51
|
Organokines in Rheumatoid Arthritis: A Critical Review. Int J Mol Sci 2022; 23:ijms23116193. [PMID: 35682868 PMCID: PMC9180954 DOI: 10.3390/ijms23116193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. Organokines can produce beneficial or harmful effects in this condition. Among RA patients, organokines have been associated with increased inflammation and cartilage degradation due to augmented cytokines and metalloproteinases production, respectively. This study aimed to perform a review to investigate the role of adipokines, osteokines, myokines, and hepatokines on RA progression. PubMed, Embase, Google Scholar, and Cochrane were searched, and 18 studies were selected, comprising more than 17,000 RA patients. Changes in the pattern of organokines secretion were identified, and these could directly or indirectly contribute to aggravating RA, promoting articular alterations, and predicting the disease activity. In addition, organokines have been implicated in higher radiographic damage, immune dysregulation, and angiogenesis. These can also act as RA potent regulators of cells proliferation, differentiation, and apoptosis, controlling osteoclasts, chondrocytes, and fibroblasts as well as immune cells chemotaxis to RA sites. Although much is already known, much more is still unknown, principally about the roles of organokines in the occurrence of RA extra-articular manifestations.
Collapse
|
52
|
Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep 2022; 49:4013-4024. [PMID: 35067816 PMCID: PMC8784222 DOI: 10.1007/s11033-021-07109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Accumulating molecular evidence suggests that insulin resistance, rather than SARS-CoV-2- provoked beta-cell impairment, plays a major role in the observed rapid metabolic deterioration in diabetes, or new-onset hyperglycemia, during the COVID-19 clinical course. In order to clarify the underlying complexity of COVID-19 and diabetes mellitus interactions, we propose the imaginary diabetes-COVID-19 molecular tetrahedron with four lateral faces consisting of SARS-CoV-2 entry via ACE2 (lateral face 1), the viral hijacking and replication (lateral face 2), acute inflammatory responses (lateral face 3), and the resulting insulin resistance (lateral face 4). The entrance of SARS-CoV-2 using ACE2 receptor triggers an array of multiple molecular signaling beyond that of the angiotensin II/ACE2-Ang-(1-7) axis, such as down-regulation of PGC-1 α/irisin, increased SREBP-1c activity, upregulation of CD36 and Sirt1 inhibition leading to insulin resistance. In another arm of the molecular cascade, the SARS-CoV-2 hijacking and replication induces a series of molecular events in the host cell metabolic machinery, including upregulation of SREBP-2, decrement in Sirt1 expression, dysregulation in PPAR-ɣ, and LPI resulting in insulin resistance. The COVID-19-diabetes molecular tetrahedron may suggest novel targets for therapeutic interventions to overcome insulin resistance that underlies the pathophysiology of worsening metabolic control in patients with diabetes mellitus or the new-onset of hyperglycemia in COVID-19.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
53
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Irisin relaxes rat thoracic aorta: MEK1/2 signaling pathway, K V channels, SK Ca channels, and BK Ca channels are involved in irisin-induced vasodilation. Can J Physiol Pharmacol 2022; 100:379-385. [PMID: 34826251 DOI: 10.1139/cjpp-2021-0500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of irisin on vascular smooth muscle contractility in rat thoracic aorta, and the hypothesis that mitogen-activated protein kinase kinase (MEK1/2) signaling pathway, voltage-gated potassium (KV) channels, small-conductance calcium-activated potassium (SKCa) channels, and large-conductance calcium-activated potassium (BKCa) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with 10-5 M phenylephrine (PHE), and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined in endothelium-intact and -denuded rat thoracic aortas. Also, the effects of irisin incubations on PHE-mediated contraction and acetylcholine (ACh) - mediated relaxation were studied. Irisin exerted the vasorelaxant effects in both endothelium-intact and -denuded aortic rings at concentrations of 10-8, 10-7, and 10-6 M compared with the control groups (p < 0.001). Besides, pre-incubation of aortic rings with irisin (10 nM, 100 nM, or 1 µM for 30 min) augmented ACh-mediated (10-9-10-5) vasodilation in PHE-precontracted thoracic aorta segments but did not modulate PHE-mediated (10-9-10-5) contraction. In addition, MEK1/2 inhibitor U0126, KV channel blocker XE-991, SKCa channel blocker apamin, and BKCa channel blocker tetraethylammonium (TEA) incubations significantly inhibited the irisin-induced relaxation responses. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. The findings demonstrated that irisin induces relaxation responses in endothelium-intact and (or) endothelium-denuded aortic rings in a concentration-dependent manner. Furthermore, this study is the first to report that irisin-induced relaxation responses are related to the activity of the MEK1/2 pathway, KV channels, and calcium-activated K+ (SKCa and BKCa) channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Serdar Sahinturk
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Naciye Isbil
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Fadil Ozyener
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
54
|
Jansen van Vuuren J, Pillay S, Naidoo A. Circulating Biomarkers in Long-Term Stroke Prognosis: A Scoping Review Focusing on the South African Setting. Cureus 2022; 14:e23971. [PMID: 35547443 PMCID: PMC9090128 DOI: 10.7759/cureus.23971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular disease, including both ischaemic and haemorrhagic strokes, remains one of the highest causes of global morbidity and mortality. Developing nations, such as South Africa (SA), are affected disproportionately. Early identification of stroke patients at risk of poor clinical prognosis may result in improved outcomes. In addition to conventional neuroimaging, the role of predictive biomarkers has been shown to be important. Little data exist on their applicability within SA. This scoping review aimed to evaluate the currently available data pertaining to blood biomarkers that aid in the long-term prognostication of patients following stroke and its potential application in the South African setting. This scoping review followed a 6-stage process to identify and critically review currently available literature pertaining to prognostic biomarkers in stroke. An initial 1191 articles were identified and, following rigorous review, 41 articles were included for the purposes of the scoping review. A number of potential biomarkers were identified and grouped according to the function or origin of the marker. Although most biomarkers showed great prognostic potential, the cost and availability will likely limit their application within SA. The burden of stroke is increasing worldwide and appears to be affecting developing countries disproportionately. Access to neuroradiological services is not readily available in all settings and the addition of biomarkers to assist in the long-term prognostication of patients following a stroke can be of great clinical value. The cost and availability of many of the reviewed biomarkers will likely hinder their use in the South African setting.
Collapse
Affiliation(s)
- Juan Jansen van Vuuren
- Department of Neurology, Grey's Hospital, Pietermaritzburg, ZAF
- School of Clinical Medicine, PhD programme, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Member, Royal Society of South Africa, Cape Town, ZAF
| | | | - Ansuya Naidoo
- Neurology, University of KwaZulu-Natal, Pietermaritzburg, ZAF
- Department of Neurology, Grey's Hospital, University of KwaZulu-Natal, Pietermaritzburg, ZAF
| |
Collapse
|
55
|
DEMİREL S, ŞAHİNTÜRK S, İŞBİL N, ÖZYENER F. Irisin relaxes rat thoracic aorta through inhibiting signaling pathways implicating protein kinase C. Turk J Med Sci 2022; 52:514-521. [PMID: 36161624 PMCID: PMC10381200 DOI: 10.55730/1300-0144.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/14/2022] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Irisin, a newly identified exercise-derived myokine, has been found involved in a peripheral vasodilator effect. However, little is known regarding the potential vascular activity of irisin, and the mechanisms underlying its effects on vascular smooth muscle have not been fully elucidated. This study was aimed to investigate the effects of irisin on vascular smooth muscle contractility in rat thoracic aorta, and the hypothesis that protein kinase C (PKC) may have a role in these effects. METHODS Isometric contraction-relaxation responses of thoracic aorta rings were measured with an isolated organ bath model. The steady contraction was induced with 10 µM phenylephrine (PHE), and then the concentration-dependent responses of irisin (0.001-1 µM) were examined. The time-matched vehicle control (double distilled water) group was also formed. To evaluate the role of PKC, endothelium-intact thoracic aorta rings were incubated with 150 nM bisindolylmaleimide I (BIM I) for 20 min before the addition of 10 µM PHE and irisin. Also, a vehicle control group was formed for dimethyl sulfoxide (DMSO). RESULTS Irisin exerted the vasorelaxant effects at concentrations of 0.01, 0.1, and 1 µM compared to the control group (p < 0.001). Besides, PKC inhibitor BIM I incubation significantly inhibited the relaxation responses induced by varying concentrations of irisin (p: 0.000 for 0.01 µM; p: 0.000 for 0.1 µM; p: 0.000 for 1 µM). However, DMSO, a solvent of BIM I, did not modulate the relaxant effects of irisin (p > 0.05). DISCUSSION In conclusion, physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. The findings demonstrated that irisin induces relaxation responses in endothelium-intact thoracic aorta rings in a concentration-dependent manner. Furthermore, this study is the first to report that irisin-induced relaxation responses are regulated probably via activating signaling pathways implicating PKC.
