51
|
Ha JH, Jayaraman M, Nadhan R, Kashyap S, Mukherjee P, Isidoro C, Song YS, Dhanasekaran DN. Unraveling Autocrine Signaling Pathways through Metabolic Fingerprinting in Serous Ovarian Cancer Cells. Biomedicines 2021; 9:1927. [PMID: 34944743 PMCID: PMC8698993 DOI: 10.3390/biomedicines9121927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
Focusing on defining metabolite-based inter-tumoral heterogeneity in ovarian cancer, we investigated the metabolic diversity of a panel of high-grade serous ovarian carcinoma (HGSOC) cell-lines using a metabolomics platform that interrogate 731 compounds. Metabolic fingerprinting followed by 2-dimensional and 3-dimensional principal component analysis established the heterogeneity of the HGSOC cells by clustering them into five distinct metabolic groups compared to the fallopian tube epithelial cell line control. An overall increase in the metabolites associated with aerobic glycolysis and phospholipid metabolism were observed in the majority of the cancer cells. A preponderant increase in the levels of metabolites involved in trans-sulphuration and glutathione synthesis was also observed. More significantly, subsets of HGSOC cells showed an increase in the levels of 5-Hydroxytryptamine, γ-aminobutyrate, or glutamate. Additionally, 5-hydroxytryptamin synthesis inhibitor as well as antagonists of γ-aminobutyrate and glutamate receptors prohibited the proliferation of HGSOC cells, pointing to their potential roles as oncometabolites and ligands for receptor-mediated autocrine signaling in cancer cells. Consistent with this role, 5-Hydroxytryptamine synthesis inhibitor as well as receptor antagonists of γ-aminobutyrate and Glutamate-receptors inhibited the proliferation of HGSOC cells. These antagonists also inhibited the three-dimensional spheroid growth of TYKNU cells, a representative HGSOC cell-line. These results identify 5-HT, GABA, and Glutamate as putative oncometabolites in ovarian cancer metabolic sub-type and point to them as therapeutic targets in a metabolomic fingerprinting-based therapeutic strategy.
Collapse
Affiliation(s)
- Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.H.H.); (M.J.); (R.N.); (S.K.); (P.M.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.H.H.); (M.J.); (R.N.); (S.K.); (P.M.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.H.H.); (M.J.); (R.N.); (S.K.); (P.M.)
| | - Srishti Kashyap
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.H.H.); (M.J.); (R.N.); (S.K.); (P.M.)
| | - Priyabrata Mukherjee
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.H.H.); (M.J.); (R.N.); (S.K.); (P.M.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea;
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.H.H.); (M.J.); (R.N.); (S.K.); (P.M.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
52
|
Dose Prediction Models Based on Geometric and Plan Optimization Parameter for Adjuvant Radiotherapy Planning Design in Cervical Cancer Radiotherapy. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7026098. [PMID: 34804459 PMCID: PMC8604605 DOI: 10.1155/2021/7026098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022]
Abstract
The prediction of an additional space for the dose sparing of organs at risk (OAR) in radiotherapy is still difficult. In this pursuit, the present study was envisaged to find out the factors affecting the bladder and rectum dosimetry of cervical cancer. Additionally, the relationship between the dose-volume histogram (DVH) parameters and the geometry and plan dose-volume optimization parameters of the bladder/rectum was established to develop the dose prediction models and guide the planning design for lower OARs dose coverage directly. Thirty volume modulated radiation therapy (VMAT) plans from cervical cancer patients were randomly chosen to build the dose prediction models. The target dose coverage was evaluated. Dose prediction models were established by univariate and multiple linear regression among the dosimetric parameters of the bladder/rectum, the geometry parameters (planning target volume (PTV), volume of bladder/rectum, overlap volume of bladder/rectum (OV), and overlapped volume as a percentage of bladder/rectum volume (OP)), and corresponding plan dose-volume optimization parameters of the nonoverlapping structures (the structure of bladder/rectum outside the PTV (NOS)). Finally, the accuracy of the prediction models was evaluated by tracking d = (predicted dose-actual dose)/actual in additional ten VMAT plans. V 30, V 35, and V 40 of the bladder and rectum were found to be multiple linearly correlated with the relevant OP and corresponding dose-volume optimization parameters of NOS (regression R 2 > 0.99, P < 0.001). The variations of these models were less than 0.5% for bladder and rectum. Percentage of bladder and rectum within the PTV and the dose-volume optimization parameters of NOS could be used to predict the dose quantitatively. The parameters of NOS as a limited condition could be used in the plan optimization instead of limiting the dose and volume of the entire OAR traditionally, which made the plan optimization more unified and convenient and strengthened the plan quality and consistency.
Collapse
|
53
|
Nunes M, Silva PMA, Coelho R, Pinto C, Resende A, Bousbaa H, Almeida GM, Ricardo S. Generation of Two Paclitaxel-Resistant High-Grade Serous Carcinoma Cell Lines With Increased Expression of P-Glycoprotein. Front Oncol 2021; 11:752127. [PMID: 34745981 PMCID: PMC8566917 DOI: 10.3389/fonc.2021.752127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Debulking surgery followed by chemotherapy are the standard of care for high-grade serous carcinoma. After an initial good response to treatment, the majority of patients relapse with a chemoresistant profile, leading to a poor overall survival. Chemotherapy regimens used in high-grade serous carcinomas are based in a combination of classical chemotherapeutic drugs, namely, Carboplatin and Paclitaxel. The mechanisms underlying drug resistance and new drug discovery are crucial to improve patients’ survival. To uncover the molecular mechanisms of chemoresistance and test drugs capable of overcoming this resistant profile, it is fundamental to use good cellular models capable of mimicking the chemoresistant disease. Herein, we established two high-grade serous carcinoma cell lines with intrinsic resistance to Carboplatin and induced Paclitaxel resistance (OVCAR8 PTX R C and OVCAR8 PTX R P) derived from the OVCAR8 cell line. These two chemoresistant cell line variants acquired an enhanced resistance to Paclitaxel-induced cell death by increasing the drug efflux capacity, and this resistance was stable in long-term culture and following freeze/thaw cycles. The mechanism underlying Paclitaxel resistance resides in a significant increase in P-glycoprotein expression and, when this drug efflux pump was blocked with Verapamil, cells re-acquired Paclitaxel sensitivity. We generated two high-grade serous carcinoma cell lines, with a double-chemoresistant (Carboplatin and Paclitaxel) phenotype that mimics the majority of tumor recurrences in ovarian cancer context. This robust tool is suitable for preliminary drug testing towards the development of therapeutic strategies to overcome chemoresistance.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal.,TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), Gandra, Portugal
| | - Ricardo Coelho
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Carla Pinto
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Albina Resende
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra, Portugal
| | - Gabriela M Almeida
- Expression Regulation in Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine from University of Porto (FMUP), Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), Gandra, Portugal.,Faculty of Medicine from University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
54
|
Feng C, Xu Y, Liu Y, Zhu L, Wang L, Cui X, Lu J, Zhang Y, Zhou L, Chen M, Zhang Z, Li P. Gene Expression Subtyping Reveals Immune alterations:TCGA Database for Prognosis in Ovarian Serous Cystadenocarcinoma. Front Mol Biosci 2021; 8:619027. [PMID: 34631788 PMCID: PMC8497788 DOI: 10.3389/fmolb.2021.619027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer is the most common and primary death type in ovarian cancer. In recent studies, tumor microenvironment and tumor immune infiltration significantly affect the prognosis of ovarian cancer. This study analyzed the four gene expression types of ovarian cancer in TCGA database to extract differentially expressed genes and verify the prognostic significance. Meanwhile, functional enrichment and protein interaction network analysis exposed that these genes were related to immune response and immune infiltration. Subsequently, we proved these prognostic genes in an independent data set from the GEO database. Finally, multivariate cox regression analysis revealed the prognostic significance of TAP1 and CXCL13. The genetic alteration and interaction network of these two genes were shown. Then, we established a nomogram model related to the two genes and clinical risk factors. This model performed well in Calibration plot and Decision Curve Analysis. In conclusion, we have obtained a list of genes related to the immune microenvironment with a better prognosis for serous ovarian cancer, and based on this, we have tried to establish a clinical prognosis model.
