51
|
Rahmani-Kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:705-717. [PMID: 35992045 PMCID: PMC9375856 DOI: 10.1016/j.omtn.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The occurrence of viral infections and approaches to handling them are very challenging and require prompt diagnosis and timely treatment. Recently, genomic medicine approaches have come up with the discovery of the competing endogenous RNA (ceRNA) network, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on the basis of gene silencing. CircRNAs, as a group of non-encoded RNAs, make a loop-like structure by back-splicing through 3' and 5' ends. They are stable, abundant, specific, and highly conserved and can be quickly generated at large scales in vitro. CircRNAs have the potential to contribute in several cellular processes in a way that some serve as microRNA sponges, cellular transporters, protein-binding RNAs, transcriptional regulators, and immune system modulators. CircRNAs can even play an important role in modulating antiviral immune responses. In the present review, circRNAs' biogenesis, function, and biomarker and therapeutic potential as well as their prospective applications as vaccines against viral infections such as SARS-CoV-2 are explained. By considering their unique properties, their potential to be used as novel vaccines, biomarkers, and a therapeutic approach appears possible.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
52
|
An Overview of the Advances in Research on the Molecular Function and Specific Role of Circular RNA in Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5154122. [PMID: 36033554 PMCID: PMC9410782 DOI: 10.1155/2022/5154122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
In recent years, the rate of residents suffering from cardiovascular disease (CVD), disability, and death has risen significantly. The latest report on CVD in China shows that it still has the highest mortality rate of all diseases in that country. Different from linear RNA, circular RNA (circRNA) is a covalently closed transcript, mainly through reverse splicing so that the 3′end and the 5′end are covalently connected to form a closed loop structure. It is structurally stable and abundant and has distinct tissue or cell specificity, and it is widely distributed in eukaryotes. Although circRNAs were discovered many years ago, researchers have only recently begun to slowly discover their extensive expression and regulatory functions in various biological processes. Studies have found that some circRNAs perform multiple functions in cells more used as RNA binding protein or microRNA sponge. In addition, accumulating evidence shows that the first change that occurs in patients with various metabolic diseases such as hypertension and cardiovascular disease is dysregulated circRNA expression. For cardiovascular and other related blood vessels, circRNA is one of the important causes of various complications. These findings contribute to a more comprehensive understanding and grasp of CVD, and the related molecular mechanisms of CVD should be further analyzed. Here, we review the new understanding of circRNAs in CVD and explain the role of these innovative biomarkers in the analysis and determination of other related cardiovascular events such as coronary heart disease. Thus, this study is aimed at providing new ideas and proposing more feasible medical research strategies based on circRNA.
Collapse
|
53
|
Sohn EJ. Differentially expression and function of circular RNAs in ovarian cancer stem cells. J Ovarian Res 2022; 15:97. [PMID: 35978436 PMCID: PMC9382745 DOI: 10.1186/s13048-022-01014-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Circular RNAs (circRNAs) are noncoding RNAs that regulate miRNA expression; however, their functions in cancer stem cells (CSCs) are not well known. Methods To determine the function of differentially expression of circRNAs associated with ovarian CSCs, circRNA profiling was conducted using a circRNA-based microarray on sphere-forming cells derived from A2780 and SKOV3 epithelial ovarian cancer cells termed A2780-SP and SKOV3-SP compared to monolayer cells such as A2780 and SKOV3 cells, respectively. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the biological functions of the circRNAs expressed in CSCs. Results The circRNA-based microarray data showed that 159 circRNAs were significantly upregulated (fold change > 1.5) and 55 circRNAs were downregulated in ovarian CSCs compared to monolayer cells. GO and KEGG enrichment analysis of differentially expressed circRNAs in ovarian CSCs showed that they were mainly involved in cell cycle, histone modification, cellular protein metabolic process, cell cycle, apoptotic signaling pathway, and ubiquitin-mediated proteolysis in ovarian cancer. In addition, the hsa-circRNA000963-miRNA-mRNA regulatory network was constructed based on potential target of miRNAs. These analyses involved that the biological function of the hsa-circRNA00096/miRNA/mRNA network was involved in signaling pathways regulating pluripotency of stem cells, PI3K-Akt signaling pathway, cell cycle, p53 signaling pathway, Wnt signaling pathway, calcium modulating pathway, and production of miRNAs involved in gene silencing by miRNA. Conclusions Our data demonstrate the expression profiles of circRNAs in ovarian CSCs and suggest that circRNAs may be potential diagnostic and predictive biomarkers of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01014-z.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
54
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
55
|
Circ_ROBO2/miR-186-5p/TRIM14 axis regulates oxidized low-density lipoprotein-induced cardiac microvascular endothelial cell injury. Regen Ther 2022; 20:138-146. [PMID: 35620639 PMCID: PMC9111929 DOI: 10.1016/j.reth.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background Coronary artery disease (CAD) is one of the main risks of death, which is mainly caused by coronary arteries arteriosclerosis. Circular RNAs (circRNAs) have shown important regulatory roles in cardiovascular diseases. We amid to explore the role of circ_ROBO2 in CAD. Methods Cardiac microvascular endothelial cells (CMECs) stimulated by oxidized low-density lipoprotein (ox-LDL) were served as the cellular model of CAD. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay were performed to detect RNA levels and protein levels, respectively. Cell proliferation was assessed by 5-ethynyl-2′-deoxyuridine (EdU) assay and Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was employed for measuring cell apoptosis. Matrigel tube formation assay was used to evaluate angiogenesis ability. The intermolecular interaction was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA-pull down assays. Results The expression of circ_ROBO2 was upregulated in CAD patients and ox-LDL-induced CMECs. Treatment of ox-LDL suppressed cell proliferation and angiogenic ability as well as promoted the apoptosis of CMECs partly by upregulating circ_ROBO2. MicroRNA-186-5p (miR-186-5p) was identified as a target of circ_ROBO2, and circ_ROBO2 knockdown attenuated ox-LDL-induced damage in CMECs by sponging miR-186-5p. Tripartite motif containing 14 (TRIM14) acted as a target of miR-186-5p, and TRIM14 overexpression alleviated miR-186-5p-mediated inhibitory effect on ox-LDL-induced injury in CMECs. Circ_ROBO2 positively regulated TRIM14 expression by sponging miR-186-5p. Conclusion Circ_ROBO2 played a promoting role in ox-LDL-induced CMECs injury by sponging miR-186-5p and regulating TRIM14, providing a promising treatment strategy for CAD.
Collapse
|
56
|
Hsa_circ_0000994 Inhibits Pancreatic Cancer Progression by Clearing Immune-Related miR-27a and miR-27b. JOURNAL OF ONCOLOGY 2022; 2022:7274794. [PMID: 35669238 PMCID: PMC9166970 DOI: 10.1155/2022/7274794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) is a common cause of cancer death. Although more and more evidences suggest that circular RNAs (circRNAs) are associated with the development of cancer, the biological function of circRNAs in PC has not been fully explored. Based on previous studies, Hsa_circ_0000994 was screened out, and its clinical significance, functional role, and mechanism in PC are poorly studied. In various cell lines, 50 PC tissues, and an equal number of normal tissues, RT-qPCR was used to identify expression level of Hsa_circ_0000994. The impact of Hsa_circ_0000994 on metastasis, cell proliferation, and apoptosis was detected using functional loss and functional gain tests. An animal study was also conducted. Underlying mechanisms of Hsa_circ_0000994 were revealed by luciferase reporter gene detection. Hsa_circ_0000994 was lowly expressed in PC tissues as well as various PC cell lines, and this low expression was closely related to cancer. In terms of functional testing, Hsa_circ_0000994 suppressed core ability of PC cells, including proliferation, migration, and invasion ability. Xenotransplantation studies further confirmed the effect of Hsa_circ_0000994 in promoting cell growth. Mechanically, Hsa_circ_0000994 inhibited miR-27a and miR-27b. Hsa_circ_0000994 inhibited the cancer cells through the effect on miR-27a and miR-27b. In summary, a circRNA with tumor suppressor effects on PC has been elucidated.
Collapse
|
57
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
58
|
Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 2022; 206:939-953. [PMID: 35318084 DOI: 10.1016/j.ijbiomac.2022.03.103] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023]
Abstract
Cervical cancer is the most lethal gynecological cancer among women worldwide. Most of the patients are diagnosed at the advanced stages due to late diagnosis and lack of accessible and valuable approaches for early detection of the disease. Circular RNAs (circRNAs) are a distinguishable class of non-coding RNAs with characteristic loop structures. Although their function has not been completely elucidated; however, recent evidence has suggested regulatory functions for circRNAs on gene expression controlling various biological functions like cell growth and apoptosis, development, embryogenesis, and pathogenesis of human diseases particularly cancers. Studies show the role of dysregulated circRNAs in biological processes including cell proliferation, migration, invasion, apoptosis, angiogenesis, and chemoresistance contributing to affect tumorigenesis in ovarian cancer cells, animal, and clinical studies. These effects can be defined as consistent with several tumorigenesis characteristics, which are defined as "hallmarks of cancer". Additionally, dysregulated circRNAs exhibit prognostic, and diagnostic potentials both in the prediction of prognosis in ovarian cancer patients, and also their discrimination from healthy individuals. Furthermore, targeting circRNAs has shown positive results in the suppression of malignant features of cancer cells, and also in overcoming chemoresistance. In this review, I have gathered the majority of studies evaluating the role of circRNAs in the development, and progression of cervical cancer, and also have discussed prognostic, diagnostic, and therapeutic potentials of circRNAs for clinical applications in cervical cancer patients.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
Yang G, Zhang Y, Lin H, Liu J, Huang S, Zhong W, Peng C, Du L. CircRNA circ_0023984 promotes the progression of esophageal squamous cell carcinoma via regulating miR-134-5p/cystatin-s axis. Bioengineered 2022; 13:10578-10593. [PMID: 35440286 PMCID: PMC9161969 DOI: 10.1080/21655979.2022.2063562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies have shown that circRNAs can act as oncogenic factors or tumor suppressors by sponging microRNAs (miRNAs). The upregulation of circ_0023984 was reported in esophageal squamous cell carcinoma (ESCC). However, its functional role in ESCC remain unclear. In the present study, circ_0023984 expression in ESCC cells and tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). Subcellular fraction experiment was performed to determine relative nuclear-cytoplasmic localization. The loss-of-function effects of circ_0023984 in ESCC cell lines were investigated by shRNA-mediated knockdown. Functional assays including cell Counting Kit-8 (CCK-8), 5-Ethynyl-2’-deoxyuridine (EDU) incorporation, colony formation and Transwell migration assays were conducted to assess the malignant phenotype. The interaction between the two molecules was analyzed by RNA pull-down, luciferase reporter assay and RNA immunoprecipitation (RIP). The subcutaneous tumor model in nude mice was used to assess the role of circ-0023984 in tumorigenesis. We found that ESCC patients with high circ_0023984 expression was associated with a poor prognosis. The knockdown of circ_0023984 suppressed cell growth, invasion, and migration in ESCC cells. Circ_0023984 interacted with miR-134-5p and inhibited its activity, which promoted the expression of CST4 (Cystatin-S). Circ_0023984 also regulated tumorigenesis in a CST4-dependent manner. Together, our study indicates that the oncogenic role of Circ_0023984 is mediated by miR-134-5p/CST4 Axis in ESCC, which could serve as potential targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Ge Yang
- Department of Clinical Laboratory, Affiliated Neijiang Second People's Hospital of Southwest Medical University, Neijiang, P.R, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, China Neijiang
| | - Yu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, China Neijiang
| | - Hongni Lin
- Scientific research department, Sichuan Neijiang Health Vocational College, China Neijiang
| | - Jinnbo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, China Neijiang
| | - Shengjie Huang
- Scientific research department, Sichuan Neijiang Health Vocational College, China Neijiang
| | - Wei Zhong
- Nuclear medicine department, Affiliated Neijiang Second People's Hospital of Southwest Medical University, Neijiang, P.R, China
| | - Chao Peng
- Department of intestine surgery, Affiliated Neijiang Second People's Hospital of Southwest Medical University, Neijiang, P.R, China
| | - Lin Du
- Scientific research department, Sichuan Neijiang Health Vocational College, China Neijiang
| |
Collapse
|
60
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
61
|
The role of circular RNAs in pancreatic cancer: new players in tumorigenesis and potential biomarkers. Pathol Res Pract 2022; 232:153833. [DOI: 10.1016/j.prp.2022.153833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/23/2022]
|
62
|
Wang X, Ma C, Hou X, Zhang G, Huang Y. Circular RNA circ_0002984 Promotes Cell Proliferation and Migration by Regulating miR-181b-5p/Vascular Endothelial Growth Factor Axis and PI3K-AKT Signaling Pathway in Oxidized Low-Density Lipoprotein-Treated Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2022; 79:501-511. [PMID: 34954748 DOI: 10.1097/fjc.0000000000001203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT RNAs (circRNAs) play critical roles in many diseases, including atherosclerosis (AS). However, the role and underlying mechanism of circ_0002984 in AS remain unclear. Vascular smooth muscle cells (VSMCs) treated with oxidized low-density lipoprotein (ox-LDL) were used as a AS cell model. Quantitative real-time polymerase chain reaction was conducted to detect the expression of circ_0002984, miR-181b-5p and vascular endothelial growth factor A (VEGFA). Cell proliferation was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide assay and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using wound healing assay and transwell assay. All protein levels were analyzed by western blot assay. The interaction between miR-181b-5p and circ_0002984 or VEGFA was confirmed by dual-luciferase reporter, RNA Immunoprecipitation, and RNA pull-down assays. Circ_0002984 and VEGFA were overexpressed, and miR-181b-5p was downregulated in serum of AS patients and ox-LDL-stimulated VSMCs. Circ_0002984 silencing inhibited ox-LDL-induced proliferation and migration in VSMCs. MiR-181b-5p was a target of circ_0002984, and miR-181b-5p inhibition counteracted the suppressing effects of circ_0002984 downregulation on proliferation and migration in ox-LDL-stimulated VSMCs. Additionally, VEGFA was a downstream target of miR-181b-5p and VEGFA upregulation abolished the suppressive influence of miR-181b-5p on proliferation and migration in ox-LDL-exposed VSMCs. Furthermore, circ_0002984 depletion blocked phosphatidylinositol 3 kinase-AKT signaling pathway by regulating miR-181b-5p and VEGFA. Circ_0002984 downregulation suppressed cell proliferation and migration by regulating miR-181b-5p/VEGFA axis and phosphatidylinositol 3 kinase-AKT pathway in ox-LDL-stimulated VEGFA, providing a new mechanism for AS pathogenesis.
