51
|
Jurcak NR, Rucki AA, Muth S, Thompson E, Sharma R, Ding D, Zhu Q, Eshleman JR, Anders RA, Jaffee EM, Fujiwara K, Zheng L. Axon Guidance Molecules Promote Perineural Invasion and Metastasis of Orthotopic Pancreatic Tumors in Mice. Gastroenterology 2019; 157:838-850.e6. [PMID: 31163177 PMCID: PMC6707836 DOI: 10.1053/j.gastro.2019.05.065] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Little is known about mechanisms of perineural invasion (PNI) by pancreatic ductal adenocarcinomas (PDAs) or other tumors. Annexin A2 (ANXA2) regulates secretion of SEMA3D, an axon guidance molecule, which binds and activates the receptor PLXND1 to promote PDA invasion and metastasis. We investigated whether axon guidance molecules promote PNI and metastasis by PDA cells in mice. METHODS We performed studies in a dorsal root ganglion (DRG) invasion system, wild-type C57BL/6 mice (controls), mice with peripheral sensory neuron-specific disruption of PlxnD1 (PLAC mice), LSL-KRASG12D/+;LSL-TP53R172H/+;PDX-1-CRE+/+ (KPC) mice, and KPC mice crossed with ANXA2-knockout mice (KPCA mice). PDA cells were isolated from KPC mice and DRG cells were isolated from control mice. Levels of SEMA3D or ANXA2 were knocked down in PDA cells with small hairpin and interfering RNAs and cells were analyzed by immunoblots in migration assays, with DRGs and with or without antibodies against PLXND1. PDA cells were injected into the pancreas of control and PLAC mice, growth of tumors was assessed, and tumor samples were analyzed by histology. DRG cells were incubated with SEMA3D and analyzed by live imaging. We measured levels of SEMA3D and PLXND1 in PDA specimens from patients with PNI and calculated distances between tumor cells and nerves. RESULTS DRG cells increase the migration of PDC cells in invasion assays; knockdown of SEMA3D in PDA cells or antibody blockade of PLXND1 on DRG cells reduced this invasive activity. In mice, orthotopic tumors grown from PDA cells with knockdown of SEMA3D, and in PLAC mice, orthotopic tumors grown from PDA cells, had reduced innervation and formed fewer metastases than orthotopic tumors grown from PDA cells in control mice. Increased levels of SEMA3D and PLXND1 in human PDA specimens associated with PNI. CONCLUSIONS DRG cells increase the migratory and invasive activities of pancreatic cancer cells, via secretion of SEMA3D by pancreatic cells and activation of PLXND1 on DRGs. Knockdown of SEMA3D and loss of neural PLXND1 reduces innervation of orthotopic PDAs and metastasis in mice. Increased levels of SEMA3D and PLXND1 in human PDA specimens associated with PNI. Strategies to disrupt the axon guidance pathway mediated by SEMA3D and PLXND1 might be developed to slow progression of PDA.
Collapse
MESH Headings
- Animals
- Annexin A2/deficiency
- Annexin A2/genetics
- Annexin A2/metabolism
- Axon Guidance/genetics
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/secondary
- Cell Communication
- Cell Movement
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Gene Expression Regulation, Neoplastic
- Genes, p53
- Genes, ras
- Genetic Predisposition to Disease
- Homeodomain Proteins/genetics
- Humans
- Intracellular Signaling Peptides and Proteins
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Invasiveness
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuronal Outgrowth
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phenotype
- Semaphorins/genetics
- Semaphorins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Noelle R Jurcak
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Agnieszka A Rucki
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen Muth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Thompson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajni Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ding Ding
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James R Eshleman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland; Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenji Fujiwara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, Maryland; JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
52
|
Gasparini G, Pellegatta M, Crippa S, Lena MS, Belfiori G, Doglioni C, Taveggia C, Falconi M. Nerves and Pancreatic Cancer: New Insights into a Dangerous Relationship. Cancers (Basel) 2019; 11:E893. [PMID: 31248001 PMCID: PMC6678884 DOI: 10.3390/cancers11070893] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Perineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival. Such an early, invasive and recurrent phenomenon is probably crucial for tumor growth and metastasis. PNI is a still not a uniformly characterized event; usually it is described only dichotomously ("present" or "absent"). Recently, a more detailed scoring system for PNI has been proposed, though not specific for pancreatic cancer. Previous studies have implicated several molecules and pathways in PNI, among which are secreted neurotrophins, chemokines and inflammatory cells. However, the mechanisms underlying PNI are poorly understood and several aspects are actively being investigated. In this review, we will discuss the main molecules and signaling pathways implicated in PNI and their roles in the PDAC.
Collapse
Affiliation(s)
- Giulia Gasparini
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Marta Pellegatta
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Stefano Crippa
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Marco Schiavo Lena
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giulio Belfiori
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy.
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Carla Taveggia
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Massimo Falconi
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
53
|
Yin K, Wang L, Xia Y, Dang S, Zhang X, He Z, Xu J, Shang M, Xu Z. Netrin-1 promotes cell neural invasion in gastric cancer via its receptor neogenin. J Cancer 2019; 10:3197-3207. [PMID: 31289590 PMCID: PMC6603376 DOI: 10.7150/jca.30230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/30/2019] [Indexed: 01/04/2023] Open
Abstract
Neural invasion (NI) is one of the important routes for local spread of gastric cancer (GC) correlated with poor prognosis. However, the exact cellular characteristics and molecular mechanisms of NI in GC are still unclear. Netrin-1(NTN1) as an axon guidance molecule was firstly found during neural system development. Importantly, NTN1 has an essential role in the progression of malignant tumor and specifically mediates the induction of invasion. In this study, we found NTN1 expression was significantly increased in 97 tumor tissues from GC patients and positively correlated with NI (p<0.05). In addition, we detected NTN1 knockdown significantly suppressed GC cells migration and invasion. Moreover, our results showed that reciprocity was observed between GC cells and neurites colonies in dorsal root ganglia (DRG)-GC cells co-culture vitro model. GC cells with NTN1 silencing could suppress their abilities to navigate along surrounding neuritis and this effect was depended on its receptor neogenin. In vivo, NTN1 inhibition also decreased GC cells sciatic nerve invasion. Taken together, our findings argue that NTN1 and its receptor neogenin might act synergistically in promoting GC cells neural invasion. Inhibiting the activity of NTN1 could be a potential strategy targeting NI in GC therapy.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengchun Dang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuan Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyuan Shang
- Department of Ultrasound Diagnosis, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
54
|
Alrawashdeh W, Jones R, Dumartin L, Radon TP, Cutillas PR, Feakins RM, Dmitrovic B, Demir IE, Ceyhan GO, Crnogorac‐Jurcevic T. Perineural invasion in pancreatic cancer: proteomic analysis and in vitro modelling. Mol Oncol 2019; 13:1075-1091. [PMID: 30690892 PMCID: PMC6487729 DOI: 10.1002/1878-0261.12463] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Perineural invasion (PNI) is a common and characteristic feature of pancreatic ductal adenocarcinoma (PDAC) that is associated with poor prognosis, tumor recurrence, and generation of pain. However, the molecular alterations in cancer cells and nerves within PNI have not previously been comprehensively analyzed. Here, we describe our proteomic analysis of the molecular changes underlying neuro-epithelial interactions in PNI using liquid chromatography-mass spectrometry (LC-MS/MS) in microdissected PNI and non-PNI cancer, as well as in invaded and noninvaded nerves from formalin-fixed, paraffin-embedded PDAC tissues. In addition, an in vitro model of PNI was developed using a co-culture system comprising PDAC cell lines and PC12 cells as the neuronal element. The overall proteomic profiles of PNI and non-PNI cancer appeared largely similar. In contrast, upon invasion by cancer cells, nerves demonstrated widespread plasticity with a pattern consistent with neuronal injury. The up-regulation of SCG2 (secretogranin II) and neurosecretory protein VGF (nonacronymic) in invaded nerves in PDAC tissues was further validated using immunohistochemistry. The tested PDAC cell lines were found to be able to induce neuronal plasticity in PC12 cells in our in vitro established co-culture model. Changes in expression levels of VGF, as well as of two additional proteins previously reported to be overexpressed in PNI, Nestin and Neuromodulin (GAP43), closely recapitulated our proteomic findings in PDAC tissues. Furthermore, induction of VGF, while not necessary for PC12 survival, mediated neurite extension induced by PDAC cell lines. In summary, here we report the proteomic alterations underlying PNI in PDAC and confirm that PDAC cells are able to induce neuronal plasticity. In addition, we describe a novel, simple, and easily adaptable co-culture model for in vitro study of neuro-epithelial interactions.
