar R, McCarl LH, Shoger K, Wang L, Sandlesh P, Sneiderman CT, Allen J, Zhai S, Campagna ML, Foster A, Bruno TC, Agnihotri S, Hu B, Castro BA, Lieberman FS, Broniscer A, Diaz AA, Amankulor NM, Rajasundaram D, Pollack IF, Kohanbash G. TIGIT and PD-1 Immune Checkpoint Pathways Are Associated With Patient Outcome and Anti-Tumor Immunity in Glioblastoma. Front Immunol 2021; 12:637146. [PMID: 34025646 PMCID: PMC8137816 DOI: 10.3389/fimmu.2021.637146] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) remains an aggressive brain tumor with a high rate of mortality. Immune checkpoint (IC) molecules are expressed on tumor infiltrating lymphocytes (TILs) and promote T cell exhaustion upon binding to IC ligands expressed by the tumor cells. Interfering with IC pathways with immunotherapy has promoted reactivation of anti-tumor immunity and led to success in several malignancies. However, IC inhibitors have achieved limited success in GBM patients, suggesting that other checkpoint molecules may be involved with suppressing TIL responses. Numerous IC pathways have been described, with current testing of inhibitors underway in multiple clinical trials. Identification of the most promising checkpoint pathways may be useful to guide the future trials for GBM. Here, we analyzed the The Cancer Genome Atlas (TCGA) transcriptomic database and identified PD1 and TIGIT as top putative targets for GBM immunotherapy. Additionally, dual blockade of PD1 and TIGIT improved survival and augmented CD8+ TIL accumulation and functions in a murine GBM model compared with either single agent alone. Furthermore, we demonstrated that this combination immunotherapy affected granulocytic/polymorphonuclear (PMN) myeloid derived suppressor cells (MDSCs) but not monocytic (Mo) MDSCs in in our murine gliomas. Importantly, we showed that suppressive myeloid cells express PD1, PD-L1, and TIGIT-ligands in human GBM tissue, and demonstrated that antigen specific T cell proliferation that is inhibited by immunosuppressive myeloid cells can be restored by TIGIT/PD1 blockade. Our data provide new insights into mechanisms of GBM αPD1/αTIGIT immunotherapy.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rajeev Kumar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren H. McCarl
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karsen Shoger
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Wang
- Departments of Neurological Surgery, University of California, San Francisco, CA, United States
| | - Poorva Sandlesh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chaim T. Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jordan Allen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shuyan Zhai
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center Biostatistics Facility, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marissa Lynn Campagna
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexandra Foster
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tullia C. Bruno
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandyn A. Castro
- Departments of Neurology, University of Chicago, Chicago, IL, United States
| | - Frank S. Lieberman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Broniscer
- Department of Pediatrics, Division of Health Informatics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aaron A. Diaz
- Departments of Neurological Surgery, University of California, San Francisco, CA, United States
| | - Nduka M. Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ian F. Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
92
|
Jorunnamycin A Suppresses Stem-Like Phenotypes and Sensitizes Cisplatin-Induced Apoptosis in Cancer Stem-Like Cell-Enriched Spheroids of Human Lung Cancer Cells. Mar Drugs 2021; 19:md19050261. [PMID: 34063628 PMCID: PMC8147647 DOI: 10.3390/md19050261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
It has been recognized that cancer stem-like cells (CSCs) in tumor tissue crucially contribute to therapeutic failure, resulting in a high mortality rate in lung cancer patients. Due to their stem-like features of self-renewal and tumor formation, CSCs can lead to drug resistance and tumor recurrence. Herein, the suppressive effect of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from Thai blue sponge Xestospongia sp., on cancer spheroid initiation and self-renewal in the CSCs of human lung cancer cells is revealed. The depletion of stemness transcription factors, including Nanog, Oct-4, and Sox2 in the lung CSC-enriched population treated with jorunnamycin A (0.5 μM), resulted from the activation of GSK-3β and the consequent downregulation of β-catenin. Interestingly, pretreatment with jorunnamycin A at 0.5 μM for 24 h considerably sensitized lung CSCs to cisplatin-induced apoptosis, as evidenced by upregulated p53 and decreased Bcl-2 in jorunnamycin A-pretreated CSC-enriched spheroids. Moreover, the combination treatment of jorunnamycin A (0.5 μM) and cisplatin (25 μM) also diminished CD133-overexpresssing cells presented in CSC-enriched spheroids. Thus, evidence on the regulatory functions of jorunnamycin A may facilitate the development of this marine-derived compound as a novel chemotherapy agent that targets CSCs in lung cancer treatment.
