51
|
Haryani Y, Halid NA, Guat GS, Nor-Khaizura MAR, Hatta MAM, Sabri S, Radu S, Hasan H. High prevalence of multiple antibiotic resistance in fermented food-associated lactic acid bacteria in Malaysia. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Huerta-González L, López-Valdez F, Luna-Suárez S. The potential use of acylglycerols on the thermal inactivation of lactic acid bacteria for the manufacture of long-life fermented products. BMC Microbiol 2022; 22:283. [PMID: 36435751 PMCID: PMC9701366 DOI: 10.1186/s12866-022-02694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
The effect of acylglycerols on the thermal inactivation of lactic acid bacteria used in the production of fermented products was studied. The starting point was the observation of an increase in thermal sensitivity in the presence of an emulsifier based on mono- and diacylglycerols in the culture medium. Analysis of the emulsifier showed that monoacylglycerols were the compounds responsible for this effect, with monopalmitin being the main contributor. Monostearin, on the other hand, showed significantly less potentiating effect. Interestingly, monoacylglycerols showed a greater bactericidal effect when used individually than when used in combination. On the other hand, the rate of thermal inactivation observed in reconstituted skim milk emulsions was lower than in peptone water emulsions, showing that the presence of proteins and colloidal particles increased the resistance of bacteria to heat treatment. With respect to pH values, a reduction in pH from 6.6 to 5.5 promoted an increase in the rate of thermal death. However, at pH = 5.5, the enhancing bactericidal effect was only detectable when the heat treatment was performed at low temperatures but not at high temperatures. This finding is of interest, since it will allow the design of moderate heat treatments, combining the use of temperature with the addition of acylglycerols, to prolong the shelf life of products fermented with lactic acid bacteria, and minimizing the destruction of desirable compounds that were obtained by the fermentation process.
Collapse
Affiliation(s)
- Luis Huerta-González
- Food Biotechnology & Agricultural Biotechnology Labs. Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN). Tepetitla de Lardizábal, Tlaxcala, 90700, México.
| | - Fernando López-Valdez
- Food Biotechnology & Agricultural Biotechnology Labs. Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN). Tepetitla de Lardizábal, Tlaxcala, 90700, México
| | - Silvia Luna-Suárez
- Food Biotechnology & Agricultural Biotechnology Labs. Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN). Tepetitla de Lardizábal, Tlaxcala, 90700, México
| |
Collapse
|
53
|
Microbial toxins in fermented foods: health implications and analytical techniques for detection. J Food Drug Anal 2022; 30:523-537. [PMID: 36753631 PMCID: PMC9910295 DOI: 10.38212/2224-6614.3431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Recently, demand for fermented foods has increased due to their improved nutritional value, taste, and health-promoting properties. Worldwide consumption of these products is increasing. Fermented foods are generally safe for human consumption. However, some toxins, primarily biogenic amines (putrescine, phenylethylamine, histamine, tyramine, and cadaverine), mycotoxins (fumonisins, aflatoxins, ochratoxin A, zearalenone, and trichothecenes), and bacterial toxins (endotoxins, enterotoxins, and emetic toxins) can be produced as a result of using an inappropriate starter culture, processing conditions, and improper storage. These toxins can cause a multitude of foodborne illnesses and can lead to cardiovascular aberration and adverse gastrointestinal symptoms. Analytical techniques are in use for the detection of toxins in fermented foods for monitoring and control purposes. These include culture, chromatographic, immunoassays, and nano sensor-based techniques. These detection techniques can be used during the production process and along the food chain. On an industrial scale, HPLC is widely used for sensitive quantification of toxins in fermented foods. Recently, biosensor and nano sensor-based techniques have gained popularity due to accuracy, time efficiency, and simultaneous detection of multiple toxins. Other strategic methods being investigated for the removal of toxins from fermented foods include the use of specific starter cultures for bio-preservation, aflatoxin-binding, and biogenic amine-degradation agents that may help to appropriately manage the food safety concerns associated with fermented foods.
Collapse
|
54
|
Sobczak A, Danowska‐Oziewicz M, Ząbek K, Miciński J, Narwojsz A. Effect of vitamin C fortification on the quality of cow's and goat's yoghurt. Food Sci Nutr 2022; 10:3621-3626. [PMID: 36348801 PMCID: PMC9632197 DOI: 10.1002/fsn3.2959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 09/08/2024] Open
Abstract
Yoghurt is one of the well-known fermented dairy products that play an important role in the human diet. At present, products made of goat's milk are becoming more popular. This study was conducted to evaluate the effect of physicochemical properties of yoghurt fortified with vitamin C. Six different yoghurts were developed: from goat's and cow's milk without any addition, with L-ascorbic acid and acerola addition. The results showed that the addition of L-ascorbic acid significantly decreased pH. Based on the sensory evaluation, the natural cow's yoghurt has scored higher in the overall rating among yoghurts. The addition of L-ascorbic acid to natural goat's yoghurt positively affected the color, taste, flavor, and consistency. In the case of cow's milk yoghurt, the addition of L-ascorbic acid and acerola deteriorated the taste of the product.