Collapse
Affiliation(s)
- Sadettin DEMİREL
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| | - Serdar ŞAHİNTÜRK
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| | - Naciye İŞBİL
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| | - Fadıl ÖZYENER
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa,
Turkey
| |
Collapse
|
56
|
Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis 2022; 13:283. [PMID: 35354793 PMCID: PMC8967887 DOI: 10.1038/s41419-022-04735-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023]
Abstract
Irisin protects the cardiovascular system against vascular diseases. However, its role in chronic kidney disease (CKD) -associated vascular calcification (VC) and the underlying mechanisms remain unclear. In the present study, we investigated the potential link among Irisin, pyroptosis, and VC under CKD conditions. During mouse vascular smooth muscle cell (VSMC) calcification induced by β-glycerophosphate (β-GP), the pyroptosis level was increased, as evidenced by the upregulated expression of pyroptosis-related proteins (cleaved CASP1, GSDMD-N, and IL1B) and pyroptotic cell death (increased numbers of PI-positive cells and LDH release). Reducing the pyroptosis levels by a CASP1 inhibitor remarkably decreased calcium deposition in β-GP-treated VSMCs. Further experiments revealed that the pyroptosis pathway was activated by excessive reactive oxygen species (ROS) production and subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in calcified VSMCs. Importantly, Irisin effectively inhibited β-GP-induced calcium deposition in VSMCs in vitro and in mice aortic rings ex vivo. Overexpression of Nlrp3 attenuated the suppressive effect of Irisin on VSMC calcification. In addition, Irisin could induce autophagy and restore autophagic flux in calcified VSMCs. Adding the autophagy inhibitor 3-methyladenine or chloroquine attenuated the inhibitory effect of Irisin on β-GP-induced ROS production, NLRP3 inflammasome activation, pyroptosis, and calcification in VSMCs. Finally, our in vivo study showed that Irisin treatment promoted autophagy, downregulated ROS level and thereby suppressed pyroptosis and medial calcification in aortic tissues of adenine-induced CKD mice. Together, our findings for the first time demonstrated that Irisin protected against VC via inducing autophagy and inhibiting VSMC pyroptosis in CKD, and Irisin might serve as an effective therapeutic agent for CKD-associated VC.
Collapse
|
57
|
Jurkowska K, Szymańska B, Knysz B, Piwowar A. Effect of Combined Antiretroviral Therapy on the Levels of Selected Parameters Reflecting Metabolic and Inflammatory Disturbances in HIV-Infected Patients. J Clin Med 2022; 11:jcm11061713. [PMID: 35330038 PMCID: PMC8954290 DOI: 10.3390/jcm11061713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Subjects infected with human immunodeficiency virus (HIV) treated with combined antiretroviral therapy (cART) show a greater predisposition to metabolic disturbances compared to the general population. The aim of the study was to assess the effect of cART on the level of selected parameters related to carbohydrate and lipid metabolism, cardiovascular diseases and inflammation in the plasma of HIV-infected patients against the uninfected. The levels of irisin (IRS), myostatin (MSTN), peptide YY (PYY), glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase IV (DPP-4), fetuin A (FETU-A), pentraxin 3 (PTX 3), chemokine stromal cell-derived factor 1 (SDF-1), and regulated on activation normal T cell expressed and secreted (RANTES) in the plasma of HIV-infected patients and the control group were measured by immunoassay methods. HIV-infected patients were analyzed in terms of CD4+ T cells and CD8+ T cell count, HIV RNA viral load, and the type of therapeutic regimen containing either protease inhibitors (PIs) or integrase transfer inhibitors (INSTIs). The analysis of HIV-infected patients before and after cART against the control group showed statistically significant differences for the following parameters: IRS (p = 0.02), MSTN (p = 0.03), PYY (p = 0.03), GLP-1 (p = 0.03), PTX3 (p = 0.03), and RANTES (p = 0.02), but no significant differences were found for DPP-4, FETU-A, and SDF-1. Comparing the two applied therapeutic regimens, higher levels of all tested parameters were shown in HIV-infected patients treated with INSTIs compared to HIV-infected patients treated with PIs, but the differences were not statistically significant. The obtained results indicated significant changes in the expression of selected parameters in the course of HIV infection and cART. There is need for further research on the clinical usefulness of the selected parameters and for new information on the pathogenesis of HIV-related comorbidities to be provided. The obtained data may allow for better monitoring of the course of HIV infection and optimization of therapy in order to prevent the development of comorbidities as a result of long-term use of cART.
Collapse
Affiliation(s)
- Karolina Jurkowska
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.J.); (A.P.)
| | - Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.J.); (A.P.)
- Correspondence: ; Tel.: +48-71-784-0457
| | - Brygida Knysz
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.J.); (A.P.)
| |
Collapse
|
58
|
Waseem R, Shamsi A, Mohammad T, Hassan MI, Kazim SN, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad F, Islam A. FNDC5/Irisin: Physiology and Pathophysiology. Molecules 2022; 27:molecules27031118. [PMID: 35164383 PMCID: PMC8838669 DOI: 10.3390/molecules27031118] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/10/2023] Open
Abstract
A sedentary lifestyle or lack of physical activity increases the risk of different diseases, including obesity, diabetes, heart diseases, certain types of cancers, and some neurological diseases. Physical exercise helps improve quality of life and reduces the risk of many diseases. Irisin, a hormone induced by exercise, is a fragmented product of FNDC5 (a cell membrane protein) and acts as a linkage between muscles and other tissues. Over the past decade, it has become clear that irisin is a molecular mimic of exercise and shows various beneficial effects, such as browning of adipocytes, modulation of metabolic processes, regulation of bone metabolism, and functioning of the nervous system. Irisin has a role in carcinogenesis; numerous studies have shown its impact on migration, invasion, and proliferation of cancer cells. The receptor of irisin is not completely known; however, in some tissues it probably acts via a specific class of integrin receptors. Here, we review research from the past decade that has identified irisin as a potential therapeutic agent in the prevention or treatment of various metabolic-related and other diseases. This article delineates structural and biochemical aspects of irisin and provides an insight into the role of irisin in different pathological conditions.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.M.); (M.I.H.); (S.N.K.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.M.); (M.I.H.); (S.N.K.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.M.); (M.I.H.); (S.N.K.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.M.); (M.I.H.); (S.N.K.)
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.M.); (M.I.H.); (S.N.K.)
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia; (A.A.C.); (H.A.R.); (M.A.-Z.)
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia; (A.A.C.); (H.A.R.); (M.A.-Z.)
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia; (A.A.C.); (H.A.R.); (M.A.-Z.)
| | - Faizan Ahmad
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.M.); (M.I.H.); (S.N.K.)
- Correspondence:
| |
Collapse
|
59
|
Deus LAD, Corrêa HDL, Neves RVP, Reis AL, Honorato FS, Araújo TBD, Souza MK, Haro AS, Silva VL, Barbosa JMDS, Padula IA, Andrade RV, Simões HG, Prestes J, Stone WJ, Melo GF, Rosa TS. Metabolic and hormonal responses to chronic blood-flow restricted resistance training in chronic kidney disease: a randomized trial. Appl Physiol Nutr Metab 2022; 47:183-194. [PMID: 35062832 DOI: 10.1139/apnm-2021-0409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of glycemic and lipemic homeostasis can limit the progression of diabetic kidney disease. Resistance training (RT) is effective in controlling glycemia and lipemia in kidney disease; however, the effect of RT with blood flow restriction (RT+BFR) on these metabolic factors has not been investigated. We aimed to verify if chronic (6 months) RT and RT+BFR performed by patients with stage-2 chronic kidney disease (CKD) improves their glycemic homeostasis and immunometabolic profiles. Patients with CKD under conservative treatment (n = 105 (33 females)) from both sexes were randomized into control (n = 35 (11 females); age 57.6 ± 5.2 years), RT (n = 35 (12 females); age 58.0 ± 6.2 years), and RT+BFR (n = 35 (10 females); 58.0 ± 6.4 years) groups. Chronic RT or RT+BFR (6 months) was performed 3 times per week on non-consecutive days with training loading adjusted every 2 months, RT 50%-60%-70% of 1RM, and RT+BFR 30%-40%+50% of 1RM and fixed repetition number. Renal function was estimated with the glomerular filtration rate and serum albumin level. Metabolic, hormonal, and inflammatory assessments were analyzed from blood samples. Six months of RT and RT+BFR were similarly effective in improving glucose homeostasis and hormone mediators of glucose uptake (e.g., irisin, adiponectin, and sirtuin-1), decreasing pro-inflammatory and fibrotic proteins, and attenuating the progression of estimated glomerular filtration rate. Thus, RT+BFR can be considered an additional exercise modality to be included in the treatment of patients with stage 2 chronic kidney disease. Trial registration number: U1111-1237-8231. URL: http://www.ensaiosclinicos.gov.br/rg/RBR-3gpg5w/, no. RBR-3gpg5w. Novelty: Glycemic regulation induced by resistance training prevents the progression of CKD. Chronic RT and RT+BFR promote similar changes in glycemic regulation. RT and RT+BFR can be considered as non-pharmacological tools for the treatment of CKD.