Collapse
Affiliation(s)
- Wasfi Alrawashdeh
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | | | - Laurent Dumartin
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Tomasz P. Radon
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R. Cutillas
- Centre for Haemato‐OncologyBart Cancer InstituteQueen Mary University of LondonUK
| | | | - Branko Dmitrovic
- Department of Pathology and Forensic MedicineFaculty of MedicineUniversity of OsijekCroatia
| | - Ihsan Ekin Demir
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | - Guralp O. Ceyhan
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | | |
Collapse
|
55
|
Diagnostic strategy with a solid pancreatic mass. Presse Med 2019; 48:e125-e145. [DOI: 10.1016/j.lpm.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
|
56
|
L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression. Oncogene 2018; 38:596-608. [PMID: 30171263 DOI: 10.1038/s41388-018-0458-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 11/08/2022]
Abstract
Pancreas cancer cells have a tendency to invade along nerves. Such cancerous nerve invasion (CNI) is associated with poor outcome; however, the exact mechanism that drives cancer cells to disseminate along nerves is unknown. Immunohistochemical analysis of human pancreatic ductal adenocarcinoma (PDAC) specimens showed overexpression of the L1 cell adhesion molecule (L1CAM) in cancer cells and in adjacent Schwann cells (SC) in invaded nerves. By modeling the neural microenvironment, we found that L1CAM secreted from SCs acts as a strong chemoattractant to cancer cells, through activation of MAP kinase signaling. L1CAM also upregulated expression of metalloproteinase-2 (MMP-2) and MMP-9 by PDAC cells, through STAT3 activation. Using a transgenic Pdx-1-Cre/KrasG12D /p53R172H (KPC) mouse model, we show that treatment with anti-L1CAM Ab significantly reduces CNI in vivo. We provide evidence of a paracrine response between SCs and cancer cells in the neural niche, which promotes cancer invasion via L1CAM secretion.
Collapse
|
57
|
Maplanka C. A comprehensive study of the mesopancreas as an extension of the pancreatic circumferential resection margin. Eur Surg 2018. [DOI: 10.1007/s10353-018-0535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be one of the deadliest human malignancies and is associated with excruciating pain, which is a serious complication and severely impacts the quality of life in patients. In human patients, poor survival prognosis is linked to remarkable remodeling of intrapancreatic nerves, which, in turn, is correlated to increased pain intensity. Understanding mechanisms underlying pain associated with PDAC has been hampered by the lack of animal models which replicate all germane aspects of the disease and importantly, enable analyses of pain associated with PDAC. In this study, we describe an immunocompetent orthotopic mouse model of PDAC involving intrapancreatic growth of K8484 mouse PDAC cells, which reliably exhibits a large number of key characteristics of human PDAC, including its unique histopathology and neuroplastic changes. We observed that tumor-bearing mice demonstrated significant abdominal mechanical hypersensitivity to von Frey stimuli as well as on-going pain in the conditioned place preference paradigm. Moreover, a myriad of other behavioral tests revealed that indicators of overall well-being were significantly reduced in tumor-bearing mice as compared to sham mice. Morphological and immunohistochemical analyses revealed structural remodeling in several different types of sensory and autonomic nerve fibers. Finally, perineural invasion of tumor cells, a cardinal manifestation in human PDAC, was also observed in our orthotopic mouse model. Thus, we describe a validated tumor model for quantitatively testing hypersensitivity and pain in PDAC, which lays a crucial basis for interrogating tumor-nerve interactions and the molecular and cellular mechanisms underlying pain in PDAC.
Collapse
|
59
|
Abstract
Pancreatic ductal adenocarcinoma continues to be a highly lethal disease, despite advances in modern medicine. Curative surgical options continue to carry significant morbidity and offer little improvement in overall 5-year survival. Currently, imaging plays an essential role in the pre-operative evaluation of patients who are undergoing evaluation for resection. However, some pancreatic cancers have particularly aggressive biology, despite appearing resectable by conventional imaging criteria. Imaging biomarkers that serve as surrogates for tumors with such aggressive phenotype have been recently described, namely duodenal invasion and extrapancreatic perineural invasion. In this pictorial review, we will summarize key concepts of extrapancreatic perineural invasion, describe its association with a poor prognosis, and highlight the role of imaging in its detection.
Collapse
Affiliation(s)
- Bhavik N Patel
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr., H1307, Stanford, CA, 94305, USA.
| | - Eric Olcott
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr., H1307, Stanford, CA, 94305, USA
- Department of Radiology, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - R Brooke Jeffrey
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr., H1307, Stanford, CA, 94305, USA
| |
Collapse
|
60
|
Bressy C, Lac S, Nigri J, Leca J, Roques J, Lavaut MN, Secq V, Guillaumond F, Bui TT, Pietrasz D, Granjeaud S, Bachet JB, Ouaissi M, Iovanna J, Vasseur S, Tomasini R. LIF Drives Neural Remodeling in Pancreatic Cancer and Offers a New Candidate Biomarker. Cancer Res 2017; 78:909-921. [PMID: 29269518 DOI: 10.1158/0008-5472.can-15-2790] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/28/2017] [Accepted: 12/18/2017] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive stroma and pathogenic modifications to the peripheral nervous system that elevate metastatic capacity. In this study, we show that the IL6-related stem cell-promoting factor LIF supports PDAC-associated neural remodeling (PANR). LIF was overexpressed in tumor tissue compared with healthy pancreas, but its receptors LIFR and gp130 were expressed only in intratumoral nerves. Cancer cells and stromal cells in PDAC tissues both expressed LIF, but only stromal cells could secrete it. Biological investigations showed that LIF promoted the differentiation of glial nerve sheath Schwann cells and induced their migration by activating JAK/STAT3/AKT signaling. LIF also induced neuronal plasticity in dorsal root ganglia neurons by increasing the number of neurites and the soma area. Notably, injection of LIF-blocking antibody into PDAC-bearing mice reduced intratumoral nerve density, supporting a critical role for LIF function in PANR. In serum from human PDAC patients and mouse models of PDAC, we found that LIF titers positively correlated with intratumoral nerve density. Taken together, our findings suggest LIF as a candidate serum biomarker and diagnostic tool and a possible therapeutic target for limiting the impact of PANR in PDAC pathophysiology and metastatic progression.Significance: This study suggests a target to limit neural remodeling in pancreatic cancer, which contributes to poorer quality of life and heightened metastatic progression in patients. Cancer Res; 78(4); 909-21. ©2017 AACR.
