51
|
HDAC Inhibitor Abrogates LTA-Induced PAI-1 Expression in Pleural Mesothelial Cells and Attenuates Experimental Pleural Fibrosis. Pharmaceuticals (Basel) 2021; 14:ph14060585. [PMID: 34207271 PMCID: PMC8234320 DOI: 10.3390/ph14060585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Lipoteichoic acid (LTA) stimulates pleural mesothelial cell (PMC) to overproduce plasminogen activator inhibitor-1 (PAI-1), and thus may promote pleural fibrosis in Gram-positive bacteria (GPB) parapneumonic effusion (PPE). Histone deacetylase inhibitor (HDACi) was found to possess anti-fibrotic properties. However, the effects of HDACi on pleural fibrosis remain unclear. The effusion PAI-1 was measured among 64 patients with GPB PPE. Pleural fibrosis was measured as radiographical residual pleural thickening (RPT) and opacity at a 12-month follow-up. The LTA-stimulated human PMCs and intrapleural doxycycline-injected rats were pretreated with or without the pan-HDACi, m-carboxycinnamic acid bis-hydroxamide (CBHA), then PAI-1 and collagen expression and activated signalings in PMCs, and morphologic pleural changes in rats were measured. Effusion PAI-1 levels were significantly higher in GPB PPE patients with RPT > 10 mm (n = 26) than those without (n = 38), and had positive correlation with pleural fibrosis shadowing. CBHA significantly reduced LTA-induced PAI-1 and collagen expression via inhibition of JNK, and decreased PAI-1 promoter activity and mRNA levels in PMCs. Furthermore, in doxycycline-treated rats, CBHA substantially repressed PAI-1 and collagen synthesis in pleural mesothelium and minimized pleural fibrosis. Conclusively, CBHA abrogates LTA-induced PAI-1 and collagen expression in PMCs and attenuates experimental pleural fibrosis. PAI-1 inhibition by HDACi may confer potential therapy for pleural fibrosis.
Collapse
|
52
|
Peña-Rodríguez M, Vega-Magaña N, García-Benavides L, Zepeda-Nuño JS, Gutierrez-Silerio GY, González-Hernández LA, Andrade-Villanueva JF, Del Toro-Arreola S, Pereira-Suárez AL, Bueno-Topete MR. Butyrate administration strengthens the intestinal epithelium and improves intestinal dysbiosis in a cholestasis fibrosis model. J Appl Microbiol 2021; 132:571-583. [PMID: 33982373 DOI: 10.1111/jam.15135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/17/2021] [Accepted: 05/09/2021] [Indexed: 01/11/2023]
Abstract
AIM Intestinal dysfunction in cirrhosis patients is linked to death by bacterial infections. Currently, there is no effective therapy for this complication. This study aims to evaluate butyrate, a novel postbiotic, on the intestinal inflammatory response, tight junction proteins and the microbiota in the cholestasis model. METHODS AND RESULTS Wistar rats underwent 15 days of bile duct ligation (BDL). We administered butyrate at a concentration of 1%. The BDL group did not receive treatment. The results showed that butyrate could significantly reduce pro-inflammatory cytokines (IL-17A, IFN-γ, TNF-α) in the ileum and colon while promoting IL-10 expression in the colon. Moreover, it significantly promotes tight junction protein (cld-1, occludin and ZO-1) expression in the ileum. A similar effect was observed in the colon except for ZO-1. Additionally, butyrate limited taxa diversity loss and promoted probiotic genera expansion such as Lachnospira, Prevotella and Lactobacillus. The increase in Turicibacter and Clostridiaceae distinguished the BDL group. CONCLUSIONS Butyrate is effective in regulating the inflammatory response, tight junction proteins and limits bacterial diversity loss. SIGNIFICANCE AND IMPACT OF THE STUDY This research reveals that butyrate could represent an interesting postbiotic metabolomic intervention for intestinal epithelium dysfunction in liver disease.
Collapse
Affiliation(s)
- M Peña-Rodríguez
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico Degenerativas, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - N Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Leonel García-Benavides
- Laboratorio de Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J S Zepeda-Nuño
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, Jalisco, México
| | - G Y Gutierrez-Silerio
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico Degenerativas, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - L A González-Hernández
- Unidad de VIH, Antiguo Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Jalisco, México
| | - J F Andrade-Villanueva
- Unidad de VIH, Antiguo Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Jalisco, México
| | - S Del Toro-Arreola
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico Degenerativas, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - A L Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - M R Bueno-Topete
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico Degenerativas, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
53
|
Zhao T, Kee HJ, Bai L, Kim MK, Kee SJ, Jeong MH. Selective HDAC8 Inhibition Attenuates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis via p38 MAPK Pathway. Front Pharmacol 2021; 12:677757. [PMID: 33959033 PMCID: PMC8093872 DOI: 10.3389/fphar.2021.677757] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase (HDAC) expression and enzymatic activity are dysregulated in cardiovascular diseases. Among Class I HDACs, HDAC2 has been reported to play a key role in cardiac hypertrophy; however, the exact function of HDAC8 remains unknown. Here we investigated the role of HDAC8 in cardiac hypertrophy and fibrosis using the isoproterenol-induced cardiac hypertrophy model system.Isoproterenol-infused mice were injected with the HDAC8 selective inhibitor PCI34051 (30 mg kg−1 body weight). Enlarged hearts were assessed by HW/BW ratio, cross-sectional area, and echocardiography. RT-PCR, western blotting, histological analysis, and cell size measurements were performed. To elucidate the role of HDAC8 in cardiac hypertrophy, HDAC8 knockdown and HDAC8 overexpression were also used. Isoproterenol induced HDAC8 mRNA and protein expression in mice and H9c2 cells, while PCI34051 treatment decreased cardiac hypertrophy in isoproterenol-treated mice and H9c2 cells. PCI34051 treatment also reduced the expression of cardiac hypertrophic markers (Nppa, Nppb, and Myh7), transcription factors (Sp1, Gata4, and Gata6), and fibrosis markers (collagen type I, fibronectin, and Ctgf) in isoproterenol-treated mice. HDAC8 overexpression stimulated cardiac hypertrophy in cells, whereas HDAC8 knockdown reversed those effects. HDAC8 selective inhibitor and HDAC8 knockdown reduced the isoproterenol-induced activation of p38 MAPK, whereas HDAC8 overexpression promoted p38 MAPK phosphorylation. Furthermore, p38 MAPK inhibitor SB203580 significantly decreased the levels of p38 MAPK phosphorylation, as well as ANP and BNP protein expression, induced by HDAC8 overexpression.Here we show that inhibition of HDAC8 activity or expression suppresses cardiac hypertrophy and fibrosis. These findings suggest that HDAC8 could be a promising target to treat cardiac hypertrophy and fibrosis by regulating p38 MAPK.