Collapse
Affiliation(s)
- Chunxia Feng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yan Xu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.,Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lixia Zhu
- Department of Gynecology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Le Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xixi Cui
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jingjing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lina Zhou
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zhiqin Zhang
- Department of Biobank, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ping Li
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
55
|
Löke DR, Helderman RFCPA, Franken NAP, Oei AL, Tanis PJ, Crezee J, Kok HP. Simulating drug penetration during hyperthermic intraperitoneal chemotherapy. Drug Deliv 2021; 28:145-161. [PMID: 33427507 PMCID: PMC7808385 DOI: 10.1080/10717544.2020.1862364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after debulking cytoreductive surgery. During HIPEC, a limited number of catheters are used to administer and drain fluid containing chemotherapy (41–43 °C), yielding heterogeneities in the peritoneum. Large heterogeneities may lead to undertreated areas, increasing the risk of recurrences. Aiming at intra-abdominal homogeneity is therefore essential to fully exploit the potential of HIPEC. More insight is needed into the extent of the heterogeneities during treatments and assess their effects on the efficacy of HIPEC. To that end we developed a computational model containing embedded tumor nodules in an environment mimicking peritoneal conditions. Tumor- and treatment-specific parameters affecting drug delivery like tumor size, tumor shape, velocity, temperature and dose were assessed using three-dimensional computational fluid dynamics (CFD) to demonstrate their effect on the drug distribution and accumulation in nodules. Clonogenic assays performed on RKO colorectal cell lines yielded the temperature-dependent IC50 values of cisplatin (19.5–6.8 micromolar for 37–43 °C), used to compare drug distributions in our computational models. Our models underlined that large nodules are more difficult to treat and that temperature and velocity are the most important factors to control the drug delivery. Moderate flow velocities, between 0.01 and 1 m/s, are optimal for the delivery of cisplatin. Furthermore, higher temperatures and higher doses increased the effective penetration depth with 69% and 54%, respectively. We plan to extend the software developed for this study toward patient-specific treatment planning software, capable of mapping and assist in reducing heterogeneous flow patterns.
Collapse
Affiliation(s)
- Daan R Löke
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roxan F C P A Helderman
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter J Tanis
- Department for Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
56
|
Toll-like Receptor 2 as a Marker Molecule of Advanced Ovarian Cancer. Biomolecules 2021; 11:biom11081205. [PMID: 34439871 PMCID: PMC8394498 DOI: 10.3390/biom11081205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/09/2022] Open
Abstract
Ovarian cancer is a global problem that affects women of all ages. Due to the lack of effective screening tests and the usually asymptomatic course of the disease in the early stages, the diagnosis is too late, with the result that less than half of the patients diagnosed with ovarian cancer (OC) survive more than five years after their diagnosis. In this study, we examined the expression of TLR2 in the peripheral blood of 50 previously untreated patients with newly diagnosed OC at various stages of the disease using flow cytometry. The studies aimed at demonstrating the usefulness of TLR2 as a biomarker in the advanced stage of ovarian cancer. In this study, we showed that TLR2 expression levels were significantly higher in women with more advanced OC than in women in the control group. Our research sheds light on the prognostic potential of TLR2 in developing new diagnostic approaches and thus in increasing survival in patients with confirmed ovarian cancer.
Collapse
|
57
|
Future Screening Prospects for Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13153840. [PMID: 34359740 PMCID: PMC8345180 DOI: 10.3390/cancers13153840] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ovarian cancer (OC) has the highest mortality rate of all gynecological cancers. It is usually diagnosed in late stages (FIGO III-IV), and therefore, overall survival is very poor. If diagnosed at the early stages, ovarian cancer has a 90% five-year survival rate. Liquid biopsy has a good potential to improve early ovarian cancer detection and is discussed in this review. Abstract Current diagnostic tools used in clinical practice such as transvaginal ultrasound, CA 125, and HE4 are not sensitive and specific enough to diagnose OC in the early stages. A lack of early symptoms and an effective asymptomatic population screening strategy leads to a poor prognosis in OC. New diagnostic and screening methods are urgently needed for early OC diagnosis. Liquid biopsies have been considered as a new noninvasive and promising method, using plasma/serum, uterine lavage, and urine samples for early cancer detection. We analyzed recent studies on molecular biomarkers with specific emphasis on liquid biopsy methods and diagnostic efficacy for OC through the detection of circulating tumor cells, circulating cell-free DNA, small noncoding RNAs, and tumor-educated platelets.
Collapse
|
58
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
59
|
Löke DR, Helderman RFCPA, Rodermond HM, Tanis PJ, Streekstra GJ, Franken NAP, Oei AL, Crezee J, Kok HP. Demonstration of treatment planning software for hyperthermic intraperitoneal chemotherapy in a rat model. Int J Hyperthermia 2021; 38:38-54. [PMID: 33487083 DOI: 10.1080/02656736.2020.1852324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after cytoreductive surgery (CRS). During HIPEC, fluid (41-43 °C) is administered and drained through a limited number of catheters, risking thermal and drug heterogeneities within the abdominal cavity that might reduce effectiveness. Treatment planning software provides a unique tool for optimizing treatment delivery. This study aimed to investigate the influence of treatment-specific parameters on the thermal and drug homogeneity in the peritoneal cavity in a computed tomography based rat model. METHOD We developed computational fluid dynamics (CFD) software simulating the dynamic flow, temperature and drug distribution during oxaliplatin based HIPEC. The influence of location and number of catheters, flow alternations and flow rates on peritoneal temperature and drug distribution were determined. The software was validated using data from experimental rat HIPEC studies. RESULTS The predicted core temperature and systemic oxaliplatin concentration were comparable to the values found in literature. Adequate placement of catheters, additional inflow catheters and higher flow rates reduced intraperitoneal temperature spatial variation by -1.4 °C, -2.3 °C and -1.2 °C, respectively. Flow alternations resulted in higher temperatures (up to +1.5 °C) over the peritoneal surface. Higher flow rates also reduced the spatial variation of chemotherapy concentration over the peritoneal surface resulting in a more homogeneous effective treatment dose. CONCLUSION The presented treatment planning software provides unique insights in the dynamics during HIPEC, which enables optimization of treatment-specific parameters and provides an excellent basis for HIPEC treatment planning in human applications.
Collapse
Affiliation(s)
- Daan R Löke
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Roxan F C P A Helderman
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hans M Rodermond
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Pieter J Tanis
- Department for Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Geert J Streekstra
- Department of Biomedical Engineering and Physics, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
60
|
Weiwei Z, Ya X, Wenwen W, Jia J, Jing B, Ruitao Z, Chunfang W, Ruixia G. IGF-1R anti-idiotypic antibody antagonist exhibited anti-ovarian cancer bioactivity and reduced cisplatin resistance. Hum Cell 2021; 34:1197-1214. [PMID: 33905103 DOI: 10.1007/s13577-021-00535-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most deadly gynecological malignant tumor in the world today. Previous studies have shown that insulin-like growth factor-1 receptor (IGF-1R) is closely related to the occurrence and development of ovarian cancer, and ovarian cancer cells endogenously express high IGF-1R. Therefore, IGF-1R could be used as a target for ovarian cancer treatment. In the past, the strategy for preparing IGF-1R antagonists was to use IGF-1R antibody and small-molecule inhibitor. In the current research, we use a new method to prepare IGF-1R antagonists. We prepared a series of IGF-1 internal imaging anti-idiotypic antibodies by anti-idiotypic antibody strategy. After a series of screening and identification, one of the anti-idiotypic antibodies (B003-2A) was selected for further evaluation, and the results showed that B003-2A could not only inhibit the binding of IGF-1 to IGF-1R but also inhibit the signaling mediated by IGF-1R. Further work showed that B003-2A inhibited the proliferation of ovarian cancer cells in vivo and in vitro. In addition, the current study also indicates that B003-2A could enhance the sensitivity of cisplatin in cisplatin-resistant ovarian cancer cell lines. In summary, our research shows that B003-2A can be used to treat ovarian cancer. The current study also laid the foundation for the development of IGF-1R antagonist.
Collapse
Affiliation(s)
- Zhang Weiwei
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
- Laboratory of Gynecological Malignant Tumor Prevention and Treatment of Henan Province, Zhengzhou, China
| | - Xie Ya
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
| | - Wang Wenwen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
| | - Jia Jia
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
| | - Bai Jing
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
| | - Zhang Ruitao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
| | - Wang Chunfang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China
- Laboratory of Gynecological Malignant Tumor Prevention and Treatment of Henan Province, Zhengzhou, China
| | - Guo Ruixia
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, China.
- Laboratory of Gynecological Malignant Tumor Prevention and Treatment of Henan Province, Zhengzhou, China.
| |
Collapse
|
61
|
Song Y, Pan S, Li K, Chen X, Wang ZP, Zhu X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. Semin Cancer Biol 2021; 85:219-233. [PMID: 34098106 DOI: 10.1016/j.semcancer.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Mounting evidence has demonstrated that a myriad of developmental signaling pathways, such as the Wnt, Notch, Hedgehog and Hippo, are frequently deregulated and play a critical role in regulating cancer stem cell (CSC) activity in human cancers, including gynecologic malignancies. In this review article, we describe an overview of various signaling pathways in human cancers. We further discuss the developmental roles how these pathways regulate CSCs from experimental evidences in gynecologic cancers. Moreover, we mention several compounds targeting CSCs in gynecologic cancers to enhance the treatment outcomes. Therefore, these signaling pathways might be the potential targets for developing targeted therapy in gynecologic cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shuya Pan
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xin Chen
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
62
|
Mukherjee S, Sundfeldt K, Borrebaeck CAK, Jakobsson ME. Comprehending the Proteomic Landscape of Ovarian Cancer: A Road to the Discovery of Disease Biomarkers. Proteomes 2021; 9:25. [PMID: 34070600 PMCID: PMC8163166 DOI: 10.3390/proteomes9020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Despite recent technological advancements allowing the characterization of cancers at a molecular level along with biomarkers for cancer diagnosis, the management of ovarian cancers (OC) remains challenging. Proteins assume functions encoded by the genome and the complete set of proteins, termed the proteome, reflects the health state. Comprehending the circulatory proteomic profiles for OC subtypes, therefore, has the potential to reveal biomarkers with clinical utility concerning early diagnosis or to predict response to specific therapies. Furthermore, characterization of the proteomic landscape of tumor-derived tissue, cell lines, and PDX models has led to the molecular stratification of patient groups, with implications for personalized therapy and management of drug resistance. Here, we review single and multiple marker panels that have been identified through proteomic investigations of patient sera, effusions, and other biospecimens. We discuss their clinical utility and implementation into clinical practice.
