51
|
Kang X, Wang H, Li Y, Xiao Y, Zhao L, Zhang T, Zhou S, Zhou X, Li Y, Shou Z, Chen C, Li B. Alantolactone induces apoptosis through ROS-mediated AKT pathway and inhibition of PINK1-mediated mitophagy in human HepG2 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1961-1970. [DOI: 10.1080/21691401.2019.1593854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xing Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Hijuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Yanwei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Ying Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Lili Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Tingting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Shaohe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Xiaolun Zhou
- Department of Pathogenic Biology, Gansu medical college, Pingliang, PR China
| | - Yi Li
- School of Computer Sciences, Xi’an Polytechnic University, Xi’an, PR China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chao Chen
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
- College of Life Science, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, PR China
| |
Collapse
|
52
|
Santos AC, Pereira I, Magalhães M, Pereira-Silva M, Caldas M, Ferreira L, Figueiras A, Ribeiro AJ, Veiga F. Targeting Cancer Via Resveratrol-Loaded Nanoparticles Administration: Focusing on In Vivo Evidence. AAPS JOURNAL 2019; 21:57. [PMID: 31016543 DOI: 10.1208/s12248-019-0325-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Resveratrol (RSV) is a polyphenol endowed with potential therapeutic effects in chronic diseases, particularly in cancer, the second leading cause of death worldwide in the twenty-first century. The advent of nanotechnology application in the field of drug delivery allows to overcome the constrains associated with the conventional anticancer treatments, in particular chemotherapy, reducing its adverse side effects, off target risks and surpassing cancer multidrug chemoresistance. Moreover, the use of nanotechnology-based carriers in the delivery of plant-derived anticancer agents, such as RSV, has already demonstrated to surpass the poor water solubility, instability and reduced bioavailability associated with phytochemicals, improving their therapeutic activity, thus prompting pharmaceutical developments. This review highlights the in vivo anticancer potential of RSV achieved by nanotherapeutic approaches. First, RSV physicochemical, stability and pharmacokinetic features are described. Thereupon, the chemotherapeutic and chemopreventive properties of RSV are underlined, emphasizing the RSV numerous cancer molecular targets. Lastly, a comprehensive analysis of the RSV-loaded nanoparticles (RSV-NPs) developed and administered in different in vivo cancer models to date is presented. Nanoparticles (NPs) have shown to improve RSV solubility, stability, pharmacokinetics and biodistribution in cancer tissues, enhancing markedly its in vivo anticancer activity. RSV-NPs are, thus, considered a potential nanomedicine-based strategy to fight cancer; however, further studies are still necessary to allow RSV-NP clinical translation.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal. .,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Mariana Magalhães
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Mariana Caldas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - António J Ribeiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,i3S, Group Genetics of Cognitive Dysfunction, Institute for Molecular and Cell Biology, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
53
|
Ge ZD, Lian Q, Mao X, Xia Z. Current Status and Challenges of NRF2 as a Potential Therapeutic Target for Diabetic Cardiomyopathy. Int Heart J 2019; 60:512-520. [PMID: 30971629 DOI: 10.1536/ihj.18-476] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diabetic cardiomyopathy is one of the main causes of heart failure and death in patients with diabetes mellitus. Reactive oxygen species produced excessively in diabetes mellitus cause necrosis, apoptosis, ferroptosis, inflammation, and fibrosis of the myocardium as well as impair the cardiac structure and function. It is increasingly clear that oxidative stress is a principal cause of diabetic cardiomyopathy. The transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) activates the transcription of more than 200 genes in the human genome. Most of the proteins translated from these genes possess anti-oxidant, anti-inflammatory, anti-apoptotic, anti-ferroptotic, and