51
|
Tabebordbar M, Moradi Sarabi M, Vakili S, Zare R, Zal F. Effect of folic acid and vitamin E on promoter DNA methylation and expression of TGF-β1, ESR-1 and CDH-1 in the uterus of STZ-induced diabetic rats. Arch Physiol Biochem 2022; 128:1339-1345. [PMID: 32469605 DOI: 10.1080/13813455.2020.1770798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study is the first attempt made to investigate the effects of diabetes on expression and promoter DNA methylation of TGF-β1, ESR-1, and CDH-1 genes and also the effects of folic acid (FA) and vitamin E (Vit E) supplementations on improving diabetes mellitus. STZ-induced diabetic rats were treated with Vit E (200 mg/kg/day) and FA (25 mg/kg/day) for 8 weeks and expression and DNA methylation of TGF-β1, ESR-1, and CDH-1 genes in uterus were analysed. Data indicated that diabetes increases the expression of TGFβ-1 and ESR-1 and decreases CDH-1 expression and TGFβ-1 promoter methylation in the uterus of rats. Vit E and FA improved the negative effects of diabetes by decreasing the expression of TGFβ-1 and ESR-1 and increasing that of CDH-1 in diabetic rats. In conclusion, these findings emphasise that Vit E and FA supplementations could improve negative effects caused by diabetes on uterus function and fertility in diabetic rats.
Collapse
Affiliation(s)
- Maryam Tabebordbar
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetic, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sina Vakili
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Zare
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
52
|
Chen X, Shi C, Wang Y, Yu H, Zhang Y, Zhang J, Li P, Gao J. The mechanisms of glycolipid metabolism disorder on vascular injury in type 2 diabetes. Front Physiol 2022; 13:952445. [PMID: 36117707 PMCID: PMC9473659 DOI: 10.3389/fphys.2022.952445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with diabetes have severe vascular complications, such as diabetic nephropathy, diabetic retinopathy, cardiovascular disease, and neuropathy. Devastating vascular complications lead to increased mortality, blindness, kidney failure, and decreased overall quality of life in people with type 2 diabetes (T2D). Glycolipid metabolism disorder plays a vital role in the vascular complications of T2D. However, the specific mechanism of action remains to be elucidated. In T2D patients, vascular damage begins to develop before insulin resistance and clinical diagnosis. Endothelial dysregulation is a significant cause of vascular complications and the early event of vascular injury. Hyperglycemia and hyperlipidemia can trigger inflammation and oxidative stress, which impair endothelial function. Furthermore, during the pathogenesis of T2D, epigenetic modifications are aberrant and activate various biological processes, resulting in endothelial dysregulation. In the present review, we provide an overview and discussion of the roles of hyperglycemia- and hyperlipidemia-induced endothelial dysfunction, inflammatory response, oxidative stress, and epigenetic modification in the pathogenesis of T2D. Understanding the connections of glucotoxicity and lipotoxicity with vascular injury may reveal a novel potential therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yu Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiaxuan Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
53
|
Tridax procumbens Ameliorates Streptozotocin-Induced Diabetic Neuropathy in Rats via Modulating Angiogenic, Inflammatory, and Oxidative Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1795405. [PMID: 36091594 PMCID: PMC9451972 DOI: 10.1155/2022/1795405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Tridax procumbens (TP) is a traditional Indian therapeutic plant and was evaluated for its blood glucose lowering abilities, as well as for its ability to curb diabetic neuropathy (DN). Administrating 45 mg/kg body weight of streptozotocin (STZ) intraperitoneally for four weeks, DN was induced in Wistar rats. After the rats' tails were clipped, the blood glucose levels were measured. Body weight and urine volume were also assessed. Oxidative stress makers such as superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS), catalase (CAT), inflammatory cytokines for instance tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were estimated. Further, protein kinase C (PKC-β) and vascular endothelial growth factor (VEGF) were also estimated as angiogenic markers. Behavioral parameters were also evaluated by using cold allodynia using acetone test, hot allodynia using Eddy's hot plate, grip strength test using Rota rod, and hyperalgesia test using Tail flick technique. The statistical assessment of findings was done employing one-way (ANOVA) analysis of variance, and subsequently Turkey as post hoc with GraphPad Prism software package. The ingestion of TP for 1 month in DN rats stemmed in a substantial decline in blood glucose concentrations matched to nontreated rats with DN. There had been a considerable improvement in DN as evident from the finding from biochemical markers. The serum level of antioxidant defense enzymes was significantly increased, while the activities of TBARS had been substantially reduced in the TP treated rats with DN. TP averted DN-triggered surge levels of TNF-α and IL-6 in the serum. Further, PKC-β and VEGF concentrations had been also reduced by the treatment TP. The findings of this research demonstrated that the restorative impact of TP on DN rats might be linked to the anti-inflammatory and antioxidative antiangiogenic retorts.
Collapse
|
54
|
Djelić N, Borozan S, Dimitrijević-Srećković V, Pajović N, Mirilović M, Stopper H, Stanimirović Z. Oxidative Stress and DNA Damage in Peripheral Blood Mononuclear Cells from Normal, Obese, Prediabetic and Diabetic Persons Exposed to Thyroid Hormone In Vitro. Int J Mol Sci 2022; 23:ijms23169072. [PMID: 36012352 PMCID: PMC9409385 DOI: 10.3390/ijms23169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes, a chronic group of medical disorders characterized byhyperglycemia, has become a global pandemic. Some hormones may influence the course and outcome of diabetes, especially if they potentiate the formation of reactive oxygen species (ROS). There is a close relationship between thyroid disorders and diabetes. The main objective of this investigation was to find out whether peripheral blood mononuclear cells (PBMCs) are more prone to DNA damage by triiodothyronine (T3) (0.1, 1 and 10 μM) at various stages of progression through diabetes (obese, prediabetics, and type 2 diabetes mellitus—T2DM persons). In addition, some biochemical parameters of oxidative stress (catalase-CAT, thiobarbituric acid reactive substances—TBARS) and lactate dehydrogenase (LDH) were evaluated. PBMCs from prediabetic and diabetic patients exhibited increased sensitivity for T3 regarding elevated level of DNA damage, inhibition of catalase, and increase of TBARS and LDH. PBMCs from obese patients reacted in the same manner, except for DNA damage. The results of this study should contribute to a better understanding of the role of thyroid hormones in the progression of T2DM.
Collapse
Affiliation(s)
- Ninoslav Djelić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Nevena Pajović
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milorad Mirilović
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
55
|
Lee HY, Lee GH, Hoang TH, Park SA, Lee J, Lim J, Sa S, Kim GE, Han JS, Kim J, Chae HJ. d-Allulose Ameliorates Hyperglycemia Through IRE1α Sulfonation-RIDD- Sirt1 Decay Axis in the Skeletal Muscle. Antioxid Redox Signal 2022; 37:229-245. [PMID: 35166127 DOI: 10.1089/ars.2021.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aims: The skeletal muscle maintains glucose disposal via insulin signaling and glucose transport. The progression of diabetes and insulin resistance is critically influenced by endoplasmic reticulum (ER) stress. d-Allulose, a low-calorie sugar substitute, has shown crucial physiological activities under conditions involving hyperglycemia and insulin resistance. However, the molecular mechanisms of d-allulose in the progression of diabetes have not been fully elucidated. Here, we evaluated the effect of d-allulose on hyperglycemia-associated ER stress responses in human skeletal myoblasts (HSkM) and db/db diabetic and high-fat diet-fed mice. Results: d-allulose effectively controlled glycemic markers such as insulin and hemoglobin A1c (HbA1c), showing anti-diabetic effects by inhibiting the disruption of insulin receptor substrate (IRS)-1 tyrosine phosphorylation and glucose transporter 4 (GLUT4) expression, in which the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved. The levels of glucose dysmetabolism-based NADPH oxidase, such as NADPH-dependent oxidoreductase (Nox) 4, were highly increased, and their interaction with IRE1α and the resultant sulfonation-regulated IRE1-dependent decay (RIDD)-Sirt1 decay were also highly increased under diabetic conditions, which were controlled with d-allulose treatment. Skeletal muscle cells grown with a high glucose medium supplemented with d-allulose showed controlled IRE1α sulfonation-RIDD-Sirt1 decay, in which Nox4 was involved. Innovation and Conclusion: The study observations indicate that d-allulose contributes to the muscular glucose disposal in the diabetic state where ER-localized Nox4-induced IRE1α sulfonation results in the decay of Sirt1, a core factor for controlling glucose metabolism. Antioxid. Redox Signal. 37, 229-245.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, South Korea.,Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seon-Ah Park
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea
| | - Juwon Lee
- School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Junghyun Lim
- School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Soonok Sa
- Food Biotech R&D Center, Samyang Corp., Seongnam-si, South Korea
| | - Go Eun Kim
- Food Biotech R&D Center, Samyang Corp., Seongnam-si, South Korea
| | - Jung Sook Han
- Food Biotech R&D Center, Samyang Corp., Seongnam-si, South Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea.,School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
56
|
The Effect of Wet Cupping (Al-hijamah) and Limonene on Oxidative Stress and Biochemical Parameters in Diabetic Rats. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-122231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: According to the international diabetes federation, 629 million adults will suffer from diabetes by 2045. Wet cupping therapy is a combination of bleeding and dry cupping and has been used in traditional medicine as a complementary therapy for diabetes. Limonene was shown to have both antioxidant and antidiabetic activity but its potential alongside other treatments has not been thoroughly explored. Objectives: Although wet-cupping therapy is widely used under different conditions, its potential in the treatment of diabetes is not well-examined. Methods: Male Wistar rats were then injected with alloxan and nicotinamide to induce diabetes. After cupping, the rats’ serum nitric oxide, creatinine, SGPT, SGOT, cholesterol, triglyceride, glucose, GPX, urea, and HDL levels were determined. The glutathione, catalase, glutathione peroxidase, malondialdehyde, and protein level of the serum, renal, and liver were then measured. Results: The results showed a significant differences in serum glucose levels among the diabetic rats receiving wet cupping and limonene, in serum glutathione levels in diabetic rats receiving limonene or limonene and wet cupping compared to the diabetic rats, in liver GSH levels in control rats receiving limonene and wet cupping, in the liver GPX activity in control rats receiving limonene, and in liver catalase activity in control rats receiving limonene and wet cupping compared to control group. There was no significant change in serum NO, protein, creatinine, SGPT, SGOT, cholesterol, triglyceride MDA, urea, catalase, HDL, renal GSH, MDA, catalase, liver protein, and MDA Level. Conclusions: The findings of the present study suggested that a combination of limonene and wet cupping therapy could be presented as an agent to lower elevated blood glucose levels in diabetic rats. Further clinical studies are required to confirm the findings.