Collapse
Affiliation(s)
- Alicja Sobczak
- Department of Sheep and Goat Breeding, Faculty of Animal BioengineeringUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Marzena Danowska‐Oziewicz
- Department of Human Nutrition, Faculty of Food SciencesUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Katarzyna Ząbek
- Department of Sheep and Goat Breeding, Faculty of Animal BioengineeringUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Jan Miciński
- Department of Sheep and Goat Breeding, Faculty of Animal BioengineeringUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Agnieszka Narwojsz
- Department of Human Nutrition, Faculty of Food SciencesUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
55
|
Ali SA, Saeed SMG, Ejaz U, Baloch MN, Sohail M. A novel approach to improve the nutritional value of black gram (Vigna mungo L.) by the combined effect of pre-gelatinization and fermentation by Lactobacillus sp. E14 and Saccharomyces cerevisiae MK-157: Impact on morphological, thermal, and chemical structural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
58
|
Lu K, Wang X, Wan J, Zhou Y, Li H, Zhu Q. Correlation and Difference between Core Micro-Organisms and Volatile Compounds of Suan Rou from Six Regions of China. Foods 2022; 11:foods11172708. [PMID: 36076900 PMCID: PMC9455853 DOI: 10.3390/foods11172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Suan Rou (SR), a traditional fermented meat, is widely favored by consumers due to its unique flavor and characteristics. To study the relationship between the core differential micro-organisms and differential volatile organic compounds (VOCs) of SR from six regions of China, high-throughput sequencing (HTS) and gas-chromatography−ion mobility spectrometry (GC-IMS) technologies were used to analyze the correlation between micro-organisms and VOCs in SR from Xiangxi of Hunan, Rongshui of Guangxi, Zunyi of Guizhou, Jinping of Guizhou, Congjiang of Guizhou, and Libo of Guizhou. A total of 13 core micro-organisms were identified at the genus level. Moreover, 95 VOCs were identified in the SR samples by GC-IMS analysis, with alcohols, aldehydes, ketones, and esters comprising the major VOCs among all the samples. The results showed a strong correlation (|r| > 0.8, p < 0.05) between the core differential micro-organisms and differential VOCs, including four bacteria, five fungi, and 12 VOCs. Pediococcus, Debaryomyces, Zygosaccharomyces, and Candida significantly contributed to the unique VOCs of SR.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jing Wan
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hongying Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Department of Agricultural, Food and Nutritional Science, 4–10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Qiujin Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-8823-6890
| |
Collapse
|
59
|
Microbiological safety of traditionally processed fermented foods based on raw milk, the case of Mabisi from Zambia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
60
|
Owolabi IO, Kolawole O, Jantarabut P, Elliott CT, Petchkongkaew A. The importance and mitigation of mycotoxins and plant toxins in Southeast Asian fermented foods. NPJ Sci Food 2022; 6:39. [PMID: 36045143 PMCID: PMC9433409 DOI: 10.1038/s41538-022-00152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Fermented foods (ffs) and beverages are widely consumed in Southeast Asia (SEA) for their nutritional balance, flavor, and food security. They serve as vehicles for beneficial microorganisms performing a significant role in human health. However, there are still major challenges concerning the safety of ffs and beverages due to the presence of natural toxins. In this review, the common toxins found in traditional ffs in SEA are discussed with special reference to mycotoxins and plant toxins. Also, mitigation measures for preventing risks associated with their consumption are outlined. Ochratoxin, citrinin, aflatoxins were reported to be major mycotoxins present in SEA ffs. In addition, soybean-based ff food products were more vulnerable to mycotoxin contaminations. Common plant toxins recorded in ffs include cyanogenic glycosides, oxalates, phytates and saponins. Combined management strategies such as pre-harvest, harvest and post-harvest control and decontamination, through the integration of different control methods such as the use of clean seeds, biological control methods, fermentation, appropriate packaging systems, and controlled processing conditions are needed for the safe consumption of indigenous ffs in SEA.