Collapse
Affiliation(s)
| | - Chong Ma
- Cardiology, Heilongjiang Provincial Hospital, Haerbin City, Heilongjiang Province, China
| | | | - Ge Zhang
- Departments of Geriatric Neurology; and
| | | |
Collapse
|
63
|
Wang J, Wen Y, Xu J, Yue B, Zhong J, Zheng L, Lei C, Chen H, Huang Y. Circ RIMKLB promotes myoblast proliferation and inhibits differentiation by sponging miR-29c to release KCNJ12. Epigenetics 2022; 17:1686-1700. [PMID: 35348434 PMCID: PMC9621043 DOI: 10.1080/15592294.2022.2058211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Muscle development is a complex process that was regulated by many factors, among which non-coding RNAs (ncRNAs) play a vital role in regulating multiple life activities of muscle cells. Circular RNA (circRNA), a type of non-coding RNA with closed-loop structure, has been reported to affect multiple life processes. However, the roles of circRNAs on muscle development have not been fully elucidated. The present study aimed to determine whether and how circRIMKLB affects muscle development. Our study revealed that circRIMKLB promoted myoblast proliferation and inhibited differentiation. Besides, miR-29c was proved as a downstream target of circRIMKLB using dual-luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay. Also, potassium inwardly rectifying channel subfamily J member 12 (KCNJ12) was identified as a novel target of miR-29c via dual-luciferase reporter assay, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and western blot. CircRIMKLB and KCNJ12 were both proved to regulate cell cycle on muscle regeneration after injury in vivo. In conclusion, we demonstrated that circRIMKLB sponged miR-29c, releasing KCNJ12 to regulate myoblast proliferation and differentiation and regulating cell cycle during muscle regeneration after injury in vivo.
Collapse
Affiliation(s)
- Jian Wang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Yifan Wen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Jiawei Xu
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Binglin Yue
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Jialin Zhong
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Li Zheng
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&f University, Yangling, Shaanxi, China
| |
Collapse
|
64
|
LPS-inducible circAtp9b is highly expressed in osteoporosis and promotes the apoptosis of osteoblasts by reducing the formation of mature miR-17-92a. J Orthop Surg Res 2022; 17:193. [PMID: 35346278 PMCID: PMC8962610 DOI: 10.1186/s13018-022-03072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Circular RNA circAtp9b is an enhancer of LPS-induced inflammation, which promotes osteoporosis (OS). This study explored the role of circAtp9b in OS. Methods RT-qPCR was performed to detect the expression of circAtp9b and microRNA (miR)-17-92a (both mature and premature) in OS and healthy controls. The subcellular location of circAtp9b was assessed by nuclear fractionation assay. The direct interaction between circAtp9b and premature miR-17-92a was detected by RNA pull-down assay. The role of circAtp9b in regulating the maturation of miR-17-92a in osteoblasts was explored by overexpression assay and RT-qPCR. Cell apoptosis was analyzed by cell apoptosis assay. Results OS patients exhibited upregulation of circAtp9b and premature miR-17-92a, but downregulation of mature miR-17-92a. In osteoblasts, circAtp9b suppressed the maturation of miR-17-92a. LPS upregulated circAtp9b and premature miR-17-92a, and downregulated mature miR-17-92a in osteoblasts. CircAtp9b was detected in both nucleus and cytoplasm, and it directly interacted with premature miR-17-92a. Overexpression of circAtp9b reduced the effects of miR-17-92a on the apoptosis of osteoblasts induced by LPS. Conclusion CircAtp9b is LPS-inducible and upregulation of circAtp9b in OS promotes the apoptosis of osteoblasts by reducing the formation of mature miR-17-92a. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03072-x.
Collapse
|
65
|
Dehghanian F, Azhir Z, Khalilian S, Grüning B. Non-coding RNAs underlying the pathophysiological links between type 2 diabetes and pancreatic cancer: A systematic review. J Diabetes Investig 2022; 13:405-428. [PMID: 34859606 PMCID: PMC8902405 DOI: 10.1111/jdi.13727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes is known as a risk factor for pancreatic cancer (PC). Various genetic and environmental factors cause both these global chronic diseases. The mechanisms that define their relationships are complex and poorly understood. Recent studies have implicated that metabolic abnormalities, including hyperglycemia and hyperinsulinemia, could lead to cell damage responses, cell transformation, and increased cancer risk. Hence, these kinds of abnormalities following molecular events could be essential to develop our understanding of this complicated link. Among different molecular events, focusing on shared signaling pathways including metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) pathways in addition to regulatory mechanisms of gene expression such as those involved in non-coding RNAs (miRNAs, circRNAs, and lncRNAs) could be considered as powerful tools to describe this association. A better understanding of the molecular mechanisms involved in the development of type 2 diabetes and pancreatic cancer would help us to find a new research area for developing therapeutic and preventive strategies. For this purpose, in this review, we focused on the shared molecular events resulting in type 2 diabetes and pancreatic cancer. First, a comprehensive literature review was performed to determine similar molecular pathways and non-coding RNAs; then, the final results were discussed in more detail.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Azhir
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Björn Grüning
- Department of Computer ScienceBioinformatics GroupUniversity of FreiburgFreiburgGermany
| |
Collapse
|
66
|
Zhao J, Yan W, Huang W, Li Y. Circ_0010235 facilitates lung cancer development and immune escape by regulating miR-636/PDL1 axis. Thorac Cancer 2022; 13:965-976. [PMID: 35167195 PMCID: PMC8977160 DOI: 10.1111/1759-7714.14338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a class of important regulators in various human cancers, including lung cancer. Here, we aimed to investigate the role of circ_0010235 in lung cancer. Methods The expression of circ_0010235, microRNA‐636 (miR‐636) and PDL1 was measured by quantitative real‐time PCR (qRT‐PCR). Cell proliferation was evaluated by CCK‐8, colony formation, and 5‐ethynyl‐2′‐deoxyuridine (EdU) assays. Cell apoptosis was detected by flow cytometry. Cell invasion was assessed by transwell assay. All protein levels were determined by western blot assay. In order to detect the roles of circ_0010235 in immune escape, lung cancer cells were cocultured with peripheral blood mononuclear cells (PBMCs) or cytokine‐induced killer (CIK) cells in vitro. The relationship between miR‐636 and circ_0010235 or PDL1 was verified by dual‐luciferase reporter assay and RNA pulldown assay. Immunohistochemistry (IHC) analysis was used to detect Ki67 and programmed death‐ligand 1 (PDL1) expression. A xenograft tumor model was established to verify the function of circ_0010235 in vivo. Results Circ_0010235 was overexpressed in lung cancer. Circ_0010235 knockdown inhibited proliferation, invasion and immune escape and promoted apoptosis of lung cancer cells. MiR‐636 was a target of circ_0010235, and miR‐636 inhibition reversed the effects of circ_0010235 knockdown in lung cancer cells. PDL1 was a direct target of miR‐636, and miR‐636 suppressed the proliferation and invasion and increased apoptosis and antitumor immunity in lung cancer cells by downregulating PDL1. Moreover, circ_0010235 positively regulated PDL1 expression by sponging miR‐636. Additionally, circ_0010235 knockdown hampered tumorigenesis in vivo. Conclusion Circ_0010235 knockdown inhibited lung cancer progression and increased antitumor immunity by regulating the miR‐636/PDL1 axis.