Collapse
|
57
|
Čater M, Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081473. [PMID: 36009191 PMCID: PMC9404801 DOI: 10.3390/antiox11081473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.
Collapse
Affiliation(s)
- Maša Čater
- Correspondence: (M.Č.); (L.K.B.); Tel.: +386-2-2345-847 (L.K.B.)
| | | |
Collapse
|
58
|
Qi B, Ren D, Li T, Niu P, Zhang X, Yang X, Xiao J. Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8274-8287. [PMID: 35767631 DOI: 10.1021/acs.jafc.2c02400] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
59
|
Mashayekh-Amiri S, Mohammad-Alizadeh-Charandabi S, Abdolalipour S, Mirghafourvand M. Myo-inositol supplementation for prevention of gestational diabetes mellitus in overweight and obese pregnant women: a systematic review and meta-analysis. Diabetol Metab Syndr 2022; 14:93. [PMID: 35794663 PMCID: PMC9258131 DOI: 10.1186/s13098-022-00862-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/18/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The prevalence of gestational diabetes mellitus [GDM] and of its most important predisposing factor, i.e. overweight and obesity, have increased dramatically over the past 20 years. Therefore, the aim of this study was to systematically review the articles on the effect of myo-inositol supplementation on the prevention of GDM in pregnant women with overweight and obesity. METHODS We conducted a systematic literature search in electronic database (MEDLINE, Cochrane Library, ClinicalTrials.gov, Embase, ProQuest, PubMed, Google scholar, Scopus, Web of science and forward and backward citations) to identify all randomized controlled trials (RCTs) published until 21 December 2021. Finally, Among the 118 identified records, four studies were eligible and were included in this systematic review. The meta-analysis results were reported in the form of odds ratio (OR) to compare the incidence of GDM and pregnancy outcomes. They were also presented in the form of mean difference (MD) to compare fasting glucose (FG), 1-h and 2-h oral glucose tolerance test (OGTT) levels between the two groups. This study was registered on PROSPERO, number CRD42021290570. RESULTS The results showed that the incidence of GDM was significantly lower in the myo-inositol group (OR 0.32, 95% CI 0.21 to 0.48; P < 0.001; I2 = 0%; Moderate certainty evidence). Moreover, FG-OGTT (MD - 2.64 mg/dl, 95% CI - 4.12 to - 1.17; P < 0.001; I2 = 0%; Moderate certainty evidence), 1-h-OGTT (MD - 7.47 mg/dl, 95% CI - 12.24 to - 2.31; P = 0.005; I2 = 27%; Low certainty evidence) and 2-h-OGTT levels (MD - 10.51 mg/dl, 95% CI - 16.88 to - 4.14; P = 0.001; I2 = 59%; Low certainty evidence) in the myo-inositol group were significantly lower than in the control group. Regarding the pregnancy outcomes, the incidence of gestational hypertension and preterm delivery was significantly lower in the myo-inositol group. However, no between-group difference was observed in the other outcomes. CONCLUSIONS Based on the results, myo-inositol has shown to be a new and safe preventive strategy in reducing the incidence of GDM and in regulating FG and 1-h and 2-h OGTT levels, and also in reducing the incidence of GDM complications such as preterm delivery and gestational hypertension in pregnant women with overweight and obesity.
Collapse
Affiliation(s)
- Sepideh Mashayekh-Amiri
- Department of Midwifery, Faculty of Nursing & Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somaiyeh Abdolalipour
- Department of Midwifery, Faculty of Nursing & Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Department of Midwifery, Faculty of Nursing & Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
- Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Social Determinants of Health Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| |
Collapse
|
60
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
61
|
Zhao L, Zhang CL, He L, Chen Q, Liu L, Kang L, Liu J, Luo JY, Gou L, Qu D, Song W, Lau CW, Ko H, Mok VCT, Tian XY, Wang L, Huang Y. Restoration of Autophagic Flux Improves Endothelial Function in Diabetes Through Lowering Mitochondrial ROS-Mediated eNOS Monomerization. Diabetes 2022; 71:1099-1114. [PMID: 35179568 DOI: 10.2337/db21-0660] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) monomerization and uncoupling play crucial roles in mediating vascular dysfunction in diabetes, although the underlying mechanisms are still incompletely understood. Increasing evidence indicates that autophagic dysregulation is involved in the pathogenesis of diabetic endothelial dysfunction; however, whether autophagy regulates eNOS activity through controlling eNOS monomerization or dimerization remains elusive. In this study, autophagic flux was impaired in the endothelium of diabetic db/db mice and in human endothelial cells exposed to advanced glycation end products or oxidized low-density lipoprotein. Inhibition of autophagic flux by chloroquine or bafilomycin A1 were sufficient to induce eNOS monomerization and lower nitric oxide bioavailability by increasing mitochondrial reactive oxygen species (mtROS). Restoration of autophagic flux by overexpressing transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, decreased endothelial cell oxidative stress, increased eNOS dimerization, and improved endothelium-dependent relaxations (EDRs) in db/db mouse aortas. Inhibition of mammalian target of rapamycin kinase (mTOR) increased TFEB nuclear localization, reduced mtROS accumulation, facilitated eNOS dimerization, and enhanced EDR in db/db mice. Moreover, calorie restriction also increased TFEB expression, improved autophagic flux, and restored EDR in the aortas of db/db mice. Taken together, the findings of this study reveal that mtROS-induced eNOS monomerization is closely associated with the impaired TFEB-autophagic flux axis leading to endothelial dysfunction in diabetic mice.
Collapse
Affiliation(s)
- Lei Zhao
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Lei He
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang-Yun Luo
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingshan Gou
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Qu
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wencong Song
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
62
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
63
|
Dong C, Hu X, Tripathi AS. A brief review of vitamin D as a potential target for the regulation of blood glucose and inflammation in diabetes-associated periodontitis. Mol Cell Biochem 2022; 477:2257-2268. [PMID: 35478388 DOI: 10.1007/s11010-022-04445-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Diabetes is a metabolic disorder associated with various complications, including periodontitis. The risk of periodontitis is increased in patients with diabetes, while vitamin D deficiency is associated with both diabetes and periodontitis. Thus, there is a need to identify the molecular effects of vitamin D on the regulation of inflammation and glucose in diabetes-associated periodontitis. The Web of Science, Scopus, and PubMed databases were searched for studies of the molecular effects of vitamin D. Molecular effects were reportedly mediated by salivary secretions, interactions of advanced glycation end products (AGEs) with receptors of AGEs (RAGEs), cytokines, and oxidative stress pathways linking diabetes with periodontitis. Vitamin D supplementation attenuates inflammation in diabetes-associated periodontitis by reducing the levels of inflammatory cytokines and numbers of immune cells; it also has antibacterial effects. Vitamin D reduces cytokine levels through regulation of the extracellular signal-related kinase 1/2 and Toll-like receptor 1/2 pathways, along with the suppression of interleukin expression. Glucose homeostasis is altered in diabetes either because of reduced insulin production or decreased insulin sensitivity. These vitamin D-related alterations of glucoregulatory factors may contribute to hyperglycaemia; hyperglycaemia may also lead to alterations of glucoregulatory factors. This review discusses the pathways involved in glucose regulation and effects of vitamin D supplementation on glucose regulation. Further studies are needed to characterise the effects of vitamin D on diabetes-associated periodontitis.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China
| | - Xuzhi Hu
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China.