Collapse
Affiliation(s)
- Tingwei Zhao
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Moon-Ki Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
54
|
Rudnik M, Rolski F, Jordan S, Mertelj T, Stellato M, Distler O, Blyszczuk P, Kania G. Regulation of Monocyte Adhesion and Type I Interferon Signaling by CD52 in Patients With Systemic Sclerosis. Arthritis Rheumatol 2021; 73:1720-1730. [PMID: 33760395 DOI: 10.1002/art.41737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by dysregulation of type I interferon (IFN) signaling. CD52 is known for its immunosuppressive functions in T cells. This study was undertaken to investigate the role of CD52 in monocyte adhesion and type I IFN signaling in patients with SSc. METHODS Transcriptome profiles of circulating CD14+ monocytes from patients with limited cutaneous SSc (lcSSc), patients with diffuse cutaneous SSc (dcSSs), and healthy controls were analyzed by RNA sequencing. Levels of CD52, CD11b/integrin αΜ, and CD18/integrin β2 in whole blood were assessed by flow cytometry. CD52 expression was analyzed in relation to disease phenotype (early, lcSSc, dcSSc) and autoantibody profiles. The impact of overexpression, knockdown, and antibody blocking of CD52 was analyzed by gene and protein expression assays and functional assays. RESULTS Pathway enrichment analysis indicated an increase in adhesion- and type I IFN-related genes in monocytes from SSc patients. These cells displayed up-regulated expression of CD11b/CD18, reduced expression of CD52, and enhanced adhesion to intercellular adhesion molecule 1 and endothelial cells. Changes in CD52 expression were consistent with the SSc subtypes, as well as with immunosuppressive treatments, autoantibody profiles, and monocyte adhesion properties in patients with SSc. Overexpression of CD52 led to decreased levels of CD18 and monocyte adhesion, while knockdown of CD52 increased monocyte adhesion. Experiments with the humanized anti-CD52 monoclonal antibody alemtuzumab in blood samples from healthy controls increased monocyte adhesion and CD11b/CD18 expression, and enhanced type I IFN responses. Monocytic CD52 expression was up-regulated by interleukin-4 (IL-4)/IL-13 via the STAT6 pathway, and was down-regulated by lipopolysaccharide and IFNs α, β, and γ in a JAK1 and histone deacetylase IIa (HDAC IIa)-dependent manner. CONCLUSION Down-regulation of the antiadhesion CD52 antigen in CD14+ monocytes represents a novel mechanism in the pathogenesis of SSc. Targeting of the IFN-HDAC-CD52 axis in monocytes might represent a new therapeutic option for patients with early SSc.
Collapse
Affiliation(s)
- Michał Rudnik
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Filip Rolski
- Jagiellonian University Medical College, Krakow, Poland
| | - Suzana Jordan
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tonja Mertelj
- University Hospital Zurich and University of Zurich, Zurich, Switzerland, and University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mara Stellato
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Przemysław Blyszczuk
- University Hospital Zurich and University of Zurich, Zurich, Switzerland, and Jagiellonian University Medical College, Krakow, Poland
| | - Gabriela Kania
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
55
|
Aseem SO, Jalan-Sakrikar N, Chi C, Navarro-Corcuera A, De Assuncao TM, Hamdan FH, Chowdhury S, Banales JM, Johnsen SA, Shah VH, Huebert RC. Epigenomic Evaluation of Cholangiocyte Transforming Growth Factor-β Signaling Identifies a Selective Role for Histone 3 Lysine 9 Acetylation in Biliary Fibrosis. Gastroenterology 2021; 160:889-905.e10. [PMID: 33058867 PMCID: PMC7878301 DOI: 10.1053/j.gastro.2020.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor β (TGFβ) upregulates cholangiocyte-derived signals that activate myofibroblasts and promote fibrosis. Using epigenomic and transcriptomic approaches, we sought to distinguish the epigenetic activation mechanisms downstream of TGFβ that mediate transcription of fibrogenic signals. METHODS Chromatin immunoprecipitation (ChIP)-seq and RNA-seq were performed to assess histone modifications and transcriptional changes following TGFβ stimulation. Histone modifications and acetyltransferase occupancy were confirmed using ChIP assays. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) was used to investigate changes in chromatin accessibility. Cholangiocyte cell lines and primary cholangiocytes were used for in vitro studies. Mdr2-/- and 3,5-diethoxycarboncyl-1,4-dihydrocollidine (DDC)-fed mice were used as animal models. RESULTS TGFβ stimulation caused widespread changes in histone 3 lysine 27 acetylation (H3K27ac), and was associated with global TGFβ-mediated transcription. In contrast, H3K9ac was gained in a smaller group of chromatin sites and was associated with fibrosis pathways. These pathways included overexpression of hepatic stellate cell (HSC) activators such as fibronectin 1 (FN1) and SERPINE1. The promoters of these genes showed H3K9ac enrichment following TGFβ. Of the acetyltransferases responsible for H3K9ac, cholangiocytes predominantly express Lysine Acetyltransferases 2A (KAT2A). Small interfering RNA knockdown of KAT2A or H3K9ac inhibition prevented the TGFβ-mediated increase in FN1 and SERPINE1. SMAD3 ChIP-seq and ATAC-seq suggested that TGFβ-mediated H3K9ac occurs through SMAD signaling, which was confirmed using colocalization and genetic knockdown studies. Pharmacologic inhibition or cholangiocyte-selective deletion of Kat2a was protective in mouse models of biliary fibrosis. CONCLUSIONS Cholangiocyte expression of HSC-activating signals occurs through SMAD-dependent, KAT2A-mediated, H3K9ac, and can be targeted to prevent biliary fibrosis.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Cheng Chi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Amaia Navarro-Corcuera