Collapse
Affiliation(s)
- Jixing Zhao
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Wu Yan
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Wencong Huang
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| | - Yongsheng Li
- Department of Thoracic Surgery, Huizhou Central People's Hospital, Huizhou, China
| |
Collapse
|
67
|
Khan FA, Nsengimana B, Khan NH, Song Z, Ngowi EE, Wang Y, Zhang W, Ji S. Chimeric Peptides/Proteins Encoded by circRNA: An Update on Mechanisms and Functions in Human Cancers. Front Oncol 2022; 12:781270. [PMID: 35223470 PMCID: PMC8874284 DOI: 10.3389/fonc.2022.781270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
The discovery of circular RNAs and exploration of their biological functions are increasingly attracting attention in cell bio-sciences. Owing to their unique characteristics of being highly conserved, having a relatively longer half-life, and involvement in RNA maturation, transportation, epigenetic regulation, and transcription of genes, it has been accepted that circRNAs play critical roles in the variety of cellular processes. One of the critical importance of these circRNAs is the presence of small open reading frames that enable them to encode peptides/proteins. In particular, these encoded peptides/proteins mediate essential cellular activities such as proliferation, invasion, epithelial-mesenchymal transition, and apoptosis and develop an association with the development and progression of cancers by modulating diverse signaling pathways. In addition, these peptides have potential roles as biomarkers for the prognosis of cancer and are being used as drug targets against tumorigenesis. In the present review, we thoroughly discussed the biogenesis of circRNAs and their functional mechanisms along with a special emphasis on the reported chimeric peptides/proteins encoded by circRNAs. Additionally, this review provides a perspective regarding the opportunities and challenges to the potential use of circRNAs in cancer diagnosis and therapeutic targets in clinics.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhenhua Song
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunyun Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
68
|
Zhang D, Tao L, Xu N, Lu X, Wang J, He G, Tang Q, Huang K, Shen S, Chu J. CircRNA circTIAM1 promotes papillary thyroid cancer progression through the miR-646/HNRNPA1 signaling pathway. Cell Death Dis 2022; 8:21. [PMID: 35022405 PMCID: PMC8755710 DOI: 10.1038/s41420-021-00798-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
Papillary thyroid cancer (PTC) is a common endocrine tumor with a rapidly increasing incidence in recent years. Although the majority of PTCs are relatively indolent and have a good prognosis, a certain proportion is highly aggressive with lymphatic metastasis, iodine resistance, and easy recurrence. Circular RNAs (circRNAs) are a class of noncoding RNAs that are linked to a variety of tumor processes in several cancers, including PTC. In the current study, circRNA high-throughput sequencing was performed to identify alterations in circRNA expression levels in PTC tissues. circTIAM1 was then selected because of its increased expression in PTC and association with apoptosis, proliferation, and migration of PTC cells in vitro and in vivo. Mechanistically, circTIAM1 acted as a sponge of microRNA-646 and functioned in PTC by targeting miR-646 and heterogeneous ribonucleoprotein A1. Fluorescence in situ hybridization and dual-luciferase reporter assays further confirmed these connections. Overall, our results reveal an important oncogenic role of circTIAM1 in PTC and may represent a potentially therapeutic target against PTC progression.
Collapse
Affiliation(s)
- Deguang Zhang
- Department of head and neck surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Tao
- Department of head and neck surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Nizheng Xu
- Department of head and neck surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxiao Lu
- Department of head and neck surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianle Wang
- Department of orthopaedic surgery, Sir Run Run Shaw Hospital, Zhejiang University school of Medicine & Key laboratory of Musculoskeletal system Degeneration and regeneration Translational research of Zhejiang Province, 3 east Qingchun road, Hangzhou, 310016, People's Republic of China
| | - Gaofei He
- Department of head and neck surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Qinghu Tang
- Department of general surgery, People's Hospital of Linghu, Nanxun District, Huzhou, Zhejiang Province, People's Republic of China
| | - Kangmao Huang
- Department of orthopaedic surgery, Sir Run Run Shaw Hospital, Zhejiang University school of Medicine & Key laboratory of Musculoskeletal system Degeneration and regeneration Translational research of Zhejiang Province, 3 east Qingchun road, Hangzhou, 310016, People's Republic of China
| | - Shuying Shen
- Department of orthopaedic surgery, Sir Run Run Shaw Hospital, Zhejiang University school of Medicine & Key laboratory of Musculoskeletal system Degeneration and regeneration Translational research of Zhejiang Province, 3 east Qingchun road, Hangzhou, 310016, People's Republic of China.
| | - Junjie Chu
- Department of head and neck surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
69
|
Li X, Yang Y, Liang L, Fan M, Li X, Feng N, Pan Y, Tan Q, Xu Q, Xie Y, Guo F. Effect Of XBP1 Deficiency In Cartilage On The Regulatory Network Of LncRNA/circRNA-miRNA-mRNA. Int J Biol Sci 2022; 18:315-330. [PMID: 34975335 PMCID: PMC8692151 DOI: 10.7150/ijbs.64054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
X-box binding protein 1(XBP1) is a critical component for unfolded protein response (UPR) in ER stress. According to previous studies performed with different XBP1-deficient mice, the XBP1 gene affects mouse cartilage development and causes other related diseases. However, how the complete transcriptome, including mRNA and ncRNAs, affects the function of cartilage and other tissues when XBP1 is deficient in chondrocytes is unclear. In this study, we aimed to screen the differentially expressed (DE) mRNAs, circRNAs, lncRNAs and miRNAs in XBP1 cartilage-specific knockout (CKO) mice using high throughput sequencing and construct the circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks. DE LncRNAs (DE-LncRNAs), circRNAs (DE-circRNAs), miRNAs (DE-miRNAs), and mRNAs [differentially expressed genes (DEGs)] between the cartilage tissue of XBP1 CKO mice and controls were identified, including 441 DE-LncRNAs, 15 DE-circRNAs, 6 DE-miRNAs, and 477 DEGs. Further, 253,235 lncRNA-miRNA-mRNA networks and 1,822 circRNA-miRNA-mRNA networks were constructed based on the correlation between lncRNAs/circRNAs, miRNAs, mRNAs. The whole transcriptome analysis revealed that XBP1 deficiency in cartilage affects the function of cartilage and other different tissues, as well as associated diseases. Overall, our findings may provide potential biomarkers and mechanisms for the diagnosis and treatment of cartilage and other related diseases.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Yang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Li Liang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Mengtian Fan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xingyue Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Naibo Feng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yiming Pan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, United Kingdom
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
70
|
Zhang JJ, Wang JQ, Xu X, Zhang LD, Zhang CP, Lu WL, Gu WQ, Dong ZY, Xiao Y, Xia ZW. Circulating circular RNA profiles associated with celiac disease seropositivity in children with type 1 diabetes. Front Pediatr 2022; 10:960825. [PMID: 36210930 PMCID: PMC9537605 DOI: 10.3389/fped.2022.960825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The frequency of celiac disease autoantibody (CDAb) positivity in type 1 diabetes (T1D) has increased due to unclear mechanisms, including autoimmune injury. Circular ribonucleic acids (circRNAs) participate in autoimmune diseases, but the roles of circRNAs in T1D with CDAbs are currently unknown. This study aimed to determine the frequency of CDAbs in Chinese children with T1D and describe the relationship between CDAbs and circRNAs. MATERIALS AND METHODS Eighty patients diagnosed with T1D were screened for CDAbs and CD-predisposing genes, and circRNAs in peripheral blood mononuclear cells (PBMCs) were collected from 47 patients. The Gene Expression Omnibus (GEO) database was searched for candidate circRNAs in related studies on T1D PBMCs. Data on clinical characteristics (i.e., blood glucose control, residual islet function, and daily insulin dosage) and immunophenotypes (i.e., islet autoantibodies and immune cell subsets) were collected. RESULTS In total, 35.0% of patients were positive for CDAbs. CD-predisposing genes accounted for 52.5% of the genes, and no significant difference in frequency was found between the CDAb-positive (CDAb+) and CDAb-negative (CDAb-) groups. In addition, among the differentially expressed circRNAs from the GEO database, five highly conserved circRNAs homologous to humans and mice were screened, and only the expression of hsa_circ_0004564 in the CDAb+ group significantly decreased (CDAb+ vs. CDAb-:1.72 ± 1.92 vs. 11.12 ± 8.59, p = 6.0 × 10-6), while the expression of hsa_circ_0004564 was upregulated in the general T1D population. Moreover, its parental gene RAPH1 was significantly upregulated (CDAb+ vs. CDAb-:1.26 ± 0.99 vs. 0.61 ± 0.46, p = 0.011). Importantly, the positive correlation between hsa_circ_0004564 and CD3+ cells was validated in children with T1D after adjustments for CDAbs (p = 0.029), while there were no correlations between hsa_circ_0004564 and clinical characteristics or other immune cell subsets (i.e., CD4+ T cells, CD8+ T cells, and natural killer cells). CONCLUSION This study highlights the importance of screening for CD in Chinese children with T1D, considering the high prevalence of CDAb positivity and CD-predisposing genes. The profile of candidate circRNAs in children with T1D with CDAbs was different from that in previous reports on general T1D patients from the GEO database. Moreover, hsa_circ_0004564 and its parental gene RAPH1 may be new targets for studying immune mechanisms in children with T1D and CD.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun-Qi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Li-Dan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Cai-Ping Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Li Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wei-Qiong Gu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhi-Ya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhen-Wei Xia
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
71
|
Iparraguirre L, Alberro A, Hansen TB, Castillo-Triviño T, Muñoz-Culla M, Otaegui D. Profiling of Plasma Extracellular Vesicle Transcriptome Reveals That circRNAs Are Prevalent and Differ between Multiple Sclerosis Patients and Healthy Controls. Biomedicines 2021; 9:biomedicines9121850. [PMID: 34944665 PMCID: PMC8698468 DOI: 10.3390/biomedicines9121850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
(1) Background: Extracellular vesicles (EVs) are released by most cell types and are implicated in several biological and pathological processes, including multiple sclerosis (MS). Differences in the number and cargo of plasma-derived EVs have been described in MS. In this work, we have characterised the EV RNA cargo of MS patients, with particular attention to circular RNAs (circRNAs), which have attracted increasing attention for their roles in physiology and disease and their biomarker potential. (2) Methods: Plasma-derived EVs were isolated by differential centrifugation (20 patients, 8 controls), and RNA-Sequencing was used to identify differentially expressed linear and circRNAs. (3) Results: We found differences in the RNA type distribution, circRNAs being enriched in EVs vs. leucocytes. We found a number of (corrected p-value < 0.05) circRNA significantly DE between the groups. Nevertheless, highly structured circRNAs are preferentially retained in leukocytes. Differential expression analysis reports significant differences in circRNA and linear RNA expression between MS patients and controls, as well as between different MS types. (4) Conclusions: Plasma derived EV RNA cargo is not a representation of leukocytes’ cytoplasm but a message worth studying. Moreover, our results reveal the interest of circRNAs as part of this message, highlighting the importance of further understanding RNA regulation in MS.
Collapse
Affiliation(s)
- Leire Iparraguirre
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
| | - Ainhoa Alberro
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Thomas B. Hansen
- Molecular Biology and Genetics Department, Aarhus University, 8000 Aarhus C, Denmark;
| | - Tamara Castillo-Triviño
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Neurology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 20018 San Sebastián, Spain
- Correspondence: (M.M.-C.); (D.O.); Tel.: +34-943-01-52-18 (M.M.-C.); +34-943-00-62-93 (D.O.)
| | - David Otaegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Correspondence: (M.M.-C.); (D.O.); Tel.: +34-943-01-52-18 (M.M.-C.); +34-943-00-62-93 (D.O.)
| |
Collapse
|
72
|
Xu R, Yin S, Zheng M, Pei X, Ji X. Circular RNA circZFR Promotes Hepatocellular Carcinoma Progression by Regulating miR-375/HMGA2 Axis. Dig Dis Sci 2021; 66:4361-4373. [PMID: 33433801 DOI: 10.1007/s10620-020-06805-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mounting evidence indicates that circular RNAs (circRNAs) have vital roles in human diseases, especially in cancers. AIMS The aim of this study was to explore the biological functions and underlying mechanism of circRNA zinc finger RNA binding (circZFR) in hepatocellular carcinoma (HCC). METHODS The expression levels of circZFR, microRNA-375 (miR-375) and high mobility group A2 (HMGA2) were detected by qRT-PCR or western blot assay. Glycolytic metabolism was examined via the measurement of extracellular acidification rate, oxygen consumption rate, glucose uptake, lactate production, and ATP level. MTT assay and flow cytometry were used to assess cell proliferation and cell apoptosis, respectively. The interaction between miR-375 and circZFR or HMGA2 was verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The mice xenograft model was established to investigate the role of circZFR in vivo. RESULTS CircZFR and HMGA2 were upregulated while miR-375 was downregulated in HCC tissues and cells. CircZFR silence inhibited HCC progression by inhibiting cell proliferation, glycolysis and tumor growth and promoting apoptosis. MiR-375 was a direct target of circZFR and its knockdown reversed the inhibitory effect of circZFR silence on the progression of HCC cells. Moreover, HMGA2 was a downstream target of miR-375, and miR-375 suppressed proliferation and glycolysis and induced apoptosis by targeting HMGA2 in HCC cells. Besides, circZFR acted as a molecular sponge of miR-375 to regulate HMGA2 expression. CONCLUSION Knockdown of circZFR suppressed the progression of HCC by upregulating miR-375 and downregulating HMGA2, providing new insight into the pathogenesis of HCC.