anti-fibrotic actions. There is a growing body of evidence indicating that NRF2 and its target genes are crucial in preventing high glucose-induced oxidative damage in diabetic cardiomyopathy. Recently, many natural and synthetic activators of NRF2 are shown to possess promising therapeutic effects on diabetic cardiomyopathy in animal models of diabetic cardiomyopathy. Targeting NRF2 signaling by pharmacological entities is a potential approach to ameliorating diabetic cardiomyopathy. However, the persistent high expression of NRF2 in cancer tissues also protects the growth of cancer cells. This "dark side" of NRF2 increases the challenges of using NRF2 activators to treat diabetic cardiomyopathy. In addition, some NRF2 activators were found to have off-target effects. In this review, we summarize the current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhi-Dong Ge
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou.,Department of Anesthesiology, Medical College of Wisconsin, Milwaukee
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou
| | - Xiaowen Mao
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou
| | - Zhengyuan Xia
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou.,Department of Anesthesiology, The University of Hong Kong
| |
Collapse
|
54
|
Szelényi P, Somogyi A, Sarnyai F, Zámbó V, Simon-Szabó L, Kereszturi É, Csala M. Microsomal pre-receptor cortisol production is inhibited by resveratrol and epigallocatechin gallate through different mechanisms. Biofactors 2019; 45:236-243. [PMID: 30496642 DOI: 10.1002/biof.1477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/24/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023]
Abstract
Local activation of cortisol in hormone target tissues is a major determinant of glucocorticoid effect. Disorders in this peripheral cortisol metabolism play an important role in the development of metabolic diseases, such as obesity or type 2 diabetes mellitus. Hence, dietary factors influencing the activity of the involved enzymes can have major impacts on the risk of the above diseases. Resveratrol and epigallocatechin gallate (EGCG), two natural polyphenols found in several nutriments and in green tea, respectively, are well-known for their antiobesity and antidiabetic activities. EGCG has been shown to interfere with microsomal cortisol production through decreasing the luminal NADPH:NADP+ ratio. The aim of this study was to clarify if resveratrol also induces such a redox shift or causes any direct enzyme inhibition that influences local cortisol production. Cortisone-cortisol conversions and changes in NADPH levels were monitored in rat liver microsomal vesicles. Cortisol production was inhibited by resveratrol in a concentration dependent manner while the intrinsic reducing and oxidizing capacity as well as the NADPH level inside the ER-derived vesicles remained unaffected. Activity measurements performed in permeabilized microsomes confirmed that resveratrol, unlike EGCG, inhibits 11β-hydroxysteroid dehydrogenase type 1 directly. Long-term moderation of pre-receptor cortisol production likely contributes to the beneficial health effects of both polyphenols. © 2018 BioFactors, 45(2):236-243, 2019.
Collapse
Affiliation(s)
- Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Somogyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Farkas Sarnyai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Veronika Zámbó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Pathobiochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University (MTA-SE), Budapest, Hungary
| | - Éva Kereszturi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
55
|
Paymode DJ, Ramana CV. Studies toward the Total Synthesis of Parvifolals A/B: An Intramolecular o-Quinone Methide [4 + 2]-Cycloaddition To Construct the Central Tetracyclic Core. ACS OMEGA 2019; 4:810-818. [PMID: 31459360 PMCID: PMC6648467 DOI: 10.1021/acsomega.8b02777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
Two different approaches funded upon the intramolecular [4 + 2]-cycloaddition of in situ generated o-quinone methides have been explored to construct the central tetracyclic core of parvifolals A/B. At the outset, a cross-pinacol coupling of 2-formyl tri-O-methyl resveratrol with 4-methoxysalicylaldehyde followed by acid treatment was found to provide the desired tetracyclic core with an internal olefin. The requisite pendant aryl group has been introduced by a Pd-catalyzed direct coupling of corresponding diazonium salt.