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Thiago M De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Shiraj Chowdhury
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Steven A Johnsen
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota; Center for Cell Signaling in Gastroenterology Mayo Clinic and Foundation, Rochester, Minnesota
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota; Center for Cell Signaling in Gastroenterology Mayo Clinic and Foundation, Rochester, Minnesota
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota; Center for Cell Signaling in Gastroenterology Mayo Clinic and Foundation, Rochester, Minnesota.
| |
Collapse
|
56
|
P KM, Sivashanmugam K, Kandasamy M, Subbiah R, Ravikumar V. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci 2021; 266:118883. [PMID: 33316266 PMCID: PMC7831549 DOI: 10.1016/j.lfs.2020.118883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread around the world causing global public health emergency. In the last twenty years, we have witnessed several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV), Influenza A virus subtype H1N1 and most recently Middle East respiratory syndrome coronavirus (MERS-CoV). There were tremendous efforts endeavoured globally by scientists to combat these viral diseases and now for SARS-CoV-2. Several drugs such as chloroquine, arbidol, remdesivir, favipiravir and dexamethasone are adopted for use against COVID-19 and currently clinical studies are underway to test their safety and efficacy for treating COVID-19 patients. As per World Health Organization reports, so far more than 16 million people are affected by COVID-19 with a recovery of close to 10 million and deaths at 600,000 globally. SARS-CoV-2 infection is reported to cause extensive pulmonary damages in affected people. Given the large number of recoveries, it is important to follow-up the recovered patients for apparent lung function abnormalities. In this review, we discuss our understanding about the development of long-term pulmonary abnormalities such as lung fibrosis observed in patients recovered from coronavirus infections (SARS-CoV and MERS-CoV) and probable epigenetic therapeutic strategy to prevent the development of similar pulmonary abnormalities in SARS-CoV-2 recovered patients. In this regard, we address the use of U.S. Food and Drug Administration (FDA) approved histone deacetylase (HDAC) inhibitors therapy to manage pulmonary fibrosis and their underlying molecular mechanisms in managing the pathologic processes in COVID-19 recovered patients.
Collapse
Affiliation(s)
- Krishna Murthy P
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| | - Rajasekaran Subbiah
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhauri, Madhya Pradesh, India
| | - Vilwanathan Ravikumar
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
57
|
Hatanaka H, Mukai A, Ito E, Ueno M, Sotozono C, Kinoshita S, Hamuro J. Epigenetic regulation of the epithelial mesenchymal transition induced by synergistic action of TNF-α and TGF-β in retinal pigment epithelial cells. Biochem Biophys Res Commun 2021; 544:31-37. [PMID: 33516879 DOI: 10.1016/j.bbrc.2021.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
To clarify the influence of tumor necrosis factor (TNF)-α on fibrotic phenotypes induced by transforming growth factor (TGF)-β in retinal pigment epithelial cells (RPECs) by epigenetic regulation. Human primary retinal pigment epithelial cells (RPECs including ARPE19) were used in cultures in the presence or absence of TNF-α and/or TGF-β2. RT2 Profiler™ (Qiagen) was used for PCR Array for fibrosis and epithelial mesenchymal transition (EMT). Microarray analysis by 3D gene DNA chip was outsourced to Toray Industries Inc. Quantification of histone acetyl transferase (HAT)-related and histone deacetylase (HDAC) related gene expression were also analyzed. HDAC and HAT activity was measured using an EpiQuik HDAC and HAT Activity/Inhibition Assay Kit (Epigentek). CD44, MMP-9, HAT, and HDAC in RPECs were analyzed by western blotting. Analysis of expression of the EMT/fibrosis related CD44 and MMP-9 phenotypes induced by TNF-α+TGF-β2 revealed four alterations in RPECs: 1) abolition of TGF-β2-induced α-SMA by TNF-α; 2) synergy between TNF-α+TGF-β2 for induction of CD44 and MMP-9 phenotypes 3) no inhibition of HDAC activity by either TNF-α or TGF-β2; and 4) significant inhibition of HAT activity by either TNF-α or TGF-β2, but no synergy. The HDAC activation through HAT inhibition by TNF-α+TGF-β was counteracted by HDAC inhibitors, leading to the inhibition of EMT/fibrosis. EMT/fibrotic CD44 and MMP-9 phenotypes were epigenetically upregulated by concerted action of TNF-α and TGF-β in RPECs. The intervention in epigenetic regulation may hold potential in preventing intraocular proliferative diseases.