Collapse
Affiliation(s)
- Shuvolina Mukherjee
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Carl A. K. Borrebaeck
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| | - Magnus E. Jakobsson
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| |
Collapse
|
63
|
Tan C, Liu W, Zheng ZH, Wan XG. LncRNA HOTTIP inhibits cell pyroptosis by targeting miR-148a-3p/AKT2 axis in ovarian cancer. Cell Biol Int 2021; 45:1487-1497. [PMID: 33710684 DOI: 10.1002/cbin.11588] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/28/2022]
Abstract
Long noncoding RNA HOTTIP is a crucial regulator in multiple types of cancer, including ovarian cancer (OC). However, the biological roles and underlying mechanisms of HOTTIP in OC have rarely been studied. Hence, this study aimed to investigate the functional correlation between HOTTIP and pyroptosis in OC progression. The expression of HOTTIP in OC tissues and cell lines was characterized by quantitative real-time PCR. Cell proliferation was evaluated using Cell Counting Kit-8 and clone formation assays. Western blot was performed to quantify protein levels. A dual-luciferase reporter assay was used to analyze the molecular interaction among HOTTIP, miR-148a-3p, and AKT2. The expression of HOTTIP was significantly upregulated in OC tissue samples and cell lines. The silencing of HOTTIP led to the inhibition of cell proliferation and NLRP1 inflammasome-mediated pyroptosis. In addition, HOTTIP increased AKT2 expression by negatively regulating miR-148a-3p and then inhibited ASK1/JNK signaling. Further rescue experiments revealed that downregulation of miR-148a-3p and overexpression of AKT2 obviously diminished the effects of HOTTIP downregulation in OC cells. Thus, our study elucidated a novel pyroptosis-related mechanism by which HOTTIP participated in OC progression, which might provide a theoretical reference for clinical treatment.
Collapse
Affiliation(s)
- Cai Tan
- Department of Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, PR China
| | - Wei Liu
- Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, PR China
| | - Zhi-Hua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Xiao-Gang Wan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
64
|
Chen C, Lv Y. The biological behavior of drug-resistantovarian cancer cells and changes in the CA125 and HE4 levels after CIK interventions. Am J Transl Res 2021; 13:2976-2982. [PMID: 34017464 PMCID: PMC8129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study aimed to investigate the biological behavior of drug-resistant ovarian cancer cells and changes in the cancer antigen 125 (CA125) and human epididymal protein 4 (HE4) levels after the application of cytokine-induced killer (CIK) intervention. METHODS Drug-resistant ovarian cancer cells (namely SKVCR) were treated with CIK at different concentrations to observe the changes in the cell survival and cell morphology and the CA125, HE4, cytokine transforming growth factor-α (TGF-α), and tumor necrosis factor-α (TNF-α) levels in the cell lines before and after intervention. RESULTS With an increase in the CIK concentration, the survival rate of the SKVCR cell lines showed a decreasing trend. Under a constant CIK concentration, the survival rate of the SKVCR cell lines gradually decreased over time but become stable at 72 h. Before the CIK intervention, the SKVCR cells were full and rounded in shape, but after the CIK intervention, there was remarkable cell shrinkage and an increase in apoptotic cells. Compared with before the CIK intervention, the CA125 and HE4 levels were significantly decreased, but the TGF-α and TNF-α levels were increased (P<0.05). CONCLUSION After the CIK intervention in the drug-resistant ovarian cancer cells, the cell survival rate decreases with an increase in the CIK concentration or an extension of the intervention time, and the cell morphology will be significantly improved, and the CA125, HE4, and other related cytokine levels will also change significantly, suggesting that CIK can kill drug-resistant ovarian cancer cells.
Collapse
Affiliation(s)
- Chenchen Chen
- Department of Gynecology, Affiliated Hospital of Jining Medical University Jining 272000, Shandong Province, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University Jining 272000, Shandong Province, China
| |
Collapse
|
65
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
66
|
The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro. Cells 2021; 10:cells10030619. [PMID: 33799631 PMCID: PMC8001910 DOI: 10.3390/cells10030619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic regulators of transcriptional activity representing, an epigenetic modification of Histone H3. Previous reports have suggested that the broad H3K4me3 domain can be considered as an epigenetic signature for tumor-suppressor genes in human cells. G-protein-coupled estrogen receptor (GPER), a new membrane-bound estrogen receptor, acts as an inhibitor on cell growth via epigenetic regulation in breast and ovarian cancer cells. This study was conducted to evaluate the relationship of GPER and H3K4me3 in ovarian cancer tissue samples as well as in two different cell lines (Caov3 and Caov4). Silencing of GPER by a specific siRNA and two selective regulators with agonistic (G1) and antagonistic (G15) activity were applied for consecutive in vitro studies to investigate their impacts on tumor cell growth and the changes in phosphorylated ERK1/2 (p-ERK1/2) and H3K4me3. We found a positive correlation between GPER and H3K4me3 expression in ovarian cancer patients. Patients overexpressing GPER as well as H3K4me3 had significantly improved overall survival. Increased H3K4me3 and p-ERK1/2 levels and attenuated cell proliferation and migration were observed in Caov3 and Caov4 cells via activation of GPER by G1. Conversely, antagonizing GPER activity by G15 resulted in opposite effects in the Caov4 cell line. In conclusion, interaction of GPER and H3K4me3 appears to be of prognostic significance for ovarian cancer patients. The results of the in vitro analyses confirm the biological rationale for their interplay and identify GPER agonists, such as G1, as a potential therapeutic approach for future investigations.
Collapse
|
67
|
Anastasiadou E, Messina E, Sanavia T, Mundo L, Farinella F, Lazzi S, Megiorni F, Ceccarelli S, Pontecorvi P, Marampon F, Di Gioia CRT, Perniola G, Panici PB, Leoncini L, Trivedi P, Lenzi A, Marchese C. MiR-200c-3p Contrasts PD-L1 Induction by Combinatorial Therapies and Slows Proliferation of Epithelial Ovarian Cancer through Downregulation of β-Catenin and c-Myc. Cells 2021; 10:cells10030519. [PMID: 33804458 PMCID: PMC7998372 DOI: 10.3390/cells10030519] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses. MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes, like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients’ biopsies. Indeed, PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p concomitantly reduced PD-L1, c-Myc and β-catenin expression and sensitized ovarian cancer cells to olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-3p with c-Myc and β-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression associates with a less tumorigenic microenvironment. These findings provide new insights into how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy, targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
- Correspondence:
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Tiziana Sanavia
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Lucia Mundo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (L.M.); (S.L.); (L.L.)
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Federica Farinella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (L.M.); (S.L.); (L.L.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Giorgia Perniola
- Department of Gynecological-Obstetric Sciences and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (P.B.P.)
| | - Pierluigi Benedetti Panici
- Department of Gynecological-Obstetric Sciences and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (P.B.P.)
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (L.M.); (S.L.); (L.L.)
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.M.); (F.F.); (F.M.); (S.C.); (P.P.); (P.T.); (A.L.); (C.M.)
| |
Collapse
|
68
|
FOXM1 Inhibition in Ovarian Cancer Tissue Cultures Affects Individual Treatment Susceptibility Ex Vivo. Cancers (Basel) 2021; 13:cancers13050956. [PMID: 33668819 PMCID: PMC7956612 DOI: 10.3390/cancers13050956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Late diagnosis of ovarian cancer is a major reason for the high mortality rate of this tumor entity. The time to determine tumor susceptibility to treatment is scarce and resistance to therapy occurs very frequently. Here, we aim for a model system that can determine tumor response to (I) study novel drugs and (II) enhance patient stratification. Tissue specimens (n = 10) were acquired from fresh surgical samples. Tissue cultures were cultivated and treated with clinically relevant therapeutics and an FOXM1 inhibitor for 3–6 days. The transcription factor FOXM1 is a key regulator of tumor survival affecting multiple cancerogenic target genes. Gene expression of FOXM1 and its targets BRCA1/2 and RAD51 were investigated together with tumor susceptibility. Tissue cultures successfully demonstrated the individual benefit of FOXM1 inhibition and revealed the potency of the complex model system for oncological research. Abstract Diagnosis in an advanced state is a major hallmark of ovarian cancer and recurrence after first line treatment is common. With upcoming novel therapies, tumor markers that support patient stratification are urgently needed to prevent ineffective therapy. Therefore, the transcription factor FOXM1 is a promising target in ovarian cancer as it is frequently overexpressed and associated with poor prognosis. In this study, fresh tissue specimens of 10 ovarian cancers were collected to investigate tissue cultures in their ability to predict individual treatment susceptibility and to identify the benefit of FOXM1 inhibition. FOXM1 inhibition was induced by thiostrepton (3 µM). Carboplatin (0.2, 2 and 20 µM) and olaparib (10 µM) were applied and tumor susceptibility was analyzed by tumor cell proliferation and apoptosis in immunofluorescence microscopy. Resistance mechanisms were investigated by determining the gene expression of FOXM1 and its targets BRCA1/2 and RAD51. Ovarian cancer tissue was successfully maintained for up to 14 days ex vivo, preserving morphological characteristics of the native specimen. Thiostrepton downregulated FOXM1 expression in tissue culture. Individual responses were observed after combined treatment with carboplatin or olaparib. Thus, we successfully implemented a complex tissue culture model to ovarian cancer and showed potential benefit of combined FOXM1 inhibition.