Collapse
Affiliation(s)
- Lysleine Alves de Deus
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Hugo de Luca Corrêa
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | | | - Andrea Lucena Reis
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Fernando Sousa Honorato
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | | | - Michel Kendy Souza
- Department of Nephrology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Anderson Sola Haro
- Department of Nephrology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Victor Lopes Silva
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | | | | | - Rosângela Vieira Andrade
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Herbert Gustavo Simões
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Jonato Prestes
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Whitley J Stone
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, KY, USA
| | - Gislane Ferreira Melo
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Thiago Santos Rosa
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| |
Collapse
|
60
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Physiological role of K + channels in irisin-induced vasodilation in rat thoracic aorta. Peptides 2022; 147:170685. [PMID: 34748790 DOI: 10.1016/j.peptides.2021.170685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Irisin, an exercise-induced myokine, has been shown to have a peripheral vasodilator effect. However, little is known about the mechanisms underlying its effects. In this study, it was aimed to investigate the vasoactive effects of irisin on rat thoracic aorta, and the hypothesis that voltage-gated potassium (KV) channels, ATP-sensitive potassium (KATP) channels, small-conductance calcium-activated potassium (SKCa) channels, large-conductance calcium-activated potassium (BKCa) channels, intermediate-conductance calcium-activated potassium (IKCa) channels, inward rectifier potassium (Kir) channels, and two-pore domain potassium (K2P) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with both 10-5 M phenylephrine and 45 mM KCl, and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined. Irisin exerted the vasorelaxant effects in both endothelium-intact and -denuded aortic rings at concentrations of 10-8, 10-7, and 10-6 M (p < 0.001). Besides, KV channel blocker 4-aminopyridine, KATP channel blocker glibenclamide, SKCa channel blocker apamin, BKCa channel blockers tetraethylammonium and iberiotoxin, IKCa channel blocker TRAM-34, and Kir channel blocker barium chloride incubations significantly inhibited the irisin-induced relaxation responses. However, incubation of K2P TASK-1 channel blocker anandamide did not cause a significant decrease in the relaxation responses of irisin. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. Furthermore, this study is the first to report that irisin-induced relaxation responses are associated with the activity of KV, KATP, SKCa, BKCa, IKCa, and Kir channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Serdar Sahinturk
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Naciye Isbil
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Fadil Ozyener
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
61
|
Yu Q, Li G, Li J, Sun L, Yang Y, Tao L. Irisin Protects Cerebral Neurons from Hypoxia/Reoxygenation via Suppression of Apoptosis and Expression of Pro-Inflammatory Cytokines. Neuroimmunomodulation 2022; 29:425-432. [PMID: 35705003 DOI: 10.1159/000524273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ischemic stroke is a major health issue that causes high incidents of morbidity and mortality worldwide. Irisin is an excise-induced protein that has exhibited pleiotropic properties. Accumulating evidence reveals its critical roles in the regulation of various cellular functions, including nervous system functions. This study aims to disclose the effect of irisin on rat cerebral neurons suffering from hypoxia/reoxygenation (H/R) treatment and to explore the potential underlying molecular mechanisms. METHODS The percentage of rat cerebral neuron cell death was determined by flow cytometry analysis and MTT assay. The expression levels of target genes were measured by western blotting and real-time quantitative reverse transcription PCR assay. RESULTS Our results demonstrated that irisin treatment substantially reduced H/R-induced apoptosis of rat cerebral neurons. Further investigation revealed that irisin treatment markedly decreased mitogen-activated protein kinase (MAPK) signaling pathway activation and suppressed pro-informatory cytokine expression in cerebral neurons with H/R challenge. Finally, we showed that the neuroprotective effect and anti-inflammatory effect of irisin were comparable with three MAPK signaling inhibitors. CONCLUSION Irisin exerts profound neuroprotective and anti-inflammatory effects on H/R-stimulated cerebral neurons by inhibiting the MAPK signaling activation. Therefore, irisin may serve as a potential drug for the treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yonghui Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
62
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Myokines: Novel therapeutic targets for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1014581. [PMID: 36387916 PMCID: PMC9640471 DOI: 10.3389/fendo.2022.1014581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
With the increasing incidence of diabetic nephropathy (DN), there is an urgent need to find effective DN preventive and therapeutic modalities. It is widely believed that effective exercise is good for health. However, the beneficial role of exercise in kidney disease, especially in DN, and the underlying molecular mechanisms have rarely been reported. Muscle is not only an important motor organ but also an important endocrine organ, secreting a group of proteins called "myokines" into the blood circulation. Circulating myokines then move to various target organs to play different biological roles. In this review, we summarize the currently known myokines and the progress in research relating them to DN and discuss its potential as a therapeutic target for DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
63
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
64
|
Jang YJ, Byun S. Molecular targets of exercise mimetics and their natural activators. BMB Rep 2021; 54:581-591. [PMID: 34814977 PMCID: PMC8728540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/21/2025] Open
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multitargeting agent for mimicking the health-promoting effects of exercise. [BMB Reports 2021; 54(12): 581-591].
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
65
|
Li X, Zhu X, Wu H, Van Dyke TE, Xu X, Morgan EF, Fu W, Liu C, Tu Q, Huang D, Chen J. Roles and Mechanisms of Irisin in Attenuating Pathological Features of Osteoarthritis. Front Cell Dev Biol 2021; 9:703670. [PMID: 34650969 PMCID: PMC8509718 DOI: 10.3389/fcell.2021.703670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
To investigate the effects and mechanisms of irisin, a newly discovered myokine, in cartilage development, osteoarthritis (OA) pathophysiology and its therapeutic potential for treating OA we applied the following five strategical analyses using (1) murine joint tissues at different developmental stages; (2) human normal and OA pathological tissue samples; (3) experimental OA mouse model; (4) irisin gene knockout (KO) and knock in (KI) mouse lines and their cartilage cells; (5) in vitro mechanistic experiments. We found that Irisin was involved in all stages of cartilage development. Both human and mouse OA tissues showed a decreased expression of irisin. Intra-articular injection of irisin attenuated ACLT-induced OA progression. Irisin knockout mice developed severe OA while irisin overexpression in both irisin KI mice and intraarticular injection of irisin protein attenuated OA progression. Irisin inhibited inflammation and promoted anabolism in chondrogenic ADTC5 cells. Proliferative potential of primary chondrocytes from KI mice was found to be enhanced, while KO mice showed an inhibition under normal or inflammatory conditions. The primary chondrocytes from irisin KI mice showed reduced expression of inflammatory factors and the chondrocytes isolated from KO mice showed an opposite pattern. In conclusion, it is the first time to show that irisin is involved in cartilage development and OA pathogenesis. Irisin has the potential to ameliorate OA progression by decreasing cartilage degradation and inhibiting inflammation, which could lead to the development of a novel therapeutic target for treating bone and cartilage disorders including osteoarthritis.
