51
|
Astráin-Redín L, Moya J, Alejandre M, Beitia E, Raso J, Calvo B, Cebrián G, Álvarez I. Improving the microbial inactivation uniformity of pulsed electric field ohmic heating treatments of solid products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
53
|
Acuff HL, Aldrich CG. Evaluation of graded levels of Bacillus coagulans GBI-30, 6086 on apparent nutrient digestibility, stool quality, and intestinal health indicators in healthy adult dogs. J Anim Sci 2021; 99:6262623. [PMID: 33940614 PMCID: PMC8158428 DOI: 10.1093/jas/skab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Bacillus coagulans GBI-30, 6086 is a commercially available spore-forming non-toxigenic microorganism approved for use in dog foods with high resiliency to stresses associated with commercial manufacturing. The objectives of this research were to examine the effect of B. coagulans on stool quality, nutrient digestibility, and intestinal health markers in healthy adult dogs. Extruded diets containing graded levels of B. coagulans applied either to the base ration before extrusion or to the exterior of the kibble as a topical coating after extrusion were randomly assigned to 10 individually housed adult beagle dogs (7 castrated males and 3 spayed females) of similar age (5.75 ± 0.23 yr) and body weight (12.3 ± 1.5 kg). The study was designed as a 5 × 5 replicated Latin square with 16-d adaptation followed by 5-d total fecal collection for each period. Five dietary treatments were formulated to deliver a dose of 0-, 6-, 7-, 8-, and 9-log10 colony-forming units (CFU) per dog per day for the control (CON), extruded B. coagulans (PEX), and low, moderate, and high B. coagulans coating levels (PCL, PCM, and PCH), respectively. Food-grade TiO2 was added to all diets at a level of 0.4% to serve as an indigestible dietary marker for digestibility calculations. Data were analyzed using a mixed model through SAS (version 9.4, SAS Institute, Inc., Cary, NC) with treatment as a fixed effect and room (i.e., replicate), period, and dog(room) as random effects. Apparent total tract digestibility of organic matter, crude protein, crude fat, and gross energy calculated by the marker method were numerically greatest for dogs fed the 9-log10 dose treatment with increases (P < 0.05) observed in gross energy and organic matter digestibility compared with the negative control. No significant differences were observed in food intake, stool quality, fecal pH, fecal ammonia, fecal short-chain fatty acids, or branched-chain fatty acids for the extruded B. coagulans treatment (PEX) or the coated B. coagulans treatments (PCL, PCM, and PCH) compared with CON. These results suggest that B. coagulans has a favorable impact on nutrient digestibility and no apparent adverse effects when added to extruded diets at a daily intake level of up to 9-log10 CFU in healthy adult dogs.
Collapse
Affiliation(s)
- Heather L Acuff
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
54
|
Craig K, Johnson BR, Grunden A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front Microbiol 2021; 12:660134. [PMID: 34040596 PMCID: PMC8141521 DOI: 10.3389/fmicb.2021.660134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas are metabolically versatile and capable of adapting to a wide variety of environments. Stress physiology of Pseudomonas strains has been extensively studied because of their biotechnological potential in agriculture as well as their medical importance with regards to pathogenicity and antibiotic resistance. This versatility and scientific relevance led to a substantial amount of information regarding the stress response of a diverse set of species such as Pseudomonas chlororaphis, P. fluorescens, P. putida, P. aeruginosa, and P. syringae. In this review, environmental and industrial stressors including desiccation, heat, and cold stress, are cataloged along with their corresponding mechanisms of survival in Pseudomonas. Mechanisms of survival are grouped by the type of inducing stress with a focus on adaptations such as synthesis of protective substances, biofilm formation, entering a non-culturable state, enlisting chaperones, transcription and translation regulation, and altering membrane composition. The strategies Pseudomonas strains utilize for survival can be leveraged during the development of beneficial strains to increase viability and product efficacy.