Collapse
|
69
|
Torralba M, Farra R, Maddaloni M, Grassi M, Dapas B, Grassi G. Drugs Repurposing in High-Grade Serous Ovarian Cancer. Curr Med Chem 2021; 27:7222-7233. [PMID: 32660396 DOI: 10.2174/0929867327666200713190520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ovary Carcinoma (OC) is the most lethal gynecological neoplasm due to the late diagnoses and to the common development of resistance to platinum-based chemotherapy. Thus, novel therapeutic approaches are urgently required. In this regard, the strategy of drug repurposing is becoming attractive. By this approach, the effectiveness of a drug originally developed for another indication is tested in a different pathology. The advantage is that data about pharmacokinetic properties and toxicity are already available. Thus, in principle, it is possible to reduce research costs and to speed up drug usage/marketing. RESULTS Here, some noticeable examples of repurposed drugs for OC, such as amiodarone, ruxolitinib, statins, disulfiram, ormeloxifenem, and Quinacrine, are reported. Amiodarone, an antiarrhythmic agent, has shown promising anti-OC activity, although the systemic toxicity should not be neglected. The JAK inhibitor, Ruxolitinib, may be employed particularly in coadministration with standard OC therapy as it synergistically interacts with platinum-based drugs. Particularly interesting is the use of statin which represent one of the most commonly administered drugs in aged population to treat hypercholesterolemia. Disulfiram, employed in the treatment of chronic alcoholism, has shown anti-OC properties. Ormeloxifene, commonly used for contraception, seems to be promising, especially due to the negligible side effects. Finally, Quinacrine used as an antimicrobial and anti-inflammatory drug, is able to downregulate OC cell growth and promote cell death. CONCLUSION Whereas further testing in patients are necessary to better clarify the therapeutic potential of repurposed drugs for OC, it is believed that their use, better if combined with OC targeted delivery systems, can significantly contribute to the development of novel and effective anti-OC treatments.
Collapse
Affiliation(s)
- Manuel Torralba
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| | - Marianna Maddaloni
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio
6/A, I-34127 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy,Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| |
Collapse
|
70
|
Targeted therapy clinical trials in ovarian cancer: improved outcomes by gene mutation screening. Anticancer Drugs 2021; 31:101-109. [PMID: 31743133 DOI: 10.1097/cad.0000000000000858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial ovarian cancer is the most common and leading cause of death for gynaecologic cancer in the western world. Current standard treatments with limited selection of chemotherapies cannot meet patients' urgent needs. Novel targeted therapies may improve patients' survival rate with less side effects that have been demonstrated by using approved medicines such as poly ADP-ribose polymerase and angiogenesis inhibitors. Many classes of targeted therapies impacting cell signalling pathways related to ovarian cancer tumorigenesis have been investigated in clinical trial studies. Gene mutation screening is a powerful tool for improvement of success rate of the trials for better patient selection and interpretation of clinical outcomes. Increasing number of patients are being screened for genetic alterations particularly in 'basket' trials that are offering new, genetic-oriented therapies to patients. Thus, in this review, we have searched databases of Pubmed and Clinicaltrials.gov for the past and current phase III and selected phase II ovarian cancer clinical trials with focus on gene profiling. Lessons from both successful and failed trials and implications of ongoing trials are discussed.
Collapse
|
71
|
Arakelyan A, Melkonyan A, Hakobyan S, Boyarskih U, Simonyan A, Nersisyan L, Nikoghosyan M, Filipenko M, Binder H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:1266. [PMID: 33525353 PMCID: PMC7865215 DOI: 10.3390/ijms22031266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Ani Melkonyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia;
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Uljana Boyarskih
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Arman Simonyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Maria Nikoghosyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
72
|
Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1703. [PMID: 33490215 PMCID: PMC7812194 DOI: 10.21037/atm-20-1422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer (EOC) is probably the tumor type with the highest percentage of hereditary cases observed, irrespectively of selection criteria. A fourth to a fifth of unselected epithelial EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA repair pathways. BRCA1 and BRCA2 predisposing PVs were the first to be associated to ovarian cancer, with the advent in DNA sequencing technologies leading to the discovery and association of additional genes which compromise the homologous recombination (HR) pathway. In addition, PVs genes involved in mismatch repair (MMR) pathway, account for 10–15% of hereditary EOC. The identification of women with HR deficient ovarian cancers has significant clinical implications concerning chemotherapy regimen planning and development and use of targeted therapies as well. More specifically, in patients with BRCA1/2 PVs or HR deficiency maintenance treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, either in the first line setting or in recurrent disease, improves the progression-free survival. But also patients with HR proficient tumors show a benefit. Therefore, genetic testing in ovarian cancer has a prognostic and predictive value. In this review, we discuss which ovarian cancer patients should be referred for genetic counseling and how to perform genetic testing. We also discuss the timing of genetic testing and its clinical relevance to BRCA status.
Collapse
Affiliation(s)
- Florentia Fostira
- InRaSTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
73
|
Hutchcraft ML, Gallion HH, Kolesar JM. MUTYH as an Emerging Predictive Biomarker in Ovarian Cancer. Diagnostics (Basel) 2021; 11:84. [PMID: 33419231 PMCID: PMC7825630 DOI: 10.3390/diagnostics11010084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Approximately 18% of ovarian cancers have an underlying genetic predisposition and many of the genetic alterations have become intervention and therapy targets. Although mutations in MutY homolog (MUTYH) are best known for MUTYH associated polyposis and colorectal cancer, it plays a role in the development of ovarian cancer. In this review, we discuss the function of the MUTYH gene, mutation epidemiology, and its mechanism for carcinogenesis. We additionally examine its emerging role in the development of ovarian cancer and how it may be used as a predictive and targetable biomarker. MUTYH mutations may confer the risk of ovarian cancer by the failure of its well-known base excision repair mechanism or by failure to induce cell death. Biallelic germline MUTYH mutations confer a 14% risk of ovarian cancer by age 70. A monoallelic germline mutation in conjunction with a somatic MUTYH mutation may also contribute to the development of ovarian cancer. Resistance to platinum-based chemotherapeutic agents may be seen in tumors with monoallelic mutations, but platinum sensitivity in the biallelic setting. As MUTYH is intimately associated with targetable molecular partners, therapeutic options for MUTYH driven ovarian cancers include programed-death 1/programed-death ligand-1 inhibitors and poly-adenosine diphosphate ribose polymerase inhibitors. Understanding the function of MUTYH and its associated partners is critical for determining screening, risk reduction, and therapeutic approaches for MUTYH-driven ovarian cancers.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
| | - Holly H. Gallion
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
| | - Jill M. Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 40536-0263, USA; (M.L.H.); (H.H.G.)