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| |
Collapse
|
64
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
65
|
GABA and Fermented Curcuma longa L. Extract Enriched with GABA Ameliorate Obesity through Nox4-IRE1α Sulfonation-RIDD-SIRT1 Decay Axis in High-Fat Diet-Induced Obese Mice. Nutrients 2022; 14:nu14081680. [PMID: 35458241 PMCID: PMC9031358 DOI: 10.3390/nu14081680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a natural amino acid with antioxidant activity and is often considered to have therapeutic potential against obesity. Obesity has long been linked to ROS and ER stress, but the effect of GABA on the ROS-associated ER stress axis has not been thoroughly explored. Thus, in this study, the effect of GABA and fermented Curcuma longa L. extract enriched with GABA (FCLL-GABA) on the ROS-related ER stress axis and inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) sulfonation were examined with the HFD model to determine the underlying anti-obesity mechanism. Here, GABA and FCLL-GABA supplementations significantly inhibited the weight gain in HFD fed mice. The GABA and FCLL-GABA supplementation lowered the expressions of adipogenic transcription factors such as PPAR-γ, C/EBPα, FAS, and SREBP-1c in white adipose tissue (WAT) and liver from HFD-fed mice. The enhanced hyper-nutrient dysmetabolism-based NADPH oxidase (Nox) 4 and the resultant IRE1α sulfonation-RIDD-SIRT1 decay under HFD conditions were controlled with GABA and FCLL-GABA. Notably, GABA and FCLL-GABA administration significantly increased AMPK and sirtuin 1 (SIRT1) levels in WAT of HFD-fed mice. These significant observations indicate that ER-localized Nox4-induced IRE1α sulfonation results in the decay of SIRT1 as a novel mechanism behind the positive implications of GABA on obesity. Moreover, the investigation lays a firm foundation for the development of FCLL-GABA as a functional ingredient.
Collapse
|
66
|
Andreadi A, Bellia A, Di Daniele N, Meloni M, Lauro R, Della-Morte D, Lauro D. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr Opin Pharmacol 2022; 62:85-96. [PMID: 34959126 DOI: 10.1016/j.coph.2021.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Type 2 Diabetes Mellitus (T2D) is a chronic disease with a pandemic incidence whose pathogenesis has not yet been clarified. Raising evidence highlighted the role of oxidative stress in inducing insulin resistance, pancreatic beta-cell dysfunction, and leading to cardiovascular disease (CVD). Therefore, understanding the link between oxidative stress, T2D and CVD may help to further understand the pathological processes beyond this association, to personalize the algorithm of the cure, and to find new therapeutic targets. Here, we discussed the role of oxidative stress and the decrease of antioxidant defenses in the pathogenesis of T2D. Furthermore, some aspects of hypoglycemic therapies and their potential role as antioxidant agents were examined, which might be pivotal in preventing CVD in T2D patients.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy; San Raffaele Rome Open University, Rome, Italy; Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School, Miami, USA
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
67
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
68
|
Jo YH, Lee S, Yeon SW, Ryu SH, Turk A, Hwang BY, Han YK, Lee KY, Lee MK. Anti-α-glucosidase and anti-oxidative isoflavonoids from the immature fruits of Maclura tricuspidata. PHYTOCHEMISTRY 2022; 194:113016. [PMID: 34794092 DOI: 10.1016/j.phytochem.2021.113016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The composition of a plant, together with its efficacy, vary depending on its maturity and plant parts. In this study, the chemical constituents of immature fruits of Maclura tricuspidata (Moraceae) were investigated together with their anti-diabetic and antioxidant effects. A total of 34 compounds were isolated from the immature fruits of M. tricuspidata using various chromatographic methods. Structure elucidation using extensive spectroscopic analysis led to the characterization of isolated compounds as isoflavonoids with prenyl substituents. Among them, macluraisoflavones A-O were first isolated from nature. The anti-diabetic and antioxidant activity of the isolated compounds were also suggested by α-glucosidase inhibitory activity and DPPH radical scavenging activity, respectively. In particular, macluraisoflavone I, an isoflavonoid with 2,2-dimethylpyran and 2-hydroperoxy-3-methylbut-3-enyl moieties, showed potent α-glucosidase inhibitory activity and DPPH radical scavenging activity. Further molecular docking analysis suggested hydrogen bond and alkyl interactions between α-glucosidase and macluraisoflavone I. Therefore, the immature fruits of M. tricuspidata can be used as an important natural product with antioxidant and anti-diabetic properties.
Collapse
Affiliation(s)
- Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Solip Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Sang Won Yeon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Se Hwan Ryu
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ayman Turk
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong, 47236, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, 47236, Republic of Korea.
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
69
|
Islam M, Olofinsan K, Erukainure O, Msomi N. Senna petersiana inhibits key digestive enzymes and modulates dysfunctional enzyme activities in oxidative pancreatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
70
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2021; 474:63-81. [PMID: 34967935 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
71
|
Iheagwam FN, Batiha GES, Ogunlana OO, Chinedu SN. Terminalia catappa Extract Palliates Redox Imbalance and Inflammation in Diabetic Rats by Upregulating Nrf-2 Gene. Int J Inflam 2021; 2021:9778486. [PMID: 34956587 PMCID: PMC8702315 DOI: 10.1155/2021/9778486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
This study aims at evaluating the ameliorative role of Terminalia catappa aqueous leaf extract (TCA) on hyperglycaemia-induced oxidative stress and inflammation in a high-fat, low dose streptozotocin-induced type 2 diabetic rat model. Experimental rats were treated orally with 400 and 800 mg/kg bw TCA daily for four weeks. Antioxidant enzyme activities, plasma glucose concentration, protein concentration, oxidative stress, and inflammation biomarkers were assayed using standard methods. Hepatic relative expressions of tumour necrosis factor-alpha (TNF-α), interleukin-six (IL-6), and nuclear factor-erythroid 2 related factor 2 (Nrf-2) were also assessed. Molecular docking and prediction of major TCA phytoconstituents' biological activity related to T2DM-induced oxidative stress were evaluated in silico. Induction of diabetes significantly (p < 0.05) reduced superoxide dismutase, glutathione-S-transferase, and peroxidase activities. Glutathione and protein stores were significantly (p < 0.05) depleted, while glucose, MDA, interleukin-six (IL-6), and tumour necrosis factor-α (TNF-α) concentrations were significantly (p < 0.05) increased. A significant (p < 0.05) upregulation of hepatic TNF-α and IL-6 expression and downregulation (p < 0.05) of Nrf-2 expression were observed during diabetes onset. TCA treatment significantly (p < 0.05) modulated systemic diabetic-induced oxidative stress and inflammation, mRNA expression dysregulation, and dysregulated macromolecule metabolism. However, only 800 mg/kg TCA treatment significantly (p < 0.05) downregulated hepatic TNF-α expression. 9-Oxabicyclo[3.3.1]nonane-2,6-diol and 1,2,3-Benzenetriol bound comparably to glibenclamide in Nrf-2, IL-6, and TNF-α binding pockets. They were predicted to be GST A and M substrate, JAK2 expression, ribulose-phosphate 3-epimerase, NADPH peroxidase, and glucose oxidase inhibitors. These results suggest that TCA ameliorates hyperglycaemia-induced oxidative stress and inflammation by activating Nrf-2 gene.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
72
|
Aromatic Constituents from the Leaves of Actinidia arguta with Antioxidant and α-Glucosidase Inhibitory Activity. Antioxidants (Basel) 2021; 10:antiox10121896. [PMID: 34942998 PMCID: PMC8750355 DOI: 10.3390/antiox10121896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
As the leaf of Actinidia arguta has shown antioxidant activity, a study was conducted to identify the active ingredients. Forty-eight compounds were isolated from the leaves of A. arguta through various chromatographic techniques. Further characterization of the structures on the basis of 1D and 2D NMR and MS data identified several aromatic compounds, including phenylpropanoid derivatives, phenolics, coumarins, flavonoids and lignans. Among them, five compounds were newly reported, naturally occurring, and named argutosides A-D (1-4), which consist of phenylpropanoid glycosides that are conjugated with a phenolic moiety, and argutoside E (5), which is a coumarin glycoside that is conjugated with a phenylpropanoid unit. The isolated compounds showed good antioxidant and α-glucosidase inhibitory activity with differences in activity depending on the structures. Molecular docking analysis demonstrated the interaction between the hydroxyl and carbonyl groups of compounds 1 and 5 with α-glucosidase. Taken together, the leaves of A. arguta are rich in aromatic compounds with diverse structures. Therefore, the leaves of A. arguta and their aromatic components might be beneficial for oxidative stress and glucose-related diseases.