Collapse
Affiliation(s)
- Kelly Craig
- AgBiome Inc., Research Triangle Park, NC, United States
| | | | - Amy Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
55
|
Raza S, Matuła K, Karoń S, Paczesny J. Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. Antibiotics (Basel) 2021; 10:435. [PMID: 33924618 PMCID: PMC8070485 DOI: 10.3390/antibiotics10040435] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (K.M.); (S.K.)
| |
Collapse
|
56
|
Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion. ENERGIES 2021. [DOI: 10.3390/en14071938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Animal by-products (ABP) can be valorized via anaerobic digestion (AD) for biogas energy generation. The digestate issued from AD process is usually used to fertilize farming land for agricultural activities, which may cause potential sanitary risk to the environment. The European Union (EU) requires that certain ABP be thermally pasteurized in order to minimize this sanitary risk. This process is called hygienization, which can be replaced by alternative nonthermal technologies like pulsed electric field (PEF). In the present study, Enterococcus faecalis ATCC 19433 and Escherichia coli ATCC 25922 were used as indicator bacteria. Their resistance to thermal pasteurization and PEF treatment were characterized. Results show that Ent. faecalis and E. coli are reduced by 5 log10 in less than 1 min during thermal pasteurization at 70 °C. The critical electric field strength was estimated at 18 kV∙cm−1 for Ent. faecalis and 1 kV∙cm−1 for E. coli. “G+” bacteria Ent. faecalis are generally more resistant than “G−” bacteria E. coli. AD process also plays an important role in pathogens inactivation, whose performance depends on the microorganisms considered, digestion temperature, residence time, and type of feedstock. Thermophilic digestion is usually more efficient in pathogens removal than mesophilic digestion.
Collapse
|
57
|
Gartshore A, Kidd M, Joshi LT. Applications of Microwave Energy in Medicine. BIOSENSORS 2021; 11:96. [PMID: 33810335 PMCID: PMC8065940 DOI: 10.3390/bios11040096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Microwaves are a highly utilized electromagnetic wave, used across a range of industries including food processing, communications, in the development of novel medical treatments and biosensor diagnostics. Microwaves have known thermal interactions and theorized non-thermal interactions with living matter; however, there is significant debate as to the mechanisms of action behind these interactions and the potential benefits and limitations of their use. This review summarizes the current knowledge surrounding the implementation of microwave technologies within the medical industry.
Collapse
Affiliation(s)
| | - Matt Kidd
- Emblation Microwave Ltd., Alloa, Scotland FK10 2HU, UK;
| | - Lovleen Tina Joshi
- School of Biomedical Science, University of Plymouth, Plymouth PL4 8AA, UK;
| |
Collapse
|
58
|
Yan R, Pinto G, Taylor-Roseman R, Cogan K, D'Alesandre G, Kovac J. Evaluation of the Thermal Inactivation of a Salmonella Serotype Oranienburg Strain During Cocoa Roasting at Conditions Relevant to the Fine Chocolate Industry. Front Microbiol 2021; 12:576337. [PMID: 33763036 PMCID: PMC7982832 DOI: 10.3389/fmicb.2021.576337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Cocoa roasting produces and enhances distinct flavor of chocolate and acts as a critical control point for inactivation of foodborne pathogens in chocolate production. In this study, the inactivation kinetics of Salmonella enterica subsp. enterica serotype Oranienburg strain was assessed on whole cocoa beans using roasting protocols relevant to the fine chocolate industry. Beans were inoculated with 107-108 log10 CFU/bean of Salmonella Oranienburg and roasted at 100-150°C for 2-100 min. A greater than 5 log10 reduction of S. Oranienburg was experimentally achieved after 10-min roasting at 150°C. Data were fitted using log-linear and Weibull models. The log-linear models indicated that the roasting times (D) needed to achieve a decimal reduction of Salmonella at 100, 110, 115, 120, 130, and 140°C were 33.34, 18.57, 12.92, 10.50, 4.20, and 1.90 min, respectively. A Weibull model indicated a decrease in the Salmonella inactivation rate over time (β < 1). Statistical analysis indicated that the Weibull model fitted the data better compared to a log-linear model. These data demonstrate the efficacy of cocoa roasting in inactivation of Salmonella and may be used to guide food safety decision-making.