Collapse
Affiliation(s)
- Dinesh J Paymode
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 020, India
| |
Collapse
|
56
|
Walker JM, Eckardt P, Aleman JO, da Rosa JC, Liang Y, Iizumi T, Etheve S, Blaser MJ, L.Breslow J, Holt PR. The effects of trans-resveratrol on insulin resistance, inflammation, and microbiota in men with the metabolic syndrome: A pilot randomized, placebo-controlled clinical trial. J Clin Transl Res 2018; 4:122-135. [PMID: 30873501 PMCID: PMC6412609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/18/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND AIM The metabolic syndrome (MetS) is a pathological condition comprised of abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. It has become a major threat globally, resulting in rapidly increasing rates of diabetes, coronary heart disease, and stroke. The polyphenol resveratrol (RES) is believed to improve glucose homeostasis and insulin resistance by activating sirtuin, which acetylates and coactivates downstream targets and affects glucose and lipid homeostasis in the liver, insulin secretion in the pancreas, and glucose uptake in skeletal muscle. We studied the effects of RES on insulin resistance, glucose homeostasis, and concomitant effects on adipose tissue metabolism and fecal microbiota in insulin-resistant subjects with the MetS. METHODS A total of 28 obese men with the MetS were studied during a 35-day stay in the Rockefeller University Hospital metabolic unit. Subjects were randomized to receive RES 1 g orally twice daily or placebo while kept weight stable and consuming a western-style diet. At baseline, and after 30 days of RES or placebo administration, subjects underwent testing that included a euglycemic, hyperinsulinemic clamp, 2-h oral glucose tolerance test (GTT), resting energy expenditure, daily blood pressure monitoring, abdominal adipose tissue biopsy, and fecal and blood collections. RESULTS RES induced no changes in insulin resistance but reduced the 120-min time point and the area under the curve for glucose concentration in the 2-h GTT. In post-hoc analysis, Caucasian subjects showed a significant improvement in insulin sensitivity and glucose homeostasis after GTT, whereas non-Caucasians showed no similar effects. Levels of fasting plasma RES and its primary metabolite dihydroresveratrol were variable and did not explain the racial differences in glucose homeostasis. RES administration to Caucasian subjects leads to an increase in several taxa including Akkermansia muciniphila. CONCLUSIONS RES 2 g administered orally to obese men with MetS and insulin resistance marginally altered glucose homeostasis. However, in a small group of Caucasians, insulin resistance and glucose homeostasis improved. No concomitant changes in adipose tissue metabolism occurred, but fecal microbiota showed RES-induced changes. RELEVANCE FOR PATIENTS The MetS increases the risk of diabetes, heart disease, and stroke. A major component of the syndrome is insulin resistance, resulting in systemic inflammation and hyperinsulinemia. The primary treatment consists of lifestyle changes, improved diet, and increased physical activity. This is often unsuccessful. In this study, RES was well tolerated. In Caucasian men, it significantly improved insulin sensitivity and glucose homeostasis. Similar results were found in studies that consisted exclusively of Caucasian men. However, RES presents a novel addition to the current treatment of the MetS and its sequelae.
Collapse
Affiliation(s)
- Jeanne M. Walker
- 1The Rockefeller University Hospital, New York,Corresponding author: Jeanne M. Walker, RN, MSN, ANP-C, The Rockefeller University Hospital, 1230 York Avenue, Box 317, New York, 10065. Tel.: +1 212-327-7270
| | | | - Jose O. Aleman
- 2Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York,3Department of Medicine, New York University School of Medicine, New York
| | | | - Yupu Liang
- 1The Rockefeller University Hospital, New York
| | - Tadasu Iizumi
- 3Department of Medicine, New York University School of Medicine, New York
| | - Stephane Etheve
- 4DNP R&D Analytics, DSM Nutritional Products LTD, Kaiseraugst, Switzerland
| | - Martin J. Blaser
- 3Department of Medicine, New York University School of Medicine, New York
| | - Jan L.Breslow
- 2Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York
| | - Peter R. Holt
- 2Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York
| |
Collapse
|
57
|
Jang IA, Kim EN, Lim JH, Kim MY, Ban TH, Yoon HE, Park CW, Chang YS, Choi BS. Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney. Nutrients 2018; 10:E1741. [PMID: 30424556 PMCID: PMC6267480 DOI: 10.3390/nu10111741] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), especially the angiotensin II (Ang II)/angiotensin II type 1 receptor (AT1R) axis, plays an important role in the aging process of the kidney, through increased tissue reactive oxygen species production and progressively increased oxidative stress. In contrast, the angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis, which counteracts the effects of Ang II, is protective for end-organ damage. To evaluate the ability of resveratrol (RSV) to modulate the RAS in aging kidneys, eighteen-month-old male C57BL/6 mice were divided into two groups that received either normal mouse chow or chow containing resveratrol, for six months. Renal expressions of RAS components, as well as pro- and antioxidant enzymes, were measured and mouse kidneys were isolated for histopathology. Resveratrol-treated mice demonstrated better renal function and reduced albuminuria, with improved renal histologic findings. Resveratrol suppressed the Ang II/AT1R axis and enhanced the AT2R/Ang 1-7/MasR axis. Additionally, the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, 8-hydroxy-2'-deoxyguanosine, 3-nitrotyrosine, collagen IV, and fibronectin was decreased, while the expression of endothelial nitric oxide synthase and superoxide dismutase 2 was increased by resveratrol treatment. These findings demonstrate that resveratrol exerts protective effects on aging kidneys by reducing oxidative stress, inflammation, and fibrosis, through Ang II suppression and MasR activation.
