51
|
The Milk Active Ingredient, 2'-Fucosyllactose, Inhibits Inflammation and Promotes MUC2 Secretion in LS174T Goblet Cells In Vitro. Foods 2023; 12:foods12010186. [PMID: 36613400 PMCID: PMC9818439 DOI: 10.3390/foods12010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
In several mice inflammatory models, human milk oligosaccharides (HMOs) were shown to protect the intestinal barrier by promoting mucin secretion and suppressing inflammation. However, the functions of the individual HMOs in enhancing mucin expression in vivo have not been compared, and the related mechanisms are not yet to be clarified. In this study, we investigated the modulatory effects of 2′-fucosyllactose (2′-FL), 3′-sialyllactose (3′-SL), galacto-oligosaccharide (GOS) and lactose (Lac) on goblet cells’ functions in vitro. The appropriate dosage of the four chemicals was assessed in LS174T cells using the CCK-8 method. Then they were supplemented into a homeostasis and inflammatory environment to further investigate their effects under different conditions. Mucin secretion-related genes, including mucin 2 (MUC2), trefoil factor family 3 (TFF3), resistin-like β (RETNLB), carbohydrate sulfotransferase 5 (CHST5) and galactose-3-O-sulfotransferase 2 (GAL3ST2), in LS174T cells were detected using quantitative RT-qPCR. The results showed that 2′-FL (2.5 mg/mL, 72 h) was unable to increase MUC2 secretion in a steady-state condition. Comparatively, it exhibited a greater ability to improve mucin secretion under an inflammatory condition compared with GOS, demonstrated by a significant increase in TFF3 and CHST5 mRNA expression levels (p > 0.05). However, 3′-SL and Lac exhibited no effects on mucin secretion. To further investigate the underlying mechanism via which 2′-FL enhanced goblet cells’ secretion function, the NOD-like receptor family pyrin domain containing 6 (NLRP6) gene, which is closely related to MUC2 secretion, was silenced using the siRNA method. After silencing the NLRP6 gene, the mRNA expression levels of MUC2, TFF3 and CHST5 in the (2′-FL + tumor necrosis factor α (TNF-α) + NLRP6 siRNA) group were significantly decreased compared with the (2′-FL + TNF-α) group (p > 0.05), indicating that NLRP6 was essential for MUC2 expression in goblet cells. We further found that 2′-FL could significantly decrease toll-like receptor 4 (TLR4, p < 0.05), myeloid differential protein-88 (MyD88, p < 0.05) and nuclear factor kappa-B (NF-κB, p < 0.05) levels in LS174T inflammatory cells, even when the NLRP6 was silenced. Altogether, these results indicated that in goblet cells, 2′-FL exerts its function via multiple processes, i.e., by promoting mucin secretion through NLRP6 and suppressing inflammation by inhibiting the TLR4/MyD88/NF-κB pathway.