Collapse
Affiliation(s)
- Iyiola O Owolabi
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Phantakan Jantarabut
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland.
| |
Collapse
|
61
|
Pintarič M, Langerholc T. Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life (Basel) 2022; 12:1187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | | |
Collapse
|
62
|
Vitali F, Zinno P, Schifano E, Gori A, Costa A, De Filippo C, Koroušić Seljak B, Panov P, Devirgiliis C, Cavalieri D. Semantics of Dairy Fermented Foods: A Microbiologist’s Perspective. Foods 2022; 11:foods11131939. [PMID: 35804753 PMCID: PMC9265904 DOI: 10.3390/foods11131939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 01/05/2023] Open
Abstract
Food ontologies are acquiring a central role in human nutrition, providing a standardized terminology for a proper description of intervention and observational trials. In addition to bioactive molecules, several fermented foods, particularly dairy products, provide the host with live microorganisms, thus carrying potential “genetic/functional” nutrients. To date, a proper ontology to structure and formalize the concepts used to describe fermented foods is lacking. Here we describe a semantic representation of concepts revolving around what consuming fermented foods entails, both from a technological and health point of view, focusing actions on kefir and Parmigiano Reggiano, as representatives of fresh and ripened dairy products. We included concepts related to the connection of specific microbial taxa to the dairy fermentation process, demonstrating the potential of ontologies to formalize the various gene pathways involved in raw ingredient transformation, connect them to resulting metabolites, and finally to their consequences on the fermented product, including technological, health and sensory aspects. Our work marks an improvement in the ambition of creating a harmonized semantic model for integrating different aspects of modern nutritional science. Such a model, besides formalizing a multifaceted knowledge, will be pivotal for a rich annotation of data in public repositories, as a prerequisite to generalized meta-analysis.
Collapse
Affiliation(s)
- Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.D.F.)
- Research Centre for Agriculture and Environment, CREA (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria), Via di Lanciola 12/A, 50125 Florence, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria), Via Ardeatina 546, 00178 Rome, Italy; (P.Z.); (E.S.)
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria), Via Ardeatina 546, 00178 Rome, Italy; (P.Z.); (E.S.)
| | - Agnese Gori
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (A.G.); (A.C.)
| | - Ana Costa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (A.G.); (A.C.)
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.D.F.)
| | - Barbara Koroušić Seljak
- Computer Systems Department, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Panče Panov
- Department of Knowledge Technologies, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria), Via Ardeatina 546, 00178 Rome, Italy; (P.Z.); (E.S.)
- Correspondence: (C.D.); (D.C.)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (A.G.); (A.C.)
- Correspondence: (C.D.); (D.C.)
| |
Collapse
|
63
|
Bonos E, Skoufos I, Petrotos K, Giavasis I, Mitsagga C, Fotou K, Vasilopoulou K, Giannenas I, Gouva E, Tsinas A, D’Alessandro AG, Cardinali A, Tzora A. Innovative Use of Olive, Winery and Cheese Waste By-Products as Functional Ingredients in Broiler Nutrition. Vet Sci 2022; 9:vetsci9060290. [PMID: 35737342 PMCID: PMC9231388 DOI: 10.3390/vetsci9060290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the dietary use of novel silage that was created by combining three agro-industrial wastes produced in bulk, i.e., olive mill wastewater, grape pomace, and deproteinized feta cheese whey, in the diets of broiler chickens. A total of 216 one-day-old male Ross-308 chicks were randomly allocated to three treatment groups with six replications (12 chicks per pen). Three isocaloric and isonitrogenous diets were formulated to include the examined silage at 0%, 5%, or 10%. Commercial breeding and management procedures were employed throughout the trial. At the end of the trial (day 35), tissue samples were collected for analysis. Feeding 10% silage resulted in increased (p ≤ 0.001) final body weight (p ≤ 0.001) and feed intake. Jejunum and cecum microflora, as well as breast and thigh meat microflora, were modified (p ≤ 0.05) by the dietary inclusion. Thigh meat oxidative stability was improved (p < 0.01) by the silage supplementation. In addition, breast and thigh meat fatty acid profiles were different, respectively, (p < 0.05) in the supplemented treatments compared to the control. The examined silage was successfully tested in broiler diets with potential benefits for their performance and meat quality.
Collapse
Affiliation(s)
- Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (E.B.); (E.G.)
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (E.B.); (E.G.)
- Correspondence: ; Tel.: +0030-268-105-0204
| | - Konstantinos Petrotos
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, School of Agricultural Sciences, Geopolis, University of Thessaly, 41500 Larisa, Greece;
| | - Ioannis Giavasis
- Laboratory of Biotechnology and Applied Microbiology, Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, End of N. Temponera Str., 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Chrysanthi Mitsagga
- Laboratory of Biotechnology and Applied Microbiology, Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, End of N. Temponera Str., 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Konstantina Fotou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (A.T.); (A.T.)
| | - Konstantina Vasilopoulou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (I.G.)