Collapse
Affiliation(s)
- In-Ae Jang
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Eun Nim Kim
- Division of Medical Cell Biology, Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Ji Hee Lim
- Division of Medical Cell Biology, Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Min Young Kim
- Division of Medical Cell Biology, Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Tae Hyun Ban
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul 06591, Korea.
| | - Hye Eun Yoon
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon 21431, Korea.
| | - Cheol Whee Park
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul 06591, Korea.
| | - Yoon Sik Chang
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, Seoul 07345, Korea.
| | - Bum Soon Choi
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, St. Paul's Hospital, Seoul 02559, Korea.
| |
Collapse
|
58
|
Matin B, Sherbini AA, Alam N, Harmatz JS, Greenblatt DJ. Resveratrol glucuronidation in vitro: potential implications of inhibition by probenecid. J Pharm Pharmacol 2018; 71:371-378. [PMID: 30417385 DOI: 10.1111/jphp.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Resveratrol is a naturally occurring antioxidant with therapeutic potential in prevention and treatment of neoplastic disease and other human disorders. However, net clearance of resveratrol in humans is very high, mainly due to glucuronide conjugation. This leads to extensive presystemic extraction and low plasma concentrations after oral dosage. The present study evaluated the effect of probenecid, an inhibitor of glucuronide conjugation, on resveratrol metabolism in vitro. METHODS Biotransformation of resveratrol to its 3-O-glucuronide and 4'-O-glucuronide conjugates was studied in vitro using human liver microsomal preparations. The mechanism and inhibitory potency of probenecid were evaluated based on a mixed competitive-noncompetitive inhibition model. KEY FINDINGS Probenecid inhibition of resveratrol 3-O-glucuronidation was predominantly noncompetitive, with an inhibition constant (Ki ) averaging 3.1 mm. CONCLUSIONS The ratio of in vivo maximum concentration of probenecid [I] during usual clinical use to the in vitro Ki value ([I]/Ki ) exceeds the boundary value of 0.1, used by regulatory agencies to identify the possibility of clinical drug interactions. This finding, together with the known property of probenecid as an inhibitor of glucuronide conjugation in humans, suggests that probenecid could serve as a pharmacokinetic boosting agent to enhance systemic exposure to resveratrol in humans.
Collapse
Affiliation(s)
- Bahar Matin
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Ahmad A Sherbini
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Novera Alam
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jerold S Harmatz
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - David J Greenblatt
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
59
|
Sodium caseinate-corn starch hydrolysates conjugates obtained through the Maillard reaction as stabilizing agents in resveratrol-loaded emulsions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
60
|
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018; 6:E91. [PMID: 30205595 PMCID: PMC6164842 DOI: 10.3390/biomedicines6030091] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) belongs to polyphenols' stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes' skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Bilge Sener
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehtap Kilic
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box. 812, Yaounde-Cameroon.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
61
|
Tain YL, Hsu CN. Developmental Programming of the Metabolic Syndrome: Can We Reprogram with Resveratrol? Int J Mol Sci 2018; 19:ijms19092584. [PMID: 30200293 PMCID: PMC6164855 DOI: 10.3390/ijms19092584] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is a mounting epidemic worldwide. MetS can start in early life, in a microenvironment that is now known as the developmental origins of health and disease (DOHaD). The concept of DOHaD also offers opportunities for reprogramming strategies that aim to reverse programming processes in early life. Resveratrol, a polyphenolic compound has a wide spectrum of beneficial effects on human health. In this review, we first summarize the epidemiological and experimental evidence supporting the developmental programming of MetS. This review also presents an overview of the evidence linking different molecular targets of resveratrol to developmental programming of MetS-related disorders. This will be followed by studies documenting resveratrol as a reprogramming agent to protect against MetS-related disorders. Further clinical studies are required in order to bridge the gap between animal models and clinical trials in order to establish the effective dose and therapeutic duration for resveratrol as a reprogramming therapy on MetS disorders from developmental origins.