Collapse
Affiliation(s)
- Christian Bressy
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Sophie Lac
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Jérémy Nigri
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Julie Leca
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Julie Roques
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Marie-Nöelle Lavaut
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France.,Department of Pathology, Hospital North and Mediterranean University, Marseille, France
| | - Véronique Secq
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France.,Department of Pathology, Hospital North and Mediterranean University, Marseille, France
| | - Fabienne Guillaumond
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Thi-Thien Bui
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Daniel Pietrasz
- INSERM UMRS 775, University PARIS DESCARTES, Paris, France.,Department of Hepatobiliary and Digestive Surgery, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Samuel Granjeaud
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Jean-Baptiste Bachet
- INSERM UMRS 775, University PARIS DESCARTES, Paris, France.,Department of Hepatobiliary and Digestive Surgery, Groupe Hospitalier Pitié Salpêtrière, Paris, France.,Department of Hepatogastroentérology, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Mehdi Ouaissi
- Aix-Marseille University, INSERM, CRO2, UMR 911, Marseille, France
| | - Juan Iovanna
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Sophie Vasseur
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France
| | - Richard Tomasini
- CRCM, INSERM, U1068; Paoli-Calmettes Institute; Aix-Marseille University, UM 105; CNRS, UMR7258, Marseille, France.
| |
Collapse
|
61
|
Carr RA, Roch AM, Zhong X, Ceppa EP, Zyromski NJ, Nakeeb A, Schmidt CM, House MG. Prospective Evaluation of Associations between Cancer-Related Pain and Perineural Invasion in Patients with Resectable Pancreatic Adenocarcinoma. J Gastrointest Surg 2017; 21:1658-1665. [PMID: 28785934 DOI: 10.1007/s11605-017-3513-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/19/2017] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Perineural invasion is a unique characteristic of pancreatic adenocarcinoma biology and is present in the majority of resected pathologic specimens. The purpose of this study was to understand the relationships between preoperative pain and perineural invasion in patients with pancreatic adenocarcinoma. METHODS Fifty-two chemotherapy naive patients undergoing resection for pancreatic adenocarcinoma from 2012 to 2014 completed a previously validated Brief Pain Inventory survey for preoperative clinical pain scoring. Preoperative pain was correlated with multiple clinicopathologic features. RESULTS Preoperative pain was not associated with pathologic cancer stage, lymph node status, lymph node positivity ratio, resection margin status, or tumor location within the pancreas. In the subgroup of pancreatic head cancers, pain interference with affect was associated with the absence of perineural invasion (p = 0.02). Patients with stage I cancer had higher pain interference scores than those with stage II cancer (p = 0.02). CONCLUSIONS Preoperative pain does not predict the presence of perineural invasion or other pathologic prognostic factors in patients with resectable pancreatic adenocarcinoma. Higher pain scores in pancreatic head cancers correlated with absence of perineural invasion and early cancer stage. The effects of preoperative pain on quality and interference of daily life deserve further investigation in larger prospective studies involving patients with pancreatic cancer.
Collapse
Affiliation(s)
- Rosalie A Carr
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Alexandra M Roch
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Xin Zhong
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Eugene P Ceppa
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Nicholas J Zyromski
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Attila Nakeeb
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - C Max Schmidt
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Michael G House
- Department of General Surgery, Indiana University School of Medicine, 515 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
62
|
Abstract
Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.
Collapse
|
63
|
Yao J, Zhang LL, Huang XM, Li WY, Gao SG. Pleiotrophin and N-syndecan promote perineural invasion and tumor progression in an orthotopic mouse model of pancreatic cancer. World J Gastroenterol 2017; 23:3907-3914. [PMID: 28638231 PMCID: PMC5467077 DOI: 10.3748/wjg.v23.i21.3907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/27/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of pleiotrophin (PTN) and N-syndecan in pancreatic cancer and analyze their association with tumor progression and perineural invasion (PNI).
METHODS An orthotopic mouse model of pancreatic cancer was created by injecting tumor cells subcapsularly in a root region of the pancreas beneath the spleen. Pancreatic cancer tissues were taken from 36 mice that survived for more than 90 d. PTN and N-syndecan proteins were detected by immunohistochemistry and analyzed for their correlation with pathological features, PNI, and prognosis.
RESULTS The expression rates of PTN and N-syndecan proteins were 66.7% and 61.1%, respectively, in cancer tissue. PTN and N-syndecan expression was associated with PNI (P = 0.019 and P = 0.032, respectively). High PTN expression was closely associated with large bloody ascites (P = 0.009), liver metastasis (P = 0.035), and decreased survival time (P = 0.022). N-syndecan expression was significantly associated with tumor size (P = 0.025), but not with survival time (P = 0.539).
CONCLUSION High PTN and N-syndecan expression was closely associated with metastasis and poor prognosis, suggesting that they may promote tumor progression and PNI in the orthotopic mouse model of pancreatic cancer.
Collapse
|
64
|
Amit M, Na'ara S, Leider-Trejo L, Binenbaum Y, Kulish N, Fridman E, Shabtai-Orbach A, Wong RJ, Gil Z. Upregulation of RET induces perineurial invasion of pancreatic adenocarcinoma. Oncogene 2017; 36:3232-3239. [PMID: 28092668 DOI: 10.1038/onc.2016.483] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/14/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
Tumor spread along nerves, a phenomenon known as perineurial invasion, is common in various cancers including pancreatic ductal adenocarcinoma (PDAC). Neural invasion is associated with poor outcome, yet its mechanism remains unclear. Using the transgenic Pdx-1-Cre/KrasG12D /p53R172H (KPC) mouse model, we investigated the mechanism of neural invasion in PDAC. To detect tissue-specific factors that influence neural invasion by cancer cells, we characterized the perineurial microenvironment using a series of bone marrow transplantation (BMT) experiments in transgenic mice expressing single mutations in the Cx3cr1, GDNF and CCR2 genes. Immunolabeling of tumors in KPC mice of different ages and analysis of human cancer specimens revealed that RET expression is upregulated during PDAC tumorigenesis. BMT experiments revealed that BM-derived macrophages expressing the RET ligand GDNF are highly abundant around nerves invaded by cancer. Inhibition of perineurial macrophage recruitment, using the CSF-1R antagonist GW2580 or BMT from CCR2-deficient donors, reduced perineurial invasion. Deletion of GDNF expression by perineurial macrophages, or inhibition of RET with shRNA or a small-molecule inhibitor, reduced perineurial invasion in KPC mice with PDAC. Taken together, our findings show that RET is upregulated during pancreas tumorigenesis and its activation induces cancer perineurial invasion. Trafficking of BM-derived macrophages to the perineurial microenvironment and secretion of GDNF are essential for pancreatic cancer neural spread.