Collapse
|
73
|
Huo Y, Mijiti A, Cai R, Gao Z, Aini M, Mijiti A, Wang Z, Qie R. Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice. Hum Exp Toxicol 2021; 40:S460-S474. [PMID: 34610774 DOI: 10.1177/09603271211045948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes is a serious global health concern which severely affected public health as well as socio-economic growth worldwide. Scutellarin (SCU), a bioactive flavonoid, is known for its efficacious action against a range of ailments including cardiovascular problems. The present study was conducted to find out possible protective effect and its associated mechanisms of SCU on experimental type 2 diabetes-induced cardiac injury. METHODS Type 2 diabetes was induced by treating animals with high fat diet for 4 weeks and a single intraperitoneal dose (35 mg/kg body weight) of streptozotocin and diabetic animals received SCU (10 or 20 mg/kg/day) for 6 weeks. RESULTS Scutellarin attenuated type 2 diabetes-induced hyperglycemia, bodyweight loss, hyperlipidaemia, cardiac functional damage with histopathological alterations and fibrosis. Scutellarin treatment to type 2 diabetic mice ameliorated oxidative stress, inflammatory status and apoptosis in heart. Furthermore, the underlying mechanisms for such mitigation of oxidative stress, inflammation and apoptosis in heart involved modulation of Nrf2/Keap1 pathway, TLR4/MyD88/NF-κB mediated inflammatory pathway and intrinsic (mitochondrial) apoptosis pathway, respectively. CONCLUSIONS The current findings suggest that SCU is effective in protecting type 2 diabetes-induced cardiac injury by attenuating oxidative stress and inflammatory responses and apoptosis, and it is also worth considering the efficacious potential of SCU to treat diabetic cardiomyopathy patients.
Collapse
Affiliation(s)
- Yan Huo
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Abudureheman Mijiti
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Ruonan Cai
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Zhaohua Gao
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Maierpu Aini
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Abudukadier Mijiti
- Department of Emergency Medicine, The First People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Zhaoling Wang
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Rui Qie
- Department of Emergency, 118437First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, China
| |
Collapse
|
74
|
Njapndounke B, Dandji Saah MB, Foko Kouam ME, Boungo GT, Ngoufack FZ. Optimum biscuit from Musa sapientum L . and Vigna unguiculata L. composite flour: effect on pancreatic histology, biochemical and hematological parameters of diabetic rats. Heliyon 2021; 7:e07987. [PMID: 34585009 PMCID: PMC8455668 DOI: 10.1016/j.heliyon.2021.e07987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022] Open
Abstract
This study investigated the effect of consumption of an optimum biscuit from composite flour of Musa sapientum L. ('banana cochon') and Vigna unguiculata L. (cowpea) on the pancreatic histology, biochemical and hematological parameters of streptozotocin-induced diabetic Wistar rats. The optimum biscuit was evaluated for its chemical properties and glycaemic index. The weekly fasting blood glucose level, food intake and weight of the rats were recorded. The effect of 28 days' consumption of different percentages of optimum biscuit with/without Metformin was also evaluated on the pancreatic histology, biochemical and hematological parameters of rats. Results showed that, the optimum biscuit is rich in minerals (potassium, magnesium and calcium), dietary fibre (9.4%) and is a low glycaemic index product (50.91%). Also, the optimum biscuit significantly lowered/maintained the blood glucose level of diabetic rats even though the weekly weights of the rats were reduced while food intake increased. Nonetheless, the hematological parameters of the treated diabetic rats were significantly (P < 0.05) improved when compared to the untreated diabetic rats groups. With the exception of total serum protein, other biochemical parameters such as serum creatinine, urea, alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and bilirubin in the treated diabetic groups were significantly (P < 0.05) reduced or closer to those of non-diabetic rats. The serum cholesterol, triglyceride, low-density lipoprotein levels were significantly (p < 0.05) reduced while the HDL level significantly increased in treated diabetic groups. Histological examination of the pancreas showed that treatment of diabetic groups with optimum biscuit was able to slow down the destruction (protection) of beta-cells. Thus, optimum biscuit could be used to improve the health status during the management and prevention of complications in diabetic patients.
Collapse
Affiliation(s)
- Bilkissou Njapndounke
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Marc Bertrand Dandji Saah
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Marius Edith Foko Kouam
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | | | - Francois Zambou Ngoufack
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| |
Collapse
|
75
|
Asenjo-Bueno A, Alcalde-Estévez E, El Assar M, Olmos G, Plaza P, Sosa P, Martínez-Miguel P, Ruiz-Torres MP, López-Ongil S. Hyperphosphatemia-Induced Oxidant/Antioxidant Imbalance Impairs Vascular Relaxation and Induces Inflammation and Fibrosis in Old Mice. Antioxidants (Basel) 2021; 10:antiox10081308. [PMID: 34439556 PMCID: PMC8389342 DOI: 10.3390/antiox10081308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.
Collapse
Affiliation(s)
- Ana Asenjo-Bueno
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Elena Alcalde-Estévez
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, 28905 Madrid, Spain;
| | - Gemma Olmos
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
| | - Patricia Plaza
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
| | - Patricia Sosa
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Patricia Martínez-Miguel
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-91-887-8100 (ext. 2604); Fax: +34-91-882-2674
| |
Collapse
|
76
|
Nie P, Bai X, Lou Y, Zhu Y, Jiang S, Zhang L, Tian N, Luo P, Li B. Human umbilical cord mesenchymal stem cells reduce oxidative damage and apoptosis in diabetic nephropathy by activating Nrf2. Stem Cell Res Ther 2021; 12:450. [PMID: 34380544 PMCID: PMC8356418 DOI: 10.1186/s13287-021-02447-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have a therapeutic effect on diabetic nephropathy (DN) but the underlying mechanism remains unclear. This study was conducted to investigate whether human umbilical cord-MSCs (hUCMSCs) can induce oxidative damage and apoptosis by activating Nrf2. Methods We used a type 2 diabetic rat model and a high-glucose and fat-stimulated human glomerular mesangial cell (hGMC) model. Western blotting, RT-qPCR, and TUNEL staining were performed on animal tissues and cultured cells. Nuclear expression of Nrf2 was detected in the renal tissue. Furthermore, Nrf2 siRNA was used to examine the effects of hUCMSCs on hGMCs. Finally, the effect of hUCMSCs on the Nrf2 upstream signalling pathway was investigated. Results After treatment with hUCMSCs, Nrf2 showed increased expression and nuclear translocation. After Nrf2-specific knockout in hGMCs, the protective effect of hUCMSCs on apoptosis induced by high-glucose and fat conditions was reduced. Activation of the PI3K signalling pathway may be helpful for ameliorating DN using hUCMSCs. Conclusions hUCMSCs attenuated renal oxidative damage and apoptosis in type 2 diabetes mellitus and Nrf2 activation is one of the important mechanisms of this effect. hUCMSCs show potential as drug targets for DN. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02447-x.
Collapse
Affiliation(s)
- Ping Nie
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xue Bai
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yan Lou
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yuexin Zhu
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shan Jiang
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lina Zhang
- Research and Development Department, Jilin Tuohua Biotechnology Co., Ltd., Changchun, Jilin Province, China
| | - Na Tian
- Research and Development Department, Jilin Tuohua Biotechnology Co., Ltd., Changchun, Jilin Province, China
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Bing Li
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
77
|
Li W, Zeng H, Xu M, Huang C, Tao L, Li J, Zhang T, Chen H, Xia J, Li C, Li X. Oleanolic Acid Improves Obesity-Related Inflammation and Insulin Resistance by Regulating Macrophages Activation. Front Pharmacol 2021; 12:697483. [PMID: 34393781 PMCID: PMC8361479 DOI: 10.3389/fphar.2021.697483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
The chronic low-grade inflammation of adipose tissues, primarily mediated by adipose tissue macrophages (ATMs), is the key pathogenic link between obesity and metabolic disorders. Oleanolic acid (OA) is a natural triterpenoid possessing anti-diabetic and anti-inflammation effects, but the machinery is poorly understood. This study investigated the detailed mechanisms of OA on adipose tissue inflammation in obese mice. C57BL/6J mice were fed with high-fat diet (HFD) for 12 weeks, then daily intragastric administrated with vehicle, 25 and 50 mg/kg OA for 4 weeks. Comparing with vehicle, OA administration in obese mice greatly improved insulin resistance, and reduced adipose tissue hypertrophy, ATM infiltration as well as the M1/M2 ratio. The pro-inflammatory markers were significantly down-regulated by OA in both adipose tissue of obese mice and RAW264.7 macrophages treated with interferon gamma/lipopolysaccharide (IFN-γ/LPS). Furthermore, it was found that OA suppressed activation of mitogen-activated protein kinase (MAPK) signaling and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome through decreasing voltage dependent anion channels (VDAC) expression and reactive oxygen species (ROS) production. This is the first report that oleanolic acid exerts its benefits by affecting mitochondrial function and macrophage activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chunli Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
78
|
Das D, Sen S, Sen K. Disparity of selenourea and selenocystine on methaemoglobinemia in non-diabetics and diabetics. J Biochem 2021; 169:371-382. [PMID: 33063115 DOI: 10.1093/jb/mvaa115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/19/2020] [Indexed: 11/13/2022] Open
Abstract
Organoselenium drugs like selenourea (SeU) and selenocystine (SeC) are found to exhibit several medicinal properties and have reported roles in the field of cancer prevention. However, studies related to their interactions with the major erythroid protein, haemoglobin (HbA) are still in dearth despite being of prime importance. In view of this, it was considered essential to investigate the interaction of these two anticancer drugs with Hb. Both the drugs showed significant changes in absorption spectra of Hb at wavelength of maximum absorption (λmax) 630 nm. SeU itself had no effect on the absorbance value at 630 nm with respect to time even with 400 µM concentration. However, it was rapidly converted to nanoselenium in presence of nitrite and there was an increase in the absorbance rate at 630 nm from 3.39 × 10-3 min-1 (without nitrite) to 8.94 × 10-3 min-1 in presence of nitrite (200 µM) owing to the generation of reactive oxygen species in the medium. Although the generation and increase in peak intensity at 630 nm in Hb generally indicates the formation and rise in the levels of methaemoglobin (metHb), nanoselenium was observed to follow a different path. Instead of causing oxidation of Fe2+ to Fe3+ responsible for metHb formation, nanoselenium was found to interact with the protein part, thereby causing changes in its secondary structure which is reflected in the increasing absorbance at 630 nm. SeC, however, showed a different effect. It was shown to act as a novel agent to reduce nitrite-induced metHb formation in a dose-dependent manner. The efficiency of SeC was again found to be less in diabetic blood samples as compared to the non-diabetic ones. For similar ratio of metHb to SeC (1:8), % reduction of metHb was found to be 27.46 ± 0.82 and 16.1 ± 2.4 for non-diabetic and diabetic samples, respectively, with a two tailed P-value much <0.05 which implies that the data are highly significant.