Collapse
Affiliation(s)
- Hiroki Hatanaka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Atsushi Mukai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Eiko Ito
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan.
| |
Collapse
|
58
|
Current Therapies in Nephrotic Syndrome: HDAC inhibitors, an Emerging Therapy for Kidney Diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
59
|
Peng Y, Xiong RP, Zhang ZH, Ning YL, Zhao Y, Tan SW, Zhou YG, Li P. Ski promotes proliferation and inhibits apoptosis in fibroblasts under high-glucose conditions via the FoxO1 pathway. Cell Prolif 2020; 54:e12971. [PMID: 33349993 PMCID: PMC7849170 DOI: 10.1111/cpr.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high-glucose (HG) conditions. MATERIALS AND METHODS The proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting. Immunoprecipitation was used to determine the interactions between Ski and FoxO1 or Ski and HDAC1. The Ski protein was overexpressed via recombinant adenovirus transfection, and FoxO1 and HDAC1 were knocked down using targeted small-interfering RNA. RESULTS The present study found that HG inhibited fibroblast proliferation, increased apoptosis and reduced Ski levels in rat primary fibroblasts. Conversely, increasing Ski protein levels alleviated HG-induced proliferation inhibition and apoptosis promotion. Increasing Ski protein levels also increased Ski binding to FoxO1 to decrease FoxO1 acetylation, and interfering with FoxO1 caused loss of the regulatory effect of Ski in fibroblasts under HG. Increasing Ski protein levels decreased FoxO1 acetylation via HDAC1-mediated deacetylation. CONCLUSIONS Therefore, these findings confirmed for the first time that Ski regulated fibroblast proliferation and apoptosis under HG conditions via the FoxO1 pathway.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhuo-Hang Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Si-Wei Tan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
60
|
Claveria-Cabello A, Colyn L, Uriarte I, Latasa MU, Arechederra M, Herranz JM, Alvarez L, Urman JM, Martinez-Chantar ML, Banales JM, Sangro B, Rombouts K, Oyarzabal J, Marin JJG, Berasain C, Avila MA, Fernandez-Barrena MG. Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:3748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
Grants
- PI16/01126, PI16/00598, PI19/00819, PI15/01132, PI18/01075 Instituto de Salud Carlos III (ISCIII) co-financed by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa
- Miguel Servet Program CON14/00129 Instituto de Salud Carlos III (ISCIII) co-financed by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa
- CPII19/00008 Instituto de Salud Carlos III (ISCIII) co-financed by Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa
- Rare Cancers 2017 Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation)
- 58/17 Gobierno de Navarra Salud
- HEPACARE La Caixa Foundation
- 06119JB AMMF
- ESCALON project, grant number H2020-SC1-BHC-2018-2020 Horizon 2020 (H2020)
- EiTB Maratoia : BIO15/CA/016/BD, BIO15/CA/011 BIOEF (Basque Foundation for Innovation and Health Research
- 2017111010 Department of Health of the Basque Country
- 2016222001, 2017222014, 2018222029, 2019222054, 2020333010 Euskadi RIS3
- KK-2020/00008 Elkartek
- SA063P17 Junta de Castilla y Leon
- LCF/PR/HP17/52190004 La Caixa Foundation
- SAF2016-75197-R, SAF2017-88933-R, SAF2017-87301-R, PID2019-104878RB-100, PID2019-104265RB-100 Mineco-Feder
- Ayudas a Equipos de Investigación Científica Umbrella 2018 Fundación BBVA
- Severo Ochoa Excellence Accreditation SEV-2016-0644 MCIU
- Centro Internacional sobre el Envejecimiento MCIU
- OLD-HEPAMARKER, 0348_CIE_6_E Centro Internacional sobre el Envejecimiento
- PC-TCUE18-20_051 University of Salamanca Foundation
- 201916-31 Fundació Marato TV3
- RYC2018-024475-1 Ramón y Cajal Program
Collapse
Affiliation(s)
- Alex Claveria-Cabello
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
| | - Iker Uriarte
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
| | - Maria Ujue Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Jose M. Herranz
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
| | - Laura Alvarez
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
| | - Jesus M. Urman
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Maria L. Martinez-Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jesus M. Banales
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Bruno Sangro
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Hepatology Unit, Department of Internal Medicine, University of Navarra Clinic, 31008 Pamplona, Spain
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK;
| | - Julen Oyarzabal
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Jose J. G. Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Matias A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Maite G. Fernandez-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (I.U.); (M.U.L.); (M.A.); (J.M.H.); (L.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (M.L.M.-C.); (J.M.B.); (B.S.); (J.J.G.M.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| |
Collapse
|
61
|
Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020; 11:607689. [PMID: 33384604 PMCID: PMC7770469 DOI: 10.3389/fphar.2020.607689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Adam Drelich
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Poellmann
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, South Korea
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
62
|
Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding. Biomedicines 2020; 8:biomedicines8120568. [PMID: 33291755 PMCID: PMC7761979 DOI: 10.3390/biomedicines8120568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression.