Collapse
|
52
|
Bozzi Cionci N, Reggio M, Baffoni L, Di Gioia D. Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:219-250. [DOI: 10.1007/978-3-031-19564-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
53
|
Abstract
Human milk oligosaccharides (HMOs) are the third most important solid component in human milk and act in tandem with other bioactive components. Individual HMO levels and distribution vary greatly between mothers by multiple variables, such as secretor status, race, geographic region, environmental conditions, season, maternal diet, and weight, gestational age and mode of delivery. HMOs improve the gastrointestinal barrier and also promote a bifidobacterium-rich gut microbiome, which protects against infection, strengthens the epithelial barrier, and creates immunomodulatory metabolites. HMOs fulfil a variety of physiologic functions including potential support to the immune system, brain development, and cognitive function. Supplementing infant formula with HMOs is safe and promotes a healthy development of the infant revealing benefits for microbiota composition and infection prevention. Because of limited data comparing the effect of non-human oligosaccharides to HMOs, it is not known if HMOs offer an additional clinical benefit over non-human oligosaccharides. Better knowledge of the factors influencing HMO composition and their functions will help to understand their short- and long-term benefits.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Jana Barbieur
- UZ Brussel, KidZ Health Castle, Vrije Unversiteit Brussel, Brussels, Belgium
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Yvan Vandenplas
- UZ Brussel, KidZ Health Castle, Vrije Unversiteit Brussel, Brussels, Belgium
| |
Collapse
|
54
|
Dynamics of human milk oligosaccharides in early lactation and relation with growth and appetitive traits of Filipino breastfed infants. Sci Rep 2022; 12:17304. [PMID: 36243744 PMCID: PMC9569346 DOI: 10.1038/s41598-022-22244-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023] Open
Abstract
Human milk oligosaccharides play a key role in the maturation of the infant gut microbiome and immune system and are hypothesized to affect growth. This study examined the temporal changes of 24 HMOs and their associations to infant growth and appetitive traits in an exploratory, prospective, observational, study of 41 Filipino mother-infant dyads. Exclusively breastfed, healthy, term infants were enrolled at 21-26 days of age (≈ 0.75 mo) and followed for 6 months. Infant growth measures and appetitive traits were collected at visit 1 (V1) (≈ 0.75 mo), V2 (≈ 1.5 mo), V3 (2.5 mo), V4 (2.75 mo), V5 (4 mo), and V6 (6 mo), while HMOs were measured at V1, V2, V3 and V5. Overall exposure to each HMO was summarized as area under the curve from baseline to 4 months of age and examined in association with each measure of growth at 6 months using linear regression adjusted for maternal age at birth, infant sex, birth weight, and mode of delivery. We saw modest associations between several HMOs and infant growth parameters. Our results suggest that specific HMOs, partly as proxy for milk groups (defined by Secretor and Lewis status), may be associated with head circumference and length, increasing their relevance especially in populations at the lower end of the WHO growth curve. We did not identify the same HMOs associated with infant appetitive traits, indicating that at least in our cohort, changes in appetite were not driving the observed associations between HMOs and growth.Clinical trial registration: NCT03387124.
Collapse
|
55
|
Chen H, Yi B, Qiao Y, Peng K, Zhang J, Li J, Zheng KW, Ning P, Li W. Diversity-scaling analysis of human breast milk microbiomes from population perspective. Front Microbiol 2022; 13:940412. [PMID: 36225365 PMCID: PMC9549050 DOI: 10.3389/fmicb.2022.940412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Quantitative measuring the population-level diversity-scaling of human microbiomes is different from conventional approach to traditional individual-level diversity analysis, and it is of obvious significance. For example, it is well known that individuals are of significant heterogeneity with their microbiome diversities, and the population-level analysis can effectively capture such kind of individual differences. Here we reanalyze a dozen datasets of 2,115 human breast milk microbiome (BMM) samples with diversity-area relationship (DAR) to tackle the previous questions. Our focus on BMM is aimed to offer insights for supplementing the gut microbiome research from nutritional perspective. DAR is an extension to classic species-area relationship, which was discovered in the 19th century and established as one of a handful fundamental laws in community ecology. Our DAR modeling revealed the following numbers, all approximately: (i) The population-level potential diversity of BMM is 1,108 in terms of species richness (number of total species), and 67 in terms of typical species. (ii) On average, an individual carry 17% of population-level diversity in terms of species richness, and 61% in terms of typical species. (iii) The similarity (overlap) between individuals according to pair-wise diversity overlap (PDO) should be approximately 76% in terms of total species, and 92% in terms of typical species, which symbolizes the inter-individual heterogeneity. (iv) The average individual (alpha-) diversity of BMM is approximately 188 (total-species) and 37 (typical-species). (v) To deal with the potential difference among 12 BMM datasets, we conducted DAR modeling separately for each dataset, and then performed permutation tests for DAR parameters. It was found that the DAR scaling parameter that measures inter-individual heterogeneity in diversity is invariant (constant), but the population potential diversity is different among 30% of the pair-wise comparison between 12 BMM datasets. These results offer comprehensive biodiversity analyses of the BMM from host individual, inter-individual, and population level perspectives.