Collapse
Affiliation(s)
- Debashree Das
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata, West Bengal 700009, India
| | - Souvik Sen
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata, West Bengal 700009, India
| |
Collapse
|
79
|
Myoinositol Reduces Inflammation and Oxidative Stress in Human Endothelial Cells Exposed In Vivo to Chronic Hyperglycemia. Nutrients 2021; 13:nu13072210. [PMID: 34199095 PMCID: PMC8308270 DOI: 10.3390/nu13072210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Myo-inositol (Myo) improves insulin resistance, glucose metabolism, and helps gestational diabetes (GDM) management. GDM is associated with a pro-inflammatory state and increased oxidative stress, which are both involved in vascular damage in diabetes. Our aim was to study Myo anti-inflammatory/antioxidant potential effects on an in vitro model of human umbilical vein endothelial cells (HUVECs). To this end, monocyte cell adhesion to HUVECs, adhesion molecule membrane exposure, and oxidative stress levels were determined in cells from control (C-) and GDM women treated during pregnancy either with diet only (GD-) or with diet plus Myo (GD+Myo). To deeply study the vascular effects of Myo, the same evaluations were performed in C- and GD-HUVECs following 48 h in vitro stimulation with Myo. Notably, we first observed that GD-HUVECs obtained from women assuming Myo supplementation exhibited a significantly decreased number of monocytes that adhered to endothelial cells, less adhesion molecule exposure, and lower intracellular reactive oxygen species (ROS) levels in the basal state as compared to GD-HUVECs obtained from women treated by diet only. This Myo anti-inflammatory/antioxidant effect was confirmed by 48 h in vitro stimulation of GD-HUVECs as compared to controls. Altogether, these results strongly suggest that Myo may exert protective actions against chronic inflammation induced by endothelial dysfunction in diabetes.
Collapse
|
80
|
Simó-Servat O, Ramos H, Bogdanov P, García-Ramírez M, Huerta J, Hernández C, Simó R. ERM Complex, a Therapeutic Target for Vascular Leakage Induced by Diabetes. Curr Med Chem 2021; 29:2189-2199. [PMID: 34042029 DOI: 10.2174/0929867328666210526114417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ezrin, radixin, and moesin (the ERM complex) interact directly with membrane proteins regulating their attachment to actin filaments. ERM protein activation modifies cytoskeleton organization and alters the endothelial barrier function, thus favoring vascular leakage. However, little is known regarding the role of ERM proteins in diabetic retinopathy (DR). OBJECTIVE This study aimed to examine whether overexpression of the ERM complex exists in db/db mice and its main regulating factors. METHOD 9 male db/db mice and 9 male db/+ aged 14 weeks were analyzed. ERM proteins were assessed by western blot and by immunohistochemistry. Vascular leakage was determined by the Evans blue method. To assess ERM regulation, HRECs were cultured in a medium containing 5.5 mM D-glucose (mimicking physiological conditions) and 25 mM D-glucose (mimicking hyperglycemia that occurs in diabetic patients). Moreover, treatment with TNF-α, IL-1β, or VEGF was added to a high glucose condition. The expression of ERM proteins was quantified by RT-PCR. Cell permeability was evaluated by measuring movements of FITC-dextran. RESULTS A significant increase of ERM in diabetic mice in comparison with non-diabetic mice was observed. A high glucose condition alone did not have any effect on ERM expression. However, TNF-α and IL-1β induced a significant increase in ERM proteins. CONCLUSIONS The increase of ERM proteins induced by diabetes could be one of the mechanisms involved in vascular leakage and could be considered as a therapeutic target. Moreover, the upregulation of the ERM complex by diabetes is induced by inflammatory mediators rather than by high glucose itself.
Collapse
Affiliation(s)
- Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Marta García-Ramírez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
81
|
MicroRNAs and Oxidative Stress: An Intriguing Crosstalk to Be Exploited in the Management of Type 2 Diabetes. Antioxidants (Basel) 2021; 10:antiox10050802. [PMID: 34069422 PMCID: PMC8159096 DOI: 10.3390/antiox10050802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19-24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.
Collapse
|
82
|
Haile T, Cardoso SM, de Oliveira Raphaelli C, Pereira OR, Pereira EDS, Vizzotto M, Nora L, Asfaw AA, Periasamy G, Karim A. Chemical Composition, Antioxidant Potential, and Blood Glucose Lowering Effect of Aqueous Extract and Essential Oil of Thymus Serrulatus Hochst. Ex Benth. Front Pharmacol 2021; 12:621536. [PMID: 33995021 PMCID: PMC8116798 DOI: 10.3389/fphar.2021.621536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Thymus serrulatus, an endemic plant of Ethiopia, is traditionally used to cure various diseases and as a food ingredient. In the Ethiopian folk medicine, the decoction is orally taken as a remedy to treat diabetes and high blood pressure. The purpose of the present study was to evaluate the antioxidant and antihyperglycemic effects of the aqueous extract and of the essential oil of Thymus serrulatus. The chemical composition of the aqueous extract was determined by LC-MS and the essential oil was characterized by GC-MS analysis. Radical scavenging assays, namely scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH•), hydroxyl (•OH), and nitric oxide (•NO), were used as a first approach to screen the potential antioxidant abilities of the samples. Alpha-amylase and α-glucosidase inhibitory studies were also employed to evaluate the in vitro antihyperglycemic potential of the plant. The in vivo blood glucose lowering effect of the extracts was assessed using hypoglycemic activity and the oral glucose tolerance test in normal and in streptozotocin induced diabetic mice. When compared to the aqueous extract, the essential oil showed superior radical scavenging activity, particularly for •NO, as well as greater inhibitory potency against α-amylase and α-glucosidase (IC50 = 0.01 mg/ml and 0.11 mg/ml, respectively). Both tested samples showed a statistically significant antihyperglycemic effect. The aqueous extract at 600 mg/kg exerted maximum antihyperglycemic activity (44.14%), followed by the essential oil (30.82%). Body weight and glucose tolerance parameters were also improved by the samples both in normal and diabetic mice. The findings of this study support the hypothesis that aqueous extract and essential oil of T. serrulatus are promising therapeutic agents.