Collapse
Affiliation(s)
- Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Gabriella Pinto
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | | | - Karen Cogan
- Dandelion Chocolate Inc., San Francisco, CA, United States
| | | | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
59
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
60
|
Al-Sakkaf A. Thermal inactivation and kinetic parameters for Campylobacter jejuni on chicken skin. Can J Microbiol 2021; 67:623-638. [PMID: 33529082 DOI: 10.1139/cjm-2020-0543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New Zealand has a higher reported incidence rate of campylobacteriosis than other developed countries. It has been suggested that this may be due to the emergence of heat-resistant strains that can survive normal cooking. To test this, typed Campylobacter strains ST474 and ST48 were inoculated onto slices of chicken skin <18 mm in diameter and 4 mm thick using a pipette, and placed in a special aluminium cell, which was heated to a predetermined temperature (in the range of 56.5 to 65 °C) using a temperature-controlled water bath. Survivor curves were plotted, and GlnaFit software was chosen to fit the experimental data; inactivation parameters were estimated using 1-step and 2-step regression. The D values and z values were in the range of 3-6 s and 8-11 °C, respectively. The D values at 60 and 56 °C were in the range of 12-41 s. These D values are in general agreement with previously published reports. Thus, New Zealand's higher reported rate of campylobacteriosis is possibly due to factors other than the emergence of heat-resistant strains.
Collapse
Affiliation(s)
- Ali Al-Sakkaf
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North 4442, New Zealand.,Institute of Food, Nutrition and Human Health, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
61
|
Ricci A, Alinovi M, Martelli F, Bernini V, Garofalo A, Perna G, Neviani E, Mucchetti G. Heat Resistance of Listeria monocytogenes in Dairy Matrices Involved in Mozzarella di Bufala Campana PDO Cheese. Front Microbiol 2021; 11:581934. [PMID: 33488535 PMCID: PMC7815519 DOI: 10.3389/fmicb.2020.581934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of Listeria monocytogenes in Mozzarella di Bufala Campana Protected Designation of Origin cheeses may depend on curd stretching conditions and post contaminations before packaging. To avoid cross-contamination, thermal treatment of water, brines and covering liquid may become necessary. The present study aimed to improve knowledge about L. monocytogenes thermal resistance focusing on the influence of some cheese making operations, namely curd stretching and heat treatment of fluids in contact with cheese after molding, in order to improve the safety of the cheese, optimize efficacy and sustainability of the processes. Moreover, the role that cheese curd stretching plays in L. monocytogenes inactivation was discussed. The 12 tested strains showed a very heterogeneous heat resistance that ranged from 7 to less than 1 Log10 Cfu/mL reduction after 8 min at 60°C. D-values (decimal reduction times) and z-values (thermal resistance constant) calculated for the most heat resistant strain among 60 and 70°C were highly affected by the matrix and, in particular, heat resistance noticeably increased in drained cheese curd. As cheese curd stretching is not an isothermal process, to simulate the overall lethal effect of an industrial process a secondary model was built. The lethal effect of the process was estimated around 4 Log10 reductions. The data provided may be useful for fresh pasta filata cheese producers in determining appropriate processing durations and temperatures for producing safe cheeses.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | - Alessandro Garofalo
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Giampiero Perna
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
62
|
Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella enterica Serotype Enteritidis PT 30. Appl Environ Microbiol 2021; 87:AEM.02194-20. [PMID: 33158899 DOI: 10.1128/aem.02194-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. are resilient bacterial pathogens in low-moisture foods. There has been a general lack of understanding of critical factors contributing to the enhanced thermal tolerance of Salmonella spp. in dry environments. In this study, we hypothesized that the moisture content (XW ) of bacterial cells is a critical intrinsic factor influencing the resistance of Salmonella spp. to thermal inactivation. We selected Salmonella enterica serotype Enteritidis PT 30 to test this hypothesis. We first produced viable freeze-dried S. Enteritidis PT 30, conditioned the bacterial cells to different XW s (7.7, 9.2, 12.4, and 15.7 g water/100 g dry solids), and determined the thermal inactivation kinetics of those cells at 80°C. The results show