Collapse
Affiliation(s)
- Hongju Chen
- College of Mathematics, Honghe University, Mengzi, China
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Bin Yi
- College of Mathematics, Honghe University, Mengzi, China
| | - Yuting Qiao
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Kunbao Peng
- Department of Endocrinology, Yan’an Hospital of Kunming City, Kunming, China
| | - Jianmei Zhang
- Physiatrics Medicine, Yan’an Hospital of Kunming City, Kunming, China
| | - Jinsong Li
- The Yunnan Red-Cross Hospital, Affiliated Hospital of Yunnan University, Kunming, China
| | - Kun-Wen Zheng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- Kun-Wen Zheng,
| | - Ping Ning
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ping Ning,
| | - Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Biology, Taiyuan Normal University, Jinzhong, China
- *Correspondence: Wendy Li,
| |
Collapse
|
56
|
Pinto TN, Kohn A, da Costa GL, Oliveira LMA, Pinto TCA, Oliveira MME. Candida guilliermondii as an agent of postpartum subacute mastitis in Rio de Janeiro, Brazil: Case report. Front Microbiol 2022; 13:964685. [PMID: 36212821 PMCID: PMC9537450 DOI: 10.3389/fmicb.2022.964685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Candida spp. can cause mild-to-severe human infections. Certain species have been described as the etiologic agent of human mastitis, inflammation of the breast tissue. Mastitis affects millions of lactating women and can be a source of disease transmission to the infant. In this work, we report the detection of the unusual etiologic agent of human mastitis, Candida guilliermondii, isolated from the milk of a puerperal woman with subacute mastitis in Rio de Janeiro, Brazil. Species identification was performed by MALDI-TOF MS and genetic sequencing. The patient had a full recovery after antifungal therapy.
Collapse
Affiliation(s)
- Tatiane Nobre Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alana Kohn
- Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel M. E. Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Manoel M. E. Oliveira, ;
| |
Collapse
|
57
|
Exploring the Potential of Human Milk and Formula Milk on Infants’ Gut and Health. Nutrients 2022; 14:nu14173554. [PMID: 36079814 PMCID: PMC9460722 DOI: 10.3390/nu14173554] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Early-life gut microbiota plays a role in determining the health and risk of developing diseases in later life. Various perinatal factors have been shown to contribute to the development and establishment of infant gut microbiota. One of the important factors influencing the infant gut microbial colonization and composition is the mode of infant feeding. While infant formula milk has been designed to resemble human milk as much as possible, the gut microbiome of infants who receive formula milk differs from that of infants who are fed human milk. A diverse microbial population in human milk and the microbes seed the infant gut microbiome. Human milk contains nutritional components that promote infant growth and bioactive components, such as human milk oligosaccharides, lactoferrin, and immunoglobulins, which contribute to immunological development. In an attempt to encourage the formation of a healthy gut microbiome comparable to that of a breastfed infant, manufacturers often supplement infant formula with prebiotics or probiotics, which are known to have a bifidogenic effect and can modulate the immune system. This review aims to elucidate the roles of human milk and formula milk on infants’ gut and health.
Collapse
|
58
|
Elliott MJ, Golombek SG. Evolution of Preterm Infant Nutrition from Breastfeeding to an Exclusive Human Milk Diet: A Review. Neoreviews 2022; 23:e558-e571. [PMID: 35909104 DOI: 10.1542/neo.23-8-e558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The benefits of feeding human milk to human infants are well-established. Preterm infants, particularly those born with very low birthweight (VLBW; <1,500 g), are a uniquely vulnerable population at risk for serious, life-threatening complications as well as disruptions in normal growth and development that can affect their lives into adulthood. Feeding VLBW preterm infants an exclusive human milk diet (EHMD) from birth that consists of the mother's own milk or donor human milk plus a nutritional fortifier made exclusively from human milk has been associated with a reduction in morbidity and mortality and improved early growth and developmental metrics. Preliminary evidence suggests that the health benefits of adopting an EHMD (or avoiding cow milk products) early in life may last into adulthood. This review briefly summarizes the history of breastfeeding and describes the available evidence on the benefits of an EHMD among VLBW preterm infants as well as the importance of high-quality manufacturing standards for producing safe and effective human milk-based products.