Collapse
Affiliation(s)
- Tesfay Haile
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Chirle de Oliveira Raphaelli
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Elisa dos Santos Pereira
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Leonardo Nora
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adissu Alemayehu Asfaw
- Department of Pharmaceutical Analysis and Quality Control, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gomathi Periasamy
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Aman Karim
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
83
|
Helal BAF, Ismail GM, Nassar SE, Zeid AAA. Effect of vitamin D on experimental model of polycystic ovary syndrome in female rats. Life Sci 2021; 283:119558. [PMID: 33930367 DOI: 10.1016/j.lfs.2021.119558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022]
Abstract
AIMS Vitamin D plays an important role in the regulation of ovulatory dysfunction. We aimed to study the effect of vitamin D on letrozole-induced PCOS in female rats. MATERIAL & METHODS 40 non-pregnant Wistar rats were divided into four groups: group I control (received 1 ml of 1% aqueous solution of (CMC)/d orally), group II letrozole-induced PCOS group (received letrozole 200 μg/d orally), group III vitamin D-treated group (received vitamin D 1000 IU/kg/d), group IV letrozole and vitamin D treated group (received letrozole and vitamin D as group II and group III for 90 days. BMI, ovarian weight, serum vitamin D, biochemical metabolic and oxidative stress markers were evaluated, ovarian tissues glutathione, malondialdehyde levels and caspase-3 activity were measured. Histopathological examination of the ovary and coronary artery were done. KEY FINDINGS Letrozole-induced typical PCOS with significant decrease in vitamin D and coronary vasculopathy. Group II shows insignificant change in all parameters but there is significant increase in vitamin D and decrease in triglyceride and glutathione. In group VI all parameters were significantly improved but coronary vasculopathy was partly improved. Vitamin D was significantly negatively correlated with all parameters but significantly positively correlated with estradiol, insulin sensitivity, and HDL and insignificantly correlated with glutathione. Both Insulin resistance and testosterone were significantly positively correlated with all parameters but significantly negatively correlated with estradiol, insulin sensitivity, HDL and glutathione. SIGNIFICANCE These results holding the promise of beneficial impact of vitamin D administration to PCOS and its associated cardiovascular disorders.
Collapse
|
84
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
85
|
Alzahrani S, Said E, Ajwah SM, Alsharif SY, El-Bayoumi KS, Zaitone SA, Qushawy M, Elsherbiny NM. Isoliquiritigenin attenuates inflammation and modulates Nrf2/caspase-3 signalling in STZ-induced aortic injury. J Pharm Pharmacol 2021; 73:193-205. [PMID: 33793806 DOI: 10.1093/jpp/rgaa056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The current study provides evidence on the ameliorative impact of Isoliquiritigenin (ISL), a natural bioflavonoid isolated from licorice roots against diabetes mellitus (DM)-induced aortic injury in rats. METHODS DM was induced in male Sprague-Dawley rats by single I.P. injection of STZ (50 mg/kg). ISL was administrated daily (20 mg/kg, orally) for 8 wks. KEY FINDINGS Diabetic group showed a significant aortic injury with evidence of atherosclerotic lesions development. Daily ISL (20 mg/kg, orally) administration for 8 wks significantly restored aortic oxidative/antioxidative stress homeostasis via modulating NrF-2/Keap-1/HO-1. Moreover, ISL treatment restored aortic levels of IL-10 and dampened aortic levels of IL-6 and TNF-α. Caspase-3 expression significantly declined as well. Further, ISL treatment successfully suppressed aortic endothelin-1 (ET-1) expression and restored NO contents, eNOS immunostaining paralleled with retraction in atherosclerotic lesions development, and lipid deposition with histopathological architectural preservation and restoration of almost normal aortic thickness. CONCLUSION ISL can be proposed to be an effective protective therapy to prevent progression of DM-induced vascular injury and to preserve aortic integrity.
Collapse
Affiliation(s)
- Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sadeem M Ajwah
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sumayyah Y Alsharif
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Khaled S El-Bayoumi
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
86
|
Diez V, Traikov S, Schmeisser K, Adhikari AKD, Kurzchalia TV. Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans. Commun Biol 2021; 4:151. [PMID: 33526793 PMCID: PMC7851149 DOI: 10.1038/s42003-021-01669-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Upon exposure to excessive reactive oxygen species (ROS), organismal survival depends on the strength of the endogenous antioxidant defense barriers that prevent mitochondrial and cellular deterioration. Previously, we showed that glycolic acid can restore the mitochondrial membrane potential of C. elegans treated with paraquat, an oxidant that produces superoxide and other ROS species, including hydrogen peroxide. Here, we demonstrate that glycolate fully suppresses the deleterious effects of peroxide on mitochondrial activity and growth in worms. This endogenous compound acts by entering serine/glycine metabolism. In this way, conversion of glycolate into glycine and serine ameliorates the drastically decreased NADPH/NADP+ and GSH/GSSG ratios induced by H2O2 treatment. Our results reveal the central role of serine/glycine metabolism as a major provider of reducing equivalents to maintain cellular antioxidant systems and the fundamental function of glycolate as a natural antioxidant that improves cell fitness and survival.
Collapse
Affiliation(s)
- Veronica Diez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
87
|
Proença C, Ribeiro D, Freitas M, Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit Rev Food Sci Nutr 2021; 62:3137-3207. [PMID: 33427491 DOI: 10.1080/10408398.2020.1862755] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes (T2D) is one of the most prevalent metabolic diseases worldwide and is characterized by increased postprandial hyperglycemia (PPHG). α-Amylase and α-glucosidase inhibitors have been shown to slow the release of glucose from starch and oligosaccharides, resulting in a delay of glucose absorption and a reduction in postprandial blood glucose levels. Since current α-glucosidase inhibitors used in the management of T2D, such as acarbose, have been associated to strong gastrointestinal side effects, the search for novel and safer drugs is considered a hot topic of research. Flavonoids are phenolic compounds widely distributed in the Plant Kingdom and important components of the human diet. These compounds have shown promising antidiabetic activities, including the inhibition of α-amylase and α-glucosidase. The aim of this review is to provide an overview on the scientific literature concerning the structure-activity relationship of flavonoids in inhibiting α-amylase and α-glucosidase, including their type of inhibition and experimental procedures applied. For this purpose, a total of 500 compounds is covered in this review. Available data may be considered of high value for the design and development of novel flavonoid derivatives with effective and potent inhibitory activity against those carbohydrate-hydrolyzing enzymes, to be possibly used as safer alternatives for the regulation of PPHG in T2D.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
88
|
Barbero-Becerra V, Juárez-Hernández E, Chávez-Tapia NC, Uribe M. Inulin as a Clinical Therapeutic Intervention in Metabolic Associated Fatty Liver Disease. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1867997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit., Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
89
|
Yeoh BS, Omar N, Mohammad M, Mokhtar SS, Ahmad R. Antioxidative Propolis From Stingless Bees (Heterotrigona Itama) Preserves Endothelium-Dependent Aortic Relaxation of Diabetic Rats: The Role of Nitric Oxide and Cyclic Guanosine Monophosphate. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000419187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
90
|
Lee SM, Kim HS, Park HJ, Oh KY, Kim JY, Lee SH, Jang JS, Lee MH. Comparison of Antioxidant Properties of Evening Primrose Seeds by Different Processing Methods, and Physiological Properties of Evening Primrose Seed Powder. Prev Nutr Food Sci 2020; 25:422-431. [PMID: 33505936 PMCID: PMC7813601 DOI: 10.3746/pnf.2020.25.4.422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
This study proposes the processing method that could maximize the functional properties of evening primrose seeds (EPS) and its various nutritional components. EPS can be prepared by different methods, such as being left raw, roasting, steaming, and powdering. Processing of EPS to create EPS powder (EPSP) resulted in higher levels of vitamin E, fatty acids, total phenolic contents, and antioxidant activity, compared with the other processing methods. Also, EPSP maintained lipid peroxidation inhibitory activity for 49 days. In particular, the EPSP ethyl acetate (EtOAc) fraction exhibited high antioxidant, antidiabetic, and angiotensin I-converting enzyme inhibitory activities. The EPSP ethyl acetate fraction showed a high cytoprotective effect against H2O2-induced cell damage in both RAW264.7 and EA.hy926 cells. In addition, the EtOAc fraction showed anti-inflammatory activity by the inhibitory activity of nitric oxide (NO) in RAW264.7 cells, and antihypertensive activity by the activity of NO in EA.hy926 cells. These results suggest that EPSP could be useful as a food ingredient that assists the prevention of various diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Song Min Lee
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Hee Sook Kim
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Hye-Jung Park
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Ka-Yoon Oh
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Ji-Youn Kim
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Sang-Hyeon Lee
- Department of Pharmaceutical Engineering, Silla University, Busan 46958, Korea
| | - Jeong Su Jang
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| | - Mun Hyon Lee
- Food Research Center, Angel Co., Ltd., Busan 46988, Korea
| |
Collapse
|
91
|
Hashemi-Soteh MB, Ahmadzadeh Amiri A, Sheikh Rezaee MR, Ahmadzadeh Amiri A, Ahrari R, Ahmadzadeh Amiri A, Daneshvar F. Evaluation of glutathione S-transferase polymorphism in Iranian patients with type 2 diabetic microangiopathy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00078-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Overproduction of reactive oxygen species as a result of hyperglycemia in diabetes mellitus leads to microvascular complications. Glutathione S-transferases play important detoxifying roles with antioxidant potentials. This study aimed to assess whether the glutathione S-transferase M1 and T1 genotypes were associated with type 2 diabetes mellitus microangiopathic complications in the Iranian population.
Results
In this case-control study, the frequencies of null GSTM1 and GSTT1 genotypes were 4/72 (5.56%) and 12/72 (16.67%) respectively, in uncomplicated DM group. The frequencies of null GSTM1 and GSTT1 genotype in complicated DM group were 16/134 (11.94%) and 37/134 (27.61%), respectively. The proportion of GSTM1 null genotypes was higher in diabetic nephropathy compared to non-nephropathy (19.3% vs. 6.04 %, P = 0.006). At GSTT1 locus, patients with diabetic peripheral neuropathy had a higher frequency of deletion compared to those of without neuropathy (30.39% vs. 23.49%) (P = 0.02).