Collapse
Affiliation(s)
- Rui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1 Swan Lake Road, New District of Political Affairs and Culture, Hefei, 230036, Anhui, China
| | - Shiwu Yin
- Department of Interventional Radiology, The Second People's Hospital of Hefei, Hefei, 230000, Anhui, China
| | - Meng Zheng
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1 Swan Lake Road, New District of Political Affairs and Culture, Hefei, 230036, Anhui, China
| | - Xiaohong Pei
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1 Swan Lake Road, New District of Political Affairs and Culture, Hefei, 230036, Anhui, China
| | - Xuebing Ji
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1 Swan Lake Road, New District of Political Affairs and Culture, Hefei, 230036, Anhui, China.
| |
Collapse
|
73
|
Zheng X, Liu J, Gong X, Zhang X, Ma S. Circ_0002984 Enhances Growth, Invasion, and Migration in PDGF-bb-Induced Vascular Smooth Muscle Cells Through miR-379-5p/FRS2 Axis. J Cardiovasc Pharmacol 2021; 78:875-884. [PMID: 34882114 DOI: 10.1097/fjc.0000000000001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 08/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The accumulation of vascular smooth muscle cells (VSMCs) is considered to play important roles in atherosclerosis (AS) development and progression. Circ_0002984 was found to be increased in oxidized low-density lipoprotein (ox-LDL) human VSMCs (HVSMCs). However, the function and mechanism of circ_0002984 in VSMC dysfunction remain unknown. In this study, the expression of circ_0002984, microRNA (miR)-379-5p, and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction and western blot. Cell proliferation, cell cycle, migration, and invasion were detected using Cell Counting Kit-8, flow cytometry, and transwell assays. The binding interaction between miR-379-5p and circ_0002984 or FRS2 was confirmed by the dual-luciferase reporter assay. Collectively, this study found that circ_0002984 was elevated in platelet-derived growth factor type bb (PDGF-bb)-induced HVSMCs. Circ_0002984 knockdown abrogated PDGF-bb-induced proliferation, migration, and invasion in HVSMCs. Mechanistically, circ_0002984 was confirmed to target miR-379-5p, and miR-379-5p upregulation reversed the protective effects of circ_0002984 knockdown on PDGF-bb-induced HVSMCs. Besides, when FRS2 was a target of miR-379-5p, miR-379-5p restoration abolished PDGF-bb-evoked HVSMC dysfunction, which was attenuated by the overexpression of FRS2. Moreover, circ_0002984 could regulate FRS2 expression through sponging miR-379-5p in HVSMCs. Collectively, these results demonstrated that circ_0002984 promoted PDGF-bb-induced VSMC proliferation, migration, and invasion through the regulation of miR-379-5p/FRS2 axis, suggesting a new insight into the pathogenesis of AS and the potential application of circ_0002984 in AS treatment.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression Regulation
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Xiangni Zheng
- Internal Medicine-Cardiovascular Department, Qingyang People's Hospital of Qingyang City, Qingyang, Gansu, China
| | - Jian Liu
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xuepeng Gong
- Imaging Department, PLA Air Force 986 Hospital, Xi'an, Shaanxi, China
| | - Xu Zhang
- Department of Hemodialysis, Weifang Hospital of Traditional Chinese Medicine, Weifang, China ; and
| | - Shengting Ma
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Shandong First Medical University, The Fouth People's Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
74
|
Fang Y, E C, Wu S, Meng Z, Qin G, Wang R. Circ-IGF1R plays a significant role in psoriasis via regulation of a miR-194-5p/CDK1 axis. Cytotechnology 2021; 73:775-785. [PMID: 34776628 DOI: 10.1007/s10616-021-00496-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a skin disorder that is classed as an autoimmune disease. It is characterized by excessive proliferation, abnormal migration and differentiation of keratinocytes, as well as inflammatory cell infiltration. Circular RNAs (circRNAs/circ) have been reported to play an important role in several aspects of psoriasis. Thus in the present study, the role of circ-insulin-like growth factor 1 receptor (circ-IGF1R) in the development of psoriasis was assessed, and the involvement of microRNA (miR)-194-5p was also investigated as its expression was downregulated in psoriasis. StarBase analysis and dual luciferase reporter assays confirmed the interaction between circ-IGF1R with miR-194-5p. The increased expression of circ-IGF1R and decreased expression of miR-194-5p were further confirmed by reverse transcription-quantitative polymerase chain reaction in interleukin (IL-22)-stimulated HaCaT cells. The increased proliferation, migration and invasion, as well as decreased apoptosis, caspase 3 activity and cleaved-caspase 3/caspase 3 ratio were observed in IL-22-stimulated HaCaT cells. Conversely, transfection of circ-IGF1R-small interfering (si)RNA resulted in significantly increased expression of miR-194-5p with or without stimulation of IL-22 in HaCaT cells, and also overcame the effects of the miR-194-5p inhibitor. Additionally, transfection of circ-IGF1R-siRNA inhibited cell proliferation, migration and invasion, which were reversed by transfection of a miR-194-5p inhibitor. Similarly, circ-IGF1R-siRNA promoted apoptosis, caspase 3 activity and the cleaved-caspase 3/caspase 3 ratio, which were reversed by miR-194-5p inhibitor. These results showed that circ-IGF1R could affect the proliferation, apoptosis, migration and invasion of IL-22-stimulated HaCaT cells by regulating the expression of miR-194-5p. Based on TargetScan prediction and dual luciferase reporter assays, it was shown that cyclin-dependent kinase (CDK)1 was targeted by miR-194-5p. Additionally, the expression of CDK1 was upregulated following stimulation with IL-22 in HaCaT cells at the mRNA and protein levels. Transfection of miR-194-5p mimic or miR-194-5p inhibitor negatively regulated CDK1 expression in the IL-22 induced HaCaT cells. In conclusion, circ-IGF1R-siRNA could inhibit the cell proliferation, migration and invasion, and induce apoptosis by regulating the miR-194-5p/CDK1 axis. circ-IGF1R may thus serve as a potential treatment target for psoriasis.
Collapse
Affiliation(s)
- Yong Fang
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan City, 442100 Hubei Province China
| | - Cailing E
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan City, 442100 Hubei Province China
| | - Shixing Wu
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan City, 442100 Hubei Province China
| | - Zudong Meng
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan City, 442100 Hubei Province China
| | - Guifang Qin
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan City, 442100 Hubei Province China
| | - Rongying Wang
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Maojian District, Shiyan City, 442100 Hubei Province China
| |
Collapse
|
75
|
Knockdown of circular RNA hsa_circ_0003204 inhibits oxidative stress and apoptosis through the miR-330-5p/Nod2 axis to ameliorate endothelial cell injury induced by low-density lipoprotein. Cent Eur J Immunol 2021; 46:140-151. [PMID: 34764783 PMCID: PMC8568026 DOI: 10.5114/ceji.2021.108174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Atherosclerosis (AS) is the leading cause of cardiovascular disease. Circular RNA hsa_circ_0003204 (hsa_circ_0003204) was elevated in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells. However, the role and molecular mechanism of hsa_circ_0003204 in the AS process have not been studied. Material and methods Human primary aortic endothelial cells (HAECs) were treated with low-density lipoprotein (ox-LDL) to establish the AS model. The viability of ox-LDL-induced HAECs was assessed by counting kit-8 (CCK8) assay. Reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) levels in ox-LDL-induced HAECs supernatant were evaluated with the relevant kits. The apoptosis of ox-LDL-induced HAECs was determined via flow cytometry assay. The expression of hsa_circ_0003204, miR-330-5p, and nucleotide-binding oligomerization domain 2 (Nod2) was analyzed through quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between hsa_circ_0003204 or Nod2 and miR-330-5p was verified by dual-luciferase reporter assay. Protein level of Nod2 was detected using western blot analysis. Results Hsa_circ_0003204 and Nod2 were upregulated while miR-330-5p was decreased in ox-LDL-induced HAECs. Hsa_circ_0003204 depletion restrained the oxidative stress and apoptosis of ox-LDL-induced HAECs. Notably, hsa_circ_0003204 regulated Nod2 expression via sponging miR-330-5p in HAECs. Moreover, miR-330-5p inhibition restored the constraint of the oxidative stress and apoptosis of ox-LDL-induced HAECs caused by hsa_circ_0003204 silencing. Additionally, miR-330-5p targeted Nod2 and Nod2 enhancement abolished the repressive effects of miR-330-5p overexpression on the oxidative stress and apoptosis of ox-LDL-induced HAECs. Conclusions Hsa_circ_0003204 exhaustion mitigated endothelial cell injury through suppressing the oxidative stress and apoptosis in ox-LDL-induced HAECs via the miR-330-5p/Nod2 axis.
Collapse
|
76
|
Wang M, Huan Y, Li X, Li J, Lv G. RUNX3 derived hsa_circ_0005752 accelerates the osteogenic differentiation of adipose-derived stem cells via the miR-496/MDM2-p53 pathway. Regen Ther 2021; 18:430-440. [PMID: 34754888 PMCID: PMC8546365 DOI: 10.1016/j.reth.2021.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) are non-coding RNAs that play a pivotal role in bone diseases. RUNX3 was an essential transcriptional regulator during osteogenesis. However, it is unknown whether RUNX3 regulates hsa_circ_0005752 during osteogenic differentiation. Methods The levels of hsa_circ_0005752 and RUNX3 were measured by qRT-PCR after osteogenic differentiation of ADSCs. The osteogenic differentiation was analyzed by Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS). qRT-PCR and western blot were used to assess the expressions of osteogenic differentiation-related molecules. RNA pull-down, RIP, and luciferase reporter assays determine the interactions between miR-496 and hsa_circ_0005752 or MDM2 mRNA. CHIP-PCR analyzed the interaction between RUNX3 and LPAR1. Finally, the potential roles of RUNX3 were investigated during osteogenic differentiation with or without hsa_circ_0005752 knockdown. Results Hsa_circ_0005752 and RUNX3 were significantly increased, and miR-496 was remarkably decreased in ADSCs after osteogenic differentiation. Hsa_circ_0005752 could promote osteogenic differentiation, as shown by enhancing ALP and ARS staining intensity. Hsa_circ_0005752 enhanced the expressions of Runx2, ALP, Osx, and OCN. Furthermore, hsa_circ_0005752 directly targeted miR-496, which can directly bind to MDM2. RUNX3 bound to the LPAR1 promoter and enhanced hsa_circ_0005752 expressions. Moreover, the enhanced expression of hsa_circ_0005752 by RUNX3 could promote osteogenic differentiation, whereas knockdown of hsa_circ_0005752 partially antagonized the effects of RUNX3. Conclusion Our study demonstrated that RUNX3 promoted osteogenic differentiation via regulating the hsa_circ_0005752/miR-496/MDM2 axis and thus provided a new therapeutic strategy for osteoporosis.