Collapse
Affiliation(s)
- Melinda J Elliott
- Department of Neonatology, Pediatrix Medical Group of Maryland, Rockville, MD
| | - Sergio G Golombek
- Prolacta Bioscience, Duarte, CA.,Departments of Neonatology and Pediatrics, SUNY Downstate Health Sciences University, Brooklyn, NY
| |
Collapse
|
59
|
Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of Human Breast Milk Microbiota and Its Role in Children's Health. Pediatr Gastroenterol Hepatol Nutr 2022; 25:194-210. [PMID: 35611376 PMCID: PMC9110848 DOI: 10.5223/pghn.2022.25.3.194] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Claudio Montante
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Maurizio Carta
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| |
Collapse
|
60
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
61
|
Weighted analysis of 2'-fucosylactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose, and 6'-sialyllactose concentrations in human milk. Food Chem Toxicol 2022; 163:112877. [PMID: 35304182 DOI: 10.1016/j.fct.2022.112877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
Over 150 human milk oligosaccharides (HMOs) have been identified and their concentrations in human milk vary depending on Secretor and Lewis blood group status, environmental and geographical factors, lactation stage, gestational period, and maternal health. Quantitation of HMOs in human milk has been the focus of numerous studies, however, comprehensive and weighted statistical analyses of their levels in human milk are lacking. Therefore, weighted means, standard deviations, medians, interquartile ranges, and 90th percentiles for 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) were calculated using random sampling and the levels of these HMOs in human milk reported in the literature. Probability distributions of the reported levels were also constructed. Although the levels reported in the published studies varied, the weighted means for 2'-FL, 3-FL, LNT, 3'-SL, and 6'-SL were calculated to be 2.58, 0.57, 0.94, 0.28, and 0.39 g/L, respectively, which are consistent with those that have been previously determined in other systematic analyses. Likely due to the use of weighting, the 90th percentiles were greater than the 95% confidence limits that have been previously calculated. Our study therefore provides accurate and important statistical data to help support the level of appropriate HMO supplementation in infant formula.
Collapse
|
62
|
Jovandaric MZ, Milenkovic SJ, Babovic IR, Babic S, Dotlic J. The Effect of Glucose Metabolism and Breastfeeding on the Intestinal Microbiota of Newborns of Women with Gestational Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:413. [PMID: 35334589 PMCID: PMC8955385 DOI: 10.3390/medicina58030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy complication in which women without previously diagnosed diabetes develop chronic hyperglycemia during gestation. The diet and lifestyle of the mother during pregnancy as well as lactation have long-term effects on the child's health and development. Detection of early risk markers of adult-age chronic diseases that begin during prenatal life and the application of complex nutritional interventions at the right time may reduce the risk of these diseases. Newborns adapt to the ectopic environment by developing intestinal immune homeostasis. Adequate initial colonization of bacteria is necessary for sufficient development of intestinal immunity. The environmental determinant of adequate colonization is breast milk. Although a developing newborn is capable of producing an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences the switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and the activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). Breastfeeding in newborns of mothers with diabetes mellitus regulates the adequate immune response of the newborn and prevents diseases of the neonatal and postnatal period.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Svetlana J. Milenkovic
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana R. Babovic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
| | - Jelena Dotlic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
63
|
Cai Y, Chen L, Zhang S, Zeng L, Zeng G. The role of gut microbiota in infectious diseases. WIREs Mech Dis 2022; 14:e1551. [PMID: 34974642 DOI: 10.1002/wsbm.1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022]
Abstract