Conclusion
Selective polymorphisms encoding GSTM1 and GSTT1genes may prove useful as genetic markers to recognize individuals with an increased trend in developing diabetic nephropathy and neuropathy, respectively. This will help better identify individuals at higher risk toward microvascular complications of type 2 diabetes due to genetic susceptibility.
Collapse
|
92
|
Arkali G, Aksakal M, Kaya ŞÖ. Protective effects of carvacrol against diabetes-induced reproductive damage in male rats: Modulation of Nrf2/HO-1 signalling pathway and inhibition of Nf-kB-mediated testicular apoptosis and inflammation. Andrologia 2020; 53:e13899. [PMID: 33242925 DOI: 10.1111/and.13899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus, which causes many complications, also adversely affects reproductive system in men. Studies reported that natural antioxidants are effective in reducing important complication risks caused by diabetes. Carvacrol is an antioxidant phenolic monoterpene compound with therapeutic effect in various diseases found in essential oils of aromatic plants such as pepper, wild bergamot and thyme. We aimed to investigate the effects of carvacrol on diabetes-induced reproductive damage in male rats by evaluating the Nrf2/HO-1 pathway and Nf-kB-mediated apoptosis/inflammation and spermatological parameters. For this purpose, 74 Wistar albino male rats were used. The diabetes model was performed using single-dose intraperitoneal injection of streptozotocin 55 mg/kg. Rats were fed with carvacrol 75 mg/kg/daily/gavage for 4 and 8 weeks. Rats were divided into four groups: control group, diabetic group, carvacrol group which fed with carvacrol and the diabetic group which fed with carvacrol. It was determined that carvacrol significantly decreased malondialdehyde levels, Bax,COX-2,Nf-kB protein expression levels, Bax/Bcl-2 ratio and significantly increased glutathione peroxidase, catalase activities, Bcl-2, Nrf2,HO-1 protein expression levels and it was determined that had a positive effect on spermatological parameters. In conclusion, the negative effects of diabetes in the male reproductive system can be prevented and/or reduced by giving carvacrol.
Collapse
Affiliation(s)
- Gözde Arkali
- Department of Physiology, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| | - Mesut Aksakal
- Department of Physiology, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemınation, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| |
Collapse
|
93
|
Meng T, Qin W, Liu B. SIRT1 Antagonizes Oxidative Stress in Diabetic Vascular Complication. Front Endocrinol (Lausanne) 2020; 11:568861. [PMID: 33304318 PMCID: PMC7701141 DOI: 10.3389/fendo.2020.568861] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic mellitus (DM) is a significant public health concern worldwide with an increased incidence of morbidity and mortality, which is particularly due to the diabetic vascular complications. Several pivotal underlying mechanisms are associated with vascular complications, including hyperglycemia, mitochondrial dysfunction, inflammation, and most importantly, oxidative stress. Oxidative stress triggers defective angiogenesis, activates pro-inflammatory pathways and causes long-lasting epigenetic changes to facilitate the development of vascular complications. Therefore, therapeutic interventions targeting oxidative stress are promising to manage diabetic vascular complications. Sirtuin1 (SIRT1), a class III histone deacetylase belonging to the sirtuin family, plays critical roles in regulating metabolism and ageing-related pathological conditions, such as vascular diseases. Growing evidence has indicated that SIRT1 acts as a sensing regulator in response to oxidative stress and attenuates vascular dysfunction via cooperating with adenosine-monophosphate-activated protein kinase (AMPK) to activate antioxidant signals through various downstream effectors, including peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α), forkhead transcription factors (FOXOs), and peroxisome proliferative-activated receptor α (PPARα). In addition, SIRT1 interacts with hydrogen sulfide (H2S), regulates NADPH oxidase, endothelial NO synthase, and mechanistic target of rapamycin (mTOR) to suppress oxidative stress. Furthermore, mRNA expression of sirt1 is affected by microRNAs in DM. In the current review, we summarize recent advances illustrating the importance of SIRT1 in antagonizing oxidative stress. We also discuss whether modulation of SIRT1 can serve as a therapeutic strategy to treat diabetic vascular complications.
Collapse
Affiliation(s)
- Teng Meng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Weifeng Qin
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
94
|
Association between Iron Intake and Diabetic Peripheral Neuropathy in Type 2 Diabetes: Significance of Iron Intake and the Ratio between Iron Intake and Polyunsaturated Fatty Acids Intake. Nutrients 2020; 12:nu12113365. [PMID: 33139615 PMCID: PMC7693683 DOI: 10.3390/nu12113365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
We aimed to investigate the association of iron and polyunsaturated fatty acid (PUFA) intake with diabetic peripheral neuropathy (DPN) in individuals with type 2 diabetes. This cross-sectional study included 147 individuals with type 2 diabetes. Dietary intake was assessed using three-day food records. DPN was diagnosed on the basis of a Michigan Neuropathy Screening Instrument—Physical Examination score ≥2.5. Adjusted for total energy intake, iron intake was significantly higher in individuals with DPN than in those without DPN (10.9 ± 4.0 mg vs. 9.9 ± 3.6 mg, p = 0.041). In addition, the iron/PUFA ratio was significantly higher in individuals with DPN (1.4 ± 0.8 vs. 1.1 ± 0.4, p = 0.005). Logistic regression analyses showed that iron intake (odds ratio (OR): 1.152; 95% confidence interval (CI): 1.012, 1.311) and iron/PUFA ratio (OR: 2.283; 95% CI: 1.066, 4.887) were associated with DPN after adjustment for total energy intake, sex, age, body mass index, systolic blood pressure, diabetes duration, estimated glomerular filtration rate, glycated hemoglobin, low-density lipoprotein cholesterol, and smoking. In conclusion, high dietary iron intake and an elevated iron/PUFA ratio were associated with the presence of DPN. The present study suggests the importance of the dietary pattern of iron and PUFA intake in individuals with type 2 diabetes.
Collapse
|
95
|
Behar A, Dennouni-Medjati N, Harek Y, Dali-Sahi M, Belhadj M, Meziane FZ. Selenium overexposure induces insulin resistance: In silico study. Diabetes Metab Syndr 2020; 14:1651-1657. [PMID: 32898742 DOI: 10.1016/j.dsx.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Several studies raise concerns about the possible association of high selenium exposure with insulin resistance and type 2 diabetes. This in silico study proposes a possible mechanism of insulin resistance in the case of overexposure to selenium. METHOD A study was carried out using molecular modeling, where cysteines of the insulin-receptor are replaced by selenocysteines. Calculation of the interaction energy of the receptor was performed in both cases with Auto Dock Tools and Vina 4.2 software to predict whether the substitution of amino acid could lead to destabilization of the protein-ligand complex and therefore possibly insulin resistance. Finally, the docked complex was analyzed by using BIOVIA Discovery Studio Visualizer to show the type of interactions between the ligands and insulin-receptor, and to determine the distance of the ligands from the binding site on insulin-receptor. RESULTS The results show that the substitution of cysteine by selenocysteine in the insulin receptor does not lead to stabilization of the complex receptor/insulin, but to its disruption.In addition, the types and the number of bonds between insulin and its receptor in the two cases are different, where 7 strong bonds between insulin and its receptor were found in the case of the cysteine complex compared to 6 weak bonds in the second case. CONCLUSION Findings of this study suggest that misincorporation of selenocysteines in insulin receptor could lead to destabilization of the insulin-receptor complex and therefore may possibly cause an insulin resistance.