that the D-value (the time required to achieve a 1-log reduction) decreased exponentially with increasing XW We further measured the water activities (aw) of the freeze-dried S. Enteritidis PT 30 as influenced by temperatures between 20 and 80°C. By using those data, we estimated the XW of S. Enteritidis PT 30 from the published papers that related the D-values of the same bacterial strain at 80°C with the aw of five different food and silicon dioxide matrices. We discovered that the logarithmic D-values of S. Enteritidis PT 30 in all those matrices also decreased linearly with increasing XW of the bacterial cells. The findings suggest that the amount of moisture in S. Enteritidis PT 30 is a determining factor of its ability to resist thermal inactivation. Our results may help future research into fundamental mechanisms for thermal inactivation of bacterial pathogens in dry environments.IMPORTANCE This study established a logarithmic relationship between the thermal death time (D-value) of S. Enteritidis PT 30 and the moisture content (XW ) of the bacterial cells by conducting thermal inactivation tests on freeze-dried S Enteritidis PT 30. We further verified this relationship using literature data for S. Enteritidis PT 30 in five low-moisture matrices. The findings suggest that the XW of S. Enteritidis PT 30, which is rapidly adjusted by microenvironmental aw, or relative humidity, during heat treatments, is the key intrinsic factor determining the thermal resistance of the bacterium. The quantitative relationships reported in this study may help guide future designs of industrial thermal processes for the control of S. Enteritidis PT 30 or other Salmonella strains in low-moisture foods. Our findings highlight a need for further fundamental investigation into the role of water in protein denaturation and the accumulation of compatible solutes during thermal inactivation of bacterial pathogens in dry environments.
Collapse
|
63
|
Cell Sorting Using Electrokinetic Deterministic Lateral Displacement. MICROMACHINES 2020; 12:mi12010030. [PMID: 33396630 PMCID: PMC7823954 DOI: 10.3390/mi12010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
We show that by combining deterministic lateral displacement (DLD) with electrokinetics, it is possible to sort cells based on differences in their membrane and/or internal structures. Using heat to deactivate cells, which change their viability and structure, we then demonstrate sorting of a mixture of viable and non-viable cells for two different cell types. For Escherichia coli, the size change due to deactivation is insufficient to allow size-based DLD separation. Our method instead leverages the considerable change in zeta potential to achieve separation at low frequency. Conversely, for Saccharomyces cerevisiae (Baker’s yeast) the heat treatment does not result in any significant change of zeta potential. Instead, we perform the sorting at higher frequency and utilize what we believe is a change in dielectrophoretic mobility for the separation. We expect our work to form a basis for the development of simple, low-cost, continuous label-free methods that can separate cells and bioparticles based on their intrinsic properties.
Collapse
|
64
|
Effect of pasteurization on Aspergillus fumigatus in apple juice: Analysis of the thermal and electric effects. Int J Food Microbiol 2020; 338:108993. [PMID: 33310209 DOI: 10.1016/j.ijfoodmicro.2020.108993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Fungal spoilage in fruit juices is a currently relevant issue considering that recent reports have found unacceptable fungal levels even after traditional pasteurization processes. Ohmic heating demonstrated to be a good alternative process to conventional pasteurization, as it can promote higher heating rates and additional cell damage in some scenarios (nonthermal effects). However, the application of ohmic processing for fungi inactivation has not been properly investigated. The objective of this study was to analyze the inactivation of Aspergillus fumigatus, a highly distributed fungi species, in apple juice by ohmic and conventional heating at 75, 80, 85, 90 and 94 °C. Predictive primary and secondary models were fitted and the Weibull-Mafart models were the most accurate to describe the experimental behavior considering the statistical indices applied. Statistical differences between both thermal processes were found in the three lower analyzed temperatures (75, 80 and 85 °C), which is possibly related to nonthermal effects. When ohmic heating was applied, processing time was up to 23% shorter. The resulted model was successfully validated in two distinct temperatures (83 and 92 °C) and could be applied to obtain adequate processing times for apple juice pasteurization. This study contributes to deepen the knowledge concerning the use of ohmic heating for fungi inactivation.