Collapse
|
93
|
Wogsland CE, Lien HE, Pedersen L, Hanjra P, Grondal SM, Brekken RA, Lorens JB, Halberg N. High-dimensional immunotyping of tumors grown in obese and non-obese mice. Dis Model Mech 2021; 14:dmm048977. [PMID: 33653826 PMCID: PMC8033414 DOI: 10.1242/dmm.048977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Obesity is a disease characterized by chronic low-grade systemic inflammation and has been causally linked to the development of 13 cancer types. Several studies have been undertaken to determine whether tumors evolving in obese environments adapt differential interactions with immune cells and whether this can be connected to disease outcome. Most of these studies have been limited to single-cell lines and tumor models and analysis of limited immune cell populations. Given the multicellular complexity of the immune system and its dysregulation in obesity, we applied high-dimensional suspension mass cytometry to investigate how obesity affects tumor immunity. We used a 36-marker immune-focused mass cytometry panel to interrogate the immune landscape of orthotopic syngeneic mouse models of pancreatic and breast cancer. Unanchored batch correction was implemented to enable simultaneous analysis of tumor cohorts to uncover the immunotypes of each cancer model and reveal remarkably model-specific immune regulation. In the E0771 breast cancer model, we demonstrate an important link to obesity with an increase in two T-cell-suppressive cell types and a decrease in CD8 T cells.
Collapse
Affiliation(s)
- Cara E. Wogsland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Hilde E. Lien
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Line Pedersen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Pahul Hanjra
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Sturla M. Grondal
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
94
|
Fathi M, Pustokhina I, Kuznetsov SV, Khayrullin M, Hojjat-Farsangi M, Karpisheh V, Jalili A, Jadidi-Niaragh F. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life 2021; 73:726-738. [PMID: 33686787 DOI: 10.1002/iub.2461] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
The importance of the tumor microenvironment in cancer progression has been well studied for many years. Immune checkpoint inhibitors (ICIs) are regarded as potential strategies in enhancing the immune responses in patients with cancer, particularly colorectal cancer (CRC). Notably, CRCs are extraordinarily heterogeneous and mostly are microsatellite-stable (MSS) or cold tumors, which means that the immune response is not usually as strong as that of foreign cells. T-cell immunoglobulin and ITIM domain (TIGIT) is a new immune checkpoint receptor overexpressed inside the CRC tumor-immune microenvironments. Moreover, several studies have shown that TIGIT in combination with other ICIs and/or conventional treatments, can lead to a robust anti-tumor response in CRC. This review looks deep inside TIGIT expression patterns, their various functions, and possible immunotherapy strategies to increase survival rates and decrease immune-related adverse events.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Sergey V Kuznetsov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mars Khayrullin
- Department of Research Management, K.G. Razumovsky Moscow State, University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
95
|
Shi Y, Yan F, Wang F, Pan L. MiR-128-3p suppresses tumor proliferation and metastasis via targeting CDC6 in hepatocellular carcinoma cells. Tissue Cell 2021; 72:101534. [PMID: 33991762 DOI: 10.1016/j.tice.2021.101534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are known to be involved in the pathogenesis of various cancers. The present study devotes efforts to discover the role of miR-128-3p in hepatocellular carcinoma (HCC). METHODS MiR-128-3p and cell division cycle 6 (CDC6) expressions in HCC tissue (n = 50) and adjacent normal tissue (n = 50) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay and flow cytometry were applied to measure the viability and cell cycle distribution of HuH7 and HCCLM3 cells, respectively. The potential binding sites of miR-128-3p on CDC6 were predicted with Targetscan 7.2 and confirmed by dual-luciferase reporter assay. Expression analysis of CDC6 and survival analysis in HCC were performed by GEPIA2. Wound healing and Transwell assays were used to detect HCC cell