Collapse
Affiliation(s)
- Xiangfen Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Hongle Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Thomas E Van Dyke
- Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States.,Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Wenyu Fu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - Chuanju Liu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
66
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
67
|
Yang F, Wang Z, Li B, He Y, Du F, Tian S, Zhang Y, Yang Y. Irisin Enhances Angiogenesis of Mesenchymal Stem Cells to Promote Cardiac Function in Myocardial Infarction via PI3k/Akt Activation. Int J Stem Cells 2021; 14:455-464. [PMID: 34456190 PMCID: PMC8611314 DOI: 10.15283/ijsc21005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives With the growing incidence of acute myocardial infarction (MI), angiogenesis is vital for cardiac function post-MI. The role of bone marrow mesenchymal stem cells (BMSCs) in angiogenesis has been previously confirmed. Irisin is considered a potential vector for angiogenesis. The objective of the present study was to investigate the potential role of irisin in the angiogenesis of BMSCs. Methods and Results In vivo, irisin-treated BMSCs (BMSCs+irisin) were transplanted into an MI mouse model. On day 28 post-MI, blood vessel markers were detected, and cardiac function and infarct areas of mice were evaluated. In vitro, paracrine effects were assessed by examining tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with the BMSCs+irisin supernatant. The scratch wound-healing assay was performed to evaluate HUVEC migration. Western blotting was performed to determine PI3k/Akt pathway activation in the BMSCs+irisin group. Transplantation of BMSCs+irisin promoted greater angiogenesis, resulting in better cardiac function in the MI mouse model than in controls. In the BMSC+irisin group, HUVECs demonstrated enhanced tube formation and migration. Activation of the PI3k/Akt pathway was found to be involved in mediating the role of irisin in the angiogenesis of BMSCs. Conclusions In cardiovascular diseases such as MI, irisin administration can enhance angiogenesis of BMSCs and promote cardiac function via the PI3k/Akt pathway, optimizing the therapeutic effect based on BMSCs transplantation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Zhi Wang
- Qingdao Municipal Hospital (Group), Qingdao, China
| | - Bing Li
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Youfu He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Fawang Du
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Shui Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Yu Zhang
- Department of Cardiology, Xixiu District People's Hospital, Anshun, China
| | - Yongyao Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| |
Collapse
|
68
|
Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence. Int J Mol Sci 2021; 22:9136. [PMID: 34502045 PMCID: PMC8430535 DOI: 10.3390/ijms22179136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a highly dynamic tissue that is constantly adapting to micro-changes to facilitate movement. When the balance between bone building and resorption shifts more towards bone resorption, the result is reduced bone density and mineralization, as seen in osteoporosis or osteopenia. Current treatment strategies aimed to improve bone homeostasis and turnover are lacking in efficacy, resulting in the search for new preventative and nutraceutical treatment options. The myokine irisin, since its discovery in 2012, has been shown to play an important role in many tissues including muscle, adipose, and bone. Evidence indicate that irisin is associated with increased bone formation and decreased bone resorption, leading to reduced risk of osteoporosis in post-menopausal women. In addition, low serum irisin levels have been found in individuals with osteoporosis and osteopenia. Irisin targets key signaling proteins, promoting osteoblastogenesis and reducing osteoclastogenesis. The present review summarizes the existing evidence regarding the effects of irisin on bone homeostasis.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
| | - Danja J. Den Hartogh
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
69
|
Cheng ZB, Huang L, Xiao X, Sun JX, Zou ZK, Jiang JF, Lu C, Zhang HY, Zhang C. Irisin in atherosclerosis. Clin Chim Acta 2021; 522:158-166. [PMID: 34425103 DOI: 10.1016/j.cca.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Irisin, a novel exercise-induced myokine, has been shown to play important roles in increasing white adipose tissue browning, regulating energy metabolism and improving insulin resistance. Growing evidence suggests a direct role for irisin in preventing atherosclerosis (AS) by inhibiting oxidative stress, improving dyslipidemia, facilitating anti-inflammation, reducing cellular damage and recovering endothelial function. In addition, some studies have noted that serum irisin levels play an essential role in cardiovascular diseases (CVDs) risk prediction, highlighting that irisin has the potential to be a useful predictive marker and therapeutic target of AS, especially in monitoring therapeutic efficacy. This review summarizes the understanding of irisin-mediated regulation in essential biological pathways and functions in atherosclerosis and prompts further exploitation of the biological properties of irisin in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jia-Xiang Sun
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zi-Kai Zou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jie-Feng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Lu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hai-Ya Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
70
|
Restuccia R, Perani F, Ficarra G, Trimarchi F, Bitto A, di Mauro D. Irisin and Vascular Inflammation: Beneficial Effects of a Healthy Lifestyle Beyond Physical Activity. Curr Pharm Des 2021; 27:2151-2155. [PMID: 33557732 DOI: 10.2174/1381612827666210208154105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Vascular inflammation is responsible for many cardiovascular diseases and endothelial dysfunction is often the first trigger. Many factors can contribute to altering vascular homeostasis and despite that some risk factors cannot be changed, some lifestyle changes might dramatically improve vascular function. In this regard, physical activity has been identified as one of the most important interventions that can positively affect endothelial dysfunction. In recent years, the discovery of irisin, a novel myokine with pleiotropic effects, has caught the attention of many researchers. This review summarizes the most relevant intervention trials, evaluating irisin modifications in subjects with or without cardiovascular risk factors assigned to physical activity programs, to improve cardiovascular risk markers.
Collapse
Affiliation(s)
- Roberto Restuccia
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Fulvio Perani
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Giovanni Ficarra
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Fabio Trimarchi
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Debora di Mauro
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| |
Collapse
|
71
|
Farshbafnadi M, Kamali Zonouzi S, Sabahi M, Dolatshahi M, Aarabi MH. Aging & COVID-19 susceptibility, disease severity, and clinical outcomes: The role of entangled risk factors. Exp Gerontol 2021; 154:111507. [PMID: 34352287 PMCID: PMC8329427 DOI: 10.1016/j.exger.2021.111507] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in late 2019 has been associated with a high rate of mortality and morbidity. It has been determined that the old population are not only at an increased risk for affliction with COVID-19 infection, but also atypical presentations, severe forms of the disease, and mortality are more common in this population. A plethora of mechanisms and risk factors contribute to the higher risk of infection in the old population. For instance, aging is associated with an increment in the expression of Angiotensin-Converting Enzyme-2 (ACE-2), the receptor for SARS-CoV-2 spike protein, which precipitates replication of the virus in the old population. On the other hand, immune dysregulation and changes in gut microbiota as a result of aging can contribute to the cytokine storm, one of the main indicators of disease severity. Decrement in sex steroids, especially in women, as well as growth hormone, both of which have crucial roles in immune regulation, is a key contributor to disease severity in old age. Senescence-associated oxidative stress and mitochondrial dysfunction in both pneumocytes and immune cells contribute to the severity of infection in an exacerbative manner. In addition, lifestyle-associated factors such as nutrition and physical activity, which are compromised in old age, are known as important factors in COVID-19 infection. Aging-associated comorbidities, especially cardiovascular diseases and diabetes mellitus, also put older adults at an increased risk of complications, and disease severity.
Collapse
Affiliation(s)
| | - Sara Kamali Zonouzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Padova Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy.
| |
Collapse
|
72
|
The Role of Irisin in Cancer Disease. Cells 2021; 10:cells10061479. [PMID: 34204674 PMCID: PMC8231117 DOI: 10.3390/cells10061479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023] Open
Abstract
Irisin (Ir) is an adipomyokine that is involved in the regulation of metabolic processes. It also influences processes related to inflammation, including cancer. Initially, Ir was considered a hormone secreted by skeletal muscles in response to physical exercise. Further studies showed that Ir is also present in other healthy tissues, organs, and plasma. It influences the change in phenotype of white adipose tissue (WAT) into brown adipose tissue (BAT). It increases mitochondrial biogenesis and affects the expression of thermogenin (UCP1). This adipomyokine has also been found in many tumor tissues and in the serum of cancer patients. Studies are underway to determine the association between Ir and carcinogenesis. It has been confirmed that Ir inhibits in vitro proliferation, migration, and invasion. It is involved in the inhibition of epithelial–mesenchymal transition (EMT). Additionally, Ir affects the expression of the transcription factor Snail, which is involved in EMT, and inhibits transcription of the gene encoding E-cadherin, which is characteristic of epithelial-derived cells. Many studies have been performed to determine the role of Ir in physiological and pathological processes. Further detailed studies should determine more precisely the effect of Ir on the body in health and disease.
Collapse
|
73
|
Movement as a Positive Modulator of Aging. Int J Mol Sci 2021; 22:ijms22126278. [PMID: 34208002 PMCID: PMC8230594 DOI: 10.3390/ijms22126278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children’s own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients’ clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.
Collapse
|
74
|
Tsiani E, Tsakiridis N, Kouvelioti R, Jaglanian A, Klentrou P. Current Evidence of the Role of the Myokine Irisin in Cancer. Cancers (Basel) 2021; 13:cancers13112628. [PMID: 34071869 PMCID: PMC8199282 DOI: 10.3390/cancers13112628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Regular exercise/physical activity is beneficial for the health of an individual and lowers the risk of getting different diseases, including cancer. How exactly exercise results in these health benefits is not known. Recent studies suggest that the molecule irisin released by muscles into the blood stream after exercise may be responsible for these effects. This review summarizes all the available in vitro/cell culture, animal and human studies that have investigated the relationship between cancer and irisin with the aim to shed light and understand the possible role of irisin in cancer. The majority of the in vitro studies indicate anticancer properties of irisin, but more animal and human studies are required to better understand the exact role of irisin in cancer. Abstract Cancer is a disease associated with extreme human suffering, a huge economic cost to health systems, and is the second leading cause of death worldwide. Regular physical activity is associated with many health benefits, including reduced cancer risk. In the past two decades, exercising/contracting skeletal muscles have been found to secrete a wide range of biologically active proteins, named myokines. Myokines are delivered, via the circulation, to different cells/tissues, bind to their specific receptors and initiate signaling cascades mediating the health benefits of exercise. The present review summarizes the existing evidence of the role of the myokine irisin in cancer. In vitro studies have shown that the treatment of various cancer cells with irisin resulted in the inhibition of cell proliferation, survival, migration/ invasion and induced apoptosis by affecting key proliferative and antiapoptotic signaling pathways. However, the effects of irisin in humans remains unclear. Although the majority of the existing studies have found reduced serum irisin levels in cancer patients, a few studies have shown the opposite. Similarly, the majority of studies have found increased levels of irisin in cancer tissues, with a few studies showing the opposite trend. Clearly, further investigations are required to determine the exact role of irisin in cancer.
Collapse
Affiliation(s)
- Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Correspondence:
| | - Nicole Tsakiridis
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
| | - Rozalia Kouvelioti
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alina Jaglanian
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (N.T.); (R.K.); (A.J.)