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (I.G.)
| | - Evangelia Gouva
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (E.B.); (E.G.)
| | - Anastasios Tsinas
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (A.T.); (A.T.)
| | - Angela Gabriella D’Alessandro
- Department of Agro-Environmental and Territorial Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy;
| | - Angela Cardinali
- National Research Council—Institute of Science of Food Production, Via Amendola 122/O, 70126 Bari, Italy;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (A.T.); (A.T.)
| |
Collapse
|
64
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
65
|
Clinical and Preclinical Studies of Fermented Foods and Their Effects on Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050883. [PMID: 35624749 PMCID: PMC9137914 DOI: 10.3390/antiox11050883] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The focus on managing Alzheimer’s disease (AD) is shifting towards prevention through lifestyle modification instead of treatments since the currently available treatment options are only capable of providing symptomatic relief marginally and result in various side effects. Numerous studies have reported that the intake of fermented foods resulted in the successful management of AD. Food fermentation is a biochemical process where the microorganisms metabolize the constituents of raw food materials, giving vastly different organoleptic properties and additional nutritional value, and improved biosafety effects in the final products. The consumption of fermented foods is associated with a wide array of nutraceutical benefits, including anti-oxidative, anti-inflammatory, neuroprotective, anti-apoptotic, anti-cancer, anti-fungal, anti-bacterial, immunomodulatory, and hypocholesterolemic properties. Due to their promising health benefits, fermented food products have a great prospect for commercialization in the food industry. This paper reviews the memory and cognitive enhancement and neuroprotective potential of fermented food products on AD, the recently commercialized fermented food products in the health and food industries, and their limitations. The literature reviewed here demonstrates a growing demand for fermented food products as alternative therapeutic options for the prevention and management of AD.
Collapse
|
66
|
Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022; 14:nu14071527. [PMID: 35406140 PMCID: PMC9003261 DOI: 10.3390/nu14071527] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Fermented foods have been a part of human diet for almost 10,000 years, and their level of diversity in the 21st century is substantial. The health benefits of fermented foods have been intensively investigated; identification of bioactive peptides and microbial metabolites in fermented foods that can positively affect human health has consolidated this interest. Each fermented food typically hosts a distinct population of microorganisms. Once ingested, nutrients and microorganisms from fermented foods may survive to interact with the gut microbiome, which can now be resolved at the species and strain level by metagenomics. Transient or long-term colonization of the gut by fermented food strains or impacts of fermented foods on indigenous gut microbes can therefore be determined. This review considers the primary food fermentation pathways and microorganisms involved, the potential health benefits, and the ability of these foodstuffs to impact the gut microbiome once ingested either through compounds produced during the fermentation process or through interactions with microorganisms from the fermented food that are capable of surviving in the gastro-intestinal transit. This review clearly shows that fermented foods can affect the gut microbiome in both the short and long term, and should be considered an important element of the human diet.
Collapse
Affiliation(s)
| | - Catherine Stanton
- Teagasc Food Research Centre, P61 C996 Cork, Ireland; (N.K.L.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Tom P. Beresford
- Teagasc Food Research Centre, P61 C996 Cork, Ireland; (N.K.L.); (C.S.)
- Correspondence:
| |
Collapse
|
67
|
Role of Lipoteichoic Acid from the Genus Apilactobacillus in Inducing a Strong IgA Response. Appl Environ Microbiol 2022; 88:e0019022. [PMID: 35380450 DOI: 10.1128/aem.00190-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactic acid bacterium-containing fermentates provide beneficial health effects by regulating the immune response. A naturally fermented vegetable beverage, a traditional Japanese food, reportedly provides health benefits; however, the beneficial function of its bacteria has not been clarified. Apilactobacillus kosoi is the predominant lactic acid bacterium in the beverage. Using murine Peyer's patch cells, we compared the immunoglobulin A (IgA)-inducing activity of A. kosoi 10HT to those of 29 other species of lactic acid bacteria and found that species belonging to the genus Apilactobacillus (A. kosoi 10HT, A. apinorum JCM30765T, and A. kunkeei JCM16173T) possessed significantly higher activity than the others. Thereafter, lipoteichoic acids (LTAs), important immunostimulatory molecules of Gram-positive bacteria, were purified from the three Apilactobacillus species, and their IgA-inducing activity was compared to those of LTAs from Lactiplantibacillus plantarum JCM1149T and a probiotic strain, Lacticaseibacillus rhamnosus GG. The results revealed that LTAs from Apilactobacillus species had significantly higher activity than others. We also compared the LTA structure of A. kosoi 10HT with that of L. plantarum JCM1149T and L. rhamnosus GG. Although d-alanine or both d-alanine and carbohydrate residues were substituents of free hydroxyl groups in the polyglycerol phosphate structure in LTAs from strains JCM1149T and GG, d-alanine residues were not found in LTA from strain 10HT by 1H nuclear magnetic resonance (NMR) analysis. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis of the glycolipid structure of LTA revealed that LTA from strain 10HT contained dihexosyl glycerol, whereas trihexosyl glycerol was detected in LTAs from other strains. These structural differences may be related to differences in IgA-inducing activity. IMPORTANCE The components of lactic acid bacteria that exert immunostimulatory effects are of increasing interest for therapeutic and prophylactic options, such as alternatives to antibiotics, cognitive enhancements, and vaccine adjuvants. LTAs act as immunostimulatory molecules in the host innate immune system by interacting with pattern recognition receptors. However, as LTA structures differ among species, detailed knowledge of the structure-function relationship for immunostimulatory effects is required. Comparisons of the IgA-inducing activity of LTAs have demonstrated that LTAs from the genus Apilactobacillus possess distinctive activities to stimulate mucosal immunity. The first analysis of the LTA structure from the genus Apilactobacillus suggests that it differs from structures of LTAs of related species of lactic acid bacteria. This knowledge is expected to aid in the development of functional foods containing lactic acid bacteria and pharmaceutical applications of immunostimulatory molecules from lactic acid bacteria.