Collapse
|
63
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|
64
|
Cho MC, Lee J, Son H, Kim SW. Rectification of cavernosal fibrosis and veno-occlusive dysfunction by administration of suberoylanilide hydroxamic acid in a rat model of cavernosal nerve injury: Comparison with a PDE5 inhibitor. Andrology 2020; 9:720-727. [PMID: 33064925 DOI: 10.1111/andr.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cavernosal fibrosis, which is induced by cavernosal nerve (CN) injury and progresses with time, is the main cause of cavernosal veno-occlusive dysfunction (CVOD) after radical prostatectomy. OBJECTIVES To determine whether daily oral administration of suberoylanilide hydroxamic acid (SAHA; vorinostat) for 5-weeks from the immediate post-injury period after CN injury would rectify CVOD by suppressing cavernosal fibrosis and normalizing HDAC pathway in a rat model of CN crush injury (CNCI) and to compare the results with those obtained using chronic administration of PDE5-inhibitors (a positive control). METHODS Fifty-six 12-week-old rats were randomized into the four groups: sham surgery (S), CNCI (I), and CNCI treated with daily administration of 25.0 mg/kg SAHA (V) or 20.0 mg/kg udenafil (P). Group-V and Group-P received the respective treatment for 5-weeks from the following day after CNCI. At 5 weeks after surgery, dynamic infusion cavernosometry (DIC), histological staining, and Western blot analysis were performed. RESULTS Group-I had a significantly decreased papaverine response, higher maintenance rate or drop rate, lower smooth muscle (SM)/collagen ratio, decreased SM content, and increased protein expression of HDAC2, HDAC3, TGF-β1, and collagen-1, compared with Group-S. The three DIC parameters in Group-V and Group-P significantly improved compared to those in Group-I. Except for the maintenance rate, the improvement in papaverine response and drop rate in Group-V was not significantly different from that in Group-P. Group-V and Group-P showed the rectification of SM/collagen ratio and protein expression of TGF-β1 or collagen-1. SM content was improved in Group-P, but not in Group-V. Group-V showed the normalization of protein expression of both HDAC2 and HDAC3, whereas protein expression of only HDAC2 was partially restored in Group-P. DISCUSSION Treatment strategies targeting the HDAC pathway might be helpful to alleviate CVOD induced by CN injury. CONCLUSIONS According to our data, chronic administration of SAHA improves post-injury CVOD by suppressing cavernosal fibrosis via rectifying the HDAC/TGF-β1 pathway in nerve-injured rats, comparable to that with PDE5 inhibitors.
Collapse
Affiliation(s)
- Min Chul Cho
- Department of Urology, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Junghoon Lee
- Department of Urology, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Hwancheol Son
- Department of Urology, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Soo Woong Kim
- Department of Urology, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
65
|
Lee CH, Choi Y, Cho H, Bang IH, Hao L, Lee SO, Jeon R, Bae EJ, Park BH. Histone deacetylase 8 inhibition alleviates cholestatic liver injury and fibrosis. Biochem Pharmacol 2020; 183:114312. [PMID: 33130126 DOI: 10.1016/j.bcp.2020.114312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Cholestasis is a pathological condition involving blockage of bile flow that results in hepatotoxicity, inflammation, and fibrosis. Although recent studies have shown that histone deacetylases (HDACs) are involved in the progression of fibrosis in various organs, the role of HDAC8 on liver fibrosis has until now remained unexplored. This study presents a newly-synthesized, selective HDAC8 inhibitor SPA3014 composed of a vinyl disulfide-sulfoxide core, and evaluates its therapeutic efficacy against cholestatic liver injury and fibrosis in bile duct-ligated (BDL) mice. We first observed the increase in HDAC8 protein levels in mice with BDL and patients with cholestatic liver disease. Mice with BDL that were pretreated with SPA3014 had lower liver damage and fibrosis, based on gross examination, histopathologic findings, and biochemical analyses, than did vehicle-treated mice. Studies with LX-2 human hepatic stellate cells showed that SPA3014 exerted protective effects by inhibiting TGF-β-mediated activation of MAPK-Smad2/3 and JAK2-STAT3 pathways and by upregulating PPARγ expression. Overall, these results strongly suggest that HDAC8 inhibition constitutes a new therapeutic strategy for treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Chang Hun Lee
- Division of Gastroenterology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hyewon Cho
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Lihua Hao
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Seung-Ok Lee
- Division of Gastroenterology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
66
|
Kim TH, Lee HS, Oh SJ, Hwang CW, Jung WK. Phlorotannins ameliorate extracellular matrix production in human vocal fold fibroblasts and prevent vocal fold fibrosis via aerosol inhalation in a laser-induced fibrosis model. J Tissue Eng Regen Med 2020; 14:1918-1928. [PMID: 33049121 DOI: 10.1002/term.3140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Vocal fold fibrosis is an abnormal condition characterized by unfavorable changes in the organization of the extracellular matrix in vocal fold lamina propria. To prevent and treat vocal fold fibrosis, a number of synthetic drugs, such as mitomycin C and the glucocorticoid family, are used after surgery, but these are known to have some side effects. Therefore, using both in vitro and in vivo studies, this study investigated whether phlorotannins extracted from Ecklonia cava have the potential to prevent vocal fold fibrosis with minimal side effects. The results show that phlorotannins suppressed both the expression of the fibrotic phenotypic marker and cell migration by inhibiting the activation of the mitogen-activated protein kinase (MAPK) and Smad2/3 signaling pathways in human vocal fold fibroblasts stimulated by transforming growth factor-β. Additionally, phlorotannins exhibited antifibrotic efficacy without an excessive inflammatory response in a laser-induced fibrosis rabbit model when delivered as an aerosol via inhalation. Based on these results, phlorotannins should be considered a promising candidate for use in the prevention of vocal fold fibrosis.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Sun-Ju Oh
- Department of Pathology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Chi-Woo Hwang
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
67
|
Xia C, Tao Y, Li M, Che T, Qu J. Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Exp Ther Med 2020; 20:2923-2940. [PMID: 32855658 PMCID: PMC7444376 DOI: 10.3892/etm.2020.9073] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells primarily rely on proteins to perform the majority of their physiological functions, and the function of proteins is regulated by post-translational modifications (PTMs). The acetylation of proteins is a dynamic and highly specific PTM, which has an important influence on the functions of proteins, such as gene transcription and signal transduction. The acetylation of proteins is primarily dependent on lysine acetyltransferases and lysine deacetylases. In recent years, due to the widespread use of mass spectrometry and the emergence of new technologies, such as protein chips, studies on protein acetylation have been further developed. Compared with histone acetylation, acetylation of non-histone proteins has gradually become the focus of research due to its important regulatory mechanisms and wide range of applications. The discovery of specific protein acetylation sites using bioinformatic tools can greatly aid the understanding of the underlying mechanisms of protein acetylation involved in related physiological and pathological processes.