Collapse
Key Words
- 3′ UTR, 3′ untranslated region
- ADSCs, adipose-derived stem cells
- ALP, alkaline phosphatase
- ARS, Alizarin Red Staining
- Adipose-derived stem cells
- BCA, bicinchoninic acid
- BM-MSCs, Bone Marrow-Mesenchymal Stem Cells
- BMP2, Bone morphogenetic protein 2
- ChIP, chromatin immunoprecipitation
- Circular RNAs
- ECL, enhanced chemiluminescence
- H&E staining, Hematoxylin and Eosin staining
- LPAR1, lysophosphatidic acid receptor 1
- MDM2
- MDM2, murine double minute 2
- OCN, osteocalcin
- OM, osteogenic (differentiation) medium
- Osteogenic differentiation
- Osx, osterix
- PMSF, phenylmethylsulfonyl fluoride
- RIP, RNA immunoprecipitation
- RUNX3
- Runx2, Runt-related transcription factor 2
- Runx3, RUNX Family Transcription Factor 3
- SDS-PAGE, polyacrylamide gel electrophoresis
- UC-MSCs, Umbilical Cord-Mesenchymal Stem Cells
- circRNAs, Circular RNAs
- miRNAs, microRNA
- microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Ming Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China.,Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yifan Huan
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Xiyang Li
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| |
Collapse
|
77
|
Circulating expression levels of CircHIPK3 and CDR1as circular-RNAs in type 2 diabetes patients. Mol Biol Rep 2021; 49:131-138. [PMID: 34731367 DOI: 10.1007/s11033-021-06850-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recent investigations suggested that deregulated levels of Circular RNAs (circRNAs) could be associated with type 2 diabetes mellitus (T2DM) pathogenesis. Accordingly, this study aimed to determine the expression levels of circulating CircHIPK3, CDR1as and their correlation with biochemical parameters in patients with T2DM, pre-diabetes and control subjects. METHODS AND RESULTS The expression of circRNAs in peripheral blood was determined using QRT-PCR in 70 patients with T2DM, 60 pre-diabetes and in 69 age and sex matched healthy controls. Moreover, bioinformatics tools were applied to explore and predict the potential interactions between circRNAs and other non-coding RNAs (ncRNAs). Our analysis revealed that the expression level of CircHIPK3 was significantly elevated in T2DM patients compared to healthy participants (P < 0.001) and pre-diabetes subjects (P = 0.018). In addition, ROC analysis suggested that at the cutoff value of 0.24 and the sensitivity and specificity of 50% and 88.4%, respectively, CircHIPK3 could distinguish between T2DM patients and control subjects. Furthermore, it was observed that the expression level of CDR1as is higher in pre-diabetic individuals than healthy individuals (P = 0.004). Finally, Spearman correlation analysis showed that there was a significant correlation between CircHIPK3 and CDR1as expression levels and clinical and anthropometrical parameters such as BMI, systolic and diastolic blood pressure, HbA1c and fasting blood glucose (P < 0.005). CONCLUSIONS The data of this study provided evidence that the expression levels of CircHIPK3, CDR1as increased in T2DM and pre-diabetes subjects, respectively.
Collapse
|
78
|
Zheng YL, Song G, Guo JB, Su X, Chen YM, Yang Z, Chen PJ, Wang XQ. Interactions Among lncRNA/circRNA, miRNA, and mRNA in Musculoskeletal Degenerative Diseases. Front Cell Dev Biol 2021; 9:753931. [PMID: 34708047 PMCID: PMC8542847 DOI: 10.3389/fcell.2021.753931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairments in patients, mainly consist of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression that play an important role in biological regulation, involving in chondrocyte proliferation and apoptosis, extracellular matrix degradation and peripheral blood mononuclear cell inflammation. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. The effects of lncRNA/circRNA-miRNA-mRNA axis on MSDD progression help us to fully understand their contribution to the dynamic cellular processes, provide the potential OA, IDD, RA and AS therapeutic strategies. Further studies are needed to explore the mutual regulatory mechanisms between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
79
|
Li H, Liu Z, Guo X, Zhang M. Circ_0128846/miR-140-3p/JAK2 Network in Osteoarthritis Development. Immunol Invest 2021; 51:1529-1547. [PMID: 34544313 DOI: 10.1080/08820139.2021.1981930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circular RNAs (circRNAs) titrate the function of microRNAs (miRNAs), regulate transcription, and interfere with splicing. This study attempted to confirm the role of a novel circRNA circ_0128846 during osteoarthritis (OA) progression. Tissues and chondrocytes were isolated from OA patients. Overexpression and knockdown of target genes were generated using cell transfection and siRNA interference. Expression levels of genes were measured by qRT-PCR, Western blot, and immunohistochemistry, respectively. The interactions among circ_0128846, miR-140-3p, and JAK2 were verified by bioinformatics prediction, a dual-luciferase reporter assay, and RNA immunoprecipitation assay. The role of circ_0128846 in vivo was confirmed by the construction of experimental OA rats. Pathological changes were evaluated by hematoxylin and eosin and Safranin O staining. In OA patients, the level of circ_0128846 and JAK2 were up-regulated with down-regulated level of miR-140-3p. Circ_0128846 was principally located in the cytoplasm. Circ_0128846 silence enhanced cells viability, but reduced apoptosis rate and inflammatory response, which was obviously reversed by miR-140-3p knockdown. The overexpression of JAK2 reversed the effects of miR-140-3p on cell phenotypes. Circ_0128846 silence suppressed the level of MMP-13 and promoted the expression of collagen II by up-regulating miR-140-3p and down-regulating JAK2 in OA cells. Results of animal experiments demonstrated that circ_0128846 silence promoted collagen II expression and attenuated the OA progression by regulating the miR-140-3p/JAK2 axis. Circ_0128846 contributes to OA development through acting as a sponge RNA for miR-140-3p and thereby increasing JAK2 expression. Results indicated that targeting circ_0128846 may have the potential to alleviate OA progression.Abbreviations:circRNAs: Circular RNAs; miRNAs: microRNAs; OA: osteoarthritis; RIP: RNA immunoprecipitation; H&E: hematoxylin and eosin; ncRNAs: noncoding RNAs; ceRNA: competitive endogenous RNA; DMEM: Dulbecco's modified Eagle's medium; PBS: phosphate buffered saline; OE-circ_0128846: overexpression vector for circ_0128846; pcDNA3.1-JAK2: pcDNA3.1 overexpression vector for Janus kinase 2; NC: negative control; CCK-8: Cell Counting Kit-8; PI: propidium iodide; WT: Wild-type; mutants (MUT); SD rats: Sprague Dawley rats; DMM: destabilization of medial meniscus; IHC: immunohistochemistry; DAB: diaminobenzene; pre-Mrna: precursor mRNA.
Collapse
Affiliation(s)
- Hongjun Li
- Department of Rheumatology and Immunology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhongyu Liu
- Department of Knee Joint, Tianjin Hospital, Tianjin, China
| | - Xiaoyun Guo
- Department of Rheumatology and Immunology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University Genenral Hospital, Tianjin, China
| |
Collapse
|
80
|
Zhang X, Chen C, Li B, Lu W. Circ-UQCRC2 aggravates lipopolysaccharide-induced injury in human bronchial epithelioid cells via targeting miR-495-3p/MYD88-mediated inflammatory response and oxidative stress. Autoimmunity 2021; 54:483-492. [PMID: 34499003 DOI: 10.1080/08916934.2021.1975273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infantile pneumonia is a common inflammatory disease with the infections of various pathogens in lower respiratory tracts. Here, the role and working mechanism of circular RNA (circRNA) ubiquinol-cytochrome c reductase core protein 2 (circ-UQCRC2; hsa_circ_0038467) in infantile pneumonia were investigated. Cell viability, apoptosis, and inflammatory response were assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). Cell oxidative stress was analyzed by measuring the production of malondialdehyde (MDA) and superoxide dismutase (SOD). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were performed to determine the expression of RNAs and proteins. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the interaction between microRNA-495-3p (miR-495-3p) and circ-UQCRC2 or myeloid differentiation primary response protein 88 (MYD88). Lipopolysaccharide (LPS) treatment suppressed the viability while induced the apoptosis, inflammation, and oxidative stress of 16HBE cells in a dose-dependent manner. LPS exposure dose-dependently up-regulated the expression of circ-UQCRC2 in 16HBE cells. Circ-UQCRC2 absence attenuated LPS-induced injury in 16HBE cells. miR-495-3p was a target of circ-UQCRC2, and circ-UQCRC2 silencing-mediated protective effects in LPS-induced 16HBE cells were partly reversed by anti-miR-495-3p. MYD88 was a target of miR-495-3p, and MYD88 overexpression partly counteracted miR-495-3p accumulation-mediated influences in 16HBE cells upon LPS exposure. Circ-UQCRC2 interference decreased the protein expression of MYD88 partly by up-regulating miR-495-3p in LPS-induced 16HBE cells. In conclusion, circ-UQCRC2 contributed to LPS-induced injury of 16HBE cells by targeting miR-495-3p/MYD88 signalling-mediated inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| | - Chunbao Chen
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| | - Bei Li
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| | - Wei Lu
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| |
Collapse
|
81
|
Hao J, Chen Y, Yu Y. Circular RNA circ_0008360 Inhibits the Proliferation, Migration, and Inflammation and Promotes Apoptosis of Fibroblast-Like Synoviocytes by Regulating miR-135b-5p/HDAC4 Axis in Rheumatoid Arthritis. Inflammation 2021; 45:196-211. [PMID: 34462830 DOI: 10.1007/s10753-021-01538-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs) have been demonstrated to play crucial roles in the development and progression of many diseases, including rheumatoid arthritis (RA). However, the functions and molecular mechanism of circ_0008360 in RA remain unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of circ_0008360, microRNA-135b-5p (miR-135b-5p), and histone deacetylase 4 (HDAC4). Cell Counting Kit-8 (CCK-8) assay, wound healing assay, and flow cytometry analysis were performed to assess cell proliferation, migration, and apoptosis, respectively. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-135b-5p and circ_0008360 or HDAC4 was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) and RNA pull-down assays. Western blot assay was used to detect the protein expression of HDAC4 and proliferating cell nuclear antigen (PCNA). The expression of circ_0008360 was downregulated in RA synovial tissues and RA fibroblast-like synoviocytes (RA-FLSs). Circ_0008360 suppressed the proliferation, migration, and inflammation and promoted apoptosis of RA-FLSs, and circ_0008360 knockdown showed opposite effects. Moreover, miR-135b-5p was a direct target of circ_0008360, and miR-135b-5p could reverse the effects of circ_0008360 on proliferation, migration, inflammation, and apoptosis in RA-FLSs. Furthermore, HDAC4 was a downstream target of miR-135b-5p, and miR-135b-5p accelerated the proliferation, migration, and inflammation and suppressed apoptosis of RA-FLSs by targeting HDAC4. In addition, circ_0008360 positively regulated HDAC4 expression by sponging miR-135b-5p. Circ_0008360 inhibited the proliferation, migration, and inflammation and facilitated apoptosis of RA-FLSs by sponging miR-135b-5p and upregulating HDAC4, providing a potential target for prevention and treatment of RA.