Collapse
|
68
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
69
|
Skowron K, Budzyńska A, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Andrzejewska M, Wałecka-Zacharska E, Gospodarek-Komkowska E. Two Faces of Fermented Foods-The Benefits and Threats of Its Consumption. Front Microbiol 2022; 13:845166. [PMID: 35330774 PMCID: PMC8940296 DOI: 10.3389/fmicb.2022.845166] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
In underdeveloped and developing countries, due to poverty, fermentation is one of the most widely used preservation methods. It not only allows extending the shelf life of food, but also brings other benefits, including inhibiting the growth of pathogenic microorganisms, improving the organoleptic properties and product digestibility, and can be a valuable source of functional microorganisms. Today, there is a great interest in functional strains, which, in addition to typical probiotic strains, can participate in the treatment of numerous diseases, disorders of the digestive system, but also mental diseases, or stimulate our immune system. Hence, fermented foods and beverages are not only a part of the traditional diet, e.g., in Africa but also play a role in the nutrition of people around the world. The fermentation process for some products occurs spontaneously, without the use of well-defined starter cultures, under poorly controlled or uncontrolled conditions. Therefore, while this affordable technology has many advantages, it can also pose a potential health risk. The use of poor-quality ingredients, inadequate hygiene conditions in the manufacturing processes, the lack of standards for safety and hygiene controls lead to the failure food safety systems implementation, especially in low- and middle-income countries or for small-scale products (at household level, in villages and scale cottage industries). This can result in the presence of pathogenic microorganisms or their toxins in the food contributing to cases of illness or even outbreaks. Also, improper processing and storage, as by well as the conditions of sale affect the food safety. Foodborne diseases through the consumption of traditional fermented foods are not reported frequently, but this may be related, among other things, to a low percentage of people entering healthcare care or weaknesses in foodborne disease surveillance systems. In many parts of the world, especially in Africa and Asia, pathogens such as enterotoxigenic and enterohemorrhagic Escherichia coli, Shigella spp., Salmonella spp., enterotoxigenic Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus have been detected in fermented foods. Therefore, this review, in addition to the positive aspects, presents the potential risk associated with the consumption of this type of products.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
70
|
Tamang JP, Lama S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J Appl Microbiol 2022; 132:3533-3542. [DOI: 10.1111/jam.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| | - Sonam Lama
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| |
Collapse
|
71
|
The Potential of Fermented Food from Southeast Asia as Biofertiliser. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intensive amount of chemical usage in agricultural practices could contribute to a significant impact on food safety issues and environmental health. Over-usage of chemical fertilisers may alter soil characteristics and contaminate water sources, leading to several human and animal health issues. Recently, there have been efforts to use microbial biofertilisers as a more sustainable and environmentally friendly agricultural practice in the common household of Southeast Asia. Traditionally, this method tends to utilise leftover food materials and readily available bacterial cultures, such as yoghurt drinks, and ferment them under a specific period in either solid or liquid form. So far, most of the testimonial-based feedbacks from local communities have been positive, but only limited information is available in the literature regarding the usage of biofertiliser fermented food (BFF). Previously, raw food waste has been used in the agriculture system to promote plant growth, however, the functional role of fermented food in enhancing plant growth have yet to be discovered. An understanding of the symbiotic relationship between fermented food and plants could be exploited to improve agricultural plant production more sustainably. Fermented food is known to be rich in good microbial flora (especially lactic acid bacteria (LAB)). LAB exist in different sources of fermented food and can act as a plant growth-promoting agent, improving the nutrient availability of food waste and other organic materials. Therefore, in this review, the potential use of seafood-based, plant-based, and animal-based fermented food as biofertiliser, especially from Southeast Asia, will be discussed based on their types and microbial and nutritional contents. The different types of fermented food provide a wide range of microbial flora for the enrichment of proteins, amino acids, vitamins, and minerals content in enhancing plant growth and overall development of the plant. The current advances of biofertiliser and practices of BFF will also be discussed in this review.