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
75
|
Zhang L, Ocansey DKW, Liu L, Olovo CV, Zhang X, Qian H, Xu W, Mao F. Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomed Pharmacother 2021; 140:111752. [PMID: 34044275 DOI: 10.1016/j.biopha.2021.111752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by intense immune dysregulation, gut microbiota imbalance, and intestinal epithelium destruction. Among the factors that contribute to the pathogenesis of IBD, lymphatics have received less attention, hence less studied, characterized, and explored. However, in recent years, the role of the lymphatic system in gastrointestinal pathophysiology continues to be highlighted. This paper examines the implications of lymphatic changes in IBD pathogenesis related to immune cells, gut microbiota, intestinal and mesenteric epithelial barrier integrity, and progression to colorectal cancer (CRC). Therapeutic targets of lymphatics in IBD studies are also presented. Available studies indicate that lymph nodes and other secondary lymphatic tissues, provide highly specialized microenvironments for mounting effective immune responses and that lymphatic integrity plays a significant role in small intestine homeostasis, where the lymphatic vasculature effectively controls tissue edema, leukocyte exit, bacterial antigen, and inflammatory chemokine clearance. In IBD, there are functional and morphological alterations in intestinal and mesenteric lymphatic vessels (more profoundly in Crohn's disease [CD] compared to ulcerative colitis [UC]), including lymphangiogenesis, lymphangiectasia, lymphadenopathy, and lymphatic vasculature blockade, affecting not only immunity but gut microbiota and epithelial barrier integrity. While increased lymphangiogenesis is primarily associated with a good prognosis of IBD, increased lymphangiectasia, lymphadenopathy, and lymphatic vessel occlusion correlate with poor prognosis. IBD therapies that target the lymphatic system seek to increase lymphangiogenesis via induction of lymphangiogenic factors and inhibition of its antagonists. The resultant increased lymphatic flow coupled with other anti-inflammatory activities restores gut homeostasis.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
76
|
Pesce M, Ballerini P, Paolucci T, Puca I, Farzaei MH, Patruno A. Addendum: Pesce et al. Irisin and Autophagy: First Update. Int. J. Mol. Sci. 2020, 21, 7587. Int J Mol Sci 2021. [PMCID: PMC8151634 DOI: 10.3390/ijms22105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy;
- Correspondence: (M.P.); (P.B.)
| | - Patrizia Ballerini
- Department of Neurosciences, Imaging and Clinical Sciences, University G. d’Annunzio, 66100 Chieti, Italy
- Correspondence: (M.P.); (P.B.)
| | - Teresa Paolucci
- Department of Oral, Medical and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy;
| | - Iris Puca
- Sport Academy SSD, 65010 Pescara, Italy;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy;
| |
Collapse
|
77
|
Wang R, Liu H. Association Between Serum Irisin and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis. Horm Metab Res 2021; 53:293-300. [PMID: 33962476 DOI: 10.1055/a-1475-4444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irisin, an emerging adipokine, has been involved in the pathogenesis of type 2 diabetes mellitus (T2DM). However, previous studies evaluating the association between irisin and diabetic nephropathy (DN) showed inconsistent results. We performed a meta-analysis to evaluate the above association. Matched case-control studies evaluating the difference of serum irisin between T2DM patients with and without DN were identified via systematic search of PubMed, Embase, Cochranes' Library, China National Knowledge Infrastructure, and WanFang databases from inception to December 5, 2020. A random-effects model or a fixed-effects model was used to pool the results according to the heterogeneity. Overall, thirteen matched case-control studies including 1735 T2DM patients were included. Results of meta-analysis showed that compared to T2DM patients with normoalbuminuria, those with microalbuminuria [10 studies, standard mean difference (SMD): 1.12, 95% confidence interval (CI): 0.48-1.77, p<0.001; I2=94%] and macroalbuminuria (10 studies, SMD: 1.86, 95% CI: 0.93-2.79, p<0.001; I2=97%) had significantly lower serum irisin. Besides, the serum level of irisin was significantly lower in T2DM patients with macroalbuminuria than those with microalbuminuria (10 studies, SMD: 0.91, 95% CI: 0.44-1.38, p<0.001; I2=90%). In addition, patients with estimated glomerular infiltration rate (eGFR)<60 ml/min 1.73 m2 had lower serum irisin compared to those with eGFR≥60 ml/min 1.73 m2 (4 studies, SMD: 0.89, 95% CI: 0.32-1.46, p=0.002; I2=91%). In conclusion, serum irisin may be associated with albuminuria and reduced eGFR in T2DM patients.
Collapse
Affiliation(s)
- Rui Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
78
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|
79
|
Silveira EA, da Silva Filho RR, Spexoto MCB, Haghighatdoost F, Sarrafzadegan N, de Oliveira C. The Role of Sarcopenic Obesity in Cancer and Cardiovascular Disease: A Synthesis of the Evidence on Pathophysiological Aspects and Clinical Implications. Int J Mol Sci 2021; 22:4339. [PMID: 33919368 PMCID: PMC8122649 DOI: 10.3390/ijms22094339] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is globally a serious public health concern and is associated with a high risk of cardiovascular disease (CVD) and various types of cancers. It is important to evaluate various types of obesity, such as visceral and sarcopenic obesity. The evidence on the associated risk of CVD, cancer and sarcopenic obesity, including pathophysiological aspects, occurrence, clinical implications and survival, needs further investigation. Sarcopenic obesity is a relatively new term. It is a clinical condition that primarily affects older adults. There are several endocrine-hormonal, metabolic and lifestyle aspects involved in the occurrence of sarcopenic obesity that affect pathophysiological aspects that, in turn, contribute to CVD and neoplasms. However, there is no available evidence on the role of sarcopenic obesity in the occurrence of CVD and cancer and its pathophysiological interplay. Therefore, this review aims to describe the pathophysiological aspects and the clinical and epidemiological evidence on the role of sarcopenic obesity related to the occurrence and mortality risk of various types of cancer and cardiovascular disease. This literature review highlights the need for further research on sarcopenic obesity to demonstrate the interrelation of these various associations.
Collapse
Affiliation(s)
- Erika Aparecida Silveira
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74605-050, Brazil;
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care University College London, London WC1E 6BT, UK;
| | | | - Maria Claudia Bernardes Spexoto
- Postgraduate Program in Food, Nutrition and Health, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79.804-970, Brazil;
| | - Fahimeh Haghighatdoost
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan 815838899, Iran;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care University College London, London WC1E 6BT, UK;
| |
Collapse
|
80
|
Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and Neurometabolic Adipobiology: Consequences and Implications for Therapy. Int J Mol Sci 2021; 22:ijms22084137. [PMID: 33923652 PMCID: PMC8072708 DOI: 10.3390/ijms22084137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past 30 years have revealed that adipose tissue is the major endocrine and paracrine organ of the human body. Arguably, adiopobiology has taken its reasonable place in studying obesity and related cardiometabolic diseases (CMDs), including Alzheimer's disease (AD), which is viewed herein as a neurometabolic disorder. The pathogenesis and therapy of these diseases are multiplex at basic, clinical and translational levels. Our present goal is to describe new developments in cardiometabolic and neurometabolic adipobiology. Accordingly, we focus on adipose- and/or skeletal muscle-derived signaling proteins (adipsin, adiponectin, nerve growth factor, brain-derived neuroptrophic factor, neurotrophin-3, irisin, sirtuins, Klotho, neprilysin, follistatin-like protein-1, meteorin-like (metrnl), as well as growth differentiation factor 11) as examples of metabotrophic factors (MTFs) implicated in the pathogenesis and therapy of obesity and related CMDs. We argue that these pathologies are MTF-deficient diseases. In 1993 the "vascular hypothesis of AD" was published and in the present review we propose the "vasculometabolic hypothesis of AD." We discuss how MTFs could bridge CMDs and neurodegenerative diseases, such as AD. Greater insights on how to manage the MTF network would provide benefits to the quality of human life.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic;
| | - George N. Chaldakov
- Department of Anatomy and Cell Biology and Research Institute of the Medical University, 9002 Varna, Bulgaria;
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, 9002 Varna, Bulgaria
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic;
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, 9002 Varna, Bulgaria
- Correspondence: or
| |
Collapse
|
81
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
Affiliation(s)
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
82
|
Biomarkers of Angiogenesis and Neuroplasticity as Promising Clinical Tools for Stroke Recovery Evaluation. Int J Mol Sci 2021; 22:ijms22083949. [PMID: 33920472 PMCID: PMC8068953 DOI: 10.3390/ijms22083949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several key issues impact the clinical practice of stroke rehabilitation including a patient’s medical history, stroke experience, the potential for recovery, and the selection of the most effective type of therapy. Until clinicians have answers to these concerns, the treatment and rehabilitation are rather intuitive, with standard procedures carried out based on subjective estimations using clinical scales. Therefore, there is a need to find biomarkers that could predict brain recovery potential in stroke patients. This review aims to present the current state-of-the-art stroke recovery biomarkers that could be used in clinical practice. The revision of biochemical biomarkers has been developed based on stroke recovery processes: angiogenesis and neuroplasticity. This paper provides an overview of the biomarkers that are considered to be ready-to-use in clinical practice and others, considered as future tools. Furthermore, this review shows the utility of biomarkers in the development of the concept of personalized medicine. Enhancing brain neuroplasticity and rehabilitation facilitation are crucial concerns not only after stroke, but in all central nervous system diseases.