Collapse
Affiliation(s)
- Can Xia
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Tao
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Mingshan Li
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Jing Qu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
68
|
Zhang B, Zhang Q, Liu Z, Wang N, Jin H, Liu F, Zhang C, He S. Synthesis and Anticancer Research of
N
‐(2‐aminophenyl)benzamide Acridine Derivatives as Dual Topoisomerase I and Isoform‐Selective HDAC Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202001880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bin Zhang
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Qiting Zhang
- Institute of Drug Discovery Technology Ningbo University Ningbo Zhejiang 315211 China
| | - Zedong Liu
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| | - Ning Wang
- Institute of Drug Discovery Technology Ningbo University Ningbo Zhejiang 315211 China
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Haixiao Jin
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Cunlong Zhang
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Shan He
- College of Food and Pharmaceutical Sciences Ningbo University Ningbo Zhejiang 315211 China
| |
Collapse
|
69
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
70
|
Konikov-Rozenman J, Breuer R, Kaminski N, Wallach-Dayan SB. CMH-Small Molecule Docks into SIRT1, Elicits Human IPF-Lung Fibroblast Cell Death, Inhibits Ku70-deacetylation, FLIP and Experimental Pulmonary Fibrosis. Biomolecules 2020; 10:biom10070997. [PMID: 32630842 PMCID: PMC7408087 DOI: 10.3390/biom10070997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Regenerative capacity in vital organs is limited by fibrosis propensity. Idiopathic pulmonary fibrosis (IPF), a progressive lung disease linked with aging, is a classic example. In this study, we show that in flow cytometry, immunoblots (IB) and in lung sections, FLIP levels can be regulated, in vivo and in vitro, through SIRT1 activity inhibition by CMH (4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide), a small molecule that, as we determined here by structural biology calculations, docked into its nonhistone substrate Ku70-binding site. Ku70 immunoprecipitations and immunoblots confirmed our theory that Ku70-deacetylation, Ku70/FLIP complex, myofibroblast resistance to apoptosis, cell survival, and lung fibrosis in bleomycin-treated mice, are reduced and regulated by CMH. Thus, small molecules associated with SIRT1-mediated regulation of Ku70 deacetylation, affecting FLIP stabilization in fibrotic-lung myofibroblasts, may be a useful strategy, enabling tissue regeneration.
Collapse
Affiliation(s)
- Jenya Konikov-Rozenman
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah–Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.-R.); (R.B.)
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah–Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.-R.); (R.B.)
- Department of Pathology and Laboratory Medicine, 670 Albany St, 4th Floor, Boston University School of Medicine, Boston, MA 02118, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, POB 208057, 300 Cedar Street TAC-441 South, New Haven, CT 06520-8057, USA;
| | - Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah–Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.-R.); (R.B.)
- Correspondence: ; Tel.: +972-2-6776622
| |
Collapse
|
71
|
Ji T, Feng W, Zhang X, Zang K, Zhu X, Shang F. HDAC inhibitors promote pancreatic stellate cell apoptosis and relieve pancreatic fibrosis by upregulating miR-15/16 in chronic pancreatitis. Hum Cell 2020; 33:1006-1016. [PMID: 32524326 PMCID: PMC7505886 DOI: 10.1007/s13577-020-00387-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
In chronic pancreatitis, PSCs are activated by proinflammatory cytokines to induce pancreatic fibrogenesis. HDAC inhibition protected against the pancreatic fibrosis and the apoptosis of PSCs through induced apoptosis and depressed inflammation. In our study, we found that miR-15 and miR-16 decreased significantly in chronic pancreatitis and HDAC inhibition could recover the levels of these two miRNAs. HDAC regulated the transcription of miR-15 and miR-16, which then modulate the apoptosis and fibrosis of PSCs. And we proved that Bcl-2 and Smad5 were the target genes of miR-15 and miR-16, which illustrated how HDAC inhibition alleviated the apoptosis and fibrogenesis of PSCs in chronic pancreatitis. These results suggested that HDAC inhibition protects against CP by promoting apoptosis and TGF-β/Smads signaling pathways, and indicated that HDAC inhibition is a potential therapy to alleviate CP patients in clinic, and these need to be explored further.