Collapse
Affiliation(s)
- Jinying Hao
- Department of Rheumatology, Heping Hospital Affiliated To Changzhi Medical College, Changzhi, Shanxi, China
| | - Yan Chen
- Department of Rheumatology, Zao Zhuang Hospitai of Zao Zhuang Mining Group, Shandong, Zaozhuang, China
| | - Yunxiang Yu
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, No.32, South Renmin Road, Shiyan, 442000, Hubei, China. .,Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, No.32, South Renmin Road, Hubei, 442000, Shiyan, China.
| |
Collapse
|
82
|
Fu Y, He W, Zhou C, Fu X, Wan Q, He L, Wei B. Bioinformatics Analysis of circRNA Expression and Construction of "circRNA-miRNA-mRNA" Competing Endogenous RNAs Networks in Bipolar Disorder Patients. Front Genet 2021; 12:718976. [PMID: 34422020 PMCID: PMC8371557 DOI: 10.3389/fgene.2021.718976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bipolar disorder (BD) is a severe mood disorder disease in China, and its underlying pathogenesis remains unknown. Circular RNAs (circRNAs) have been reported to play a key role in mental disorders and can be used as competitive endogenous RNAs (ceRNAs). However, little is known about the correlation of circRNAs with BD. In this study, Deep RNA sequencing was used to identify differentially expressed circRNAs (DE-circRNAs) and differentially expressed mRNAs (DE-mRNAs) between BD patients and a control group. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to validate the differentially expressed RNAs (DE-RNAs). In all 9,593 circRNAs and 20,030 mRNAs were found in the two groups of specimens, among which 50 DE-circRNAs and 244 DE-mRNAs were significantly upregulated, and 44 DE-circRNAs and 294 DE-mRNAs were significantly downregulated. Based on the regulatory mechanism of ceRNAs, circRNAs can directly bind microRNAs (miRNAs) to affect mRNA expression, and the expression trends of circRNAs and mRNAs are consistent. According to this mechanism, we constructed two ceRNA networks by using the RNA sequencing data. The function of these DE-circRNAs was further elucidated by enrichment analysis. In summary, the present study showed that the circRNA expression profile of BD patients is altered, and a ceRNA regulatory network was constructed, which provided a hypothesis about the pathogenesis of BD.
Collapse
Affiliation(s)
- Yonghui Fu
- Department of Psychiatry, Jiangxi Mental Hospital, Nanchang, China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoxiong Zhou
- Department of Psychiatry, Jiangxi Mental Hospital, Nanchang, China
| | - Xia Fu
- Department of Psychiatry, Jiangxi Mental Hospital, Nanchang, China
| | - Qigen Wan
- Department of Psychiatry, Jiangxi Mental Hospital, Nanchang, China
| | - Ling He
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital, Nanchang, China
| |
Collapse
|
83
|
Zhang PP, Han Q, Sheng MX, Du CY, Wang YL, Cheng XF, Xu HX, Li CC, Xu YJ. Identification of Circular RNA Expression Profiles in White Adipocytes and Their Roles in Adipogenesis. Front Physiol 2021; 12:728208. [PMID: 34489740 PMCID: PMC8417237 DOI: 10.3389/fphys.2021.728208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
Obesity and its related metabolic diseases have become great public health threats worldwide. Although accumulated evidence suggests that circRNA is a new type of non-coding RNAs regulating various physiological and pathological processes, little attention has been paid to the expression profiles and functions of circRNAs in white adipose tissue. In this study, 3,771 circRNAs were detected in three stages of white adipogenesis (preadipocyte, differentiating preadipocyte, and mature adipocyte) by RNA-seq. Experimental validation suggested that the RNA-seq results are highly reliable. We found that nearly 10% of genes which expressed linear RNAs in adipocytes could also generate circRNAs. In addition, 40% of them produced multiple circRNA isoforms. We performed correlation analysis and found that a great deal of circRNAs (nearly 50%) and their parental genes were highly correlated in expression levels. A total of 41 differential expression circRNAs (DECs) were detected during adipogenesis and an extremely high ratio of them (80%) were correlated with their parental genes, indicating these circRNAs may potentially play roles in regulating the expression of their parental genes. KEGG enrichment and GO annotation of the parental genes suggesting that the DECs may participate in several adipogenesis-related pathways. Following rigorous selection, we found that many up-regulated circRNAs contain multiple miRNAs binding sites, such as miR17, miR-30c, and miR-130, indicating they may potentially facilitate their regulatory functions by acting as miRNA sponges. These results suggest that plenty of circRNAs are expressed in white adipogenesis and the DECs may serve as new candidates for future adipogenesis regulation.
Collapse
Affiliation(s)
- Peng-peng Zhang
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Ming-xuan Sheng
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chun-yu Du
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Ya-ling Wang
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiao-fang Cheng
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hai-xia Xu
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Cen-cen Li
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yong-jie Xu
- Department of Biotechnology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
84
|
Circular RNA as An Epigenetic Regulator in Chronic Liver Diseases. Cells 2021; 10:cells10081945. [PMID: 34440714 PMCID: PMC8392363 DOI: 10.3390/cells10081945] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA characterized by a covalently closed continuous loop. CircRNA is generated by pre-mRNA through back-splicing and is probably cleared up by extracellular vesicles. CircRNAs play a pivotal role in the epigenetic regulation of gene expression at transcriptional and post-transcriptional levels. Recently, circRNAs have been demonstrated to be involved in the regulation of liver homeostasis and diseases. However, the epigenetic role and underlying mechanisms of circRNAs in chronic liver diseases remain unclear. This review discussed the role of circRNAs in non-neoplastic chronic liver diseases, including alcoholic liver disease (ALD), metabolic-associated fatty liver disease (MAFLD), viral hepatitis, liver injury and regeneration, liver cirrhosis, and autoimmune liver disease. The review also highlighted that further efforts are urgently needed to develop circRNAs as novel diagnostics and therapeutics for chronic liver diseases.
Collapse
|
85
|
Zhao M, Liu Y, Qu H. circExp database: an online transcriptome platform for human circRNA expressions in cancers. Database (Oxford) 2021; 2021:baab045. [PMID: 34296749 PMCID: PMC8299715 DOI: 10.1093/database/baab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/30/2023]
Abstract
Circular RNA (circRNA) is a highly stable, single-stranded, closed-loop RNA that works as RNA or as a protein decoy to regulate gene expression. In humans, thousands of circRNA transcriptional products precisely express in specific developmental stages, tissues and cell types. Due to their stability and specificity, circRNAs are ideal biomarkers for cancer diagnosis and prognosis. To provide an integrated and standardized circRNA expression profile for human cancers, we performed extensive data curation across 11 technical platforms, collecting 48 expression profile data sets for 18 cancer types and amassing 860 751 expression records. We also identified 189 193 differential expression signatures that are significantly different between normal and cancer samples. All the pre-calculated expression analysis results are organized into 132 plain text files for bulk download. Our online interface, circExp, provides data browsing and search functions. For each data set, a dynamic expression heatmap provides a profile overview. Based on the processed data, we found that 52 circRNAs were consistently and differentially expressed in 20 or more processed analyses. By mapping those circRNAs to their parent protein-coding genes, we found that they may have profoundly affected the survival of 10 797 patients in the The Cancer Genome Atlas pan-cancer data set. In sum, we developed circExp and demonstrated that it is useful to identify circRNAs that have potential diagnostic and prognostic significance for a variety of cancer types. In this online and reusable database, found at http://soft.bioinfo-minzhao.org/circexp, we have provided pre-calculated expression data about circRNAs and their parental genes, as well as data browsing and searching functions. Database URL: http://soft.bioinfominzhao.org/circexp/.
Collapse
Affiliation(s)
- Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, China
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
86
|
Ju X, Tang Y, Qu R, Hao S. The Emerging Role of Circ-SHPRH in Cancer. Onco Targets Ther 2021; 14:4177-4188. [PMID: 34285509 PMCID: PMC8286153 DOI: 10.2147/ott.s317403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Circ-SHPRH is a circular RNA that can regulate the expression of target genes by sponging microRNAs (miRNAs) or translating tumor suppressor proteins. Recent studies have suggested that circ-SHPRH may play a role in the development of tumors and cancers. Hence, this paper aimed to review the biological characteristics, molecular mechanisms, and potential clinical significance of circ-SHPRH in a variety of tumors and to evaluate its potential as a new diagnostic and prognostic biomarker. METHODS Numerous experiments were performed regarding the abnormal expression of circ-SHPRH in a variety of tumors, including hepatocellular carcinoma, gastric carcinoma, non-small cell lung cancer, osteosarcoma, colorectal cancer, cholangiocarcinoma, pancreatic ductal adenocarcinoma, retinoblastoma, and glioblastoma. RESULTS Upregulation of circ-SHPRH reportedly inhibits tumor cell proliferation, migration, and invasion, leading to the inhibition of tumor development. The clinicopathological parameters and the functional characteristics of circ-SHPRH in multiple human tumors and cancers were summarized. Circ-SHPRH functions as a tumor suppressor gene and has great potential as a diagnostic and prognostic biomarker for different types of cancer.
Collapse
Affiliation(s)
- Xinyue Ju
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
87
|
Mahmoudi E, Green MJ, Cairns MJ. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J Mol Med (Berl) 2021; 99:981-991. [PMID: 33782720 DOI: 10.1007/s00109-021-02070-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are head-to-tail back-spliced RNA transcripts that have been linked to several biological processes and their perturbation is evident in human disease, including neurological disorders. There is also emerging research suggesting circRNA expression may also be altered in psychiatric and behavioural syndromes. Here, we provide a comprehensive analysis of circRNA expression in peripheral blood mononuclear cells (PBMCs) from 39 patients with schizophrenia and bipolar disorder as well as 20 healthy individuals using deep RNA-seq. We observed systematic alternative splicing leading to a complex and diverse profile of RNA transcripts including 8762 high confidence circRNAs. More specific scrutiny of the circular transcriptome in schizophrenia and bipolar disorder, compared to a non-psychiatric control group, revealed significant dysregulation of 55 circRNAs with a bias towards downregulation. These molecules were predicted to interact with a large number of miRNAs that target genes enriched in psychiatric disorders. Further replication and cross-validation to determine the specificity of these circRNAs across broader diagnostic groups and subgroups in psychiatry will enable their potential utility as biomarkers to be established. KEY MESSAGES: • We identified 8762 high confidence circRNAs with systematic alternative splicing in human PBMCs. • CircRNAs were dysregulated in schizophrenia and bipolar disorder, compared to a non-psychiatric control group. • The DE circRNAs were predicted to interact with miRNAs with target genes enriched in psychiatric disorders. • Some circRNAs have the potential to serve as biomarkers in psychiatry.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia. .,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, New Lambton Heights, Australia.
| |
Collapse
|
88
|
Li H, Shan C, Wang J, Hu C. CircRNA Hsa_circ_0001017 Inhibited Gastric Cancer Progression via Acting as a Sponge of miR-197. Dig Dis Sci 2021; 66:2261-2271. [PMID: 32740683 DOI: 10.1007/s10620-020-06516-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common digestive system diseases and yet lacks effective therapeutic regimen. AIMS The aim of our present research was to probe the value of hsa_circ_0001017 in GC treatment. METHODS qRT-PCR and Western blot were performed to detect gene and protein expressions, respectively. CCK-8 assay and clone formation assay were used to ensure the proliferation of GC cell lines. Transwell assay was performed to measure the migration and invasion of GC cell lines. The relationship between hsa_circ_0001017 and miR-197 and that between miR-197 and RHOB 3'-UTR were ensured using the luciferase reporter assay. RESULTS Decreased hsa_circ_0001017 was discovered in GC, and upregulation of hsa_circ_0001017 notably repressed proliferation, migration, and invasion of GC cell lines. We further certificated that hsa_circ_0001017 served as miR-197 sponge and suppressed the expression of miR-197. Moreover, hsa_circ_0001017 upregulation meaningfully accelerated RHOB expression in both gene and protein levels, and RHOB was a downstream target of miR-197. Overexpression of miR-197 could markedly restrain hsa_circ_0001017-induced RHOB increasing and stifle inhibition of hsa_circ_0001017 to the malignant phenotype of GC cell lines. Next, our results further confirmed that hsa_circ_0001017 increasing notably inhibited tumor growth, impeded miR-197 production, while it enhanced the expression of RHOB in vivo. CONCLUSION Our data demonstrated that upregulation of hsa_circ_0001017 could notably muffle the proliferation as well as the metastasis of GC cell lines and impede the formation of GC tumor via targeting to miR-197/RHOB signaling pathway. Our results evidenced that hsa_circ_0001017 may act as a rising biomarker for GC treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of Oncology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - ChangPing Shan
- Department of Oncology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - JunYe Wang
- Department of Oncology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272000, Shandong, China
| | - ChengJiu Hu
- Department of Pathology, Jining No. 1, People's Hospital, No. 6 Jiankang Road, Jining, 272011, Shandong, China.