Collapse
Affiliation(s)
- You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
62
|
Marouf BH, Hussain SA, Ali ZS, Ahmmad RS. Resveratrol Supplementation Reduces Pain and Inflammation in Knee Osteoarthritis Patients Treated with Meloxicam: A Randomized Placebo-Controlled Study. J Med Food 2018; 21:1253-1259. [PMID: 30160612 DOI: 10.1089/jmf.2017.4176] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Resveratrol, a polyphenolic compound, is a powerful antioxidant with remarkable anti-inflammatory properties. Inflammation and pain plays an important role in the pathogenesis of knee osteoarthritis (OA) and could cause tissue damage and morbidity. The aim of this study was to evaluate the anti-inflammatory and pain reduction activities of orally administered resveratrol in patients with knee OA. We carried out a 90-day pilot study to evaluate the ability of orally administered resveratrol, as an adjuvant with meloxicam, to decrease knee joint pain and biomarkers of inflammation in comparison with a placebo. One hundred ten men and women (45-75 years old) diagnosed with mild to moderate knee OA were treated with 15 mg per day meloxicam and either 500 mg per day resveratrol or placebo for 90 days in a double-blind, randomized control trial. Pain severity was evaluated at the beginning and at the end of treatment using Visual Analogue Scale-100 scores. Fasting blood was collected to determine serum interleukins 1β and 6, tumor necrosis factor-α, C-reactive protein, and complement proteins C3 and C4. The resveratrol-treated group experienced a time-dependent significant decrease in pain severity (P < .001). Serum levels of the biochemical markers were significantly reduced compared with the placebo-treated group (P < .01). These findings suggest that resveratrol may be an effective "add-on" option with meloxicam in the treatment of patients with mild to moderate knee OA.
Collapse
Affiliation(s)
- Bushra Hassan Marouf
- 1 Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani , Kurdistan Region, Iraq
| | - Saad Abdulrahman Hussain
- 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Rafidain University College , Baghdad, Iraq
| | - Ziyad Serdar Ali
- 3 Department of Rheumatology and Orthopedics, Shar Teaching Hospital , Sulaimani, Kurdistan Region, Iraq
| | - Runj Simko Ahmmad
- 3 Department of Rheumatology and Orthopedics, Shar Teaching Hospital , Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|
63
|
Navarro G, Martínez-Pinilla E, Ortiz R, Noé V, Ciudad CJ, Franco R. Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Health-Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action. Compr Rev Food Sci Food Saf 2018; 17:808-826. [PMID: 33350112 DOI: 10.1111/1541-4337.12359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
This paper reviews the potential of stilbenoids as nutraceuticals. Stilbenoid compounds in wine are considered key factors in health-promoting benefits. Resveratrol and resveratrol-related compounds are found in a large diversity of vegetal products. The stilbene composition varies from wine to wine and from one season to another. Therefore, the article also reviews how food science and technology and wine industry may help in providing wines and/or food supplements with efficacious concentrations of stilbenes. The review also presents results from clinical trials and those derived from genomic/transcriptomic studies. The most studied stilbenoid, resveratrol, is a very safe compound. On the other hand, the potential benefits of stilbene intake are multiple and are apparently due to downregulation more than upregulation of gene expression. The field may take advantage from identifying the mechanism of action(s) and from providing useful data to show evidence for specific health benefits in a given tissue or for combating a given disease.