Collapse
|
65
|
Leonaviciene G, Leonavicius K, Meskys R, Mazutis L. Multi-step processing of single cells using semi-permeable capsules. LAB ON A CHIP 2020; 20:4052-4062. [PMID: 33006353 DOI: 10.1039/d0lc00660b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics technology provides a powerful approach to isolate and process millions of single cells simultaneously. Despite many exciting applications that have emerged based on this technology, workflows based on multi-step operations, including molecular biology and cell-based phenotypic screening assays, cannot be easily adapted to droplet format. Here, we present a microfluidics-based technique to isolate single cells, or biological samples, into semi-permeable hydrogel capsules and perform multi-step biological workflows on thousands to millions of individual cells simultaneously. The biochemical reactions are performed by changing the aqueous buffer surrounding the capsules, without needing sophisticated equipment. The semi-permeable nature of the capsules' shell retains large encapsulated biomolecules (such as genome) while allowing smaller molecules (such as proteins) to passively diffuse. In contrast to conventional hydrogel bead assays, the approach presented here improves bacterial cell retention during multi-step procedures as well as the efficiency of biochemical reactions. We showcase two examples of capsule use for single genome amplification of bacteria, and expansion of individual clones into isogenic microcolonies for later screening for biodegradable plastic production.
Collapse
Affiliation(s)
- Greta Leonaviciene
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| | - Karolis Leonavicius
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| | - Rolandas Meskys
- Institute of Biochemistry, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania
| | - Linas Mazutis
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| |
Collapse
|
66
|
Impact of shoulders on the calculus of heat sterilization treatments with different bacterial spores. Food Microbiol 2020; 94:103663. [PMID: 33279088 DOI: 10.1016/j.fm.2020.103663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022]
Abstract
To date, heat is still the most used technology in food preservation. The calculus of heat treatments is usually based on Bigelow observations i.e. treatment time is an exponential function of the heat treatment temperature. However, a number of researchers have reported deviations from linearity in heat inactivation curves that caused errors in the calculus. This research was designed to evaluate the variability of shoulder length among different sporulated species, the impact of treatment temperature on these shoulders and the relationship between the traditional DT value and shoulder length. The heat inactivation kinetics of five bacterial spores of importance for the food industry was evaluated. B. weihenstephanensis and B. cereus did not show shoulders and DT values calculated ranged from 0.99 to 0.23 and from 1.33 to 0.56 respectively at temperatures from 100 to 102.5 °C. On the other side B. subtilis, B. licheniformis and G. stearothermophilus showed shoulders of 1.75-0.42, 1.92-0.43 and 3.22-0.78 and DT values of 1.52-0.32, 2.12-0.59 and 2.22-0.48 respectively in the range of temperatures tested. From the results obtained it was concluded that the presence and magnitude of shoulders depended on the bacterial spore species, the longest being those on the bacterial spores which showed greatest heat resistance. It has also been proved that shoulder lengths vary with treatment temperature in the same proportion of traditional DT values, with the relationship Sl/DT being constant. Thus, an equation which included the constant Sl/DT was proposed.