- Department of Pharmacy Practice & Science, University of Kentucky College of Pharmacy, 567 Todd Building, 789 South Limestone Street, Lexington, KY 40539-0596, USA
| |
Collapse
|
74
|
Sinukumar S, Rajan F, Mehta S, Damodaran D, Zaveri S, Kammar P, Bhatt A. A comparison of outcomes following total and selective peritonectomy performed at the time of interval cytoreductive surgery for advanced serous epithelial ovarian, fallopian tube and primary peritoneal cancer - A study by INDEPSO. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2021; 47:75-81. [PMID: 30857879 DOI: 10.1016/j.ejso.2019.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To compare clinical outcomes following total and selective peritonectomy performed during interval cytoreductive surgery (CRS) for stage IIIC/IVA serous epithelial ovarian cancer. METHODS In this retrospective study, extent of peritonectomy was classified as total parietal peritonectomy (TPP) which comprised of removal of the entire parietal peritoneum and the greater and lesser omenta or selective parietal peritonectomy (SPP) that included 1/>1 of parietal peritonectomies performed to resect sites of residual disease. A comparison of patient and disease characteristics, morbidity, mortality and survival outcomes between the two groups was made. RESULTS From January 2013 to December 2017, 79 patients underwent CRS (TPP-30, SPP-49) with or without intraperitoneal chemotherapy (IPC). The median PCI was 14 for TPP and 8 for SPP. The 90-day grade 3-4 morbidity (23.3% for TPP, 14.2% for SPP, p = 0.58) the 90-day mortality was similar (p = 0.58). The median disease free survival (DFS) was 37 months for SPP and 33 months for TPP (p = 0.47) and median overall survival (OS) not reached for both. The 3-year OS was 95% for TPP and 70.8% for SPP (p = 0.06). The only independent predictor of OS was grade 3-4 morbidity (p = 0.01) and not TPP (p = 0.09). Microscopic residual disease was seen in 23.3% with normal looking peritoneum in TPP group. CONCLUSIONS TPP was not associated with increased morbidity compared to SPP. There was a trend towards a longer OS in the TPP group and the finding of residual disease in 'normal looking' peritoneum' warrants prospective evaluation of the benefit of TPP in this setting.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols
- Carcinoma, Ovarian Epithelial/drug therapy
- Carcinoma, Ovarian Epithelial/mortality
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/surgery
- Cytoreduction Surgical Procedures
- Fallopian Tube Neoplasms/drug therapy
- Fallopian Tube Neoplasms/mortality
- Fallopian Tube Neoplasms/pathology
- Fallopian Tube Neoplasms/surgery
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplasm Staging
- Neoplasm, Residual/drug therapy
- Neoplasm, Residual/mortality
- Neoplasm, Residual/pathology
- Neoplasm, Residual/surgery
- Peritoneal Neoplasms/drug therapy
- Peritoneal Neoplasms/mortality
- Peritoneal Neoplasms/pathology
- Peritoneal Neoplasms/surgery
- Postoperative Complications
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Snita Sinukumar
- Department of Surgical Oncology, Jehangir Hospital, Pune, India
| | - Firoz Rajan
- Department of Surgical Oncology, Kovai Medical Center, Coimbatore, India
| | - Sanket Mehta
- Department of Surgical Oncology, Saifee Hospital, Mumbai, India
| | - Dileep Damodaran
- Department of Surgical Oncology, MVR Cancer Centre and Research Institute, Calicut, India
| | | | - Praveen Kammar
- Department of Surgical Oncology, Saifee Hospital, Mumbai, India
| | - Aditi Bhatt
- Department of Surgical Oncology, Zydus Hospital, Ahmedabad, India.
| |
Collapse
|
75
|
Tyagi K, Roy A. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188496. [PMID: 33383102 DOI: 10.1016/j.bbcan.2020.188496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Ovarian cancer, especially high grade serous ovarian cancer is one of the most lethal gynaecological malignancies with high relapse rate and patient death. Notwithstanding development of several targeted treatment and immunotherapeutic approaches, researchers fail to turn ovarian cancer into a manageable disease. Protein kinase C (PKC) and protein kinase D (PKD) are families of evolutionarily conserved serine/threonine kinases that can be activated by a plethora of extracellular stimuli such as hormones, growth factors and G-protein coupled receptor agonists. Recent literature suggests that a signalling cascade initiated by these two protein kinases regulates a battery of cellular and physiological processes involved in tumorigenesis including cell proliferation, migration, invasion and angiogenesis. In an urgent need to discover novel therapeutic interventions against a deadly pathology like ovarian cancer, we have discussed the status quo of PKC/PKD signalling axis in context of this disease. Additionally, apart from discussing the structural properties and activation mechanisms of PKC/PKD, we have provided a comprehensive review of the recent reports on tumor promoting functions of PKC isoforms and discussed the potential of PKC/PKD signalling axis as a novel target in this lethal pathology. Furthermore, in this review, we have discussed the significance of several recent clinical trials and development of small molecule inhibitors that target PKC/PKD signalling axis in ovarian cancer.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
76
|
Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies. Int J Mol Sci 2020; 21:ijms21249492. [PMID: 33327450 PMCID: PMC7764929 DOI: 10.3390/ijms21249492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, a common factor ruling the microenvironment composition, leads to tumor progression. In this hypoxic context, cytokines and cells cooperate to favor cancer development and metastasis. Tumor hypoxia is heterogeneously distributed. Oxygen gradients depend on the vicinity, functionality of blood vessels, and oxygen ability to diffuse into surrounding tissues. Thus, the vasculature state modulates the microenvironment of the tumor cells. Cells sense and react to small variations in oxygen tension, which explains the lack of tumor cells’ unicity in their reaction to drugs. Ovarian cancers are highly hypoxia-dependent, ascites worsening the access to oxygen, in their reactions to both chemotherapy and new immunotherapy. Consequently, hypoxia affects the results of immunotherapy, and is thus, crucial for the design of treatments. Controlling key immunosuppressive factors and receptors, as well as immune checkpoint molecule expression on tumor, immune and stromal cells, hypoxia induces immunosuppression. Consequently, new approaches to alleviate hypoxia in the tumor microenvironment bring promises for ovarian cancer immunotherapeutic strategies. This review focuses on the effects of hypoxia in the microenvironment and its consequences on tumor treatments. This opens the way to innovative combined treatments to the advantage of immunotherapy outcome in ovarian cancers.
Collapse
|
77
|
Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020; 27:5675-5715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Oreste Luisi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico "Giovanni Paolo II" Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
78
|
Wang H, Cui G, Yu B, Sun M, Yang H. Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Curr Pharm Des 2020; 26:1979-1993. [PMID: 32268862 DOI: 10.2174/1381612826666200408102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a sub-population of tumor cells found in many human cancers that are endowed with self-renewal and pluripotency. CSCs may be more resistant to conventional anticancer therapies than average cancer cells, as they can easily escape the cytotoxic effects of standard chemotherapy, thereby resulting in tumor relapse. Despite significant progress in related research, effective elimination of CSCs remains an unmet clinical need. CSCs are localized in a specialized microenvironment termed the niche, which plays a pivotal role in cancer multidrug resistance. The niche components of CSCs, such as the extracellular matrix, also physically shelter CSCs from therapeutic agents. Colorectal cancer is the most common malignancy worldwide and presents a relatively transparent process of cancer initiation and development, making it an ideal model for CSC niche research. Here, we review recent advances in the field of CSCs using colorectal cancer as an example to illustrate the potential therapeutic value of targeting the CSC niche. These findings not only provide a novel theoretical basis for in-depth discussions on tumor occurrence, development, and prognosis evaluation, but also offer new strategies for the targeted treatment of cancer.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China.,Laboratory medical college, Jilin Medical University, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Meiyan Sun
- Laboratory medical college, Jilin Medical University, Jilin, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
79
|
Wang C, Lv X, He C, Davis JS, Wang C, Hua G. Four and a Half LIM Domains 2 (FHL2) Contribute to the Epithelial Ovarian Cancer Carcinogenesis. Int J Mol Sci 2020; 21:ijms21207751. [PMID: 33092075 PMCID: PMC7589967 DOI: 10.3390/ijms21207751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecologic malignancies. To date, the etiology of this deadly disease remains elusive. FHL2, a member of the four and a half LIM domain family, has been shown to serve either as an oncoprotein or as a tumor suppressor in various cancers. Our previous study showed that FHL2 plays a critical role in the initiation and progression of ovarian granulosa cell tumor via regulating AKT1 transcription. However, direct and systematic evidence of FHL2 in the initiation and progression of EOC remains unclear. In the present study, immunohistochemical analysis from EOC patient tissues showed that positivity and intensity of FHL2 immunosignal were up-regulated in the EOC tissues compared with normal ovary tissues. Knockdown of FHL2 in SKOV-3 cell line reduced cell growth and cell viability, blocked cell cycle progression, and inhibited cell migration. Ectopic expression of FHL2 in IGROV-1 cells which have low endogenous FHL2, promoted cell growth, improved cell viability and enhanced cell migration. Additionally, knock down of FHL2 in the SKOV-3 cell line significantly inhibited anchorage-independent growth indicated by the soft agar assay. In comparison, overexpression of FHL2 in IGROV-1 cell improved the colonies growth in soft agar. Western blot data showed that knockdown of FHL2 downregulated AKT expression level, and upregulated apoptosis related proteins such as cleaved PARP, and cleaved-lamin A. Finally, by employing stable SKOV-3/FHL2 stable knock down cell line, our data clearly showed that knockdown of FHL2 inhibited EOC xenograft initiation in vivo. Taken together, our results showed that FHL2, via regulating cell proliferation, cell cycle, and adhesion, has a critical role in regulating EOC initiation and progression. These results indicate that FHL2 could be a potential target for the therapeutic drugs against EOC.
Collapse
Affiliation(s)
- Chen Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiangmin Lv
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA; (X.L.); (C.H.); (J.S.D.); (C.W.)
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Chunbo He
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA; (X.L.); (C.H.); (J.S.D.); (C.W.)
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA; (X.L.); (C.H.); (J.S.D.); (C.W.)
- Omaha Veterans Affairs Medical Center, Omaha, NE 68105, USA
| | - Cheng Wang
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA; (X.L.); (C.H.); (J.S.D.); (C.W.)