Collapse
|
83
|
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021; 219:107705. [PMID: 33039420 PMCID: PMC7887032 DOI: 10.1016/j.pharmthera.2020.107705] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent some of the most devastating neurological disorders, characterized by progressive loss of the structure and function of neurons. Current therapy for neurodegenerative disorders is limited to symptomatic treatment rather than disease modifying interventions, emphasizing the desperate need for improved approaches. Abundant evidence indicates that impaired mitochondrial function plays a crucial role in pathogenesis of many neurodegenerative diseases and so biochemical factors in mitochondria are considered promising targets for pharmacological-based therapies. Peroxisome proliferator-activated receptors-γ (PPARγ) are ligand-inducible transcription factors involved in regulating various genes including peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC1α). This review summarizes the evidence supporting the ability of PPARγ-PGC1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in neurons and provide directions for future work to explore the potential benefit of targeting mitochondrial biogenesis in neurodegenerative disorders. We have highlighted key roles of NRF2, uncoupling protein-2 (UCP2), and paraoxonase-2 (PON2) signaling in mediating PGC1α-induced mitochondrial biogenesis. In addition, the status of PPARγ modulators being used in clinical trials for Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD) has been compiled. The overall purpose of this review is to update and critique our understanding of the role of PPARγ-PGC1α-NRF2 in the induction of mitochondrial biogenesis together with suggestions for strategies to target PPARγ-PGC1α-NRF2 signaling in order to combat mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
84
|
Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients 2021; 13:nu13020620. [PMID: 33673009 PMCID: PMC7918151 DOI: 10.3390/nu13020620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Asprosin is a recently discovered protein released during fasting conditions mainly by adipocytes from white adipose tissue. As a glucogenic peptide, it stimulates the release of glucose from hepatic cells by binding to the OLFR734 receptor and leading to the activation of the G protein-cAMP-PKA pathway. As it crosses the blood–brain barrier, it also acts as an orexigenic peptide that stimulates food intake through activation of AgRP neurons in the hypothalamus; thus, asprosin participates in maintaining the body’s energy homeostasis. Moreover, studies have shown that asprosin levels are pathologically elevated in obesity and related diseases. However, the administration of anti-asprosin antibodies can both normalize its concentration and reduce food intake in obese mice, which makes it an interesting factor to combat obesity and related diseases. Current research also draws attention to the relationship between asprosin and fertility, especially in men. Asprosin improves age- and obesity-related decrease in fertility potential by improving sperm motility. It should also be mentioned that plasma asprosin levels can be differentially modulated by physical activity; intense anaerobic exercise increases asprosin level, while aerobic exercise decreases it. However, further research is necessary to confirm the exact mechanisms of asprosin activity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Biomechanics and Kinesiology, Faculty of Health Science, Institute of Physiotherapy, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| |
Collapse
|
85
|
Pignataro P, Dicarlo M, Zerlotin R, Zecca C, Dell’Abate MT, Buccoliero C, Logroscino G, Colucci S, Grano M. FNDC5/Irisin System in Neuroinflammation and Neurodegenerative Diseases: Update and Novel Perspective. Int J Mol Sci 2021; 22:ijms22041605. [PMID: 33562601 PMCID: PMC7915567 DOI: 10.3390/ijms22041605] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Irisin, the circulating peptide originating from fibronectin type III domain-containing protein 5 (FNDC5), is mainly expressed by muscle fibers under peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) control during exercise. In addition to several beneficial effects on health, physical activity positively affects nervous system functioning, particularly the hippocampus, resulting in amelioration of cognition impairments. Recently, FNDC5/irisin detection in hippocampal neurons and the presence of irisin in the cerebrospinal fluid opened a new intriguing chapter in irisin history. Interestingly, in the hippocampus of mice, exercise increases FNDC5 levels and upregulates brain-derived neurotrophic factor (BDNF) expression. BDNF, displaying neuroprotection and anti-inflammatory effects, is mainly produced by microglia and astrocytes. In this review, we discuss how these glial cells can morphologically and functionally switch during neuroinflammation by modulating the expression of a plethora of neuroprotective or neurotoxic factors. We also focus on studies investigating the irisin role in neurodegenerative diseases (ND). The emerging involvement of irisin as a mediator of the multiple positive effects of exercise on the brain needs further studies to better deepen this issue and the potential use in therapeutic approaches for neuroinflammation and ND.
Collapse
Affiliation(s)
- Patrizia Pignataro
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
| | - Roberta Zerlotin
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Maria Teresa Dell’Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Cinzia Buccoliero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari, “Pia Fondazione Card G. Panico” Hospital Tricase, 73039 Lecce, Italy; (C.Z.); (M.T.D.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (P.P.); (M.D.); (G.L.); (S.C.)
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.Z.); (C.B.)
- Correspondence: ; Tel.: +39-080-5478-361
| |
Collapse
|
86
|
Darkwah S, Park EJ, Myint PK, Ito A, Appiah MG, Obeng G, Kawamoto E, Shimaoka M. Potential Roles of Muscle-Derived Extracellular Vesicles in Remodeling Cellular Microenvironment: Proposed Implications of the Exercise-Induced Myokine, Irisin. Front Cell Dev Biol 2021; 9:634853. [PMID: 33614663 PMCID: PMC7892973 DOI: 10.3389/fcell.2021.634853] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players of intercellular communication and mediate crosstalk between tissues. Metastatic tumors release tumorigenic EVs, capable of pre-conditioning distal sites for organotropic metastasis. Growing evidence identifies muscle cell-derived EVs and myokines as potent mediators of cellular differentiation, proliferation, and metabolism. Muscle-derived EVs cargo myokines and other biological modulators like microRNAs, cytokines, chemokines, and prostaglandins hence, are likely to modulate the remodeling of niches in vital sites, such as liver and adipose tissues. Despite the scarcity of evidence to support a direct relationship between muscle-EVs and cancer metastasis, their indirect attribution to the regulation of niche remodeling and the establishment of pre-metastatic homing niches can be put forward. This hypothesis is supported by the role of muscle-derived EVs in findings gathered from other pathologies like inflammation and metabolic disorders. In this review, we present and discuss studies that evidently support the potential roles of muscle-derived EVs in the events of niche pre-conditioning and remodeling of metastatic tumor microenvironment. We highlight the potential contributions of the integrin-mediated interactions with an emerging myokine, irisin, to the regulation of EV-driven microenvironment remodeling in tumor metastasis. Further research into muscle-derived EVs and myokines in cancer progression is imperative and may hold promising contributions to advance our knowledge in the pathophysiology, progression and therapeutic management of metastatic cancers.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Cardiothoracic and Vascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
87
|
Mu S, Ding D, Ji C, Wu Q, Xia Y, Zhou L, Yang L, Ba G, Chang Q, Fu Q, Zhao Y. Relationships Between Circulating Irisin Response to Ice Swimming and Body Composition in People With Regular Exercise Experience. Front Physiol 2021; 11:596896. [PMID: 33519505 PMCID: PMC7838676 DOI: 10.3389/fphys.2020.596896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 01/21/2023] Open
Abstract
Severe cold exercise involves the irisin response, and may be related to body composition. We aimed to investigate changes in circulating irisin after ice swimming (IS), as well as to evaluate the correlation between body composition and the change in irisin caused by IS (Δirisin). 81 ice swimmers were recruited to perform IS activities. Blood samples were drawn 30 min before and 30 min after IS, and the serum levels of irisin and the ice swimmers' body composition were measured. As results, circulating irisin declined significantly during the recovery period following IS exercise (P < 0.001). The afternoon baseline circulating irisin level and Δirisin in response to IS were correlated with body fat characteristics rather than muscle parameters in ice swimmers. Δirisin subgroup analyses showed that the Δirisin ascending group (Δirisin+) subjects had a higher fat composition and higher basal irisin levels than the Δirisin descending group (Δirisin-). Furthermore, the decrease in irisin was negatively correlated with fat components in Δirisin- subjects, whereas no correlation was observed between the increase in irisin and body composition in Δirisin + subjects. Finally, a non-linear association analysis suggested that body fat indicators had obvious curvilinear relationships with Δirisin. In conclusion, IS caused a significant decrease in irisin. Statistical and curvilinear associations suggested that the correlation between fat tissue and Δirisin caused by IS is dimorphic and the underlying mechanisms may be due to the different metabolic states of subjects.
Collapse
Affiliation(s)
- Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gen Ba
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
88
|
Saber M, Rice AD, Christie I, Roberts RG, Knox KS, Nakaji P, Rowe RK, Wang T, Lifshitz J. Remote Ischemic Conditioning Reduced Acute Lung Injury After Traumatic Brain Injury in the Mouse. Shock 2021; 55:256-267. [PMID: 32769821 PMCID: PMC8878575 DOI: 10.1097/shk.0000000000001618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT Traumatic brain injury (TBI) can induce acute lung injury (ALI). The exact pathomechanism of TBI-induced ALI is poorly understood, limiting treatment options. Remote ischemic conditioning (RIC) can mitigate detrimental outcomes following transplants, cardiac arrests, and neurological injuries. In this study, we hypothesized that RIC would reduce TBI-induced ALI by regulating the sphingosine-1-phosphate (S1P)-dependent pathway, a central regulator of endothelial barrier integrity, lymphocyte, and myokine trafficking. Male mice were subjected to either diffuse TBI by midline fluid percussion or control sham injury and randomly assigned among four groups: sham, TBI, sham RIC, or TBI RIC; RIC was performed 1 h prior to TBI. Mice were euthanized at 1-h postinjury or 7 days post-injury (DPI) and lung tissue, bronchoalveolar lavage (BAL) fluid, and blood were collected. Lung tissue was analyzed for histopathology, irisin myokine levels, and S1P receptor levels. BAL fluid and blood were analyzed for cellularity and myokine/S1P levels, respectively. One-hour postinjury, TBI damaged lung alveoli and increased neutrophil infiltration; RIC preserved alveoli. BAL from TBI mice had more neutrophils and higher neutrophil/monocyte ratios compared with sham, where TBI RIC mice showed no injury-induced change. Further, S1P receptor 3 and irisin-associated protein levels were significantly increased in the lungs of TBI mice compared with sham, which was prevented by RIC. However, there was no RIC-associated change in plasma irisin or S1P. At 7 DPI, ALI in TBI mice was largely resolved, with evidence for residual lung pathology. Thus, RIC may be a viable intervention for TBI-induced ALI to preserve lung function and facilitate clinical management.