Collapse
|
67
|
Berrang M, Meinersmann R, Cox N, Adams E. Water rinse and flowing steam to kill Campylobacter on broiler transport coop flooring. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
68
|
Lon Protease Is Important for Growth Under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya solani. Int J Mol Sci 2020; 21:ijms21103687. [PMID: 32456249 PMCID: PMC7279449 DOI: 10.3390/ijms21103687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
The Lon protein is a protease implicated in the virulence of many pathogenic bacteria, including some plant pathogens. However, little is known about the role of Lon in bacteria from genus Dickeya. This group of bacteria includes important potato pathogens, with the most aggressive species, D. solani. To determine the importance of Lon for pathogenicity and response to stress conditions of bacteria, we constructed a D. solani Δlon strain. The mutant bacteria showed increased sensitivity to certain stress conditions, in particular osmotic and high-temperature stresses. Furthermore, qPCR analysis showed an increased expression of the lon gene in D. solani under these conditions. The deletion of the lon gene resulted in decreased motility, lower activity of secreted pectinolytic enzymes and finally delayed onset of blackleg symptoms in the potato plants. In the Δlon cells, the altered levels of several proteins, including virulence factors and proteins associated with virulence, were detected by means of Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) analysis. These included components of the type III secretion system and proteins involved in bacterial motility. Our results indicate that Lon protease is important for D. solani to withstand stressful conditions and effectively invade the potato plant.
Collapse
|
69
|
Langsrud S, Sørheim O, Skuland SE, Almli VL, Jensen MR, Grøvlen MS, Ueland Ø, Møretrø T. Cooking chicken at home: Common or recommended approaches to judge doneness may not assure sufficient inactivation of pathogens. PLoS One 2020; 15:e0230928. [PMID: 32348316 PMCID: PMC7313536 DOI: 10.1371/journal.pone.0230928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/11/2020] [Indexed: 11/30/2022] Open
Abstract
About one third of foodborne illness outbreaks in Europe are acquired in the home and eating undercooked poultry is among consumption practices associated with illness. The aim of this study was to investigate whether actual and recommended practices for monitoring chicken doneness are safe. Seventy-five European households from five European countries were interviewed and videoed while cooking chicken in their private kitchens, including young single men, families with infants/in pregnancy and elderly over seventy years. A cross-national web-survey collected cooking practices for chicken from 3969 households. In a laboratory kitchen, chicken breast fillets were injected with cocktails of Salmonella and Campylobacter and cooked to core temperatures between 55 and 70°C. Microbial survival in the core and surface of the meat were determined. In a parallel experiment, core colour, colour of juice and texture were recorded. Finally, a range of cooking thermometers from the consumer market were evaluated. The field study identified nine practical approaches for deciding if the chicken was properly cooked. Among these, checking the colour of the meat was commonly used and perceived as a way of mitigating risks among the consumers. Meanwhile, chicken was perceived as hedonically vulnerable to long cooking time. The quantitative survey revealed that households prevalently check cooking status from the inside colour (49.6%) and/or inside texture (39.2%) of the meat. Young men rely more often on the outside colour of the meat (34.7%) and less often on the juices (16.5%) than the elderly (>65 years old; 25.8% and 24.6%, respectively). The lab study showed that colour change of chicken meat happened below 60°C, corresponding to less than 3 log reduction of Salmonella and Campylobacter. At a core temperature of 70°C, pathogens survived on the fillet surface not in contact with the frying pan. No correlation between meat texture and microbial inactivation was found. A minority of respondents used a food thermometer, and a challenge with cooking thermometers for home use was long response time. In conclusion, the recommendations from the authorities on monitoring doneness of chicken and current consumer practices do not ensure reduction of pathogens to safe levels. For the domestic cook, determining doneness is both a question of avoiding potential harm and achieving a pleasurable meal. It is discussed how lack of an easy "rule-of-thumb" or tools to check safe cooking at consumer level, as well as national differences in contamination levels, food culture and economy make it difficult to develop international recommendations that are both safe and easily implemented.