Collapse
|
72
|
Basir L, Moghimipour E, Saadatzadeh A, Cheraghian B, Khanehmasjedi S. Effect of postbiotic-toothpaste on salivary levels of IgA in 6- to 12-year-old children: Study protocol for a randomized triple-blind placebo-controlled trial. Front Pediatr 2022; 10:1042973. [PMID: 36578663 PMCID: PMC9790979 DOI: 10.3389/fped.2022.1042973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Children in mixed dentition are highly at risk for dental caries, which is a major health issue worldwide. Despite their effect in controlling dental caries, using probiotics can be challenging. Therefore, it has been advised to use their inanimate forms, called postbiotics. We hypothesize that postbiotics can enhance the oral immunity. METHODS The aim of this triple-blind, randomized, placebo-controlled trial is to investigate the effect of postbiotic-toothpaste (Bifidobacterium animalis subsp. animalis) on salivary levels of Immunoglobulin A (IgA) and pH in children. Using comparing two means formula to calculate the sample size, for this trial 80 healthy 6- to 12-year-old children during mixed dentition with no cavitated dental caries will be selected by convenience sampling method and randomly allocated to two groups, postbiotic-toothpaste or placebo-toothpaste. Saliva samples will be gathered at baseline and four weeks after the intervention. The level of salivary IgA will be determined by ELISA and salivary pH will be measured using a pH meter. Data will be compared within and between groups using independent t-test and paired t-test, in case of normality, with a p < 0.05 as statistically significant. DISCUSSION If postbiotics-toothpaste prove to be effective in improving the oral immunity, they can be used to prevent dental caries and other oral diseases. The result of this study can help researchers who are working on the immunomodulatory effects of postbiotics in children. TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials (IRCT), IRCT20191016045128N2. Registered on 7 March 2022.
Collapse
Affiliation(s)
- Leila Basir
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Eskandar Moghimipour
- Department of Pharmaceutics, School of Pharmacy, Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afrooz Saadatzadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Khanehmasjedi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
73
|
Sharma BR, Halami PM, Tamang JP. Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Sci Biotechnol 2022; 31:1-16. [PMID: 35059226 PMCID: PMC8733103 DOI: 10.1007/s10068-021-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Ethnic fermented foods are known for their unique aroma, flavour, taste, texture and other sensory properties preferred by every ethnic community in this world culturally as parts of their eatables. Some beneficial microorganisms associated with fermented foods have several functional properties and health-promoting benefits. Bacteriocins are the secondary metabolites produced by the microorganisms mostly lactic acid bacteria present in the fermented foods which can act as lantibiotics against the pathogen bacteria. Several studies have been conducted regarding the isolation and characterization of potent strains as well as their association with different types of bacteriocins. Collective information regarding the gene organizations responsible for the potent effect of bacteriocins as lantibiotics, mode of action on pathogen bacterial cells is not yet available. This review focuses on the gene organizations, pathways include for bacteriocin and their mode of action for various classes of bacteriocins produced by lactic acid bacteria in some ethnic fermented foods.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Prakash M. Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Jyoti Prakash Tamang
- DAICENTER, Department of Microbiology, Sikkim University, Science Building, Tadong, Gangtok, Sikkim 737102 India
| |
Collapse
|
74
|
Metaproteomics insights into fermented fish and vegetable products and associated microbes. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100045. [PMID: 35415649 PMCID: PMC8991600 DOI: 10.1016/j.fochms.2021.100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Increasing global population means higher demand for healthy food. Fish and vegetables are healthy foods, but overproduction leads to spoilage. Fermentation of fish/vegetables elongate their shelf lives, improved flavour and functions. Microbes associated with Fish/vegetable fermentation produce health conferring peptides. There is little review on peptides elicited during fish/vegetable fermentations.
The interest in proteomic studies of fermented food is increasing; the role of proteins derived from fermentation extends beyond preservation, they also improve the organoleptic, anti-pathogenic, anti-cancer, anti-obesogenic properties, and other health conferring properties of fermented food. Traditional fermentation processes are still in use in certain cultures, but recently, the controlled process is gaining wider acceptance due to consistency and predictability. Scientists use modern biotechnological approaches to evaluate reactions and component yields from fermentation processes. Pieces of literature on fermented fish and vegetable end-products are scanty (compared to milk and meat), even though fish and vegetables are considered health conferring diets with high nutritional contents. Evaluations of peptides from fermented fish and vegetables show they have anti-obesity, anti-oxidative, anti-inflammatory, anti-pathogenic, anti-anti-nutrient, improves digestibility, taste, nutrient content, texture, aroma properties, etc. Despite challenges impeding the wider applications of the metaproteomic analysis of fermented fish and vegetables, their potential benefits cannot be underestimated.