Collapse
Affiliation(s)
- Maha Saber
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Amanda D. Rice
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Immaculate Christie
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
| | - Rebecca G. Roberts
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Kenneth S. Knox
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Peter Nakaji
- Neurosurgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Rachel K. Rowe
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| | - Ting Wang
- Internal Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Phoenix VA Health Care System, Phoenix, AZ
| |
Collapse
|
89
|
Mazur-Bialy AI, Pocheć E. The Time-Course of Antioxidant Irisin Activity: Role of the Nrf2/HO-1/HMGB1 Axis. Antioxidants (Basel) 2021; 10:antiox10010088. [PMID: 33440644 PMCID: PMC7827448 DOI: 10.3390/antiox10010088] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The production of free radicals is one of the basic mechanisms giving rise to the antimicrobial activity of macrophages; however, excessive accumulation of reactive oxygen species (ROS) can lead to cell damage, cell death, and release of the highly proinflammatory alarmin high-mobility group box 1 (HMGB1). This study aimed to evaluate the kinetics of antioxidant properties of the adipomyokine irisin administered shortly before or after macrophage activation to assess its effect on the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/HMGB1 pathway. The studies were performed on RAW 264.7 mouse macrophages treated with irisin (0, 25, and 50 nM) 2 h before or after lipopolysaccharide (LPS) stimulation. The effectiveness of respiratory burst and the expression of key factors of the antioxidant pathway, such as HO-1, Nrf2, superoxide dismutase 1 (SOD-1), SOD-2, glutathione peroxidase (GPx), catalase-9 (Cat-9), and HMGB1, were assessed. Irisin (50 nM) effectively reduced the free-radical production by macrophages. Furthermore, in both models, irisin altered the kinetics of expression of key factors of the downstream Nrf2/HO-1/HMGB1 pathway, leading to the increased production of Nrf2 and HO-1 and significantly reduced expression and release of HMGB1. In conclusion, irisin is a modulator of the Nrf2/HO-1/HMGB1 pathway and shows antioxidative and anti-inflammatory effects when administered both before and shortly after the activation of inflammatory mechanisms in mouse macrophages.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Biomechanics and Kinesiology, Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-9351
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| |
Collapse
|
90
|
Liu L, Zhang Q, Li M, Wang N, Li C, Song D, Shen X, Luo L, Fan Y, Xie H, Wu Y. Early Post-Stroke Electroacupuncture Promotes Motor Function Recovery in Post-Ischemic Rats by Increasing the Blood and Brain Irisin. Neuropsychiatr Dis Treat 2021; 17:695-702. [PMID: 33688192 PMCID: PMC7935344 DOI: 10.2147/ndt.s290148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Recent studies have shown that irisin, a novel peptide hormone derived from muscles, could be used as a potential therapeutic drug against ischemic stroke. Moreover, electroacupuncture (EA) is widely used in the treatment of ischemic stroke. Yet, whether irisin is involved in the EA neuroprotection remains unclear. The following study investigated the association between serum and peri-lesional cortex irisin and EA-induced post-stroke motor recovery in rats. METHODS The middle cerebral artery occlusion (MCAO) method was used to induce ischemic stroke in rats. Rats were randomly divided into two groups: a middle cerebral artery occlusion (MCAO) group (MCAO rats without treatment) and an electroacupuncture (EA) group (MCAO rats treated with EA). On the 3rd day post-stroke, infarct volume, behavioral deficits, surviving neurons, irisin protein expression in peri-infarction cortex, muscle tissue, and serum were evaluated to identify the neuroprotective of EA in acute ischemic stroke. RESULTS Compared with the MCAO group, the EA group showed better behavioral performance, a smaller cerebral infarct volume, more surviving neurons, and a significant increase in irisin expression in the peri-infarction cortex and serum (p<0.05). However, no difference in irisin expression in the muscle tissue was found between the MCAO group and the EA group (p>0.05). CONCLUSION EA promotes motor function recovery, reduces the volume of cerebral infarction, and alleviates neuronal death following ischemic stroke by enhancing the expression of irisin in both the blood and peri-lesional cortex.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Di Song
- Department of Rehabilitation Medicine, The Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xueyan Shen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
91
|
Zhu X, Li X, Wang X, Chen T, Tao F, Liu C, Tu Q, Shen G, Chen JJ. Irisin deficiency disturbs bone metabolism. J Cell Physiol 2021; 236:664-676. [PMID: 32572964 PMCID: PMC7722136 DOI: 10.1002/jcp.29894] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Balancing the process of bone formation and resorption is important in the maintenance of healthy bone. Therefore, the discovery of novel factors that can regulate bone metabolism remains needed. Irisin is a newly identified hormone-like peptide. Recent studies have reported the involvement of irisin in many physiological and pathological conditions with bone mineral density changes, including osteopenia and osteoporotic fractures. In this study, we generated the first line of Osx-Cre:FNDC5/irisin KO mice, in which FNDC5/irisin was specifically deleted in the osteoblast lineage. Gene and protein expressions of irisin were remarkably decreased in bones but no significant differences in other tissues were observed in knockout mice. FNDC5/irisin deficient mice showed a lower bone density and significantly delayed bone development and mineralization from early-stage to adulthood. Our phenotypical analysis exhibited decreased osteoblast-related gene expression and increased osteoclast-related gene expression in bone tissues, and reduced adipose tissue browning due to bone-born irisin deletion. By harvesting and culturing MSCs from the knockout mice, we found that osteoblastogenesis was inhibited and osteoclastogenesis was increased. By using irisin stimulated wildtype primary cells as a gain-of-function model, we further revealed the effects and mechanisms of irisin on promoting osteogenesis and inhibiting osteoclastogenesis in vitro. In addition, positive effects of exercise, including bone strength enhancement and body weight loss were remarkably weakened due to irisin deficiency. Interestingly, these changes can be rescued by supplemental administration of recombinant irisin during exercise. Our study indicates that irisin plays an important role in bone metabolism and the crosstalk between bone and adipose tissue. Irisin represents a potential molecule for the prevention and treatment of bone metabolic diseases.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Oral & Cranio‐Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Xiangfen Li
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Xiaoxuan Wang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Ting Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Fengjuan Tao
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Chuanju Liu
- Department of Orthopedics Surgery and Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Guofang Shen
- Department of Oral & Cranio‐Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jake J. Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
92
|
The "irisin system": From biological roles to pharmacological and nutraceutical perspectives. Life Sci 2020; 267:118954. [PMID: 33359670 DOI: 10.1016/j.lfs.2020.118954] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The scientific interest in irisin, a myokine discovered in 2012, has grown exponentially in recent years. Irisin, which is mainly produced in skeletal muscle, influences the browning process of adipose tissue and lipid and energy metabolism. Recent discoveries highlight that the potential of this hormone may have been underestimated. In the first part of this review, reports on irisin structure and molecules involved in its metabolic pathway are shown. Furthermore, data related to unclear aspects are also reported: distribution, different gene expression of its precursors in different tissues, physiological levels of circulating irisin, and pharmacokinetic and pharmacodynamic profile. The second part of this work focuses on exogenous stimuli and pharmacological agents which regulate the metabolic pathway of irisin and its serum concentration. In addition to physical exercise and exposure to low temperatures, which were early recognized as exogenous stimuli able to promote the production of this myokine, preclinical and clinical evidence demonstrates the ability of natural and synthetic molecules to interfere with this metabolic pathway. Current experimental data on irisin cannot dissolve all doubts related to this interesting molecule, but they certainly underline its potential for therapeutic purposes. Thus, identification of new pharmacological tools able to act on the irisin pathway is a challenging issue for biomedical research.