| |
Collapse
|
89
|
Zuo J, Chen C, Zhang X, Wu J, Li C, Huang S, He P, Wa Q, Zhang W. Circ_HECW2 regulates LPS-induced apoptosis of chondrocytes via miR-93 methylation. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:943-949. [PMID: 34076365 PMCID: PMC8342212 DOI: 10.1002/iid3.453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Circ_HECW2 plays a key role in lipopolysaccharide (LPS)-induced signal transduction, which is critical in osteoarthritis (OA). Thus, we analyzed the role of Circ_HECW2 in osteoarthritis. METHODS The expression of Circ_HECW2 and miR-93 was examined using reverse-transcription polymerase chain reaction. Cell apoptosis was evaluated using Annexin V-FITC Apoptosis Detection Kit. RESULTS Circ_HECW2 and miR-93 were inversely correlated, with Circ_HECW2 upregulated and miR-93 downregulated in OA and LPS-induced chondrocytes. Circ_HECW2 overexpression inhibited miR-93 expression and increased methylation of miR-93 coding gene. Cell apoptosis analysis showed that Circ_HECW2 overexpression increased LPS-induced chondrocyte apoptosis, while MiR-93 overexpression reversed the effects of Circ_HECW2 on chondrocyte apoptosis. CONCLUSION In summary, our data revealed that the Circ_HECW2 is highly expressed in OA and might inhibit miR-93 expression through methylation to affect LPS-induced chondrocyte apoptosis.
Collapse
Affiliation(s)
- Jianwei Zuo
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chen Chen
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jiangyi Wu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Canfeng Li
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peiheng He
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingde Wa
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Guizhou, China
| | - Wentao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
90
|
Hong X, Li S, Wang J, Zhao Z, Feng Z. Circular RNA circFADS2 is overexpressed in sepsis and suppresses LPS-induced lung cell apoptosis by inhibiting the maturation of miR-15a-5p. BMC Immunol 2021; 22:29. [PMID: 33980140 PMCID: PMC8114495 DOI: 10.1186/s12865-021-00419-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circular RNA circFADS2 plays protective roles in LPS-induced inflammation, which promotes sepsis, suggesting its involvement in sepsis. METHODS Expression of circFADS2, mature miR-15a-5p, and miR-15a-5p precursor in plasma samples from sepsis patients and healthy controls was determined by RT-qPCR. The circFADS2 expression vector was transfected in lung cells, followed by the measurement of the expression levels of mature miR-15a-5p and miR-15a-5p precursor to study the role of circFADS2 in miR-15a-5p maturation. Cell apoptosis was analyzed by cell apoptosis assay. RESULTS CircFADS2 was upregulated in sepsis and inversely correlated with mature miR-15a-5p, but not miR-15a-5p precursor. In lung cells, circFADS2 overexpression decreased the level of mature miR-15a-5p, but not miR-15a-5p precursor. LPS treatment decreased miR-15a-5p expression and increased circFADS2 level. Cell apoptosis analysis showed that circFADS2 overexpression reduced miR-15a-5p overexpression-induced apoptosis of LPS-treated lung cells. CONCLUSIONS CircFADS2 is upregulated in sepsis to suppress LPS-induced lung cell apoptosis by inhibiting miR-15a-5p maturation.
Collapse
Affiliation(s)
- Xiaoyang Hong
- Pediatric Intensive Care Unit, The Seventh Medical Center, PLA General Hospital, No. 5 Nanmencang, Dongshitiao, Dongcheng District, Beijing, 100700, P. R. China
| | - Shuanglei Li
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, 100853, P. R. China
| | - Jie Wang
- Surgical Pediatric Intensive Care Unit, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou City, Henan Province, 450018, P. R. China
| | - Zhe Zhao
- Pediatric Intensive Care Unit, The Seventh Medical Center, PLA General Hospital, No. 5 Nanmencang, Dongshitiao, Dongcheng District, Beijing, 100700, P. R. China
| | - Zhichun Feng
- Pediatric Intensive Care Unit, The Seventh Medical Center, PLA General Hospital, No. 5 Nanmencang, Dongshitiao, Dongcheng District, Beijing, 100700, P. R. China.
| |
Collapse
|
91
|
Khan S, Jha A, Panda AC, Dixit A. Cancer-Associated circRNA-miRNA-mRNA Regulatory Networks: A Meta-Analysis. Front Mol Biosci 2021; 8:671309. [PMID: 34055888 PMCID: PMC8149909 DOI: 10.3389/fmolb.2021.671309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
Recent advances in sequencing technologies and the discovery of non-coding RNAs (ncRNAs) have provided new insights in the molecular pathogenesis of cancers. Several studies have implicated the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and recently discovered circular RNAs (circRNAs) in tumorigenesis and metastasis. Unlike linear RNAs, circRNAs are highly stable and closed-loop RNA molecules. It has been established that circRNAs regulate gene expression by controlling the functions of miRNAs and RNA-binding protein (RBP) or by translating into proteins. The circRNA-miRNA-mRNA regulatory axis is associated with human diseases, such as cancers, Alzheimer's disease, and diabetes. In this study, we explored the interaction among circRNAs, miRNAs, and their target genes in various cancers using state-of-the-art bioinformatics tools. We identified differentially expressed circRNAs, miRNAs, and mRNAs on multiple cancers from publicly available data. Furthermore, we identified many crucial drivers and tumor suppressor genes in the circRNA-miRNA-mRNA regulatory axis in various cancers. Together, this study data provide a deeper understanding of the circRNA-miRNA-mRNA regulatory mechanisms in cancers.
Collapse
Affiliation(s)
- Shaheerah Khan
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Atimukta Jha
- Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | |
Collapse
|
92
|
Liu C, Cheng P, Liang J, Zhao X, Du W. Circular RNA circ_0128846 promotes the progression of osteoarthritis by regulating miR-127-5p/NAMPT axis. J Orthop Surg Res 2021; 16:307. [PMID: 33975612 PMCID: PMC8112058 DOI: 10.1186/s13018-021-02428-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of various diseases, including osteoarthritis (OA). However, the effects and molecular mechanism of circ_0128846 in OA have not been reported. Methods The expression levels of circ_0128846, microRNA-127-5p (miR-127-5p), and nicotinamide phosphoribosyltransferase (NAMPT) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was examined by flow cytometry and western blot assay. Inflammatory response and cartilage extracellular matrix (ECM) degradation were evaluated by western blot assay. The relationship between miR-127-5p and circ_0128846 or NAMPT was predicted by bioinformatics tools and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Results Circ_0128846 and NAMPT were upregulated and miR-127-5p was downregulated in OA cartilage tissues. Knockdown of circ_0128846 increased cell viability and inhibited apoptosis, inflammation and ECM degradation in OA chondrocytes, while these effects were reversed by downregulating miR-127-5p. Moreover, circ_0128846 positively regulated NAMPT expression by sponging miR-127-5p. Furthermore, miR-127-5p promoted cell viability and suppressed apoptosis, inflammation, and ECM degradation in OA chondrocytes by directly targeting NAMPT. Conclusion Circ_0128846 knockdown might inhibit the progression of OA by upregulating miR-127-5p and downregulating NAMPT, offering a new insight into the potential application of circ_0128846 in OA treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02428-z.
Collapse
Affiliation(s)
- Chao Liu
- Department of Emergency, 3201 Hospital, Hanzhong, Shaanxi, China
| | - Ping Cheng
- Department of Emergency, Binzhou People's Hospital, No. 515 Huanghe Seven Road, Bincheng District, Binzhou City, 256610, Shandong Province, China
| | - Jianjun Liang
- Department of Emergency, 3201 Hospital, Hanzhong, Shaanxi, China
| | - Xiaoming Zhao
- Department of Orthopaedics, Baoji Central Hospital, No. 8 Jiangtan Road, Weibin District, Baoji, 721008, Shaanxi Province, China
| | - Wei Du
- Department of Orthopaedics, Baoji Central Hospital, No. 8 Jiangtan Road, Weibin District, Baoji, 721008, Shaanxi Province, China.
| |
Collapse
|
93
|
Xu Y, Li X, Li H, Zhong L, Lin Y, Xie J, Zheng D. Circ_0023404 sponges miR-136 to induce HK-2 cells injury triggered by hypoxia/reoxygenation via up-regulating IL-6R. J Cell Mol Med 2021; 25:4912-4921. [PMID: 33942982 PMCID: PMC8178261 DOI: 10.1111/jcmm.15986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The significance of circular RNAs (circRNAs) is reported in various kidney diseases including acute kidney injury (AKI). Specific circRNAs have the capacity to function as novel indicators of AKI. Circ_0023404 exhibits an important role in several diseases. Nevertheless, the detailed biological role of circ_0023404 in AKI remains poorly known. The present study aimed to investigate the effect of circ_0023404 on renal ischaemia/reperfusion (I/R) injury in vitro. Here, we evaluated the function of circ_0023404 in HK-2 cells in response to hypoxia/reoxygenation (H/R). We established a cell AKI model induced by H/R in HK-2 cells. We found circ_0023404 was significantly increased in AKI. Then, we found loss of circ_0023404 increased cell growth, repressed apoptosis, reduced inflammatory factors secretion and oxidative stress generation in vitro. Besides, circ_0023404 sponged miR-136. miR-136 overturned the effects of circ_0023404 on HK-2 cell injury. We assumed IL-6 receptor (IL-6R) as a target of miR-136 and IL-6R was activated by circ_0023404 via sponging miR-136. In conclusion, we revealed circ_0023404 contributed to HK-2 cells injury stimulated by H/R via sponging miR-136 and activating IL-6R.
Collapse
Affiliation(s)
- Yong Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiang Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lili Zhong
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yongtao Lin
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Juan Xie
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
94
|
Wu Z, Liu B, Ma Y, Chen H, Wu J, Wang J. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol 2021; 99:306-313. [PMID: 32914551 DOI: 10.1111/aos.14585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to determine whether circular RNAs (circRNAs) in whole blood could be served as novel non-invasive biomarkers for proliferative diabetic retinopathy (PDR). METHODS This retrospective cross-sectional study comprised 34 healthy participants, 34 PDR patients and 34 non-proliferative DR (NPDR) patients. High-throughput whole transcriptome sequencing was performed to explore the expression profile of circRNAs in the whole blood, and the candidate circRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) analysis evaluated the ability of these candidate circRNAs in discriminating PDR patients from NPDR patients and healthy subjects. Finally, the networks of circRNA-miRNA-mRNA based on the candidate circRNAs were constructed. RESULTS Using sequencing and qRT-PCR, hsa_circ_0001953 was found to be elevated in PDR patients in contrast with the other two groups. Statistical analysis showed that the expression levels of hsa_circ_0001953 in PDR patients were positively related to the duration of diabetes and HbAc1. Receiver operating characteristic (ROC) curve analysis revealed that hsa_circ_0001953 was associated with a high diagnostic accuracy in discriminating PDR patients from NPDR patients and healthy controls, resulting in an area under the curve (AUC) of 0.87 and 0.92, respectively. The circRNA-miRNA-target gene networks for hsa_circ_0001953 showed that hsa_circ_0001953 could interact with dozens of miRNAs and some targeted mRNAs have been potentially involved in the pathogenesis of diabetes. CONCLUSION The present findings indicate that hsa_circ_0001953 in the whole blood may serve as a novel diagnostic biomarker and potential therapeutic target for PDR.