Collapse
Affiliation(s)
- M Amit
- Head and Neck Surgery Department, MD Anderson Cancer Center University of Texas, Houston, TX, USA.,The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, The Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, Rambam Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - S Na'ara
- The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, The Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, Rambam Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - L Leider-Trejo
- Department of Pathology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Y Binenbaum
- The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel
| | - N Kulish
- The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel
| | - E Fridman
- The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, The Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, Rambam Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - A Shabtai-Orbach
- The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel
| | - R J Wong
- Department of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Z Gil
- The Laboratory for Applied Cancer Research, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology, Haifa, Israel.,Department of Otolaryngology Head and Neck Surgery, The Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, Rambam Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
65
|
Ju J, Li Y, Chai J, Ma C, Ni Q, Shen Z, Wei J, Sun M. The role of perineural invasion on head and neck adenoid cystic carcinoma prognosis: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:691-701. [DOI: 10.1016/j.oooo.2016.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/16/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023]
|
66
|
Zhang L, Xiu D, Zhan J, He X, Guo L, Wang J, Tao M, Fu W, Zhang H. High expression of muscarinic acetylcholine receptor 3 predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Onco Targets Ther 2016; 9:6719-6726. [PMID: 27826198 PMCID: PMC5096762 DOI: 10.2147/ott.s111382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims Recent studies showed that muscarinic acetylcholine receptor 3 (M3), as a muscarinic acetylcholine receptor family member that plays an important role in normal physiological function, is engaged in cancer progression. However, the role of M3 in pancreatic ductal adenocarcinoma (PDAC) is not known. The aim of this study is to investigate the expression and prognostic value of M3 in patients with PDAC. Materials and methods The localization and expression of M3 in PDAC were examined by immunohistochemistry. VAChT was employed to detect parasympathetic nerve fibers in the corresponding M3 PDAC tissues. The correlation between M3 expression and patients’ survival was assessed by Kaplan–Meier analysis. Results M3 was discovered predominantly localized in the cell cytoplasm and expressed in all specimens of PDAC patients. Significant correlation was noted between increased M3 intensity and high grade of PDAC (P<0.01), more lymph node metastasis (P<0.01) as well as shorter patient overall survival (P<0.01). Morphologically, cells with high M3 expression were more frequently located at the invasive tumor front/tumor budding cells, metastatic lymph nodes and parasympathetic nerve fibers. Conclusion High expression of M3 is a prognostic marker for PDAC.
Collapse
Affiliation(s)
- Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology
| | - Xiaokun He
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology
| | - Limei Guo
- Department of Pathology, Peking University Health Science Center; Department of Pathology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jilian Wang
- Department of General Surgery, Peking University Third Hospital
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology
| |
Collapse
|
67
|
Wang L, Zhi X, Zhu Y, Zhang Q, Wang W, Li Z, Tang J, Wang J, Wei S, Li B, Zhou J, Jiang J, Yang L, Xu H, Xu Z. MUC4-promoted neural invasion is mediated by the axon guidance factor Netrin-1 in PDAC. Oncotarget 2016; 6:33805-22. [PMID: 26393880 PMCID: PMC4741804 DOI: 10.18632/oncotarget.5668] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
Neuralinvasion (NI) is an important oncological feature of pancreatic ductal adenocarcinoma (PDAC). However, the underlying mechanism of NI in PDAC remains unclear. In this study, we found that MUC4 was overexpressed in PDAC tissues and high expression of MUC4 indicated a higher NI incidencethan low expression. In vitro, MUC4 knockdown inhibited the migration and invasion of PDAC cells and impaired the migration of PDAC cells along nerve in dorsal root ganglia (DRG)-PDAC cell co-culture assay. In vivo, MUC4 knockdown suppressed the NI of PDAC cells in a murine NI model. Mechanistically, our data revealed that MUC4 silencing resulted in decreased netrin-1 expression and re-expression of netrin-1 in MUC4-silenced cells rescued the capability of NI. Furthermore, we identified that decreased netrin-1 expression was owed to the downregulation of HER2/AKT/NF-κB pathway in MUC4-silenced cells. Additionally, MUC4 knockdown also resulted in the downregulation of pFAK, pSrc, pJNK and MMP9. Taken together, our findings revealed a novelrole of MUC4 in potentiating NI via netrin-1 through the HER2/AKT/NF-κBpathway in PDAC.
Collapse
Affiliation(s)
- Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Qun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiwei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, P.R. China
| | - Jianguo Jiang
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, P.R. China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
68
|
Wei YS, Yao DS, Long Y. Evaluation of the association between perineural invasion and clinical and histopathological features of cervical cancer. Mol Clin Oncol 2016; 5:307-311. [PMID: 27588197 DOI: 10.3892/mco.2016.941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Perineural invasion (PNI) has been investigated as a new prognostic factor in a number of carcinomas. However, studies on PNI in cervical cancer are limited, and inconsistent conclusions have been reported by different groups. The aim of the present study was to analyze the relationship between perineural invasion (PNI) and clinical and histopathological features of cervical cancer, and to evaluate the clinical significance of PNI of cervical cancer. Retrospective review identified 206 patients with cervical cancer who underwent radical hysterectomy plus pelvic lymphadenectomy between December 2012 and August 2014. The association between PNI and clinical and histopathological features of cervical cancer and post-operative radiotherapy was evaluated based on univariate and multivariate analyses. PNI of cervical cancer was identified in 33 of 206 (16%) cervical cancer patients. Univariate analysis demonstrated that PNI was associated with clinical stage, tumor grade, tumor size, depth of invasion, lymphovascular space invasion (LVSI), and lymph node metastasis (P<0.05), but not associated with age and histopathological types (P>0.05). Multivariate analysis suggests that LVSI and lymph node metastasis were associated with PNI of cervical cancer (P<0.05). In addition, post-operative radiotherapy was significantly more recommended for patients with PNI than those without PNI (P<0.001). In conclusion, PNI of cervical cancer is associated with LVSI and lymph node metastasis and can be used as an index for the determination of post-operative radiotherapy for cervical cancer patients.
Collapse
Affiliation(s)
- You-Sheng Wei
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - De-Sheng Yao
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ying Long
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
69
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
70
|
Abstract
The local extension of cancer cells along nerves is a frequent clinical finding for various tumours. Traditionally, nerve invasion was assumed to occur via the path of least resistance; however, recent animal models and human studies have revealed that cancer cells have an innate ability to actively migrate along axons in a mechanism called neural tracking. The tendency of cancer cells to track along nerves is supported by various cell types in the perineural niche that secrete multiple growth factors and chemokines. We propose that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.
Collapse
Affiliation(s)
- Moran Amit
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Shorook Na'ara
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Ziv Gil
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| |
Collapse
|
71
|
Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Release 2016; 232:131-42. [PMID: 27046157 DOI: 10.1016/j.jconrel.2016.03.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is a lethal malignancy whose progression is highly dependent on the nervous microenvironment. This study develops neural drug-loaded ferritin nanoparticles (Ft NPs) to regulate the nervous microenvironment, in order to control the pancreatic cancer progression. The drug-loaded Ft NPs can target pancreatic tumors via passive targeting of EPR effects of tumors and active targeting via transferrin receptor 1 (TfR1) binding on cancer cells, with a triggered drug release in acidic tumor environment. Two drugs, one activates neural activity (carbachol), the other impairs neural activity (atropine), are encapsulated into the Ft NPs to form two kinds of nano drugs, Nano-Cab NPs and Nano-Ato NPs, respectively. The activation of the nervous microenvironment by Nano-Cab NPs significantly promotes the pancreatic tumor progression, whereas the blockage of neural niche by Nano-Ato NPs remarkably impairs the neurogenesis in tumors and the progression of pancreatic cancer. The Ft-based nanoparticles thus comprise an effective and safe route of delivery of neural drugs for novel anti-cancer therapy.