Collapse
|
93
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
94
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
95
|
Senesi P, Luzi L, Terruzzi I. Adipokines, Myokines, and Cardiokines: The Role of Nutritional Interventions. Int J Mol Sci 2020; 21:ijms21218372. [PMID: 33171610 PMCID: PMC7664629 DOI: 10.3390/ijms21218372] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
It is now established that adipose tissue, skeletal muscle, and heart are endocrine organs and secrete in normal and in pathological conditions several molecules, called, respectively, adipokines, myokines, and cardiokines. These secretory proteins constitute a closed network that plays a crucial role in obesity and above all in cardiac diseases associated with obesity. In particular, the interaction between adipokines, myokines, and cardiokines is mainly involved in inflammatory and oxidative damage characterized obesity condition. Identifying new therapeutic agents or treatment having a positive action on the expression of these molecules could have a key positive effect on the management of obesity and its cardiac complications. Results from recent studies indicate that several nutritional interventions, including nutraceutical supplements, could represent new therapeutic agents on the adipo-myo-cardiokines network. This review focuses the biological action on the main adipokines, myokines and cardiokines involved in obesity and cardiovascular diseases and describe the principal nutraceutical approaches able to regulate leptin, adiponectin, apelin, irisin, natriuretic peptides, and follistatin-like 1 expression.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20131 Milan, Italy; (P.S.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20131 Milan, Italy; (P.S.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20131 Milan, Italy; (P.S.); (L.L.)
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence:
| |
Collapse
|
96
|
Kukla M, Skladany L, Menżyk T, Derra A, Stygar D, Skonieczna M, Hudy D, Nabrdalik K, Gumprecht J, Marlicz W, Koulaouzidis A, Koller T. Irisin in Liver Cirrhosis. J Clin Med 2020; 9:3158. [PMID: 33003490 PMCID: PMC7601377 DOI: 10.3390/jcm9103158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sarcopenia is a prevalent muscle abnormality characterized by progressive and generalized loss of skeletal muscle mass and strength, common among patients with decompensated advanced chronic liver disease (dACLD). Irisin is a recently identified myokine, which is mainly expressed and secreted by skeletal muscle. Pointing to the essential role of irisin in metabolic regulation and energy expenditure we hypothesize that it plays an important role in cirrhosis development and progression. AIM To assess irisin serum levels in patients with dACLD, with different cirrhosis stage and etiology. To analyze relationship between sarcopenia and irisin serum levels. METHODS Serum irisin concentrations were measured with commercially available ELISA kits in 88 cirrhotic patients. Recorded parameters of muscle mass were hand-grip strength (HGS), mid-arm muscle circumference (MAC), and transversal psoas muscle index (TPMI). RESULTS There was no difference in serum irisin levels between cirrhotic patients with different Child-Pugh (CTP) and model of end-stage liver disease (MELD) score, and those with and without ascites. The Liver Frailty Index (LFI) was significantly higher in patients with more advanced liver disease according to CTP and MELD. There was no association between serum irisin level with MAC (r = 0.04, p = 0.74) nor with TPMI (r = 0.20, p = 0.06). We observed significant negative correlation between serum irisin level and age (r = -0.35, p < 0.001). CONCLUSIONS Serum irisin levels did not correlate with sarcopenia. There was no difference in serum irisin levels between cirrhotic patients with and without diabetes. There was no difference in serum irisin levels among patients with more severe dACLD, although we observed significant LFI increase among patients with more advanced liver disease.
Collapse
Affiliation(s)
- Michał Kukla
- Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 30-688 Cracow, Poland;
- Department of Endoscopy, University Hospital in Cracow, 30-688 Cracow, Poland
- Department of Gastroenterology and Hepatology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Lubomir Skladany
- Department of Internal Medicine and HEGITO (Hepatology, Gastroenterology and Liver Transplantation), F.D. Roosevelt University Hospital, 975-17 Banska Bystrica, Slovakia;
| | - Tomasz Menżyk
- Department of Internal Medicine, Gastroenterology and Acute Intoxication, Provincial Hospital, 33-100 Tarnów, Poland;
| | - Aleksandra Derra
- Department of Neurology, Medical Centre of Upper Silesia, 40-752 Katowice, Poland;
| | - Dominika Stygar
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.S.); (D.H.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Dorota Hudy
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.S.); (D.H.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.N.); (J.G.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.N.); (J.G.)
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Anastasios Koulaouzidis
- Centre for Liver and Digestive Disorders, The Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Tomas Koller
- Subdivision of Gastroenterology and Hepatology, 5th Department of Medicine, Comenius University Faculty of Medicine in Bratislava, University Hospital Ruzinov, 821 01 Bratislava, Slovakia;
| |
Collapse
|
97
|
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) outbreak in China has become the
world's leading health headline and is causing major panic and public concerns. After emerging in the
City of Wuhan, China, COVID-19 has spread to several countries becoming a worldwide pandemia.
Among the studies on COVID-19, it has been demonstrated that novel coronavirus pneumonia is closely
associated with inflammatory storms. Controlling the inflammatory response may be as important as
targeting the virus. Irisin is a muscle-contraction-induced immunomodulatory myokine related to physical
activity. Irisin drives the “browning” of white adipocytes, so enhancing metabolic uncoupling and
hence caloric expenditure. Irisin has been clearly shown to be a handyman molecule by exerting beneficial
effects on adipose tissues, pancreas, and bone through “cross-talk” between skeletal muscleadipocyte,
skeletal muscle-pancreas, and skeletal muscle-bone, respectively. Irisin has been proposed as
a promising strategy for early diagnosis and treatment of various types of cancers, neurological diseases
and inflammatory conditions. Irisin has been demonstrated to suppress the immune response, too. The
importance of irisin is demonstrated by the increase in the number of scientific papers and patents in
recent years. The identification of irisin receptor should greatly facilitate the understanding of irisin’s
function in exercise and human health. This review examines the structure and recent advances in activities
of irisin, suggesting it for further studies on the prevention and cure of COVID-19. Nowadays, studies
on irisin plasma levels and physical activity may be useful tools to further investigate the prevention
of COVID-19. Irisin may be suggested as a potential novel intervention for COVID-19 by mitigating
inflammatory storms, suppressing the immune response and simultaneously alleviating neurological disorders
such as depression and anxiety.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari, 70126, Bari, Italy
| |
Collapse
|
98
|
Seo DY, Bae JH, Kim TN, Kwak HB, Kha PT, Han J. Exercise-Induced Circulating Irisin Level Is Correlated with Improved Cardiac Function in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3863. [PMID: 32485990 PMCID: PMC7313080 DOI: 10.3390/ijerph17113863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Irisin, a recently identified myokine, plays an important physiological role in modulating energy homeostasis. However, the role of irisin in cardiac function during exercise has not been evaluated. In this study, we investigated the effect of exercise on irisin, pro-inflammatory cytokines, and cardiac function during 12 weeks of exercise in rats. Eight-week-old Sprague-Dawley male rats were randomly divided into two groups (n = 9 per group): sedentary control (CON) and exercise (EXE) groups. The EXE group was trained on a motorized treadmill at 20 m/min, for 60 min/day, five times/week for 12 weeks. The EXE group showed a decrease in abdominal visceral fat (p < 0.05), epididymal fat (p < 0.01), and total cholesterol (TC) (p < 0.05) and an increase in irisin levels (p < 0.01). Irisin negatively correlated with abdominal visceral (p < 0.05) and epididymal fat (p < 0.05) and positively correlated with the ejection fraction (p < 0.05), fractional shortening (p < 0.05), and cardiac output (p < 0.05). In conclusion, exercise decreases the abdominal visceral and epididymal fat and TC levels, possibly caused by elevated irisin levels, thus improving the cardiac function. This suggests that exercise-induced circulating irisin levels correlate with improved cardiac function in rats.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul 08826, Korea;
| | - Tae Nyun Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea;
| | - Pham Trong Kha
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| |
Collapse
|
99
|
Vadalà G, Russo F, De Salvatore S, Cortina G, Albo E, Papalia R, Denaro V. Physical Activity for the Treatment of Chronic Low Back Pain in Elderly Patients: A Systematic Review. J Clin Med 2020; 9:E1023. [PMID: 32260488 PMCID: PMC7230826 DOI: 10.3390/jcm9041023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain (CLBP) affects nearly 20-25% of the population older than 65 years, and it is currently the main cause of disability both in the developed and developing countries. It is crucial to reach an optimal management of this condition in older patients to improve their quality of life. This review evaluates the effectiveness of physical activity (PA) to improve disability and pain in older people with non-specific CLBP. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. Individual risk of bias of single studies was assessed using Rob 2 tool and ROBINS-I tool. The quality of evidence assessment was performed using GRADE analysis only in articles that presents full data. The articles were searched in different web portals (Medline, Scopus, CINAHL, EMBASE, and CENTRAL). All the articles reported respect the following inclusion criteria: patients > 65 years old who underwent physical activities for the treatment of CLBP. A total of 12 studies were included: 7 randomized controlled trials (RCT), 3 non-randomized controlled trials (NRCT), 1 pre and post intervention study (PPIS), and 1 case series (CS). The studies showed high heterogeneity in terms of study design, interventions, and outcome variables. In general, post-treatment data showed a trend in the improvement for disability and pain. However, considering the low quality of evidence of the studies, the high risk of bias, the languages limitations, the lack of significant results of some studies, and the lack of literature on this argument, further studies are necessary to improve the evidences on the topic.
Collapse
Affiliation(s)
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.V.); (S.D.S.); (G.C.); (E.A.); (R.P.); (V.D.)
| | | | | | | | | | | |
Collapse
|