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: ; Tel.: +86-027-87515280
| |
Collapse
|
80
|
Sharbatoghli M, Vafaei S, Aboulkheyr Es H, Asadi-Lari M, Totonchi M, Madjd Z. Prediction of the treatment response in ovarian cancer: a ctDNA approach. J Ovarian Res 2020; 13:124. [PMID: 33076944 PMCID: PMC7574472 DOI: 10.1186/s13048-020-00729-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the eighth most commonly occurring cancer in women. Clinically, the limitation of conventional screening and monitoring approaches inhibits high throughput analysis of the tumor molecular markers toward prediction of treatment response. Recently, analysis of liquid biopsies including circulating tumor DNA (ctDNA) open new way toward cancer diagnosis and treatment in a personalized manner in various types of solid tumors. In the case of ovarian carcinoma, growing pre-clinical and clinical studies underscored promising application of ctDNA in diagnosis, prognosis, and prediction of treatment response. In this review, we accumulate and highlight recent molecular findings of ctDNA analysis and its associations with treatment response and patient outcome. Additionally, we discussed the potential application of ctDNA in the personalized treatment of ovarian carcinoma. ctDNA-monitoring usage during the ovarian cancer treatments procedures.
Collapse
Affiliation(s)
- Mina Sharbatoghli
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
81
|
Pan X, Ma X. A Novel Six-Gene Signature for Prognosis Prediction in Ovarian Cancer. Front Genet 2020; 11:1006. [PMID: 33193589 PMCID: PMC7593580 DOI: 10.3389/fgene.2020.01006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is the most malignant tumor in the female reproductive tract. Although abundant molecular biomarkers have been identified, a robust and accurate gene expression signature is still essential to assist oncologists in evaluating the prognosis of OC patients. In this study, samples from 367 patients in The Cancer Genome Atlas (TCGA) database were subjected to mRNA expression profiling. Then, we used a gene set enrichment analysis (GSEA) to screen genes correlated with epithelial–mesenchymal transition (EMT) and assess their prognostic power with a Cox proportional regression model. Six genes (TGFBI, SFRP1, COL16A1, THY1, PPIB, BGN) associated with overall survival (OS) were used to construct a risk assessment model, after which the patients were divided into high-risk and low-risk groups. The six-gene signature was an independent prognostic biomarker of OS for OC patients based on the multivariate Cox regression analysis. In addition, the six-gene model was validated with samples from the Gene Expression Omnibus (GEO) database. In summary, we established a six-gene signature relevant to the prognosis of OC, which might become a therapeutic tool with clinical applications in the future.
Collapse
Affiliation(s)
- Xin Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
82
|
RIP1 promotes proliferation through G2/M checkpoint progression and mediates cisplatin-induced apoptosis and necroptosis in human ovarian cancer cells. Acta Pharmacol Sin 2020; 41:1223-1233. [PMID: 32242118 PMCID: PMC7608477 DOI: 10.1038/s41401-019-0340-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Receptor-interacting protein 1 (RIP1, also known as RIPK1) is not only a tumor-promoting factor in several cancers but also mediates either apoptosis or necroptosis in certain circumstances. In this study we investigated what role RIP1 plays in human ovarian cancer cells. We showed that knockout (KO) of RIP1 substantially suppressed cell proliferation, accompanied by the G2/M checkpoint arrest in two human ovarian cancer cell lines SKOV3 and A2780. On the other hand, RIP1 KO remarkably attenuated cisplatin-induced cytotoxicity, which was associated with reduction of the apoptosis markers PARP cleavage and the necroptosis marker phospho-MLKL. We found that RIP1 KO suppressed cisplatin-induced ROS accumulation in both SKOV3 and A2780 cells. ROS scavenger BHA, apoptosis inhibitor Z-VAD or necroptosis inhibitor NSA could effectively suppress cisplatin’s cytotoxicity in the control cells, suggesting that ROS-mediated apoptosis and necroptosis were involved in cisplatin-induced cell death. In addition, blocking necroptosis with MLKL siRNA effectively attenuated cisplatin-induced cytotoxicity. In human ovarian cancer A2780 cell line xenograft nude mice, RIP1 KO not only significantly suppressed the tumor growth but also greatly attenuated cisplatin’s anticancer activity. Our results demonstrate a dual role of RIP1 in human ovarian cancer: it acts as either a tumor-promoting factor to promote cancer cell proliferation or a tumor-suppressing factor to facilitate anticancer effects of chemotherapeutics such as cisplatin.
Collapse
|
83
|
Mota A, S Oltra S, Moreno-Bueno G. Insight updating of the molecular hallmarks in ovarian carcinoma. EJC Suppl 2020; 15:16-26. [PMID: 33240439 PMCID: PMC7573468 DOI: 10.1016/j.ejcsup.2019.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background and purpose Ovarian cancer (OC) is the deadliest gynaecologic cancer characterised by a high heterogeneity not only at the clinical point of view but also at the molecular level. This review focuses on the new insights about the OC molecular classification. Materials and methods We performed a bibliographic search for different indexed articles focused on the new molecular classification of OC. All of them have been published in PubMed and included information about the most frequent molecular alterations in OC confirmed by omics approaches. In addition, we have extracted information about the role of liquid biopsy in the OC diagnosis and prognosis. Results New molecular insights into OC have allowed novel clinical entities to be defined. Among OC, high-grade serous ovarian carcinoma (HGSOC) which is the most common OC is characterised by omics approaches, mutations in TP53 and in other genes involved in the homologous recombination repair, especially BRCA1/2. Recent studies in HGSOC have allowed a new molecular classification in subgroups according to their mutational, transcriptional, methylation and copy number variation signatures with a real impact in the characterisation of new therapeutic targets for OC to be defined. Furthermore, despite the intrinsic intra-tumour heterogeneity, the advances in next generation sequencing (NGS) analyses of ascetic liquid from OC have opened new ways for its characterisation and treatment. Conclusions The advances in genomic approaches have been used for the identification of new molecular profiling techniques which define OC subgroups and has supposed advances in the diagnosis and in the personalised treatment of OC. Classification of ovarian cancer regarding to widespread genetic and genomic data. Highlighted role of p53 and BRCA1/2 in ovarian cancer for diagnosis and treatment. Intra-tumour genetic heterogeneity in ovarian cancer. Useful of liquid biopsy study in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Sara S Oltra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
- Corresponding author: Departamento de Bioquímica, Facultad de Medicina (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Arzobispo Morcillo 4, Madrid, 28029, Spain. Fax: +34 91-5854401.
| |
Collapse
|
84
|
Ovarian Cancer Metastasis to the Larynx: A Case Report and Review of the Literature. Case Rep Surg 2020; 2020:1543129. [PMID: 32832186 PMCID: PMC7422345 DOI: 10.1155/2020/1543129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Laryngeal secondary malignancies are rare, and most spread locoregionally from hypopharyngeal or thyroid primaries. Metastasis of ovarian carcinoma to the larynx is extremely rare. A 65-year-old woman with a history of high grade serous ovarian carcinoma was undergoing carboplatin chemotherapy for recurrence. She presented with progressive dysphagia and hoarseness; a computer tomography (CT) scan demonstrated bilateral necrotic lymphadenopathy and hypopharyngeal fullness. A hypopharyngeal mass was confirmed on examination, and operative biopsy identified it as high-grade serous ovarian. To our knowledge, this report describes the second immunohistochemically proven metastatic ovarian cancer detected in the larynx in the world literature.
Collapse
|
85
|
Wang N, Cao QX, Tian J, Ren L, Cheng HL, Yang SQ. Circular RNA MTO1 Inhibits the Proliferation and Invasion of Ovarian Cancer Cells Through the miR-182-5p/KLF15 Axis. Cell Transplant 2020; 29:963689720943613. [PMID: 32731816 PMCID: PMC7563032 DOI: 10.1177/0963689720943613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs
and have been shown to play important roles in a variety of
physiological processes. Recently, dysregulation of circRNAs has been
identified in many types of cancers. In this study, we analyzed the
expression profile and biological functions of circMTO1 in ovarian
cancer. We demonstrated that circMTO1 was downregulated in ovarian
cancer tissues and cell lines. Upregulation of circMTO1 inhibited
proliferation and invasion of ovarian cancer cells while
downregulation of circMTO1 promoted these processes. Mechanistically,
we showed that circMTO1 sponged miR-182-5p to support KLF15
expression, eventually leading to inhibition of ovarian cancer
progression. In conclusion, our study suggested circMTO1 as a novel
biomarker and therapeutic target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gynecology, Huaihe Hospital of Henan University, Kaifeng, China
- Both the authors contributed equally to this article
| | - Qin-Xue Cao
- Department of Gynecology, Huaihe Hospital of Henan University, Kaifeng, China
- Both the authors contributed equally to this article
| | - Jun Tian
- Department of Gynecology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Lu Ren
- Department of Gynecology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hai-Ling Cheng
- Department of Gynecology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Shao-Qin Yang
- Department of Gynecology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
86
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
87
|
Long Non-Coding RNA HAND2-AS1 Acts as a Tumor Suppressor in High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2020; 21:ijms21114059. [PMID: 32517089 PMCID: PMC7312972 DOI: 10.3390/ijms21114059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly being identified as crucial regulators in pathologies like cancer. High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer (OC), one of the most lethal gynecological malignancies. LncRNAs, especially in cancers such as HGSC, could play a valuable role in diagnosis and even therapy. From RNA-sequencing analysis performed between an OC cell line, SKOV3, and a Fallopian Tube (FT) cell line, FT194, an important long non-coding RNA, HAND2 Anti sense RNA 1 (HAND2-AS1), was observed to be significantly downregulated in OCs when compared to FT. Its downregulation in HGSC was validated in different datasets and in a panel of HGSC cell lines. Furthermore, this study shows that the downregulation of HAND2-AS1 is caused by promoter hypermethylation in HGSC and behaves as a tumor suppressor in HGSC cell lines. Since therapeutic relevance is of key importance in HGSC research, for the first time, HAND2-AS1 upregulation was demonstrated to be one of the mechanisms through which HDAC inhibitor Panobinostat could be used in a strategy to increase HGSC cells’ sensitivity to chemotherapeutic agents currently used in clinical trials. To unravel the mechanism by which HAND2-AS1 exerts its role, an in silico mRNA network was constructed using mRNAs whose expressions were positively and negatively correlated with this lncRNA in HGSC. Finally, a putative ceRNA network with possible miRNA targets of HAND2-AS1 and their mRNA targets was constructed, and the enriched Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified.