Collapse
Affiliation(s)
- Yifeng Lei
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China
| | - Yoh Hamada
- Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Jun Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China
| | - Liman Cong
- Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nuoxin Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China
| | - Ying Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China.
| |
Collapse
|
72
|
Liang D, Shi S, Xu J, Zhang B, Qin Y, Ji S, Xu W, Liu J, Liu L, Liu C, Long J, Ni Q, Yu X. New insights into perineural invasion of pancreatic cancer: More than pain. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:111-122. [PMID: 26794395 DOI: 10.1016/j.bbcan.2016.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/26/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is one of the most malignant human tumors. Perineural invasion, whereby a cancer cell invades the perineural spaces surrounding nerves, is acknowledged as a gradual contributor to cancer aggressiveness. Furthermore, perineural invasion is considered one of the root causes of the recurrence and metastasis observed after pancreatic resection, and it is also an independent predictor of prognosis. Advanced research has demonstrated that the neural microenvironment is closely associated with perineural invasion in pancreatic cancer. Therapy targeting the molecular mechanism of perineural invasion may enable the durable clinical treatment of this formidable disease. This review provides an overview of the present status of perineural invasion, the relevant molecular mechanisms of perineural invasion, pain and hyperglycemia associated with perineural invasion in pancreatic cancer, and the targeted therapeutics based on these studies.
Collapse
Affiliation(s)
- Dingkong Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
73
|
Hypothyroidism in Pancreatic Cancer: Role of Exogenous Thyroid Hormone in Tumor Invasion-Preliminary Observations. J Thyroid Res 2016; 2016:2454989. [PMID: 27123358 PMCID: PMC4830736 DOI: 10.1155/2016/2454989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
According to the epidemiological studies, about 4.4% of American general elderly population has a pronounced hypothyroidism and relies on thyroid hormone supplements daily. The prevalence of hypothyroidism in our patients with pancreatic cancer was much higher, 14.1%. A retrospective analysis was performed on patients who underwent pancreaticoduodenectomy (Whipple procedure) or distal pancreatectomy and splenectomy (DPS) at Thomas Jefferson University Hospital, Philadelphia, from 2005 to 2012. The diagnosis of hypothyroidism was correlated with clinicopathologic parameters including tumor stage, grade, and survival. To further understand how thyroid hormone affects pancreatic cancer behavior, functional studies including wound-induced cell migration, proliferation, and invasion were performed on pancreatic cancer cell lines, MiaPaCa-2 and AsPC-1. We found that hypothyroid patients taking exogenous thyroid hormone were more than three times likely to have perineural invasion, and about twice as likely to have higher T stage, nodal spread, and overall poorer prognostic stage (P < 0.05). Pancreatic cancer cell line studies demonstrated that exogenous thyroid hormone treatment increased cell proliferation, migration, and invasion (P < 0.05). We conclude that exogenous thyroid hormone may contribute to the progression of pancreatic cancer.
Collapse
|
74
|
Abstract
Pancreatic nerves undergo prominent alterations during the evolution and progression of human chronic pancreatitis and pancreatic cancer. Intrapancreatic nerves increase in size (neural hypertrophy) and number (increased neural density). The proportion of autonomic and sensory fibres (neural remodelling) is switched, and are infiltrated by perineural inflammatory cells (pancreatic neuritis) or invaded by pancreatic cancer cells (neural invasion). These neuropathic alterations also correlate with neuropathic pain. Instead of being mere histopathological manifestations of disease progression, pancreatic neural plasticity synergizes with the enhanced excitability of sensory neurons, with Schwann cell recruitment toward cancer and with central nervous system alterations. These alterations maintain a bidirectional interaction between nerves and non-neural pancreatic cells, as demonstrated by tissue and neural damage inducing neuropathic pain, and activated neurons releasing mediators that modulate inflammation and cancer growth. Owing to the prognostic effects of pain and neural invasion in pancreatic cancer, dissecting the mechanism of pancreatic neuroplasticity holds major translational relevance. However, current in vivo models of pancreatic cancer and chronic pancreatitis contain many discrepancies from human disease that overshadow their translational value. The present Review discusses novel possibilities for mechanistically uncovering the role of the nervous system in pancreatic disease progression.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| |
Collapse
|
75
|
Tieftrunk E, Demir IE, Friess H, Ceyhan GO. Back pain as a potential indicator of local recurrence in pancreatic cancer. J Surg Case Rep 2015; 2015:rjv127. [PMID: 26462873 PMCID: PMC4602075 DOI: 10.1093/jscr/rjv127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neural invasion (NI) and severe pain are common features in patients with pancreatic cancer (PCa). Here, we present the case of a 67-year-old patient with PCa whose pre- and postoperative physical situation was clearly dominated by severe pain sensation. The resected pancreas specimen revealed severe and frequent NI by cancer cells. Seven months after R1 resection and additive chemotherapy, the patient presented with severe lumbar back pain. The CT scan showed liver metastasis and local recurrence around the celiac trunk. Yet 1 month after palliative chemotherapy, the patient presented again in poor general condition and lumbar pain requiring constant morphine intake, and died 2 days after hospitalization. Postmortem histological analysis showed local recurrence with an extensive invasion by cancer cells along almost all nerves of the celiac plexus. Hence, new-onset or recurrent back and/or abdominal pain, as in this case, should raise the clinician's suspicion for local recurrence in PCa.
Collapse
Affiliation(s)
- Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
76
|
Nitsche U, Siveke J, Friess H, Kleeff J. [Delayed complications after pancreatic surgery: Pancreatic insufficiency, malabsorption syndrome, pancreoprivic diabetes mellitus and pseudocysts]. Chirurg 2015; 86:533-9. [PMID: 25997699 DOI: 10.1007/s00104-015-0006-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Benign and malignant pathologies of the pancreas can result in a relevant chronic disease burden. This is aggravated by morbidities resulting from surgical resections as well as from progression of the underlying condition. OBJECTIVE The aim was to summarize the current evidence regarding epidemiology, pathophysiology, diagnosis and treatment of endocrine and exocrine pancreatic insufficiency, as well as of pancreatic pseudocysts. MATERIAL AND METHODS A selective literature search was performed and a summary of the currently available data on the surgical sequelae after pancreatic resection is given. RESULTS Reduction of healthy pancreatic parenchyma down to 10-15 % leads to exocrine insufficiency with malabsorption and gastrointestinal complaints. Orally substituted pancreatic enzymes are the therapy of choice. Loss of pancreatic islets and/or islet function leads to endocrine insufficiency and pancreoprivic diabetes mellitus. Inflammatory, traumatic and iatrogenic injuries of the pancreas can lead to pancreatic pseudocysts, which require endoscopic, interventional or surgical drainage if symptomatic. Finally, pancreatic surgery harbors the long-term risk of gastrointestinal anastomotic ulcers, bile duct stenosis, portal vein thrombosis and chronic pain syndrome. CONCLUSION As the evidence is limited, an interdisciplinary and individually tailored approach for delayed pancreatic morbidity is recommended.