The intestine, the largest immune organ in the human body, harbors approximately 1013 microorganisms, including bacteria, fungi, viruses, and other unknown microbes. The intestine is a most important crosstalk anatomic structure between the first (the host) and second (the microorganisms) genomes. The imbalance of the intestinal microecology, especially dysbiosis of the composition, structure, and function of gut microbiota, is linked to human diseases. In this review, we investigated the roles and underlying mechanisms of gut microecology in the development, progression, and prognosis of infectious diseases. Furthermore, we discussed potential new strategies of prevention and treatment for infectious diseases based on manipulating the composition, structure, and function of intestinal microorganisms in the future. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Yongjie Cai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
64
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
65
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
66
|
Sánchez C, Fente C, Regal P, Lamas A, Lorenzo MP. Human Milk Oligosaccharides (HMOs) and Infant Microbiota: A Scoping Review. Foods 2021; 10:1429. [PMID: 34203072 PMCID: PMC8234547 DOI: 10.3390/foods10061429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component of breast milk. However, the newborn cannot assimilate them as nutrients. They are recognized prebiotic agents (the first in the newborn diet) that stimulate the growth of beneficial microorganisms, mainly the genus Bifidobacterium, dominant in the gut of breastfed infants. The structures of the oligosaccharides vary mainly according to maternal genetics, but also other maternal factors such as parity and mode of delivery, age, diet, and nutritional status or even geographic location and seasonality cause different breast milk oligosaccharides profiles. Differences in the profiles of HMO have been linked to breast milk microbiota and gut microbial colonization of babies. Here, we provide a review of the scope of reports on associations between HMOs and the infant gut microbiota to assess the impact of HMO composition.
Collapse
Affiliation(s)
- Cristina Sánchez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Campus Montepríncipe, Universidad San Pablo-CEU, Boadilla del Monte, 28668 Madrid, Spain; (C.S.); (M.P.L.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.)
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.)
| | - María Paz Lorenzo
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Campus Montepríncipe, Universidad San Pablo-CEU, Boadilla del Monte, 28668 Madrid, Spain; (C.S.); (M.P.L.)
| |
Collapse
|
67
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients 2021; 13:nu13061779. [PMID: 34071061 PMCID: PMC8224552 DOI: 10.3390/nu13061779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The human milk (HM) microbiota is a significant source of microbes that colonize the infant gut early in life. The aim of this study was to compare transient and mature HM virome compositions, and also possible changes related to the mode of delivery, gestational age, and weight for gestational age. Overall, in the 81 samples analyzed in this study, reads matching bacteriophages accounted for 79.5% (mainly Podoviridae, Myoviridae, and Siphoviridae) of the reads, far more abundant than those classified as eukaryotic viruses (20.5%, mainly Herpesviridae). In the whole study group of transient human milk, the most abundant families were Podoviridae and Myoviridae. In mature human milk, Podoviridae decreased, and Siphoviridae became the most abundant family. Bacteriophages were predominant in transient HM samples (98.4% in the normal spontaneous vaginal delivery group, 92.1% in the premature group, 89.9% in the C-section group, and 68.3% in the large for gestational age group), except in the small for gestational age group (only ~45% bacteriophages in transient HM samples). Bacteriophages were also predominant in mature HM; however, they were lower in mature HM than in transient HM (71.7% in the normal spontaneous vaginal delivery group, 60.8% in the C-section group, 56% in the premature group, and 80.6% in the large for gestational age group). Bacteriophages still represented 45% of mature HM in the small for gestational age group. In the transient HM of the normal spontaneous vaginal delivery group, the most abundant family was Podoviridae; however, in mature HM, Podoviridae became less prominent than Siphoviridae. Myoviridae was predominant in both transient and mature HM in the premature group (all C-section), and Podoviridae was predominant in transient HM, while Siphoviridae and Herpesviridae were predominant in mature HM. In the small for gestational age group, the most abundant taxa in transient HM were the family Herpesviridae and a species of the genus Roseolovirus. Bacteriophages constituted the major component of the HM virome, and we showed changes regarding the lactation period, preterm birth, delivery mode, and birth weight. Early in life, the HM virome may influence the composition of an infant's gut microbiome, which could have short- and long-term health implications. Further longitudinal mother-newborn pair studies are required to understand the effects of these variations on the composition of the HM and the infant gut virome.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Ozge Aydemir