Collapse
Affiliation(s)
- Gemma Navarro
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Dept. of Morphology and Cell Biology, Faculty of Medicine, Univ. of Oviedo, Asturias, Spain.,Inst. de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Psicología, Univ. de Oviedo, Plaza Feijóo s/n, 33003 Oviedo, Asturias, Spain.,Inst. de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Raquel Ortiz
- Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Carlos J Ciudad
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Rafael Franco
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| |
Collapse
|
64
|
Khojah HM, Ahmed S, Abdel-Rahman MS, Elhakeim EH. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: a clinical study. Clin Rheumatol 2018; 37:2035-2042. [PMID: 29611086 DOI: 10.1007/s10067-018-4080-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Resveratrol (RSV), a naturally occurring polyphenol, has been found to have potent antioxidant, anti-inflammatory, and anticancer effects. Recently, RSV was reported as a new potential agent to suppress inflammation of collagen-induced arthritis in a mouse model. Nevertheless, the clinical benefits of RSV in the management of rheumatoid arthritis (RA) were not studied. This randomized controlled clinical trial aims to shed some light on the therapeutic benefits of RSV in the treatment of RA in patients with different stages of the disease activity. In this randomized controlled clinical trial, 100 RA patients (68 female, 32 male) were enrolled randomly and divided into two groups, each of 50 patients: an RSV-treated group that received a daily RSV capsule of 1 g with the conventional treatment for 3 months and a control group that just received the regular treatment. The clinical and biochemical markers of RA in both groups were assessed. It was found that the clinical markers (i.e., the 28-joint count for swelling and tenderness) and the disease activity score assessment for 28 joints were significantly lowered in the RSV-treated group. Moreover, serum levels of certain biochemical markers (i.e., C-reactive protein, erythrocyte sedimentation rate, undercarboxylated osteocalcin, matrix metalloproteinase-3, tumor necrosis factor alpha, and interleukin-6) were also significantly decreased in RSV-treated patients. The current study suggests the addition of RSV as an adjuvant to the conventional antirheumatic drugs.
Collapse
Affiliation(s)
- Hani M Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| | - Sameh Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Eman H Elhakeim
- Department of Rheumatology & Rehabilitation, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
65
|
Takao K, Yahagi H, Uesawa Y, Sugita Y. 3-(E)-Styryl-2H-chromene derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg Chem 2018; 77:436-442. [DOI: 10.1016/j.bioorg.2018.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
66
|
Catinean A, Neag MA, Muntean DM, Bocsan IC, Buzoianu AD. An overview on the interplay between nutraceuticals and gut microbiota. PeerJ 2018; 6:e4465. [PMID: 29576949 PMCID: PMC5855885 DOI: 10.7717/peerj.4465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background Nowadays, growing attention was being given to the alternative ways to prevent or treat diseases. Nutraceuticals are used increasingly for this purpose. Many of these are being used as alternative therapy. Classic therapy with synthetic drugs, although very effective, has many side effects. The term “nutraceuticals” refers to the link between the nutritional and pharmaceutical domains. Also, lately, many studies have been done to investigate the role of microbiota in maintaining health. There is the hypothesis that some of the health benefits of nutraceuticals are due to their ability to change the microbiota. The aim of this review was to emphasize the link between the most commonly used nutraceuticals, the microbiota and the health benefits. Methods We selected the articles in PubMed, published up to July 2017, that provided information about most used nutraceuticals, microbiota and health benefits. In this review, we incorporate evidence from various types of studies, including observational, in vitro and in vivo, clinical studies or animal experiments. Results The results demonstrate that many nutraceuticals change the composition of microbiota and can interfere with health status of the patients. Discussion There is evidence which sustains the importance of nutraceuticals in people’s health through microbiota but further studies are needed to complete the assessment of nutraceuticals in health benefit as a consequence of microbiota’s changing.
Collapse
Affiliation(s)
- Adrian Catinean
- Department of Internal Medicine/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics/Faculty of Pharmacy, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology/Faculty of Medicine, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
67
|
Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 2018; 44:69-82. [PMID: 29210129 DOI: 10.1002/biof.1400] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Over the past years, several studies have found that foods rich in polyphenols protect against age-related disease, such as atherosclerosis, cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes (T2D), hypertension and Alzheimer's disease. Resveratrol and pterostilbene, the polyphenol found in grape and blueberries, have beneficial effects as anti-aging compounds through modulating the hallmarks of aging, including oxidative damage, inflammation, telomere attrition and cell senescence. In this review, we discuss the relationship between resveratrol and pterostilbene and possible aging biomarker, including oxidative stress, inflammation, and high-calorie diets. Moreover, we also discuss the positive effect of resveratrol and pterostilbene on lifespan, aged-related disease, and health maintenance. Furthermore, we summarize a variety of important mechanisms modulated by resveratrol and pterostilbene possibly involved in attenuating age-associated disorders. Overall, we describe resveratrol and pterostilbene potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms. © 2017 BioFactors, 44(1):69-82, 2018.