Collapse
Affiliation(s)
- U Nitsche
- Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | | | | | | |
Collapse
|
77
|
Wang X, Lan H, Shen T, Gu P, Guo F, Lin X, Jin K. Perineural invasion: a potential reason of hepatocellular carcinoma bone metastasis. Int J Clin Exp Med 2015; 8:5839-5846. [PMID: 26131174 PMCID: PMC4483997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
The nervous system plays an important role in the regulation of epithelial homeostasis and has also been postulated to play a role in tumorigenesis. Perineural invasion (PNI) is the only interaction between cancer cells and nerves studied to date. It is a symbiotic relationship between cancer cells and nerves that result in growth advantage for both. The potential association between HCC bone metastases and PNI is unknown. In this study, we investigate the nerve density in HCC and paired bone metastases to reveal the potential association of HCC bone metastases and PNI. The nerve density was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) hepatocellular carcinoma (HCC) and paired bone metastases tissues from 13 HCC patients with synchronous or metachronous bone metastases that underwent surgical resection. FFPE specimens of HCC bone metastases tissues express higher perineural density than HCC tissues, pointing to a potential role of the PNI in bone metastases from HCC. This is the first description of the potential association of PNI and HCC bone metastases.
Collapse
Affiliation(s)
- Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Huanrong Lan
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang Province, P. R. China
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical UniversityLinhai 317000, Zhejiang Province, P. R. China
| | - Tong Shen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Pengcheng Gu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Fang Guo
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Xiangjin Lin
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang Province, P. R. China
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical UniversityLinhai 317000, Zhejiang Province, P. R. China
| |
Collapse
|
78
|
Urbonas K, Gulbinas A, Smailyte G, Pranys D, Jakstaite A, Pundzius J, Barauskas G. Factors influencing survival after pancreatoduodenectomy for ductal adenocarcinoma depend on patients' age. Dig Surg 2015; 32:60-67. [PMID: 25721397 DOI: 10.1159/000371856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/31/2014] [Indexed: 12/10/2022]
Abstract
BACKGROUND It is supposed that a prolonged lifetime will be associated with increased incidence of PDAC among the elderly. Some studies show a tendency toward decreased survival in the elderly patients following pancreatoduodenectomy for PDAC. The aim of this study was to evaluate factors, influencing survival following pancreatoduodenectomy for PDAC in different age groups. METHODS Data of 251 patients after pancreatoduodenectomy for PDAC between 1999 and 2012 were analyzed. The Kaplan-Meier method and log-rank test were used to calculate survival and to compare differences between groups. The Cox proportional hazard model was applied to indentify independent prognosticators. RESULTS The overall median survival was 14.9 months. Postoperative morbidity was 25.5% with a 5.1% mortality rate. No significant differences in the overall morbidity (22.4 vs. 29.6%) or mortality (2.8 vs. 8.3%) rates were observed between different patients' age groups (<70 years and >70 years). Multivariate analysis revealed R1 resection (HR 1.76) and poor tumor differentiation (G3-G4) (HR 1.48) were independent negative factors for survival in patients <70 years. Lymph-node metastases (N1) - HR 4.89 and perineural invasion - HR 2.73 were independent prognosticators in the elderly. CONCLUSIONS Our study highlighted different factors influencing long-term survival after pancreatoduodenectomy: R1 resection and poor tumor differentiation (G3-G4) were independent negative factors for survival in patients <70 years, while perineural invasion and lymph-node metastases result in worse survival among the elderly.
Collapse
|
79
|
Song ZG, Hao JH, Gao S, Gao CT, Tang Y, Liu JC. The outcome of cryoablation in treating advanced pancreatic cancer: a comparison with palliative bypass surgery alone. J Dig Dis 2014; 15:561-9. [PMID: 24958092 DOI: 10.1111/1751-2980.12170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to investigate the efficacy and safety of palliative bypass surgery combined with cryoablation in treating patients with advanced pancreatic cancer and compare this combination therapy with palliative bypass surgery alone. METHODS Medical records of 118 patients with advanced pancreatic cancer who received palliative bypass surgery combined with cryoablation (the combination treatment group) or bypass surgery alone (the bypass surgery alone group) at the Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital (Tianjin, China) were retrospectively reviewed. Their baseline and peri-operative parameters were collected and compared. RESULTS In both groups abdominal distension and pain was significantly ameliorated after treatment. Preoperative jaundice was more common in the bypass surgery group while backache was more frequent in the combination treatment group, which were both relieved by treatment. The pre-operative serum bilirubin level was higher in the bypass surgery group and was decreased significantly after treatment. However, a significant reduction in tumor size and serum carbohydrate antigen 19-9 level was found only in the combination treatment group. There was no significant difference in the incidence of postoperative complications and prognosis between the two groups. CONCLUSIONS Cryoablation can reduce tumor size and relieve the patients' symptoms and signs such as abdominal discomfort and backache, although it could not improve the patients' prognosis significantly. It is a safe and efficient modality when combined with bypass surgery for patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Zhen Guo Song
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Department of Anesthesiology and Operating Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
80
|
Demir IE, Boldis A, Pfitzinger PL, Teller S, Brunner E, Klose N, Kehl T, Maak M, Lesina M, Laschinger M, Janssen KP, Algül H, Friess H, Ceyhan GO. Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst 2014; 106:dju184. [PMID: 25106646 DOI: 10.1093/jnci/dju184] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In neural invasion (NI), cancer cells are classically assumed to actively invade nerves and to cause local recurrence and pain. However, the opposite possibility, that nerves may reach cancer cells even in their preinvasive stage and thereby promote cancer spread, has not yet been genuinely considered. The present study analyzes the reaction of Schwann cells of peripheral nerves to carcinogenesis in pancreatic cancer and colon cancer. METHODS Two novel 3D migration and Schwann cell outgrowth assays were developed to monitor the timing and the specificity of Schwann cell migration and cancer invasion toward peripheral neurons through digital-time-lapse microscopy and after blockade of nerve growth factor (NGF) signalling via siRNA or a small-molecule inhibitor of the p75(NTR) receptor. The frequency and emergence of the Schwann cell markers Sox10, S100, ALDH1L1, and glial-fibrillary-acidic-protein (GFAP) around cancer precursor lesions were studied in human and conditional murine pancreatic and colon cancer specimens using multiple immunolabeling. RESULTS Schwann cells migrated toward pancreatic and colon cancer cells, but not toward benign cells, before the onset of cancer migration toward peripheral neurons. This chemoattraction was inhibited after blockade of p75(NTR)-signaling on Schwann and pancreatic cancer cells. Schwann cells were specifically detected around murine and human pancreatic intraepithelial neoplasias (PanINs) (mean percent of murine PanINs surrounded by Schwann cells = 78.9%, 95% CI = 70.9 to 86.8%, and mean percent of human PanINs surrounded by Schwann cells = 52.5%, 95% CI = 14.7 to 90.4%; human: n = 44, murine: n = 14) and intestinal adenomas (mean percent of murine adenomas surrounded by Schwann cells = 64.2%, 95% CI = 28.6 to 99.8%, and mean percent of human adenomas surrounded by Schwann cells = 17.2%, 95% CI = -126.9 to 161.4; human: n = 36, murine: n = 12). The Schwann cell presence in this premalignant stage was associated with the frequency of NI in the malignant phase. CONCLUSIONS Schwann cells have particular and specific affinity to cancer cells. Emergence of Schwann cells in the premalignant phase of pancreatic and colon cancer implies that, in contrast with the traditional assumption, nerves-and not cancer cells-migrate first during NI.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA).
| | - Alexandra Boldis
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA).