Collapse
Affiliation(s)
- Ting Ji
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Weiguang Feng
- Intensive Care Unit, Huai'an No 4 People's Hospital, 128 Yan'an East Road, Qingjiangpu District, Huai'an, 223002, Jiangsu, China
| | - Xiangcheng Zhang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Kui Zang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xingxing Zhu
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Futai Shang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
72
|
Suh SH, Choi HS, Kim CS, Kim IJ, Cha H, Cho JM, Ma SK, Kim SW, Bae EH. CG200745, a Novel HDAC Inhibitor, Attenuates Kidney Fibrosis in a Murine Model of Alport Syndrome. Int J Mol Sci 2020; 21:ijms21041473. [PMID: 32098220 PMCID: PMC7073208 DOI: 10.3390/ijms21041473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases have been a target of therapy for organ fibrosis. Here, we report the protective effect of CG200745 (CG), a novel histone deacetylase inhibitor, on tubulointerstitial fibrosis in Col4a3-/- mice, a murine model of Alport syndrome. Morphological analyses revealed CG treatment markedly alleviated kidney fibrosis in Col4a3-/- mice at the age of 7 weeks. CG prevented the activation of transforming growth factor β (TGFβ) and its downstream SMAD signaling in the kidney of Col4a3-/- mice. As critical upstream regulators of TGFβ signaling, immunoblotting of whole kidney lysate of Col4a3-/- mice reveled that intra-renal renin-angiotensin system (RAS) was activated with concurrent upregulation of inflammation and apoptosis, which were effectively suppressed by CG treatment. CG suppressed both activation of RAS and up-regulation of TGFβ signals in angiotensin II-stimulated HK-2 cells, a human kidney proximal tubular epithelial cell line. CG inhibited activation of TGFβ-driven signals and fibrosis in NRK-49F cells, a rat kidney fibroblast cell line, under angiotensin II-rich conditions. Collectively, CG was found to be effective both in proximal tubular epithelial cells by inhibiting local RAS and TGFβ signaling activation, as well as in fibroblasts by blocking their transition to myofibroblasts, attenuating renal fibrosis in a murine model of Alport syndrome.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
| | - Hyunju Cha
- Crystal Genomics, Inc., 5 F, Bldg A, Korea Bio Park, Seongnam 13488, Korea; (H.C.); (J.M.C.)
| | - Joong Myung Cho
- Crystal Genomics, Inc., 5 F, Bldg A, Korea Bio Park, Seongnam 13488, Korea; (H.C.); (J.M.C.)
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (S.W.K.); (E.H.B.); Tel.: +82-62-220-6503 (S.W.K. & E.H.B.)
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.S.); (H.S.C.); (C.S.K.); (I.J.K.); (S.K.M.)
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (S.W.K.); (E.H.B.); Tel.: +82-62-220-6503 (S.W.K. & E.H.B.)
| |
Collapse
|
73
|
Ziegler N, Raichur S, Brunner B, Hemmann U, Stolte M, Schwahn U, Prochnow HP, Metz-Weidmann C, Tennagels N, Margerie D, Wohlfart P, Bielohuby M. Liver-Specific Knockdown of Class IIa HDACs Has Limited Efficacy on Glucose Metabolism but Entails Severe Organ Side Effects in Mice. Front Endocrinol (Lausanne) 2020; 11:598. [PMID: 32982982 PMCID: PMC7485437 DOI: 10.3389/fendo.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of epigenetic gene modification that are involved in the transcriptional control of metabolism. In particular class IIa HDACs have been shown to affect hepatic gluconeogenesis and previous approaches revealed that their inhibition reduces blood glucose in type 2 diabetic mice. In the present study, we aimed to evaluate the potential of class IIa HDAC inhibition as a therapeutic opportunity for the treatment +of metabolic diseases. For that, siRNAs selectively targeting HDAC4, 5 and 7 were selected and used to achieve a combinatorial knockdown of these three class IIa HDAC isoforms. Subsequently, the hepatocellular effects as well as the impact on glucose and lipid metabolism were analyzed in vitro and in vivo. The triple knockdown resulted in a statistically significant decrease of gluconeogenic gene expression in murine and human hepatocyte cell models. A similar HDAC-induced downregulation of hepatic gluconeogenesis genes could be achieved in mice using a liver-specific lipid nanoparticle siRNA formulation. However, the efficacy on whole body glucose metabolism assessed by pyruvate-tolerance tests were only limited and did not outweigh the safety findings observed by histopathological analysis in spleen and kidney. Mechanistically, Affymetrix gene expression studies provide evidence that class IIa HDACs directly target other key factors beyond the described forkhead box (FOXP) transcription regulators, such as hepatocyte nuclear factor 4 alpha (HNF4a). Downstream of these factors several additional pathways were regulated not merely including glucose and lipid metabolism and transport. In conclusion, the liver-directed combinatorial knockdown of HDAC4, 5 and 7 by therapeutic siRNAs affected multiple pathways in vitro, leading in vivo to the downregulation of genes involved in gluconeogenesis. However, the effects on gene expression level were not paralleled by a significant reduction of gluconeogenesis in mice. Combined knockdown of HDAC isoforms was associated with severe adverse effects in vivo, challenging this approach as a treatment option for chronic metabolic disorders like type 2 diabetes.