Collapse
Affiliation(s)
- Yi-Rong Li
- Changhua Christian Hospital, Thoracic Medicine Research center, Changhua 50006, Taiwan, Republic of China
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Shiming Li
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, China
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
- Department of Health and Nutrition, Asia University, Taichung 41354, Taiwan, Republic of China
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
68
|
Oliveira ALDB, Monteiro VVS, Navegantes-Lima KC, Reis JF, Gomes RDS, Rodrigues DVS, Gaspar SLDF, Monteiro MC. Resveratrol Role in Autoimmune Disease-A Mini-Review. Nutrients 2017; 9:nu9121306. [PMID: 29194364 PMCID: PMC5748756 DOI: 10.3390/nu9121306] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/20/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are still considered to be pressing concerns due the fact that they are leaders in death and disability causes worldwide. Resveratrol is a polyphenol derived from a variety of foods and beverages, including red grapes and red wine. Anti-inflammatory, antioxidant, and antiaging properties of resveratrol have been reported, and in some animal and human studies this compound reduced and ameliorated the progression of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and type 1 diabetes mellitus. Thus, this review aims to summarize and critically analyze the role of resveratrol in the modulation of several organ-specific or systemic autoimmune diseases.
Collapse
Affiliation(s)
- Ana Lígia de Brito Oliveira
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Valter Vinicius Silva Monteiro
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Kely Campos Navegantes-Lima
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Rafaelli de Souza Gomes
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Dávila Valentina Silva Rodrigues
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Silvia Letícia de França Gaspar
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Marta Chagas Monteiro
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| |
Collapse
|
69
|
Natural Cyclopeptide RA-XII, a New Autophagy Inhibitor, Suppresses Protective Autophagy for Enhancing Apoptosis through AMPK/mTOR/P70S6K Pathways in HepG2 Cells. Molecules 2017; 22:molecules22111934. [PMID: 29137114 PMCID: PMC6150396 DOI: 10.3390/molecules22111934] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is a progressive, irreversible and aggressive malignant disease, which has no effective chemotherapeutic drugs. RA-XII, a natural cyclopeptide isolated from the traditional Chinese medicine Rubia yunnanensis, exerts anti-cancer and anti-inflammatory activities. This work aimed to investigate the effects of RA-XII on a hepatic tumor and its underlying mechanisms in human hepatoma HepG2 cells. The results showed that RA-XII effectively inhibited the proliferation of HepG2 cells. Consistently, RA-XII significantly induced apoptosis in HepG2 cells by decreasing the expression of caspase 3, 8, 9, and promoting the Cleavage of PARP. Moreover, RA-XII-induced apoptosis was attenuated in the presence of apoptosis inhibitor N-Benzyloxycarbonyl-Val-Ala-Asp (O-Me) fluoromethyl keton, suggesting that RA-XII induced apoptosis-cell-death in HepG2 cells. Furthermore, autophagy-related proteins and mRNA levels were dramatically reduced after RA-XII treatment. Meanwhile, we observed that autophagy inhibitor chloroquine could enhance apoptosis in RA-XII-treated HepG2 cells, indicating that autophagy played a protective role in HepG2 cells and RA-XII might inhibit protective autophagy. Further analysis showed that RA-XII inhibited AMPK phosphorylation and led to the mTOR/P70S6K pathway activation, suggesting that RA-XII inhibited autophagy through AMPK/mTOR/P70S6K pathways. This study demonstrated that RA-XII promoted apoptosis and inhibited protective autophagy through AMPK/mTOR/P70S6K pathways in HepG2 cells. In conclusion, these findings suggest that RA-XII might potentially be a candidate as an autophagy inhibitor agent for further therapy of liver cancer.
Collapse
|
70
|
Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements. Molecules 2017; 22:molecules22101699. [PMID: 29065448 PMCID: PMC6151444 DOI: 10.3390/molecules22101699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.
Collapse
|
71
|
Vervandier-Fasseur D, Vang O, Latruffe N. Special Issue: Improvements for Resveratrol Efficacy. Molecules 2017; 22:molecules22101737. [PMID: 29035340 PMCID: PMC6151753 DOI: 10.3390/molecules22101737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302), Université of Bourgogne, 9 Av. Alain Savary, Dijon F-21000, France.
| | - Ole Vang
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Norbert Latruffe
- Laboratoire de Biochimie (Bio-peroxIL n°7270), 6 Boulevard Gabriel, Université de Bourgogne, Dijon F-21000, France.
| |
Collapse
|