Collapse
|
88
|
Molecular Pathways and Targeted Therapies for Malignant Ovarian Germ Cell Tumors and Sex Cord-Stromal Tumors: A Contemporary Review. Cancers (Basel) 2020; 12:cancers12061398. [PMID: 32485873 PMCID: PMC7353025 DOI: 10.3390/cancers12061398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Non-epithelial ovarian tumors are heterogeneous and account for approximately 10% of ovarian malignancies. The most common subtypes of non-epithelial ovarian tumors arise from germ cells or sex cord and stromal cells of the gonads. These tumors are usually detected at an early stage, and management includes surgical staging and debulking. When indicated for advanced disease, most respond to chemotherapy; however, options for patients with refractory disease are limited, and regimens can be associated with significant toxicities, including permanent organ dysfunction, secondary malignancies, and death. Targeted therapies that potentially decrease chemotherapy-related adverse effects and improve outcomes for patients with chemotherapy-refractory disease are needed. Here, we review the molecular landscape of non-epithelial ovarian tumors for the purpose of informing rational clinical trial design. Recent genomic discoveries have uncovered recurring somatic alterations and germline mutations in subtypes of non-epithelial ovarian tumors. Though there is a paucity of efficacy data on targeted therapies, such as kinase inhibitors, antibody–drug conjugates, immunotherapy, and hormonal therapy, exceptional responses to some compounds have been reported. The rarity and complexity of non-epithelial ovarian tumors warrant collaboration and efficient clinical trial design, including high-quality molecular characterization, to guide future efforts.
Collapse
|
89
|
Integrative genomics approach identifies molecular features associated with early-stage ovarian carcinoma histotypes. Sci Rep 2020; 10:7946. [PMID: 32409713 PMCID: PMC7224294 DOI: 10.1038/s41598-020-64794-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer comprises multiple subtypes (clear-cell (CCC), endometrioid (EC), high-grade serous (HGSC), low-grade serous (LGSC), and mucinous carcinomas (MC)) with differing molecular and clinical behavior. However, robust histotype-specific biomarkers for clinical use have yet to be identified. Here, we utilized a multi-omics approach to identify novel histotype-specific genetic markers associated with ovarian carcinoma histotypes (CCC, EC, HGSC, and MC) using DNA methylation, DNA copy number alteration and RNA sequencing data for 96 primary invasive early-stage (stage I and II) ovarian carcinomas. More specifically, the DNA methylation analysis revealed hypermethylation for CCC in comparison with the other histotypes. Moreover, copy number imbalances and novel chromothripsis-like rearrangements (n = 64) were identified in ovarian carcinoma, with the highest number of chromothripsis-like patterns in HGSC. For the 1000 most variable transcripts, underexpression was most prominent for all histotypes in comparison with normal ovarian samples. Overall, the integrative approach identified 46 putative oncogenes (overexpressed, hypomethylated and DNA gain) and three putative tumor suppressor genes (underexpressed, hypermethylated and DNA loss) when comparing the different histotypes. In conclusion, the current study provides novel insights into molecular features associated with early-stage ovarian carcinoma that may improve patient stratification and subclassification of the histotypes.
Collapse
|
90
|
Li Z, Xuan W, Huang L, Chen N, Hou Z, Lu B, Wen C, Huang S. Claudin 10 acts as a novel biomarker for the prognosis of patients with ovarian cancer. Oncol Lett 2020; 20:373-381. [PMID: 32565963 PMCID: PMC7285858 DOI: 10.3892/ol.2020.11557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer (OC) is one of the most fatal gynecological malignancies in the world and confers a poor 5-year survival rate. The present study was designed to discover novel prognostic markers for patients with OC in order to estimate disease metastasis or recurrence. Based on the large cohorts of transcriptome data from multicenter sources, a comprehensive analysis was performed to explore potential prognostic markers. A total of 269 differentially expressed genes were identified, of which 32 were upregulated and 237 downregulated in OC tissues compared with the corresponding expression in normal tissues. Kaplan-Meier analysis, log-rank test and nomogram analysis were employed to demonstrate that low expression levels of claudin 10 (CLDN10) were associated with a less favorable disease prognosis. The most promising prognostic marker for OC was subsequently selected. Additionally, the prognostic nomogram was constructed in order to assess the 5-year survival rate using CLDN10 expression as a prognostic marker for OC. Furthermore, gene set enrichment analysis and analysis of the tumor-associated competing endogenous RNA network were performed to elucidate the potential biological processes associated with CLDN10 expression. The current results indicated that CLDN10 may influence OC progression via transforming growth factor-β (TGF-β)- or WNT/β-catenin-induced epithelial-to-mesenchymal transition (EMT). The associations among CLDN10, microRNA-486-5p, TGF-β, WNT/β-catenin and EMT should be further investigated in future studies.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenting Xuan
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Lishan Huang
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Niankun Chen
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiyong Hou
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Biyan Lu
- Department of Basic Medical Sciences, Dongguan Polytechnic, Dongguan, Guangdong 523808, P.R. China
| | - Chuangyu Wen
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Suran Huang
- Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
91
|
Subramanian DN, Zethoven M, McInerny S, Morgan JA, Rowley SM, Lee JEA, Li N, Gorringe KL, James PA, Campbell IG. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nat Commun 2020; 11:1640. [PMID: 32242007 PMCID: PMC7118163 DOI: 10.1038/s41467-020-15461-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/12/2020] [Indexed: 01/31/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, approximately half of which cannot be explained by known genes. To discover genes, we analyse germline exome sequencing data from 516 BRCA1/2-negative women with HGSOC, focusing on genes enriched with rare, protein-coding loss-of-function (LoF) variants. Overall, there is a significant enrichment of rare protein-coding LoF variants in the cases (p < 0.0001, chi-squared test). Only thirty-four (6.6%) have a pathogenic variant in a known or proposed predisposition gene. Few genes have LoF mutations in more than four individuals and the majority are detected in one individual only. Forty-three highly-ranked genes are identified with three or more LoF variants that are enriched by three-fold or more compared to GnomAD. These genes represent diverse functional pathways with relatively few involved in DNA repair, suggesting that much of the remaining heritability is explained by previously under-explored genes and pathways.
Collapse
Affiliation(s)
- Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Magnus Zethoven
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Simone McInerny
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - James A Morgan
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul A James
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
92
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
93
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
94
|
Ovarian Cancer, Cancer Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9:cells9030719. [PMID: 32183385 PMCID: PMC7140629 DOI: 10.3390/cells9030719] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.
Collapse
|
95
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
96
|
Abildgaard C, Do Canto LM, Steffensen KD, Rogatto SR. Long Non-coding RNAs Involved in Resistance to Chemotherapy in Ovarian Cancer. Front Oncol 2020; 9:1549. [PMID: 32039022 PMCID: PMC6985280 DOI: 10.3389/fonc.2019.01549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) accounts for more than 150,000 deaths worldwide every year. Patients are often diagnosed at an advanced stage with metastatic dissemination. Although platinum- and taxane-based chemotherapies are effective treatment options, they are rarely curative and eventually, the disease will progress due to acquired resistance. Emerging evidence suggests a crucial role of long non-coding RNAs (lncRNAs) in the response to therapy in OC. Transcriptome profiling studies using high throughput approaches have identified differential expression patterns of lncRNAs associated with disease recurrence. Furthermore, several aberrantly expressed lncRNAs in resistant OC cells have been related to increased cell division, improved DNA repair, up-regulation of drug transporters or reduced susceptibility to apoptotic stimuli, supporting their involvement in acquired resistance. In this review, we will discuss the key aspects of lncRNAs associated with the development of resistance to platinum- and taxane-based chemotherapy in OC. The molecular landscape of OC will be introduced, to provide a background for understanding the role of lncRNAs in the acquisition of malignant properties. We will focus on the interplay between lncRNAs and molecular pathways affecting drug response to evaluate their impact on treatment resistance. Additionally, we will discuss the prospects of using lncRNAs as biomarkers or targets for precision medicine in OC. Although there is still plenty to learn about lncRNAs and technical challenges to be solved, the evidence of their involvement in OC and the development of acquired resistance are compelling and warrant further investigation for clinical applications.