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Neslihan Tekin
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Yvan Vandenplas
- Department of Pediatrics, KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1050 Brussels, Belgium;
| | - Andrés Moya
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), 46010 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Correspondence: ; Tel.: +90-222-239-29-79 (ext. 2722)
| |
Collapse
|
68
|
Jorgensen JM, Young R, Ashorn P, Ashorn U, Chaima D, Davis JCC, Goonatilleke E, Kumwenda C, Lebrilla CB, Maleta K, Sadalaki J, Totten SM, Wu LD, Zivkovic AM, Dewey KG. Associations of Human Milk Oligosaccharides and Bioactive Proteins with Infant Morbidity and Inflammation in Malawian Mother-Infant Dyads. Curr Dev Nutr 2021; 5:nzab072. [PMID: 34084993 PMCID: PMC8163417 DOI: 10.1093/cdn/nzab072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) and bioactive proteins likely benefit infant health, but information on these relations is sparse. OBJECTIVES We aimed to examine associations of milk content of HMOs and bioactive proteins with incidence and longitudinal prevalence of infant morbidity (any illness, fever, diarrhea, acute respiratory infection, and loss of appetite) and markers of inflammation [C-reactive protein (CRP) and α-1-acid glycoprotein (AGP)]. These are secondary analyses of a randomized controlled trial. METHODS Breast milk samples at 6 mo postpartum (n = 659) were analyzed to quantify absolute abundance of HMOs, relative abundance of fucosylated HMOs, sialylated HMOs, and 51 individual HMOs, and concentrations of 6 bioactive proteins (lactalbumin, lactoferrin, lysozyme, antitrypsin, IgA, and osteopontin). We examined associations of these constituents with infant morbidity from 6 to 7 and 6 to 12 mo, and CRP and AGP at 6 and 18 mo, considering maternal secretor status [presence or absence of the functional enzyme encoded by the fucosyltransferase 2 gene (FUT2) ] and adjusting for covariates and multiple hypothesis testing. RESULTS In secretors there were positive associations between total HMOs and longitudinal prevalence of fever (P = 0.032), between fucosylated HMOs and incidence of diarrhea (P = 0.026), and between lactoferrin and elevated CRP at 18 mo (P = 0.011). In nonsecretors, there were inverse associations between lactoferrin and incidence of fever (P = 0.007), between osteopontin and longitudinal prevalence of lost appetite (P = 0.038), and between fucosylated HMOs and incidence of diarrhea (P = 0.025), lost appetite (P = 0.019), and concentrations of AGP and CRP at 6 mo (P = 0.001 and 0.010); and positive associations between total HMOs and incidence of lost appetite (P = 0.024) and elevated CRP at 18 mo (P = 0.026), between lactalbumin and incidence of diarrhea (P = 0.006), and between lactoferrin and elevated CRP at 18 mo (P = 0.015). CONCLUSIONS Certain HMOs and bioactive proteins were associated with infant morbidity and inflammation, particularly in nonsecretors. Further research is needed to elucidate the causality of these relations.This trial was registered at clinicaltrials.gov as NCT01239693.
Collapse
Affiliation(s)
- Josh M Jorgensen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Rebecca Young
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Per Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Department of Pediatrics, Tampere, Finland
| | - Ulla Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - David Chaima
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Jasmine C C Davis
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | | | - Chiza Kumwenda
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Kenneth Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - John Sadalaki
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Sarah M Totten
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Lauren D Wu
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|