Collapse
Affiliation(s)
- Solveig Langsrud
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima,
Ås, Norway
| | - Oddvin Sørheim
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima,
Ås, Norway
| | | | | | - Merete Rusås Jensen
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima,
Ås, Norway
| | | | - Øydis Ueland
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima,
Ås, Norway
| | - Trond Møretrø
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima,
Ås, Norway
| |
Collapse
|
70
|
Synergistic Effects of Mild Heating and Dielectric Barrier Discharge Plasma on the Reduction of Bacillus Cereus in Red Pepper Powder. Foods 2020; 9:foods9020171. [PMID: 32053978 PMCID: PMC7073615 DOI: 10.3390/foods9020171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
The synergistic efficacy of a combined treatment of mild heat (MH) and dielectric barrier discharge (DBD) plasma in Bacillus cereus-contaminated red pepper powder was tested. A cocktail of three strains of B. cereus (NCCP 10623, NCCP 14579, ATCC 11778) was inoculated onto red pepper powder and then treated with MH (60 °C for 5-20 min) and DBD plasma (5-20 min). Treatment with MH and DBD plasma alone for 5-20 min resulted in reductions of 0.23-1.43 and 0.12-0.96 log CFU/g, respectively. Combined treatment with MH and DBD plasma was the most effective at reducing B. cereus counts on red pepper powder, and resulted in log-reductions of ≥ 6.0 log CFU/g. The largest synergistic values (4.24-4.42 log) against B. cereus in red pepper powder were obtained by the combination of 20 min MH and 5-15 min DBD plasma. The values of Hunter color ''L'', ''a'', and ''b'', were not significantly different from those of the untreated sample and that with the combination of MH (60 °C for 5-20 min) and DBD plasma (5-20 min). Also, no significant (p > 0.05) differences in pH values between samples were observed. Therefore, these results suggest that the combination of MH treatment and DBD plasma can be potentially utilized in the food industry to effectively inactivate B. cereus without incurring quality deterioration of red pepper powder.
Collapse
|
71
|
Marcén M, Cebrián G, Ruiz-Artiga V, Condón S, Mañas P. Protective effect of glutathione on Escherichia coli cells upon lethal heat stress. Food Res Int 2019; 121:806-811. [DOI: 10.1016/j.foodres.2018.12.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 01/13/2023]
|
72
|
Tonyali B, McDaniel A, Trinetta V, Yucel U. Evaluation of heating effects on the morphology and membrane structure of Escherichia coli using electron paramagnetic resonance spectroscopy. Biophys Chem 2019; 252:106191. [PMID: 31177024 DOI: 10.1016/j.bpc.2019.106191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023]
Abstract
Bacterial cell characteristics, such as size, morphology, and membrane integrity, are affected by environmental conditions. Thermal treatment results in related structural changes, extent of which is determined by the microorganism's survival skills and inactivation kinetics. The objective of this study was to characterize changes in cell structure of Escherichia coli during heating using the combined analysis of dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM) techniques. The size of E. coli cells increased from 2.3 μm to 3.0 μm with heating up to 50 °C followed by a shrinkage with further heating up to 70 °C. The morphological changes were verified using transmission electron microscopy. Related changes in membrane integrity was quantified via the mobility of 16-doxylstearic acid (16-DSA) spin probe using EPR spectroscopy. Two order parameters S1 and S2 defined on x- and y-axes, respectively, decreased with increasing temperature indicating loss of membrane integrity. The combined techniques as in this study can be used to further understand factors that play role in survival behavior of microorganisms.
Collapse
Affiliation(s)
- Bade Tonyali
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America
| | - Austin McDaniel
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America
| | - Valentina Trinetta
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America; Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States of America
| | - Umut Yucel
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America; Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States of America.
| |
Collapse
|
73
|
Heat resistance, membrane fluidity and sublethal damage in Staphylococcus aureus cells grown at different temperatures. Int J Food Microbiol 2019; 289:49-56. [DOI: 10.1016/j.ijfoodmicro.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 11/21/2022]
|