Collapse
Affiliation(s)
- Ammaria Behar
- Aboubekr Belkaid University of Tlemcen, Analytical Chemistry and Electrochemistry Laboratory, Tlemcen 13000, Algeria.
| | - Nouria Dennouni-Medjati
- Aboubekr Belkaid University of Tlemcen, Analytical Chemistry and Electrochemistry Laboratory, Tlemcen 13000, Algeria.
| | - Yahia Harek
- Aboubekr Belkaid University of Tlemcen, Analytical Chemistry and Electrochemistry Laboratory, Tlemcen 13000, Algeria.
| | - Majda Dali-Sahi
- Aboubekr Belkaid University of Tlemcen, Analytical Chemistry and Electrochemistry Laboratory, Tlemcen 13000, Algeria.
| | - Moussa Belhadj
- Aboubekr Belkaid University of Tlemcen, Analytical Chemistry and Electrochemistry Laboratory, Tlemcen 13000, Algeria.
| | - Fatima Zahra Meziane
- Aboubekr Belkaid University of Tlemcen, Analytical Chemistry and Electrochemistry Laboratory, Tlemcen 13000, Algeria.
| |
Collapse
|
96
|
Al-Brakati A, Albarakati AJA, Daabo HMA, Baty RS, Salem FEH, Habotta OA, Elmahallawy EK, Abdel-Mohsen DM, Taha H, Akabawy AMA, Kassab RB, Abdel Moneim AE, Amin HK. Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab Brain Dis 2020; 35:1175-1187. [PMID: 32548708 DOI: 10.1007/s11011-020-00583-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is an increasing metabolic disease worldwide associated with central nervous system disorders. Coffee is a widely consumed beverage that enriched with antioxidants with numerous medicinal applications. Accordingly, the present study aimed to investigate the therapeutic potential of orally administered green coffee bean water extract (GCBWE) against cortical damage induced by high fat diet (HFD) followed by a single injection of streptozotocin (STZ) in rats. Metformin (Met) was used as standard antidiabetic drug. Animals were allocated into six groups: control, GCBWE (100 mg/kg), HFD/STZ (40 mg/kg), HFD/STZ + GCBWE (50 mg/kg), HFD/STZ + GCBWE (100 mg/kg) and HFD/STZ + Met (200 mg/kg) which were treated daily for 28 days. Compared to control rats, HFD/STZ-treated rats showed decreased levels of cortical dopamine, norepinephrine and serotonin with marked increases in their metabolites. Further, HFD/STZ treatment resulted in notable elevations in malondialdehyde, protein carbonyl and total nitrite levels paralleled with declines in antioxidant markers (SOD, CAT, GPx, GR and GSH) and down-regulations of Sod2, Cat, GPx1 and Gsr gene expression. Neuroinflammation was evident in diabetic animals by marked elevations in TNF-α, IL-1β and up-regulation of inducible nitric oxide synthase. Significant rises incaspase-3 and Bax with decline in Bcl-2 level were noticed in diabetic rats together with similar results in their gene expressions. Cortical histopathological examination supported the biochemical and molecular findings. GCBWE administration achieved noteworthy neuroprotection in diabetic animals in most assessed parameters. The overall results suggested that antioxidant, anti-inflammatory; anti-apoptotic activities of GCBWE restored the cortical neurochemistry in diabetic rats.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hamid M A Daabo
- Pharmacy Department, Duhok Technical Institute, Duhok Polytechnic University, Duhok, Iraq
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Fatma Elzahraa H Salem
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Doaa M Abdel-Mohsen
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed M A Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Hatim K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
97
|
Suzumura A, Terao R, Kaneko H. Protective Effects and Molecular Signaling of n-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases. Antioxidants (Basel) 2020; 9:E920. [PMID: 32993153 PMCID: PMC7600094 DOI: 10.3390/antiox9100920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation play crucial roles in the development and progression of retinal diseases. Retinal damage by various etiologies can result in retinopathy of prematurity (ROP), diabetic retinopathy (DR), and age-related macular degeneration (AMD). n-3 fatty acids are essential fatty acids and are necessary for homeostasis. They are important retinal membrane components and are involved in energy storage. n-3 fatty acids also have antioxidant and anti-inflammatory properties, and their suppressive effects against ROP, DR, and AMD have been previously evaluated. α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and their metabolites have been shown to alleviate retinal oxidative stress and inflammation involving various biological signaling pathways. In this review, we summarize the current understanding of the n-3 fatty acids effects on the mechanisms of these retinal diseases and how they exert their therapeutic effects, focusing on ALA, EPA, DHA, and their metabolites. This knowledge may provide new remedial strategies for n-3 fatty acids in the prevention and treatment of retinal diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
98
|
Zhang J, Feng H, Lv J, Zhao L, Zhao J, Wang LA. Protective effect of coumarin-pi against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via enhanced Nrf2 signaling. Mol Cell Biochem 2020; 475:277-283. [PMID: 32812103 DOI: 10.1007/s11010-020-03880-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Coumarin-pi, a new coumarin derivative isolated from the mushroom Paxillus involutus, has antioxidative activity, but the underlying mechanism against intracellular oxidative stress is still unclear. This study investigated its cytoprotective effects and the antioxidative mechanism in tert-butyl hydroperoxide (t-BHP)-induced HepG2 cells. The results demonstrated that coumarin-pi suppressed t-BHP-stimulated cytotoxicity, cell apoptosis, and generation of reactive oxygen species (ROS). Additionally, coumarin-pi promoted nuclear factor erythroid 2-related factor 2 (Nrf2) expression and upregulated the protein expression of antioxidantenzymes, including heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidase (NQO1), glutamyl cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase regulatory subunit (GCLM). After coumarin-pi treatment, transcriptome sequencing and bioinformatic analysis revealed that 256 genes were differentially expressed; interestingly, only 20 genes were downregulated, and the rest of the genes were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation were used to identify changes in metabolic pathways. Collectively, the results presented in this study indicate that coumarin-pi has a protective effect against t-BHP-induced cellular damage and oxidative stress.
Collapse
Affiliation(s)
- Jinxiu Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Haiyan Feng
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Jianhua Lv
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Liqiang Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Junxia Zhao
- The Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| | - Li-An Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
99
|
Simó-Servat O, Hernández C, Simó R. The ERM Complex: A New Player Involved in Diabetes-induced Vascular Leakage. Curr Med Chem 2020; 27:3012-3022. [PMID: 30332939 DOI: 10.2174/0929867325666181016162327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microvascular complications remain an important cause of morbidity in diabetic patients, and they are associated with a significant economic burden for healthcare systems. Vascular leakage is one of the earlier hallmarks in diabetic microvascular complications. Ezrin, Radixin and Moesin (ERM) proteins have recently been involved in vascular dysfunction under the effect of molecular mediators of diabetes complications. In this review, we will present the available evidence regarding the role of these proteins in vascular leakage and their putative implication in diabetic microvascular complications. METHODS AND RESULTS A comprehensive literature search of the electronic MEDLINE database was performed between November 2017 and January 2018. As a result, 36 articles have been reviewed and discussed. DISCUSSION ERM proteins are cytoskeleton-membrane linkers, and when activated in endothelial cells are able to induce cytoskeleton reorganization in stress fibers leading to the disassembly of focal adhesions and the formation of paracellular gaps which result in an increase of vascular permeability. The activation of these proteins is induced by mediators involved in diabetic complications such as PKC activation, TNF-α, AGEs and oxidative stress. In conclusion, ERMs play an essential role in endothelium homeostasis and can be envisaged as a new therapeutic molecular target for preventing or arresting diabetes-induced vascular leakage.
Collapse
Affiliation(s)
- Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| |
Collapse
|
100
|
Turpin C, Catan A, Guerin-Dubourg A, Debussche X, Bravo SB, Álvarez E, Van Den Elsen J, Meilhac O, Rondeau P, Bourdon E. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS One 2020; 15:e0235335. [PMID: 32628695 PMCID: PMC7337333 DOI: 10.1371/journal.pone.0235335] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/12/2020] [Indexed: 01/14/2023] Open
Abstract
Diabetes is associated with a dramatic mortality rate due to its vascular complications. Chronic hyperglycemia in diabetes leads to enhanced glycation of erythrocytes and oxidative stress. Even though erythrocytes play a determining role in vascular complications, very little is known about how erythrocyte structure and functionality can be affected by glycation. Our objective was to decipher the impact of glycation on erythrocyte structure, oxidative stress parameters and capacity to interact with cultured human endothelial cells. In vitro glycated erythrocytes were prepared following incubation in the presence of different concentrations of glucose. To get insight into the in vivo relevance of our results, we compared these data to those obtained using red blood cells purified from diabetics or non-diabetics. We measured erythrocyte deformability, susceptibility to hemolysis, reactive oxygen species production and oxidative damage accumulation. Altered structures, redox status and oxidative modifications were increased in glycated erythrocytes. These modifications were associated with reduced antioxidant defence mediated by enzymatic activity. Enhanced erythrocyte phagocytosis by endothelial cells was observed when cultured with glycated erythrocytes, which was associated with increased levels of phosphatidylserine-likely as a result of an eryptosis phenomenon triggered by the hyperglycemic treatment. Most types of oxidative damage identified in in vitro glycated erythrocytes were also observed in red blood cells isolated from diabetics. These results bring new insights into the impact of glycation on erythrocyte structure, oxidative damage and their capacity to interact with endothelial cells, with a possible relevance to diabetes.
Collapse
Affiliation(s)
- Chloé Turpin
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Aurélie Catan
- Centre hospitalier Ouest Réunion, Saint-Paul, France
| | | | - Xavier Debussche
- CHU de La Réunion, Service d'endocrinologie, Saint Denis, France
- Centre d'Investigations Cliniques 1410 INSERM, Reunion University Hospital, Saint-Pierre, Réunion, France
| | - Susana B. Bravo
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, CIBERCV, Madrid, Spain
| | - Ezequiel Álvarez
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, CIBERCV, Madrid, Spain
| | - Jean Van Den Elsen
- Department of Biology and Biochemistry, University of Bath, Claverton Down, United Kingdom
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- Centre hospitalier universitaire de La Réunion, Saint Denis, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- * E-mail: (PR); (EB)
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- * E-mail: (PR); (EB)
| |
Collapse
|