| | - Paulo L Pfitzinger
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Eva Brunner
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Natascha Klose
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Timo Kehl
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Matthias Maak
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Marina Lesina
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Melanie Laschinger
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Hana Algül
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (IED, AB, PLP, ST, EB, NK, TK, MM, MeL, KPJ, HF, GOC); Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (MaL, HA)
| |
Collapse
|
81
|
Demir IE, Tieftrunk E, Schäfer KH, Friess H, Ceyhan GO. Simulating pancreatic neuroplasticity: in vitro dual-neuron plasticity assay. J Vis Exp 2014. [PMID: 24797813 DOI: 10.3791/51049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neuroplasticity is an inherent feature of the enteric nervous system and gastrointestinal (GI) innervation under pathological conditions. However, the pathophysiological role of neuroplasticity in GI disorders remains unknown. Novel experimental models which allow simulation and modulation of GI neuroplasticity may enable enhanced appreciation of the contribution of neuroplasticity in particular GI diseases such as pancreatic cancer (PCa) and chronic pancreatitis (CP). Here, we present a protocol for simulation of pancreatic neuroplasticity under in vitro conditions using newborn rat dorsal root ganglia (DRG) and myenteric plexus (MP) neurons. This dual-neuron approach not only permits monitoring of both organ-intrinsic and -extrinsic neuroplasticity, but also represents a valuable tool to assess neuronal and glial morphology and electrophysiology. Moreover, it allows functional modulation of supplied microenvironmental contents for studying their impact on neuroplasticity. Once established, the present neuroplasticity assay bears the potential of being applicable to the study of neuroplasticity in any GI organ.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München;
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München
| |
Collapse
|
82
|
Saxena S, Gandhi A, Lim PW, Relles D, Sarosiek K, Kang C, Chipitsyna G, Sendecki J, Yeo CJ, Arafat HA. RAN GTPase and Osteopontin in Pancreatic Cancer. PANCREATIC DISORDERS & THERAPY 2013; 3:113. [PMID: 24749004 PMCID: PMC3989933 DOI: 10.4172/2165-7092.1000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDA) has the worst prognosis among cancers, mainly due to the high incidence of early metastases. RAN small GTPase (RAN) is a protein that plays physiological roles in the regulation of nuclear transport and microtubule spindle assembly. RAN was recently shown to mediate the invasive functions of the prometastatic protein osteopontin (OPN) in breast cancer cells. We and others have shown previously that high levels of OPN are present in PDA. In this study, we analyzed the expression and correlation of RAN with OPN in human pancreatic lesions, and explored their regulation in PDA cell lines. METHODS Real time PCR was used to analyze RAN and OPN mRNA levels in PDA, adjacent non-malignant, and benign pancreatic tissues. Expression levels were correlated with survival and different clinicopathological parameters using different statistical methods. Transient transfection studies using OPN and RAN plasmids, and knockdown experiments using siRNA were used to examine their mutual regulation. RESULTS OPN and RAN levels highly correlated with each other (p<0.0001). OPN or RAN levels did not correlate with venous lymphatic invasion, diabetes, obesity, T stage, BMI, or survival. However, we found a significant association between RAN levels and perineural invasion (HR=0.79, 95% CI 0.59, 1.07; p=0.0378.). OPN and RAN colocalized in PDA tissues and cell lines. Increasing RAN expression in PDA cells induced OPN transcription and RAN silencing reduced total OPN levels. OPN did not have any significant effect on RAN transcription. CONCLUSIONS The high levels of RAN in PDA and its correlation with OPN and with perineural invasion suggest that RAN may contribute to PDA metastasis and progression through the induction of OPN. RAN's role in the regulation of OPN in PDA is unique and could provide potential novel therapeutic strategies to combat PDA aggressiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hwyda A Arafat
- Corresponding author: Department of Surgery Thomas Jefferson, University 1015 Walnut Street, Suite 618 Curtis Philadelphia, PA 19107, USA, Tel. 215 955-6383;
| |
Collapse
|
83
|
Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity. Acta Neuropathol 2013; 125:491-509. [PMID: 23417735 DOI: 10.1007/s00401-013-1099-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/28/2022]
Abstract
Neural plasticity is not only the adaptive response of the central nervous system to learning, structural damage or sensory deprivation, but also an increasingly recognized common feature of the gastrointestinal (GI) nervous system during pathological states. Indeed, nearly all chronic GI disorders exhibit a disease-stage-dependent, structural and functional neuroplasticity. At structural level, GI neuroplasticity usually comprises local tissue hyperinnervation (neural sprouting, neural, and ganglionic hypertrophy) next to hypoinnervated areas, a switch in the neurochemical (neurotransmitter/neuropeptide) code toward preferential expression of neuropeptides which are frequently present in nociceptive neurons (e.g., substance P/SP, calcitonin-gene-related-peptide/CGRP) and of ion channels (TRPV1, TRPA1, PAR2), and concomitant activation of peripheral neural glia. The functional counterpart of these structural alterations is altered neuronal electric activity, leading to organ dysfunction (e.g., impaired motility and secretion), together with reduced sensory thresholds, resulting in hypersensitivity and pain. The present review underlines that neural plasticity in all GI organs, starting from esophagus, stomach, small and large intestine to liver, gallbladder, and pancreas, actually exhibits common phenotypes and mechanisms. Careful appraisal of these GI neuroplastic alterations reveals that--no matter which etiology, i.e., inflammatory, infectious, neoplastic/malignant, or degenerative--neural plasticity in the GI tract primarily occurs in the presence of chronic tissue- and neuro-inflammation. It seems that studying the abundant trophic and activating signals which are generated during this neuro-immune-crosstalk represents the key to understand the remarkable neuroplasticity of the GI tract.