Collapse
Affiliation(s)
- Cecilie Abildgaard
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Luisa M Do Canto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Karina D Steffensen
- Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Silvia R Rogatto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
97
|
Pantshwa JM, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. Nanodrug Delivery Systems for the Treatment of Ovarian Cancer. Cancers (Basel) 2020; 12:E213. [PMID: 31952210 PMCID: PMC7017423 DOI: 10.3390/cancers12010213] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Despite advances achieved in medicine, chemotherapeutics still has detrimental side effects with ovarian cancer (OC), accounting for numerous deaths among females. The provision of safe, early detection and active treatment of OC remains a challenge, in spite of improvements in new antineoplastic discovery. Nanosystems have shown remarkable progress with impact in diagnosis and chemotherapy of various cancers, due to their ideal size; improved drug encapsulation within its interior core; potential to minimize drug degradation; improve in vivo drug release kinetics; and prolong blood circulation times. However, nanodrug delivery systems have few limitations regarding its accuracy of tumour targeting and the ability to provide sustained drug release. Hence, a cogent and strategic approach has focused on nanosystem functionalization with antibody-based ligands to selectively enhance cellular uptake of antineoplastics. Antibody functionalized nanosystems are (advanced) synthetic candidates, with a broad range of efficiency in specific tumour targeting, whilst leaving normal cells unaffected. This article comprehensively reviews the present status of nanosystems, with particular emphasis on nanomicelles for molecular diagnosis and treatment of OC. In addition, biomarkers of nanosystems provide important prospects as chemotherapeutic strategies to upsurge the survival rate of patients with OC.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.M.P.); (P.P.D.K.); (Y.E.C.); (T.M.)
| |
Collapse
|
98
|
Braga LDC, Gonçales NG, Furtado RDS, de Andrade WP, Silva LM, da Silva Filho AL. Apoptosis-related gene expression can predict the response of ovarian cancer cell lines to treatment with recombinant human TRAIL alone or combined with cisplatin. Clinics (Sao Paulo) 2020; 75:e1492. [PMID: 32187278 PMCID: PMC7061320 DOI: 10.6061/clinics/2020/e1492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The objectives of this study were to determine the sensitivity of ovarian cancer (OC) cell lines (TOV-21G and SKOV-3) to cisplatin and to the recombinant human TRAIL (rhTRAIL), and to evaluate the expression profile of TNFRSF10B, TNFRSF10C, TP53TG5, MDM2, BAX, BCL-2 and CASPASE-8 genes and their participation in the resistance/susceptibility mechanism of these tumor cell lines. METHODS To determine the IC50 values associated with Cisplatin and rhTRAIL, inhibition of cell growth was observed using MTT assays in two human OC cell lines (SKOV-3 and TOV-21G). The analysis of gene expression was performed using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Both cell lines had different susceptibility profiles to the tested drugs. In the SKOV-3 cell line, the IC50 values for cisplatin and for rhTRAIL were 270.83 ug/mL and 196.5 ng/mL, respectively. The same concentrations were used for TOV-21G. Different gene expression profiles were observed in each tested cell line. CASPASE-8 and TNFRSF10B expression levels could predict the response of both the cell lines to rhTRAIL alone or the response to a combination of rhTRAIL and cisplatin. In addition, we observed a relationship between BCL-2 and BAX expression that may be helpful in estimating the proliferation rate of the OC cell lines. CONCLUSION SKOV-3 and TOV-21G respond differently to cisplatin and rhTRAIL exposure, and expression of CASPASE-8 and TNFRSF10B are good predictors of responses to these treatments.
Collapse
Affiliation(s)
- Letícia da Conceição Braga
- Servico de Biologia Celular da Diretoria de Pesquisa e Desenvolvimento, Fundacao Ezequiel Dias-Funed, Belo Horizonte, MG, BR
- Departamento de Ginecologia e Obstetricia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Nikole Gontijo Gonçales
- Servico de Biologia Celular da Diretoria de Pesquisa e Desenvolvimento, Fundacao Ezequiel Dias-Funed, Belo Horizonte, MG, BR
| | - Rafaela de Souza Furtado
- Departamento de Ginecologia e Obstetricia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Warne Pedro de Andrade
- Departamento de Ginecologia e Obstetricia, Faculdade de Ciencias Medicas e Biologicas de Botucatu, Universidade Estadual Paulista, Botucatu, SP, BR
| | - Luciana Maria Silva
- Servico de Biologia Celular da Diretoria de Pesquisa e Desenvolvimento, Fundacao Ezequiel Dias-Funed, Belo Horizonte, MG, BR
| | - Agnaldo Lopes da Silva Filho
- Departamento de Ginecologia e Obstetricia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
- Departamento de Ginecologia e Obstetricia, Faculdade de Ciencias Medicas e Biologicas de Botucatu, Universidade Estadual Paulista, Botucatu, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
99
|
Guo H, Ha C, Dong H, Yang Z, Ma Y, Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int 2019; 19:347. [PMID: 31889899 PMCID: PMC6925473 DOI: 10.1186/s12935-019-1051-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with a high mortality. Cisplatin-based treatment is the typical treatment regimen for OC patients; however, it may cause unfavorable resistance. The current study intends to explore the function of cancer-associated fibroblast (CAF)-derived exosomal microRNA-98-5p (miR-98-5p) in cisplatin resistance in OC, and the participation of CDKN1A. Methods Bioinformatics analysis was employed in order to obtain cisplatin resistance-related differential genes in OC as well as possible upstream regulatory miRs. After gain- and loss-of-function assays in OC cells, RT-qPCR and western blot analysis were employed to measure CDKN1A and miR-98-5p expression. Dual luciferase reporter assay was applied to verify the targeting relationship between miR-98-5p and CDKN1A. CAFs were treated with miR-98-5p inhibitor, and then exosomes were isolated and co-cultured with OC cells. CCK-8, colony formation and flow cytometry assays were conducted to assess cell proliferation, cell colony formation, cell cycle distribution and cell apoptosis, respectively. At last, xenograft tumor in nude mice was carried out to test whether exosomal miR-98-5p could affect cisplatin resistance in OC in vivo. Results CDKN1A was highly expressed in cisplatin-sensitive OC cell lines, and silencing CDKN1A significantly promoted proliferation and cell cycle entry but decreased apoptosis in cisplatin-sensitive OC cells. miR-98-5p targeted CDKN1A to inhibit CDKN1A expression. CAF-derived exosomal miR-98-5p increased OC cell proliferation and cell cycle entry, but suppressed cell apoptosis. Furthermore, exosomal miR-98-5p promoted cisplatin resistance and downregulated CDKN1A in nude mice. Conclusion Collectively, CAF-derived exosomes carrying overexpressed miR-98-5p promote cisplatin resistance in OC by downregulating CDKN1A.
Collapse
Affiliation(s)
- Hua Guo
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Chunfang Ha
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Hui Dong
- 2Scientific Research Equipment Management Center, General Hospital of Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Zhijuan Yang
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yuan Ma
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yonghui Ding
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
100
|
Gokulnath P, de Cristofaro T, Manipur I, Di Palma T, Soriano AA, Guarracino MR, Zannini M. Long Non-Coding RNA MAGI2-AS3 is a New Player with a Tumor Suppressive Role in High Grade Serous Ovarian Carcinoma. Cancers (Basel) 2019; 11:cancers11122008. [PMID: 31842477 PMCID: PMC6966615 DOI: 10.3390/cancers11122008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
High-Grade Serous Ovarian Carcinoma (HGSC) is the most incidental and lethal subtype of epithelial ovarian cancer (EOC) with a high mortality rate of nearly 65%. Recent findings aimed at understanding the pathogenesis of HGSC have attributed its principal source as the Fallopian Tube (FT). To further comprehend the exact mechanism of carcinogenesis, which is still less known, we performed a transcriptome analysis comparing FT and HGSC. Our study aims at exploring new players involved in the development of HGSC from FT, along with their signaling network, and we chose to focus on non-coding RNAs. Non-coding RNAs (ncRNAs) are increasingly observed to be the major regulators of several cellular processes and could have key functions as biological markers, as well as even a therapeutic approach. The most physiologically relevant and significantly dysregulated non-coding RNAs were identified bioinformatically. After analyzing the trend in HGSC and other cancers, MAGI2-AS3 was observed to be an important player in EOC. We assessed its tumor-suppressive role in EOC by means of various assays. Further, we mapped its signaling pathway using its role as a miRNA sponge to predict the miRNAs binding to MAGI2AS3 and showed it experimentally. We conclude that MAGI2-AS3 acts as a tumor suppressor in EOC, specifically in HGSC by sponging miR-15-5p, miR-374a-5p and miR-374b-5p, and altering downstream signaling of certain mRNAs through a ceRNA network.
Collapse
Affiliation(s)
- Priyanka Gokulnath
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Dpt. Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Tiziana de Cristofaro
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
| | - Ichcha Manipur
- High Performance Computing and Networking Institute, National Research Council, via P. Castellino 111, 80131 Napoli, Italy
| | - Tina Di Palma
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
| | - Amata Amy Soriano
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Present affiliation: IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISReMIT, 71013 San Giovanni Rotondo FG, Italy
| | - Mario Rosario Guarracino
- Dpt. Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mariastella Zannini
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Correspondence:
| |
Collapse
|