migration and invasion, respectively. Expressions of miR-128-3p and epithelial-mesenchymal transition (EMT)-related proteins (MMP2, MMP9, E-Cadherin, N-Cadherin and Vimentin) were quantified using qRT-PCR and western blot, respectively. RESULTS MiR-128-3p mRNA expression was lower in HCC tissue than in adjacent normal tissues. HCC cell viability was suppressed and cell cycle was arrested in G0/S phase by miR-128-3p mimic. CDC6 was targeted by miR-128-3p and had higher expression in HCC tissue. The promotive effects of overexpressed CDC6 on HCC cell viability, migration and invasion were reversed by up-regulating miR-128-3p. And the effects of overexpressed CDC6 on inhibiting E-Cadherin expression yet promoting MMP2, MMP9, N-Cadherin and Vimentin expressions in HCC cells were reversed by up-regulating miR-128-3p. CONCLUSION MiR-128-3p may suppress HCC cell proliferation and metastasis via targeting CDC6.
Collapse
Affiliation(s)
- Yu Shi
- Department of Hepatobiliary Surgery, Xinchang People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Fuguo Yan
- Department of Hepatobiliary Surgery, Xinchang People's Hospital, China; Wuhan University, China
| | - Fangping Wang
- Department of Hepatobiliary Surgery, Xinchang People's Hospital, China; Wenzhou Medical College, China
| | - Linfeng Pan
- School of Medicine, Shaoxing University, China; Department of General Surgery, Xinchang People's Hospital, China.
| |
Collapse
|
96
|
Roufas C, Georgakopoulos-Soares I, Zaravinos A. Molecular correlates of immune cytolytic subgroups in colorectal cancer by integrated genomics analysis. NAR Cancer 2021; 3:zcab005. [PMID: 34316699 PMCID: PMC8210146 DOI: 10.1093/narcan/zcab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Although immune checkpoint inhibition (ICI) has shown promising results in metastatic dMMR/MSI-H colorectal cancer (CRC), the majority of pMMR/MSS patients do not respond to such therapies. To systematically evaluate the determinants of immune response in CRC, we explored whether patients with diverse levels of immune cytolytic activity (CYT) have different patterns of chromothripsis and kataegis. Analysis of CRC genomic data from the TCGA, indicated an excess of chromothriptic clusters among CYT-low colon adenocarcinomas, affecting known cancer drivers (APC, KRAS, BRAF, TP53 and FBXW7), immune checkpoints (CD274, PDCD1LG2, IDO1/2 and LAG3) and immune-related genes (ENTPD1, PRF1, NKG7, FAS, GZMA/B/H/K and CD73). CYT-high tumors were characterized by hypermutation, enrichment in APOBEC-associated mutations and kataegis events, as well as APOBEC activation. We also assessed differences in the most prevalent mutational signatures (SBS15, SBS20, SBS54 and DBS2) across cytolytic subgroups. Regarding the composition of immune cells in the tumor milieu, we found enrichment of M1 macrophages, CD8+ T cells and Tregs, as well as higher CD8+ T-cells/Tregs ratio among CYT-high tumors. CYT-high patients had higher immunophenoscores, which is predictive of their responsiveness if they were to be treated with anti-PD-1 alone or in combination with anti-CTLA-4 drugs. These results could have implications for patient responsiveness to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Constantinos Roufas
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
97
|
Xu J, Wang C. Cell-derived vesicles for delivery of cancer immunotherapy. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2020.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years, cancer immunotherapy has received unprecedented attention due to the clinical achievements. The applications of biomedical engineering and materials science to cancer immunotherapy have solved the challenges caused by immunotherapy to a certain extent. Among them, cell-derived vesicles are natural biomaterials chosen as carriers or immune-engineering in view of their many unique advantages. This review will briefly introduce the recent applications of cell-derived vesicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
98
|
Abstract
In recent years, cancer immunotherapy has received unprecedented attention due to the clinical achievements. The applications of biomedical engineering and materials science to cancer immunotherapy have solved the challenges caused by immunotherapy to a certain extent. Among them, cell-derived vesicles are natural biomaterials chosen as carriers or immune-engineering in view of their many unique advantages. This review will briefly introduce the recent applications of cell-derived vesicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