Collapse
|
84
|
Demir IE, Schorn S, Schremmer-Danninger E, Wang K, Kehl T, Giese NA, Algül H, Friess H, Ceyhan GO. Perineural mast cells are specifically enriched in pancreatic neuritis and neuropathic pain in pancreatic cancer and chronic pancreatitis. PLoS One 2013; 8:e60529. [PMID: 23555989 PMCID: PMC3610867 DOI: 10.1371/journal.pone.0060529] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 02/27/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic neuritis is a histopathological hallmark of pancreatic neuropathy and correlates to abdominal neuropathic pain sensation in pancreatic adenocarcinoma (PCa) and chronic pancreatitis (CP). However, inflammatory cell subtypes that compose pancreatic neuritis and their correlation to the neuropathic pain syndrome in PCa and CP are yet unknown. METHODS Inflammatory cells within pancreatic neuritis lesions of patients with PCa (n = 20) and CP (n = 20) were immunolabeled and colorimetrically quantified with the pan-leukocyte marker CD45, with CD68 (macrophages), CD8 (cytotoxic T-lymphocytes), CD4 (T-helper cells), CD20 (B-lymphocytes), NCL-PC (plasma cells), neutrophil elastase, PRG2 (eosinophils), anti-mast cell (MC) tryptase and correlated to pain sensation. Perineural mast cell subtypes were analyzed by double immunolabeling with MC chymase. Expression and neural immunoreactivity of protease-activated receptor type 1 (PAR-1) and type 2 (PAR-2) were analyzed in PCa and CP and correlated to pain status of the patients. RESULTS In PCa and CP, nerves were predominantly infiltrated by cytotoxic T-lymphocytes (PCa: 35% of all perineural inflammatory cells, CP: 33%), macrophages (PCa: 39%, CP: 33%) and MC (PCa: 21%, CP: 27%). In both entities, neuropathic pain sensation was associated with a specific increase of perineural MC (PCa without pain: 14% vs. PCa with pain: 31%; CP without pain: 19% vs. CP with pain: 34%), not affecting the frequency of other inflammatory cell subtypes. The vast majority of these MC contained MC chymase. PAR-1 and PAR-2 expression did not correlate to the pain sensation of PCa and CP patients. CONCLUSION Pancreatic neuritis in PC and CP is composed of cytotoxic T-lymphocytes, macrophages and MC. The specific enrichment of MC around intrapancreatic nerves in neuropathic pain due to PCa and CP suggests the presence of MC-induced visceral hypersensitivity in the pancreas. Therefore, pancreatic and enteric neuropathies seem to share a similar type of neuro-immune interaction in the generation of visceral pain.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Guo K, Ma Q, Li J, Wang Z, Shan T, Li W, Xu Q, Xie K. Interaction of the sympathetic nerve with pancreatic cancer cells promotes perineural invasion through the activation of STAT3 signaling. Mol Cancer Ther 2013; 12:264-73. [PMID: 23288783 DOI: 10.1158/1535-7163.mct-12-0809] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perineural invasion (PNI) is one of the most important causes of local recurrence and poor survival in pancreatic cancer. However, the exact mechanism of PNI is still not clear. In this study, we sought to identify the reciprocal signaling interactions between sympathetic nerves and pancreatic cancer cells and the underlying mechanisms. We used mouse dorsal root ganglia and pancreatic cancer cells cocultured in vitro, cellular and molecular biology, and animal models to evaluate the function of the sympathetic neurotransmitter norepinephrine (NE) in PNI progression and pathogenesis. NE promoted PNI of pancreatic cancer cells and increased levels of phosphorylated STAT3 in a concentration-dependent manner. NE-mediated activation of STAT3 was inhibited by blocking β-adrenergic receptors (AR) and by blocking protein kinase A, but not through blocking α-AR. Blocking STAT3 could inhibit NE-induced NGF, MMP2, and MMP9 expression and attenuate the migratory, invasive ability and PNI of pancreatic cancer cells. Furthermore, PNI of pancreatic cancer cells was blocked by treatment with a STAT3 phosphorylation inhibitor in vivo. These studies show that NE plays a critical role in pancreatic cancer PNI development and progression through the β-AR/PKA/STAT3 signaling pathway. Reciprocal signaling interactions between the sympathetic nerves and pancreatic cancer cells critically contribute to pancreatic cancer PNI pathogenesis. Inhibition of the activity of sympathetic nerves or STAT3 may be potential strategies for pancreatic cancer PNI therapy.
Collapse
Affiliation(s)
- Kun Guo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Cheng P, Jin G, Hu X, Shi M, Zhang Y, Liu R, Zhou Y, Shao C, Zheng J, Zhu M. Analysis of tumor-induced lymphangiogenesis and lymphatic vessel invasion of pancreatic carcinoma in the peripheral nerve plexus. Cancer Sci 2012; 103:1756-63. [PMID: 22716017 DOI: 10.1111/j.1349-7006.2012.02364.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 01/27/2023] Open
Abstract
Cancer cells can metastasize throughout the body by various mechanisms, including the lymphatic system, resulting in tumor-induced lymphangiogenesis that can profoundly affect patient survival. The aim of the present study was to examine the role of lymphangiogenesis in the metastasis of pancreatic cancer to the peripheral nerve plexus. Immunohistochemistry was performed to analyze specimens obtained from 70 ductal adenocarcinoma patients. The markers used included lymphangiogenic factor vascular endothelial growth factor (VEGF)-C, the lymphatic-specific marker D2-40, and cytokeratin 19, an independent prognostic factor for pancreatic tumors. The relationship between survival rate and invasion of both the lymphatic vessels and peripancreatic nerve plexus (PNP) was evaluated, with clearly elevated lymphatic vessel density (LVD) in tissues adjacent to the cancer tissues. In fact, LVD levels were higher in adjacent tissues than in localized cancer tissues, and lymphatic vessel invasion into tissues adjacent to the tumor was significantly correlated with both PNP invasion (P = 0.005) and lymph node metastasis (P = 0.010). Correspondingly, LVD in tissues adjacent to the tumor was correlated with both invasion of lymphatic vessels surrounding the tumor (P = 0.024) and VEGF-C expression (P = 0.031); in addition, VEGF-C expression was correlated with invasion of lymphatic vessels around the tumor (P = 0.004). Survival rates were significantly lower in patients in whom there was peritumor lymphatic vessel invasion (P < 0.001), extrapancreatic nerve plexus invasion (P = 0.001), and/or lymph node metastasis (P < 0.001). Based on these results, lymphatic invasion associated with adjacent tumor growth likely contributes to the development of metastatic tumors that invade the PNP.
Collapse
Affiliation(s)
- Peng Cheng
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Demir IE, Friess H, Ceyhan GO. Nerve-cancer interactions in the stromal biology of pancreatic cancer. Front Physiol 2012; 3:97. [PMID: 22529816 PMCID: PMC3327893 DOI: 10.3389/fphys.2012.00097] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/28/2012] [Indexed: 12/21/2022] Open
Abstract
Interaction of cancer cells with diverse cell types in the tumor stroma is today recognized to have a fate-determining role for the progression and outcome of human cancers. Despite the well-described interactions of cancer cells with several stromal components, i.e., inflammatory cells, cancer-associated fibroblasts, endothelial cells, and pericytes, the investigation of their peculiar relationship with neural cells is still at its first footsteps. Pancreatic cancer (PCa) with its abundant stroma represents one of the best-studied examples of a malignant tumor with a mutually trophic interaction between cancer cells and the intratumoral nerves embedded in the desmoplastic stroma. Nerves in PCa are a rich source of neurotrophic factors like nerve growth factor (NGF), glial-cell-derived neurotrophic factor (GDNF), artemin; of neuronal chemokines like fractalkine; and of autonomic neurotransmitters like norepinephrine which can all enhance the invasiveness of PCa cells via matrix-metalloproteinase (MMP) upregulation, trigger neural invasion (NI), and activate pro-survival signaling pathways. Similarly, PCa cells themselves provide intrapancreatic nerves with abundant trophic agents which entail a remarkable neuroplasticity, leading to emergence of more routes for NI and cancer spread, to augmented local neuro-surveillance, neural sensitization, and neuropathic pain. The strong correlation of NI with PCa-associated desmoplasia suggests the potential presence of a triangular relationship between nerves, PCa cells, and other stromal partners like myofibroblasts and pancreatic stellate cells which generate tumor desmoplasia. Hence, although not a classical hallmark of human cancers, nerve-cancer interactions can be considered as an indispensable sub-class of cancer-stroma interactions in PCa. The present article provides an overview of the so far known nerve-cancer interactions in PCa and illustrates their ominous role in the stromal biology of human PCa.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | |
Collapse
|
88
|
Abstract
Perineural invasion (PNI) is a prominent characteristic of pancreatic cancer. PNI is a process whereby cancer cells invade the surrounding nerves, thus providing an alternative route for metastatic spread and pain generation. PNI is thought to be an indicator of aggressive tumour behaviour and has been shown to correlate with poor prognosis of patients with pancreatic cancer. Recent studies demonstrated that some signalling molecules and pathways that are involved in PNI are also involved in pain generation. Targeting these signalling pathways has shown some promise in alleviating pain and reducing PNI, which could potentially improve treatment outcomes for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Aditi A Bapat
- Clinical Translational Research Division, Translational Genomics Research Institute, 13208 East Shea Boulevard, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|