Collapse
|
74
|
Chellini F, Tani A, Vallone L, Nosi D, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma and Bone Marrow-Derived Mesenchymal Stromal Cells Prevent TGF-β1-Induced Myofibroblast Generation but Are Not Synergistic when Combined: Morphological in vitro Analysis. Cells Tissues Organs 2019; 206:283-295. [PMID: 31382258 DOI: 10.1159/000501499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
The persistence of activated myofibroblasts is a hallmark of fibrosis of many organs. Thus, the modulation of the generation/functionality of these cells may represent a strategical anti-fibrotic therapeutic option. Bone marrow-derived mesenchymal stromal cell (MSC)-based therapy has shown promising clues, but some criticisms still limit the clinical use of these cells, including the need to avoid xenogeneic compound contamination for ex vivo cell amplification and the identification of appropriate growth factors acting as a pre-conditioning agent and/or cell delivery vehicle during transplantation, thus enabling the improvement of cell survival in the host tissue microenvironment. Many studies have demonstrated the ability of platelet-rich plasma (PRP), a source of many biologically active molecules, to positively influence MSC proliferation, survival, and functionality, as well as its anti-fibrotic potential. Here we investigated the effects of PRP, murine and human bone marrow-derived MSCs, and of the combined treatment PRP/MSCs on in vitro differentiation of murine NIH/3T3 and human HDFα fibroblasts to myofibroblasts induced by transforming growth factor (TGF)-β1, a well-known pro-fibrotic agent. The myofibroblastic phenotype was evaluated morphologically (cell shape and actin cytoskeleton assembly) and immunocytochemically (vinculin-rich focal adhesion clustering, α-smooth muscle actin and type-1 collagen expression). We found that PRP and MSCs, both as single treatments and in combination, were able to prevent the TGF-β1-induced fibroblast-myofibroblast transition. Unexpectedly, the combination PRP/MSCs had no synergistic effects. In conclusion, within the limitations related to an in vitro experimentation, our study may contribute to providing an experimental background for supporting the anti-fibrotic potential of the combination PRP/MSCs which, once translated "from bench to bedside," could potentially offer advantages over the single treatments.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Larissa Vallone
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy,
| |
Collapse
|
75
|
Tang X, Tian J, Xie L, Ji Y. γ-catenin alleviates cardiac fibrosis through inhibiting phosphorylation of GSK-3β. J Biomed Res 2019; 0:1-9. [PMID: 31741464 DOI: 10.7555/jbr.33.20190070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cardiac fibrosis is a common pathological change of many cardiovascular diseases. β-catenin has been shown to promote fibrosis. However, the precise role of its homolog γ-catenin in the process of fibrosis remains largely unclear. In this study, we found that the expression of γ-catenin was significantly decreased in angiotensin Ⅱ (Ang Ⅱ)-induced cardiac fibrosis model, contrary to most reports of β-catenin. Overexpression of γ-catenin in cardiac fibroblasts (CFs) significantly inhibited the expression of α-smooth muscle actin (α-SMA), whereas knocking down the expression of γ-catenin with siRNA promoted the occurrence of cardiac fibrosis. Mechanistically, γ-catenin could bind to GSK-3β to inhibit the phosphorylation of GSK-3β, therefore preventing cardiac fibrosis. Our study shows that γ-catenin is an important protective factor in cardiac fibrosis, which provides a new potential target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaxin Tian
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention and Cardiovascular Disease, Collaborative InnovationCenter for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
76
|
Juanola O, Ferrusquía-Acosta J, García-Villalba R, Zapater P, Magaz M, Marín A, Olivas P, Baiges A, Bellot P, Turon F, Hernández-Gea V, González-Navajas JM, Tomás-Barberán FA, García-Pagán JC, Francés R. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis. FASEB J 2019; 33:11595-11605. [PMID: 31345057 DOI: 10.1096/fj.201901327r] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Short-chain fatty acids (SCFAs) are gut microbiota-derived products that participate in maintaining the gut barrier integrity and host's immune response. We hypothesize that reduced SCFA levels are associated with systemic inflammation, endotoxemia, and more severe hemodynamic alterations in cirrhosis. Patients with cirrhosis referred for a hepatic venous pressure gradient (HVPG) measurement (n = 62) or a transjugular intrahepatic portosystemic shunt placement (n = 12) were included. SCFAs were measured in portal (when available), hepatic, and peripheral blood samples by GC-MS. Serum endotoxins, proinflammatory cytokines, and NO levels were quantified. SCFA levels were significantly higher in portal vs. hepatic and peripheral blood. There were inverse relationships between SCFAs and the severity of disease. SCFAs (mainly butyric acid) inversely correlated with the model for end-stage liver disease score and were further reduced in patients with history of ascites, hepatic encephalopathy, and spontaneous bacterial peritonitis. There was an inverse relationship between butyric acid and HVPG values. SCFAs were directly related with systemic vascular resistance and inversely with cardiac index. Butyric acid inversely correlated with inflammatory markers and serum endotoxin. A global reduction in the blood levels of SCFA in patients with cirrhosis is associated with a more advanced liver disease, suggesting its contribution to disease progression.-Juanola, O., Ferrusquía-Acosta, J., García-Villalba, R., Zapater, P., Magaz, M., Marín, A., Olivas, P., Baiges, A., Bellot, P., Turon, F., Hernández-Gea, V., González-Navajas, J. M., Tomás-Barberán, F. A., García-Pagán, J. C., Francés, R. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis.
Collapse
Affiliation(s)
- Oriol Juanola
- Departamento Medicina Clínica, Grupo de Inmunobiología Hepática e Intestinal, Universidad Miguel Hernández, San Juan de Alicante, Spain.,El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Alicante, Alicante, Spain
| | - José Ferrusquía-Acosta
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío García-Villalba
- Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Pedro Zapater
- Departamento Medicina Clínica, Grupo de Inmunobiología Hepática e Intestinal, Universidad Miguel Hernández, San Juan de Alicante, Spain.,El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Alicante, Alicante, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Magaz
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Marín
- Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Pol Olivas
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Baiges
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Bellot
- El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Alicante, Alicante, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fanny Turon
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Virginia Hernández-Gea
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José M González-Navajas
- El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Alicante, Alicante, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco A Tomás-Barberán
- Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Juan C García-Pagán
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Francés
- Departamento Medicina Clínica, Grupo de Inmunobiología Hepática e Intestinal, Universidad Miguel Hernández, San Juan de Alicante, Spain.,El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Alicante, Alicante, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|