99
|
Dupont CA, Riegel K, Pompaiah M, Juhl H, Rajalingam K. Druggable genome and precision medicine in cancer: current challenges. FEBS J 2021; 288:6142-6158. [PMID: 33626231 DOI: 10.1111/febs.15788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The past decades have seen tremendous developments with respect to "specific" therapeutics that target key signaling molecules to conquer cancer. The key advancements with multiomics technologies, especially genomics, have allowed physicians and molecular oncologists to design "tailor-made" solutions to the specific oncogenes that are deregulated in individual patients, a strategy which has turned out to be successful though the patients quickly develop resistance. The swift integration of multidisciplinary approaches has led to the development of "next generation" therapeutics and, with synergistic therapeutic regimes combined with immune checkpoint inhibitors to reactivate the dampened immune response, has provided the much-needed promise for cancer patients. Despite these advances, a large portion of the druggable genome remains understudied, and the role of druggable genome in the immune system needs further attention. Establishment of patient-derived organoid models has fastened the preclinical validation of novel therapeutics for swift clinical translation. We summarized the current advances and challenges and also stress the importance of biobanking and collection of longitudinal data sets with structured clinical information, as well as the critical role these "high content data sets" will play in designing new therapeutic regimes in a tailor-made fashion.
Collapse
Affiliation(s)
- Camille Amandine Dupont
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Riegel
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Juhl
- Indivumed GmbH, Hamburg, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| |
Collapse
|
100
|
Hu L, Han Z, Cheng X, Wang S, Feng Y, Lin Z. Expression Profile Analysis Identifies a Novel Seven Immune-Related Gene Signature to Improve Prognosis Prediction of Glioblastoma. Front Genet 2021; 12:638458. [PMID: 33708242 PMCID: PMC7940837 DOI: 10.3389/fgene.2021.638458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiform (GBM) is a malignant central nervous system cancer with dismal prognosis despite conventional therapies. Scientists have great interest in using immunotherapy for treating GBM because it has shown remarkable potential in many solid tumors, including melanoma, non-small cell lung cancer, and renal cell carcinoma. The gene expression patterns, clinical data of GBM individuals from the Cancer Genome Atlas database (TCGA), and immune-related genes (IRGs) from ImmPort were used to identify differentially expressed IRGs through the Wilcoxon rank-sum test. The association between each IRG and overall survival (OS) of patients was investigated by the univariate Cox regression analysis. LASSO Cox regression assessment was conducted to explore the prognostic potential of the IRGs of GBM and construct a risk score formula. A Kaplan–Meier curve was created to estimate the prognostic role of IRGs. The efficiency of the model was examined according to the area under the receiver operating characteristic (ROC) curve. The TCGA internal dataset and two GEO external datasets were used for model verification. We evaluated IRG expression in GBM and generated a risk model to estimate the prognosis of GBM individuals with seven optimal prognostic expressed IRGs. A landscape of 22 types of tumor-infiltrating immune cells (TIICs) in glioblastoma was identified, and we investigated the link between the seven IRGs and the immune checkpoints. Furthermore, there was a correlation between the IRGs and the infiltration level in GBM. Our data suggested that the seven IRGs identified in this study are not only significant prognostic predictors in GBM patients but can also be utilized to investigate the developmental mechanisms of GBM and in the design of personalized treatments for them.
Collapse
Affiliation(s)
- Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingbo Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sida Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yumeng Feng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|