Collapse
|
75
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
76
|
Jasiak K, Amund D. Are spontaneously fermented plant‐based foods potential sources of transferable antibiotic resistance genes? FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Kinga Jasiak
- School of Life Sciences, Faculty of Health and Life Sciences Coventry University Coventry UK
| | - Daniel Amund
- School of Life Sciences, Faculty of Health and Life Sciences Coventry University Coventry UK
| |
Collapse
|
77
|
Mannaa M, Han G, Seo YS, Park I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021; 10:2861. [PMID: 34829140 PMCID: PMC8618017 DOI: 10.3390/foods10112861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Food fermentation has been practised since ancient times to improve sensory properties and food preservation. This review discusses the process of fermentation, which has undergone remarkable improvement over the years, from relying on natural microbes and spontaneous fermentation to back-slopping and the use of starter cultures. Modern biotechnological approaches, including genome editing using CRISPR/Cas9, have been investigated and hold promise for improving the fermentation process. The invention of next-generation sequencing techniques and the rise of meta-omics tools have advanced our knowledge on the characterisation of microbiomes involved in food fermentation and their functional roles. The contribution and potential advantages of meta-omics technologies in understanding the process of fermentation and examples of recent studies utilising multi-omics approaches for studying food-fermentation microbiomes are reviewed. Recent technological advances in studying food fermentation have provided insights into the ancient wisdom in the practice of food fermentation, such as the choice of substrates and fermentation conditions leading to desirable properties. This review aims to stimulate research on the process of fermentation and the associated microbiomes to produce fermented food efficiently and sustainably. Prospects and the usefulness of recent advances in molecular tools and integrated multi-omics approaches are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Inmyoung Park
- School of Culinary Arts, Youngsan University, Busan 48015, Korea
| |
Collapse
|
78
|
Antolak H, Piechota D, Kucharska A. Kombucha Tea-A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants (Basel) 2021; 10:antiox10101541. [PMID: 34679676 PMCID: PMC8532973 DOI: 10.3390/antiox10101541] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a low alcoholic beverage with high content of bioactive compounds derived from plant material (tea, juices, herb extracts) and metabolic activity of microorganisms (acetic acid bacteria, lactic acid bacteria and yeasts). Currently, it attracts an increasing number of consumers due to its health-promoting properties. This review focuses on aspects significantly affecting the bioactive compound content and biological activities of Kombucha tea. The literature review shows that the drink is characterized by a high content of bioactive compounds, strong antioxidant, and antimicrobial properties. Factors that substantially affect these activities are the tea type and its brewing parameters, the composition of the SCOBY, as well as the fermentation parameters. On the other hand, Kombucha fermentation is characterized by many unknowns, which result, inter alia, from different methods of tea extraction, diverse, often undefined compositions of microorganisms used in the fermentation, as well as the lack of clearly defined effects of microorganisms on bioactive compounds contained in tea, and therefore the health-promoting properties of the final product. The article indicates the shortcomings in the current research in the field of Kombucha, as well as future perspectives on improving the health-promoting activities of this fermented drink.
Collapse
|
79
|
La Torre C, Fazio A, Caputo P, Plastina P, Caroleo MC, Cannataro R, Cione E. Effects of Long-Term Storage on Radical Scavenging Properties and Phenolic Content of Kombucha from Black Tea. Molecules 2021; 26:5474. [PMID: 34576945 PMCID: PMC8472187 DOI: 10.3390/molecules26185474] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Kombucha is a fermented beverage. Its consumption has significantly increased during the last decades due to its perceived beneficial effects. For this reason, it has become a highly commercialized drink that is produced industrially. However, kombucha is still also a homemade beverage, and the parameters which, besides its organoleptic characteristics, define the duration of its potential beneficial properties over time, are poorly known. Therefore, this study aimed to determine the effect of 9-month storage at 4 °C with 30-day sampling on the pH, total phenolic, and flavonoid contents, free radical scavenging properties of kombucha fermented from black tea. Our results highlighted that, after four months, the phenolic content decreased significantly from the initial value of 234.1 ± 1.4 µg GAE mL-1 to 202.9 ± 2.1 µg GAE mL-1, as well its antioxidant capacity tested by two in vitro models, DPPH, and ABTS assays. Concomitantly, the pH value increased from 2.82 to 3.16. The novel findings of this pilot study revealed that kombucha from sugared black tea can be stored at refrigerator temperature for four months. After this period the antioxidant properties of kombucha are no longer retained.