Collapse
Affiliation(s)
- Zheming Wu
- Guangzhou Aier Eye Hospital Guangzhou China
| | - Bing Liu
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | - Yan Ma
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | | | - Jing Wu
- Department of Pharmacy The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| | - Jiawei Wang
- Department of Ophthalmology The Second Hospital of Shandong University Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
95
|
Bu X, Chen Z, Zhang A, Zhou X, Zhang X, Yuan H, Zhang Y, Yin C, Yan Y. Circular RNA circAFF2 accelerates gastric cancer development by activating miR-6894-5p and regulating ANTXR 1 expression. Clin Res Hepatol Gastroenterol 2021; 45:101671. [PMID: 33722777 DOI: 10.1016/j.clinre.2021.101671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/22/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) contain a new class of non-coding RNAs that play an important role in adjusting biological function and gene expression. But the function of circRNAs in gastric cancer remains unclear. In the present research, we explored the functions of circular RNA AFF2(circAFF2, hsa_circ_0001947) in gastric cancer cells and an animal model of gastric cancer. METHODS The expression of circAFF2, microRNA-6894-5p (miR-6894-5p), and Anthrax toxin receptor 1 (ANTXR 1) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell counting kit 8 (CCK-8) and transwell assays were used to analyze the knockdown effects of circAFF2, miR-6894-5p, and overexpression of ANTXR 1 on cell proliferation, migration, and invasion abilities. Binding interactions between, circAFF2 and miR-6894-5p and between, miR-6894-5p and ANTXR 1 were detected by Dual-luciferase reporter assays. Levels of protein expression were analyzed by Western blotting. Tumor models were established by subcutaneous injection of tumor cells in nude mice. RESULT The result showed that circAFF2 expression was significantly increased in gastric cancer cell lines and tissues. The knockdown of circAFF2 dramatically suppressed the cell migration, invasion and proliferation of gastric cancer cells. In vivo studies showed that knockdown of circAFF2 delayed tumor growth. Furthermore, we revealed that circAFF2 functioned as a sponge to absorb miR-6984-5p and elevated the expression of ANTXR 1. CONCLUSION CircAFF2 acts as an oncogene in gastric cancer and exerts its effects via miR-6894-5p/ANTXR 1 signaling.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China
| | - Zhengwei Chen
- Department of General Surgery, Nanjing Lishui District People's Hospital, Nanjing, Jiangsu 211200, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Anwei Zhang
- Department of General Surgery, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Xiaodong Zhou
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China
| | - Xuanfeng Zhang
- Department of General surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Haitao Yuan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chaoyun Yin
- Department of Vascular surgery, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China
| | - Yulan Yan
- Department of Respiratory medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| |
Collapse
|
96
|
Abstract
Circular RNAs (circRNAs) have recently been identified as a new class of long noncoding RNAs with gene regulatory roles. These covalently closed transcripts are generated when the pre-mRNA splicing machinery back splices to join a downstream 5' splice site to an upstream 3' splice site. CircRNAs are naturally resistant to degradation by exonucleases and have long half-lives compared with their linear counterpart that potentially could serve as biomarkers for disease. Recent evidence highlights that circRNAs may play an essential role in cardiovascular injury and repair. However, our knowledge of circRNA is still in its infancy with limited direct evidence to suggest that circRNA may play critical roles in the mechanism and treatment of cardiac dysfunction. In this review, we focus on our current understanding of circRNA in the cardiovascular system.
Collapse
|
97
|
Qi L, Yan Y, Chen B, Cao J, Liang G, Xu P, Wang Y, Ren Y, Mao G, Huang Z, Xu C, Jiang H. Research progress of circRNA as a biomarker of sepsis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:720. [PMID: 33987418 PMCID: PMC8106021 DOI: 10.21037/atm-21-1247] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective Explore the possibility of circRNAs as markers of sepsis. Background Sepsis is an abnormal immune response of our body to infection that can lead to organ failure and death. Although the research on sepsis has been extensive in the past few years, sepsis-associated morbidity and mortality are still increasing. Early diagnosis and early treatment are important for patients with sepsis. Although many markers, including procalcitonin and C-reactive protein, have been proposed as diagnostic indicators of sepsis, there are still challenges in the early diagnosis and treatment of sepsis due to the lack of sensitivity and specificity of these substances. Recently, a large number of studies have found that circular RNAs (circRNAs) participate in a variety of biological functions, such as immune response, regulating the expression of miRNAs, and they are closely related to the occurrence and development of many diseases, including sepsis. However, the clear mechanism of the role of circRNAs has not been fully elucidated. An increasing number of studies have confirmed that circRNAs have potential in the diagnosis and treatment of sepsis. By studying the regulatory mechanism of circRNAs in sepsis, we can search for new molecular intervention targets for the treatment of sepsis, which is conducive to the development of new molecular therapeutic drugs for sepsis. Methods In the present study, we summarize and analyze the role of circRNAs in the pathogenesis of sepsis and discuss the possibility of circRNA as a biomarker for the diagnosis of sepsis. Conclusions The biological characteristics of circRNAs and their role in the occurrence and development of sepsis make them possible markers of sepsis.
Collapse
Affiliation(s)
- Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Rugao Branch Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Bairong Chen
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Jiling Cao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Pan Xu
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuting Ren
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guomin Mao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng Xu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
98
|
Li R, Deng Y, Liang J, Hu Z, Li X, Liu H, Wang G, Fu B, Zhang T, Zhang Q, Yang Y, Chen G, Liu W. Circular RNA circ-102,166 acts as a sponge of miR-182 and miR-184 to suppress hepatocellular carcinoma proliferation and invasion. Cell Oncol (Dordr) 2021; 44:279-295. [PMID: 33034848 DOI: 10.1007/s13402-020-00564-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Multiple circular RNAs (circRNAs) have been reported to be dysregulated in hepatocellular carcinoma (HCC). However, their functions and modes of action are still largely unclear. Identifying key circRNAs and revealing their potential functions and molecular mechanisms is considered important for improving the diagnosis and treatment of HCC. METHODS Dysregulated circRNAs in HCC were identified through integration of three human HCC circRNAs microarray datasets (GSE94508, GSE97332 and GSE 78520), followed by qRT-PCR validation in primary HCC tissues and cell lines. circRNA characteristics were verified through Sanger sequencing, RNase R treatment, northern blotting and intracellular localization analyses. In addition, circRNA functions in HCC development were assessed using CCK8, colony formation, EDU incorporation, flow cytometry, transwell and scratch wound healing assays in vitro and tumor xenograft assays in vivo. Next, underlying molecular mechanisms in HCC were assessed using dual-luciferase reporter, RNA pull-down, RNA immunoprecipitation and western blotting assays. RESULTS We found that a novel circular RNA, circ-102,166, was down-regulated in HCC and that its expression level was significantly associated with multiple clinicopathologic characteristics, as well as the clinical prognosis of HCC patients. In vitro and in vivo experiments revealed that circ-102,166 overexpression significantly inhibited the proliferation, invasion, migration and tumorigenicity of HCC cells. Furthermore, we found that circ-102,166 can bind to miR-182 and miR-184 to regulate the expression of several of their downstream targets (FOXO3a, MTSS1, SOX7, p-RB and c-MYC). CONCLUSION Our data revealed a tumor-suppressing role of circ-102,166 in HCC. Down-regulation of circ-102,166 enhanced the proliferation and invasion of HCC cells by releasing the oncomiRs miR-182 and miR-184.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine, Guangzhou, 510630, China
| | - Yinan Deng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guoying Wang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Binsheng Fu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tong Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Yang
- Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Organ Transplantation Research Center of Guangdong Province, Guangdong province engineering laboratory for transplantation medicine, Guangzhou, 510630, China.
| |
Collapse
|
99
|
Liu X, Du Z, Yi X, Sheng T, Yuan J, Jia J. Circular RNA circANAPC2 mediates the impairment of endochondral ossification by miR-874-3p/SMAD3 signalling pathway in idiopathic short stature. J Cell Mol Med 2021; 25:3408-3426. [PMID: 33713570 PMCID: PMC8034469 DOI: 10.1111/jcmm.16419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic short stature (ISS) is a main reason for low height among children. Its exact aetiology remains unclear. Recent findings have suggested that the aberrant expression of circRNAs in peripheral blood samples is associated with many diseases. However, to date, the role of aberrant circRNA expression in mediating ISS pathogenesis remains largely unknown. The up-regulated circANAPC2 was identified by circRNA microarray analysis and RT-qPCR. Overexpression of circANAPC2 inhibited the proliferation of human chondrocytes, and cell cycle was arrested in G1 phase. The expressions of collagen type X, RUNX2, OCN and OPN were significantly down-regulated following circANAPC2 overexpression. Moreover, Von Kossa staining intensity and alkaline phosphatase activity were also decreased. Luciferase reporter assay results showed that circANAPC2 could be targeted by miR-874-3p. CircANAPC2 overexpression in human chondrocytes inhibits the expression of miR-874-3p. The co-localization of circANAPC2 and miR-874-3p was confirmed in both human chondrocytes and murine femoral growth plates via in situ hybridization. The rescue experiment demonstrated that the high expression of miR-874-3p overexpression antagonized the suppression of endochondral ossification, hypertrophy and chondrocyte growth caused by circANAPC2 overexpression. A high-throughput screening of mRNA expression and RT-qPCR verified SMAD3 demonstrated the highest different expressions following overcircANAPC2. Luciferase reporter assay results indicated that miR-874-3p could be targeted by Smad3, thus down-regulating the expression of Smad3. Subsequent rescue experiments of SMAD3 further confirmed that circANAPC2 suppresses endochondral ossification, hypertrophy and chondrocyte growth through miR-874-3p/Smad3 axis. The present study provides evidence that circANAPC2 can serve as a promising target for ISS treatment.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Zhi Du
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Xuan Yi
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Tianle Sheng
- Department of Molecular laboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Jinghong Yuan
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Jingyu Jia
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| |
Collapse
|
100
|
Yao MD, Zhu Y, Zhang QY, Zhang HY, Li XM, Jiang Q, Yan B. CircRNA expression profile and functional analysis in retinal ischemia-reperfusion injury. Genomics 2021; 113:1482-1490. [PMID: 33771636 DOI: 10.1016/j.ygeno.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Retinal ischemia-reperfusion (I/R) is involved in the pathogenesis of many vision-threatening diseases. circRNAs act as key players in gene regulation and human diseases. However, the global circRNA expression profile in retinal I/R injury has not been fully uncovered. Herein, we established a murine model of retinal I/R injury and performed circRNA microarrays to identify I/R-related circRNAs. 1265 differentially expressed circRNAs were identified between I/R retinas and normal retinas. Notably, the detection of cWDR37 level in aqueous humor could discriminate glaucoma patients from cataract patients (AUC = 0.9367). cWdr37 silencing protected against hypoxic stress- or oxidative stress-induced retinal ganglion cell (RGC) injury. cWdr37 silencing alleviated IR-induced retinal neurodegeneration as shown by increased NeuN staining, reduced retinal reactive gliosis, and decreased retinal apoptosis. Collectively, this study provides a novel insight into the pathogenesis of retinal I/R injury. cWdr37 is a promising target for the diagnosis or treatment of I/R-related ocular diseases.
Collapse
Affiliation(s)
- Mu-Di Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, China; Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| |
Collapse
|