Collapse
Affiliation(s)
- Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Italy; (C.L.T.); (P.P.); (M.C.C.); (R.C.); (E.C.)
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Italy; (C.L.T.); (P.P.); (M.C.C.); (R.C.); (E.C.)
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Italy; (C.L.T.); (P.P.); (M.C.C.); (R.C.); (E.C.)
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Italy; (C.L.T.); (P.P.); (M.C.C.); (R.C.); (E.C.)
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Italy; (C.L.T.); (P.P.); (M.C.C.); (R.C.); (E.C.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Italy; (C.L.T.); (P.P.); (M.C.C.); (R.C.); (E.C.)
| |
Collapse
|
80
|
Yang W, Liu S, Marsol-Vall A, Tähti R, Laaksonen O, Karhu S, Yang B, Ma X. Chemical composition, sensory profile and antioxidant capacity of low-alcohol strawberry beverages fermented with Saccharomyces cerevisiae and Torulaspora delbrueckii. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
81
|
Roselli M, Natella F, Zinno P, Guantario B, Canali R, Schifano E, De Angelis M, Nikoloudaki O, Gobbetti M, Perozzi G, Devirgiliis C. Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Front Nutr 2021; 8:689084. [PMID: 34395494 PMCID: PMC8360115 DOI: 10.3389/fnut.2021.689084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Fausta Natella
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| |
Collapse
|
82
|
Deciphering Bacterial Community Structure, Functional Prediction and Food Safety Assessment in Fermented Fruits Using Next-Generation 16S rRNA Amplicon Sequencing. Microorganisms 2021; 9:microorganisms9081574. [PMID: 34442653 PMCID: PMC8401261 DOI: 10.3390/microorganisms9081574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Fermented fruits and vegetables play an important role in safeguarding food security world-wide. Recently, robust sequencing-based microbial community analysis platforms have improved microbial safety assessment. This study aimed to examine the composition of bacteria and evaluate the bacterial safety of fermented fruit products using high-throughput 16S-rRNA metagenomic analysis. The operational taxonomic unit-based taxonomic classification of DNA sequences revealed 53 bacterial genera. However, the amplicon sequencing variant (ASV)-based clustering revealed 43 classifiable bacterial genera. Taxonomic classifications revealed that the abundance of Sphingomonas, which was the predominant genus in the majority of tested samples, was more than 85–90% among the total identified bacterial community in most samples. Among these identified genera, 13 low abundance genera were potential opportunistic pathogens, including Acinetobacter, Bacillus, Staphylococcus, Clostridium, Klebsiella, Mycobacterium, Ochrobactrum, Chryseobacterium, Stenotrophomonas, and Streptococcus. Of these 13 genera, 13 major opportunistic pathogenic species were validated using polymerase chain reaction. The pathogens were not detected in the samples of different stages and the final products of fermentation, except in one sample from the first stage of fermentation in which S. aureus was detected. This finding was consistent with that of ASV-based taxonomic classification according to which S. aureus was detected only in the sample from the first stage of fermentation. However, S. aureus was not significantly correlated with the human disease pathways. These results indicated that fermentation is a reliable and safe process as pathogenic bacteria were not detected in the fermentation products. The hybrid method reported in this study can be used simultaneously to evaluate the bacterial diversity, their functional predictions and safety assessment of novel fermentation products. Additionally, this hybrid method does not involve the random detection of pathogens, which can markedly decrease the time of detection and food safety verification. Furthermore, this hybrid method can be used for the quality control of products and the identification of external contamination.
Collapse
|
83
|
Probiotics, Prebiotics, Synbiotics and Dental Caries. New Perspectives, Suggestions, and Patient Coaching Approach for a Cavity-Free Mouth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Probiotic therapy forms a new strategy for dental caries prevention. Probiotic microorganisms possess the ability to displace cariogenic microorganisms and colonize the oral cavity. They can produce various antimicrobial substances such as bacteriocins, bacteriocin-like peptides, lactic acid, and hydrogen peroxide. Dairy products may be ideal for probiotic administration in dental patients. Many other means have been proposed, primarily for those allergic to dairy components, such as capsules, liquid form, tablets, drops, lozenges, sweetened cakes, and ice creams. The last two forms can be used in a coaching approach for children and elderly patients who find it difficult to avoid sugary beverages in their daily routine and benefit from the suggestion of easy, cheap, and common forms of delicacies. In caries prevention, the concept of the effector strain is already considered an integral part of the contemporary caries cure or prevention strategy in adults. Adults, though, seem not to be favored as much as children at early ages by using probiotics primarily due to their oral microbiome’s stability. In this non-systematic review we describe the modes of action of probiotics, their use in the cariology field, their clinical potential, and propose options to prevent caries through a patient coaching approach for the daily dental practice.
Collapse
|